高三数学一轮复习课件:第56讲排列与组合

合集下载

高考数学一轮复习之排列与组合问题

高考数学一轮复习之排列与组合问题

排列与组合【教学目标】1.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.2.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.【考查方向】以理解和应用排列、组合的概念为主,常常以实际问题为载体,考查分类讨论思想,考查分析、解决问题的能力,题型以选择、填空为主,难度为中档.【知识点击】1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质(1)A m n=n(n-1)(n-2)…(n-m+1)=n!n-m(2)C m n=A m nA m m =n n-1n-2n-m+1m!=n!m n-m【知识点击1】排列问题【典型例题1】1.用1,2,3,4,5这五个数字,可以组成比20 000大,并且百位数不是数字3的没有重复数字的五位数,共有( )A.96个 B.78个 C.72个 D.64个2.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)【对点演练1】3.6名同学站成1排照相,要求同学甲既不站在最左边又不站在最右边,共有________种不同站法.【知识点击2】组合问题【典型例题2】男运动员6名,女运动员4名,其中男、女队长各1名.现选派5人外出参加比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.【对点演练 2】某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【知识点击3】排列与组合的综合问题【典型例题3】1.(相邻问题) 3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为( )A.2 B.9 C.72 D.362.(相间问题)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72 B.120 C.144 D.1683.(特殊元素位置问题)大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有( )A.18种B.24种C.36种D.48种【对点演练3】1.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有____种.2.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法.(用数字作答)【基础训练】1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列.( )(2)一个组合中取出的元素讲究元素的先后顺序.( )(3)两个组合相同的充要条件是其中的元素完全相同.( )(4)(n+1)!-n!=n·n!.( )(5)若组合式C x n=C m n,则x=m成立.( )(6)k C k n=n C k-1n-1.( )2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144 B.120 C.72 D.243.用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为( )A.8 B.24 C.48 D.1204.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种 B.216种 C.240种 D.288种5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为( )A.180 B.240 C.540 D.6306.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种.(用数字作答)7.7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为( )A.120 B.240 C.360 D.4808.设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?9.用0,1,2,3,4,5可以组成的无重复数字的能被3整除的三位数的个数是( )A.20 B.24 C.36 D.4010.设集合A={(x1,x2,x3,x4,x5,x6,x7)|x i∈{-1,0,1},i=1,2,3,4,5,6,7},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+…+|x7|≤4”的元素个数为( )A.938 B.900 C.1 200 D.1 300【目标评价】1.“中国梦”的英文翻译为“China Dream”,其中China又可以简写为CN,从“CN Dream”中取6个不同的字母排成一排,含有“ea”字母组合(顺序不变)的不同排列共有( ) A.360种 B.480种 C.600种 D.720种2.有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有( )A.240种 B.192种 C.96种 D.48种3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为( )A.16 B.18 C.24 D.324.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种 B.18种 C.24种 D.36种5.互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法( )A.A55种B.A22种C.A24A22种D.C12C12A22A22种6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48 C.60 D.727.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种.(用数字作答)8.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)9.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有________种.(用数字作答)10.用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.11.将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.12.某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法.(用数字作答)。

高三数学精品课件:排列与组合

高三数学精品课件:排列与组合

[主干知识·自主梳理] 重温教材 自查自纠
小题诊断
法一:可分两种情况:第一种情况,只有 1 位女生入选,不 5同.的(2选01法8·高有考C全21C国24=卷1Ⅰ2(种)从);2 第位二女种生情,况4 位,男有生2中位选女3生人入参选加, 科不技同比的赛选法,有且 至C22少C14有=41(种位).女 生 入 选 , 则 不 同 的 选 法 共 有 _根__据1_6_分__类_种加.法(计用数数原字理填知写答 ,至案少) 有 1 位女生入选的不同的选 法有 16 种. 法二:从 6 人中任选 3 人,不同的选法有 C36=20(种),从 6 人中任选 3 人都是男生,不同的选法有 C34=4(种),所以至少 有 1 位女生入选的不同的选法有 20-4=16(种).
生组成的田径运动队中选出 4 人参加比赛,要求男、女生都有,
则男生甲与女生乙至少有 1 人入选的方法种数为( )
A.85
B.86
C.91
D.90
思路分析:可采用直接法求解,也可用间接法求解,注意题目
中“至少”的含义.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理] 重温教材 自查自纠
易混淆排列与组合问题,区分的关键是看选出的元素 是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
考点二 组合应用题 (核心考点——合作探究)
解析:法一:(直接法)由题意,可分 3 类情况: 第 1 类,若男生甲入选,女生乙不入选,则方法种数为 C31C24+ C32C14+C33=31; 第 2 类,若男生甲不入选,女生乙入选,则方法种数为 C41C23+ C42C13+C34=34; 第 3 类,若男生甲入选,女生乙入选,则方法种数为 C23+C14C13 +C24=21. 所以男生甲与女生乙至少有 1 人入选的方法种数为 31+34+21 =86.

排列组合课件-高三数学一轮复习

排列组合课件-高三数学一轮复习

源于探索外太空的渴望,航天事业在 21世纪获得了长足的发展.太空中的环境为某些科学实验提供了有利条件, 宇航员常常在太空旅行中进行科学实验.在某次太空旅行中,宇航员们负 责的科学实验要经过5道程序,其中A,B两道程序既不能放在最前,也 不能放在最后,则该实验不同程序的顺序安排共有
√ A.18种 B.36种 C.72种 D.108种
先排甲、乙,有 A24种排法,再排丙,有 A14种排法,其余 5 人有 A55种排 法,故不同的排法共有 A24A14A55=5 760(种).
题型二 组合问题
从6名男生和4名女生中选出4人去参加一项创新大赛,则下列说法正确的 有 A.如果4人全部为男生,那么有30种不同的选法 B.如果4人中男生、女生各有2人,那么有30种不同的选法
如果男生中的甲和女生中的乙必须在内,在剩下的 8 人中再选 2 人即 可,有 C28=28(种),故 C 正确;
在 10 人中任选 4 人,有 C410=210(种),甲、乙都不在其中的选法有 C48 =70(种), 故 男 生 中 的 甲 和 女 生 中 的 乙 至 少 要 有 1 人 在 内 的 选 法 有 210 - 70 = 140(种),故D正确.
第一步,先从 4 名学生中任取两人组成一组,与剩下 2 人分成三组, 有 C24=6(种)不同的方法;第二步,将分成的三组安排到甲、乙、丙三 地,则有 A33=6(种)不同的方法.故共有 6×6=36(种)不同的安排方案.
题型一 排列问题
中国国家滑雪队将开展自由式滑雪项目中的空中技巧、雪上技巧、障碍
将9名大学生志愿者安排在星期五、星期六及星期日3天参加社区公益活 动,每天分别安排3人,每人参加一次,则不同的安排方案共有_1__6_8_0_ 种.(用数字作答)

排列组合ppt课件

排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量

学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。

高中数学排列与组合课件

高中数学排列与组合课件
P(n,m)=n!/(n-m)!,其中n!表示n的阶乘,即 n×(n-1)×...×3×2×1。
3
排列的性质
P(n,m)=P(n,n-m),P(n,m)=P(n-1,m-1)+P(n1,m)。
排列的计算方法及应用
计算方法
根据排列的公式,将具体的n和m 代入公式进行计算。
应用
排列在组合数学、概率论、统计 学等领域有广泛的应用,如排列 组合问题、概率计算等。
高中数学排列与组合 课件
汇报人: 202X-01-05
目录
• 排列与组合的基本概念 • 排列的计算方法 • 组合的计算方法 • 排列与组合的综合应用 • 练习题与答案解析
01 排列与组合的基本概念
排列的定义与性质
排列的定义:从n个不同元素中取出m个元素(m≤n ),按照一定的顺序排成一列,称为从n个元素中取
02
区别
排列考虑元素的顺序,而组合不考虑元素的顺序。
03
应用场景
在实际问题中,需要根据具体情境选择使用排列或组合 来描述和解决问题。
02 排列的计算方法
排列的公式与性质
1 2
排列的定义
从n个不同元素中取出m个元素(m≤n),按照 一定的顺序排成一列,称为从n个不同元素中取 出m个元素的排列。
排列的公式
进阶练习题2
题目内容涉及排列与组合与其他数学知识的结合,如概率论 、统计学等。答案解析:详细解释了如何将其他数学领域的 知识与排列与组合相结合,以解决更为复杂的实际问题。
综合练习题
综合练习题1
题目内容涉及排列与组合的多个知识点,要求考生具备较高的数学综合能力。答 案解析:详细解释了如何综合运用排列与组合的多个知识点解决实际问题,并提 供了多种解题思路。

排列组合ppt课件高中

排列组合ppt课件高中
10$
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等

建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义

高中数学排列与组合 PPT课件 图文

高中数学排列与组合 PPT课件 图文

则甲、乙两人不都入选的不同选法种数共有( D)
A
.C
2 5
A33
B.2C
3 5
A33
C
.A
3 5
D.2C52A33 A53
课堂练习:
5、在如图7x4的方格纸上(每小方格均为正方形) (1)其中有多少个矩形? (2)其中有多少个正方形?
小结
排列
组合 联系
组合是选择的 结果,排列是 选择后再排序 的结果
方 法 二 : C 1 5 2 C 3 0 C 9 56 6 6
例5、某医院有内科医生12名,外科医生8名,现要 派5人参加支边医疗队,至少要有1名内科医生和1名 外科医生参加,有多少种选法?
例6:(1)平面内有9个点,其中4个点在一条直线 上,此外没有3个点在一条直线上,过这9个点可确 定多少条直线?可以作多少个三角形?

3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果
其中至少有2名男医生和至少有2名女医生,则不同的选法种数
为( C )
A.(C8 3C7 2)(C7 3C82)
B .(C 8 3C 7 2)(C 7 3C 8 2)
C.C83C72C73C82
D.C83C72C111
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,
abd bad dab adb bda dba
acd cad dac
你发现a了dc cda dca 什么b?cd cbd dbc
bdc cdb dcb
不写出所有组合,怎样才能知道组合的种数?
A 求3可 分 两 步 考 虑 :
求4P
3 4
可分两步考虑:
C 第 一 步 ,3( 4 ) 个 ; 4

高考数学复习考点知识专题讲解课件第56讲 排列与组合

高考数学复习考点知识专题讲解课件第56讲 排列与组合

故不同的参赛方案种数为72+24=96.
课前基础巩固
5. 某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,
504
如果将这3个新节目插入节目单中,那么不同的插法种数为
;
210
如果3个新节目不能相邻,那么不同的插法种数为
.
[解析] 分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后
(3)正难则反,注意排除法等的应用.
课堂考点探究
变式题 (1)[2021·厦门二模] 在“弘扬中华文化”的演讲比赛中,参赛者甲、乙、
丙、丁、戊进入了前5名的决赛(获奖名次不重复).甲、乙、丙三人一起去询问
成绩,回答者说:“第一名和第五名恰好都在你们三人之中,甲的成绩比丙好”,从
这个回答分析,5人的名次排列的所有可能情况有
1 2
则恰好有1件是不合格品的抽法有C2 C98 种,故A正确,B错误.
课堂考点探究
抽出的3件中至少有1件是不合格品,有2种情况,①抽出的3件产品中有2件合格
1 2
品,1件不合格品,有C2 C98 种抽法;②抽出的3件产品中有1件合格品,2件不合格品,
2 1
有C2 C98 种抽法.则抽出的3件产品中至少有1件是不合格品的抽法有
高考数学复习考点知识专题讲解课件
第56讲
排列与组合
课前基础巩固
课堂考点探究
作业手册
课标要求
通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数
公式.
课前基础巩固
◈ 知识聚焦 ◈
1. 排列与组合的概念
名称
定义
排列 从n个不同元素中取
组合
出m(m≤n)个元素

高三数学一轮复习排列与组合.ppt

高三数学一轮复习排列与组合.ppt

(7)与无任何限制的排列相同,有 =5 040种.
(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有
种,甲、乙和其余2人排成一排且甲、乙相邻的排法有
种,最后再把选出的3人的排列插入到甲、乙之间即可,共

=720种.
1.组合问题常有以下两类题型: (1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这
解析:由题意得A={3,4,5,6,7},B={4,5,6,7,8},①若A中取3,
则先从B中任意取3个并排好,故有 =60种排法,第二步将
A中的3以插空的形式插入,有 种方法,故有
=180
个.②若A中不取3,∵A中的元素4,5,6,7集合B中全部含有,故
只需从B中任意取4个并排好即可,故有 =120个,
[思路点拨]
[课堂笔记] (1)由于A,B必须当选,那么从剩下的10人中
选取3人即可,∴有 =120种.
(2)从除去的A,B两人的10人中选5人即可,
∴有 =252种.
(3)全部选法有 种,
A,B全当选有 种,
故A,B不全当选有
=672种
(4)注意到“至少有2名女生”的反面是只有一名女生或没有
逆用,即由
写出 .
[特别警示] 在排列数、组合数计算过程中要注意阶乘的运 算及组合数性质的运用,注意含有排列数或组合数的方程 都是在某个正整数范围内求解.
解方程或不等式:
(1)3 =2 +6 ;
(2) >6 ;
(3)已知
,求 .
[思路点拨]
[课堂笔记] (1)由题意得3x(x-1)(x-2)=2(x+1)x+6x(x-1), ∵x≥3,∴3(x-1)(x-2)=2(x+1)+6(x-1), 即3x2-17x+10=0,解得x=5或x= (舍), ∴x=5.

高考数学(全国,理科)一轮复习课件:第56讲 排列与组合

高考数学(全国,理科)一轮复习课件:第56讲 排列与组合

[解析] 相当于从 4 个不 同元素中选出 3 个元素 的排列数,即为 A3 4=12.
课前双基巩固
2.[教材改编] 六人站一排照相,则甲、乙两人之 间间隔两人的排法有________种.
[答案] 144
[解析] 从除了甲、乙之 外的四人中选两人排一 起放在甲、 乙中间的排法 2 有 A4种,甲、乙两人的 排法有 A2 2种,将此四人 捆成一个元素, 与余下的 两人全排列有 A3 3种排 法, 所以六人站一排的所 2 3 有排法有 A2 4A2A3= 144(种).
真题再现
■ [2016-2015]其他省份类似高考 真题 1.[2016· 四川卷] 用数字 1,2,3,4,5 组成
没有重复数字的五位数,其中奇数的个数为 ( ) A.24 B.48 C.60 D.72
[解析] D 由题可知,五位数要 为奇数,则个位数只能是 1,3, 5.分为两步:先从 1,3,5 三个 数中选一个作为个位数,有 C1 3 种方法;再将剩下的 4 个数字 排列,有 A4 4种方法.则满足条 4 件的五位数有 C1 · A 3 4=72(个).
真题再现
2.[2015· 四川卷] 用数字 0,1,2,3,4,5 组成没 有重复数字的五位数,其中比 40 000 大的偶数共有 ( ) A.144 个 B.120 个 C.96 个 D.72 个
[解析] B 由题意知, 万位 上排 4 时,有 2×A3 4个大 于 40 000 的偶数,万位上 排 5 时,有 3×A3 4个,故 共有 5×A3 4=120(个).
考查热度
★☆☆
真题再现
[解析] C ∵a1,a2,„,a8 1. [2016· 全国卷Ⅲ] 定义“规范 01 数列”{an}如下: {an} 中 0 的个数不少于 1 的个数, 共有 2m 项, 其中 m 项为 0, m 项为 1, 且对任意 k≤2m, ∴a1=0,a8=1.先排定中间 a1,a2,„,ak 中 0 的个数不少于 1 的个数.若 m=4, 三个 1, 当三个 0 在一起时排 则不同的“规范 01 数列”共有( ) 法种数为 C1 2,当三个 0 不相 A.18 个 B.16 个 邻时排法种数为 C3 4,当三个 C.14 个 D.12 个 0 分成两组时排法种数为 A2 3 1 +C2,∴不同的“规范 01 数 3 2 1 列”共有 C1 + C + A + C 2 4 3 2= 14(个).

2018届高考数学(理)一轮复习人教版课件:第56讲 排列与组合

2018届高考数学(理)一轮复习人教版课件:第56讲   排列与组合

课堂考点探究
考点一 排列问题
例 1 (1)A,B,C,D,E,F 六人围坐在一张圆桌周围 开会, A 是会议的中心发言人, 必须坐最北面的椅子, B,C 两人必须坐相邻的两把椅子,其余三人坐剩余 的三把椅子,则不同的座次有( ) A.60 种 B.48 种 C.30 种 D.24 种 (2)[2016· 广州一调] 将除颜色外完全相同的一个白 球、一个黄球、两个红球分给三个小朋友,且每个小 朋友至少分得一个球的分法有( ) A.15 种 B.21 种 C.18 种 D.24 种
2 3 4 C7+C7+C7=
课前双基巩固
5.甲、乙两人进行乒乓球比赛,先赢 3 局 者获胜(无平局),决出胜负为止,则所有可 能出现的情形(各人输赢局次不同视为不同 情形)共有________种.
[答案] 20
[解析] 易知两人比赛局数为 3,4 或 5.当局数为 3 时,甲或乙连赢 3 局, 共 2 种;当局数为 4 时,若甲胜,则 甲第 4 局胜,且前 3 局胜 2 局,有 2 C3=3(种)情况, 同理乙胜也有 3 种情 况,共 6 种;当局数为 5 时,前 4 局 甲、 乙各胜 2 局, 第 5 局赢的人获胜, 2 有 2C4=12(种)情况.故共有 20 种情 况.
m (1)An =n(n-1)(n-2)…(n-m+1)=
公式
性质
用加 、________ 有序 3.解决排列组合计数问题,最常见的原理和方法为“分步用乘、分类________ 排列、无序组合”.
课前双基巩固
对点演练
1.判断下列结论的正误.(正确的打“√”,错误的打 “×”) 2 (1)从 3 个不同元素中任取 2 个元素,共有 A3种不同取 法.( ) (2) 将 4 本新的相同的课本发给 4 个不同的同学,每人 4 一本,共有 A4种不同分法.( ) 2 (3) 从 3,5,7,11 中任取两个数相加,共有 A4种不同 结果.( )

2020届高考数学一轮复习 第56讲 排列与组合

2020届高考数学一轮复习 第56讲 排列与组合

课堂考点探究
5.【微点2】[2018·绍兴 [答 模拟] 某单位安排5个人 在6天中值班,每天1人,
教师备用例题
【备选理由】 例1是站队排列 背景下的排列问题,注重文字信 直接法和间接法思考问题的不
教师备用例题
例1 [配合例1使用] 七名同学 成一排照毕业纪念照,其中甲必 须站在正中间,并且乙、丙两名 同学要站在一起,则不同的站法
课堂考点探究
例4 为防止部分学生考试时用 搜题软件作弊,命题组指派5名 师对数学卷的选择题、填空题
课堂考点探究
[总结反思] 对于部分均分问题 若有m组元素个数相等,则分组
课堂考点探究
微点3 不等分问题
例5 A,B,C,D,E,F六人围坐在一 会,A是会议的中心发言人,必须
课堂考点探究
例5 A,B,C,D,E,F六人围坐在一 圆桌上开会,A是会议的中心发 人,必须坐最北面的椅子,B,C二
考试说明
了解排列、组合的概念,会用排
课前双基巩固
知识聚焦
1.排列与组合的概念
课前双基巩固
2.排列数与组合数
名称
定义
排列
不同排列
课前双基巩固
对点演练 题组一 常识题
1.[教材改编] 世界华商大会的
课前双基巩固
2.[教材改编] 甲、乙两人从4门
课程中各选修例题
例5 [配合例5使用] 当行驶的 6辆互不相同的军车行驶至A处 时,接到上级紧急通知,这6辆军
继续努力
再见
(2)常见排列数的求法为:①相邻
课堂考点探究
变式题 (1)[2018·黄山一模] 我 行训练中,有5架“歼-15”飞机准 之前着舰(不一
课堂考点探究
[答案] (1)C (2)C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档