地铁牵引电路分析
城轨车辆牵引传动系统的组成和原理—交流主电路的案例分析
牵引电机供电。在再生制动时以的相时间反常的数路及径放使电电电网阻吸值收。电机反馈的
能量。各环节电路及作用为: 由TIEZ接是S是触晶隔器闸离C管/C,K接F与地CZ电开是阻关过,C电C在压Z需构保要护成主电。电路
(1)充电限流环节 (2)VVVF逆变器
在接阻放受地。电电C由时当后斩B弓将TR直仍波升1为它流不、即器差起转环能DT的动、换1节消7电~主、到高发除流T要接D速生,6传8地功、过则断构感位能电晶D路成器置6压闸是器的构,。,管用闭斩用成经T于合以波Z。斩导电检后器其波通阻测,。器,直 为作流直防用电流止是路电制过在流路动大人牵通,的与引过用充流F工它C出电况Z来的放电将电调电流直流节。冲流差因制击电,为动使能以晶电滤检变闸流波测换管的接只地
④ 脉冲模式发生器
脉冲模式发生器根据电机控制的三个输入变量:相控因数、定子频率和 校正角,实时计算牵引逆变器中的GTO触发脉冲。
图2-48 脉冲模式区域分布图
⑤ 能量反馈
在电机的能量反馈中,能量反馈到电网中,如果在电 制动的情况下,能量不能被电网完全吸收,多余的能量必 须转换为热能消耗在制动电阻上,否则电网电压将抬高到 不能承受的水平。
制动斩波器的存在确保大部分的能量能反馈回电网, 同时又保护了电网上的其他设备。
(4)牵引控制单元DCU及逆变器保护监控单元UNAS
① 牵引控制单元结构 ② 牵引控制单元基本功能 ③ DCU基本工作原理 ④ UNAS基本功能 ⑤ DCU的PCB板功能描述
a.牵引系统的控制与调整;
牵 单引 元A发bcdD...U控3生C0NV对脉3制AUV板是列冲SV从单设;F车模中与列元A计状式央牵3车态的D成控0引C4的产线制是U一电监生和和机板中上测与逆的外的央下与优控变处[部保化l两1制器理护;]控层与脉板保制保的冲的护护系模控;统式制 机箱/e.,调再共整生装/制有监动与测25电板块阻3电0制5动子,的A板控3。0制6是各与速调度节 电 使 元(子 用 件A/负 信是fghT...板 多 采制号PO责压电防逆D为 层 用动)处制制接V滑变A标 板 表参理动W动数/器收的与准 技 面和考防据线F司实气牵空路中存的术封值机现制转滤引断储印,装转;动指保波控逆板换刷电的护电令(制;变自器及电子容及S[A动器载l器)M路板23R转]D荷0的的V的板上)板8换调充是C保;指,的或及整放(测护A列令;电牵量3车,控0参值引7保制 插 的 过考AH装号 各与 制 调换理ijkl3a...值.(2rD、 个整板板动D列列提停9tC为,DmU和拖 模C板;;车车供车控其I8的接ULA车 拟接速牵串距AA;它制)3A一33收度引行离A的 信插33控11系。01起103的控接;本制一号件板4,是0统获 制 口9和组系车A是P个测(的取 系 与。统WA成3的温转量41前与 统P3提M2T81车3度处 的是U轴值供面针5个指连板辆理 故测列输速,板)令电接及 障、的量车入度根上与参,自 诊机状及U牵信信据考动 断通外N态速U号A引计 与值号参信/S度调/算 存处号I、考信转整储
石家庄地铁直流牵引供电系统继电保护
石家庄地铁直流牵引供电系统继电保护石家庄地铁是河北省首条城市轨道交通线路,经过多年的规划和建设,目前已经有多条线路贯通城市各个区域。
地铁运营过程中,保障列车安全运行是至关重要的,而直流牵引供电系统继电保护作为地铁系统中的关键部分,对于确保牵引系统的正常运行和保护列车及乘客安全起着非常重要的作用。
地铁直流牵引供电系统继电保护是指在地铁列车运行过程中,保护列车牵引系统不受外部干扰、保护牵引系统运行的安全可靠性和可靠性。
本文将对石家庄地铁直流牵引供电系统继电保护进行详细分析和介绍。
一、石家庄地铁直流牵引供电系统概述石家庄地铁采用的是直流牵引供电系统,直流电源由变电所提供,通过供电网向轨道供电。
在列车运行时,通过架空线和接触网对列车进行牵引。
直流牵引供电系统主要由供电网、牵引变压器、牵引逆变器、牵引电动机等组成。
牵引变压器负责改变供电网的电压,将其适配给列车牵引系统使用;牵引逆变器则负责将直流电源转换为交流电源,供给电动机使用;牵引电动机则是利用逆变器提供的电能将列车进行牵引。
二、石家庄地铁直流牵引供电系统继电保护的作用石家庄地铁的直流牵引供电系统继电保护主要负责以下几个方面的功能:1. 对电动机的过流、短路等故障进行监测和判断,并采取措施进行保护;2. 对电源线路中可能出现的过压、欠压、短路等故障进行监测和判断,以保障供电系统的安全运行;3. 对于牵引逆变器、牵引变压器等关键设备进行监测和保护,确保这些设备的安全运行;4. 对于供电系统的中继设备、信号设备等进行监测和保护,保障这些设备的正常工作,以确保列车的正常运行。
三、石家庄地铁直流牵引供电系统继电保护的实现方式石家庄地铁直流牵引供电系统继电保护主要通过智能继电保护装置来实现。
这些装置通常包括保护继电器、故障录波器、控制装置等一系列设备。
保护继电器是直流牵引供电系统继电保护中的核心装置,它主要负责对电网和牵引系统各个部分进行监测和保护。
在发生故障时,保护继电器可以及时切断故障电路,防止故障扩大,保障列车的安全运行。
地铁车辆高压供电电路过流故障诊断分析及改进措施
2017年第24卷第8期技术与市场创新与实践地铁车辆高压供电电路过流故障诊断分析及改进措施宋永森(珠海城建现代交通有限公司,广东珠海519000)摘要:一旦地铁车辆牵引高压供电电路发生短路接地故障,将触发正线牵引变电所直流馈线断路器和对应供电区段内 列车高速断路器跳闸,地铁司机及行车调度难以快速锁定故障相关车辆或故障原因。
针对地铁车辆出现过流故障影响 正常运营的问题,分析了地铁车辆高压供电电路过流故障保护机理,提出在车辆高压输入端增设大电流传感器的技术方 案,实现快速确定发生过流故障的车辆,有效降低了对正线运营的影响。
关键词:高压供电;过流;诊断;措施doi:10. 3969/j.issn. 1006 - 8554. 2017.08.014〇引言根据地铁多年运营所发生的牵引供电回路过流跳闸故障 案例分析及处置经验,一旦地铁车辆牵引高压供电电路发生短 路接地故障,将触发正线牵引变电所直流馈线断路器和对应供 电区段内列车高速断路器跳闸,地铁司机及行车调度难以快速 锁定故障相关车辆或故障原因。
由于一个供电区间往往有 2 ~3列列车,判断和处置过程需要较长时间,同时还需对该供 电区关联列车及供电设备技术状态逐一排查,耗费大量人力物 力。
故很有必需研究在列车上设置快速有效的列车高压系统 过流故障诊断功能,以满足故障及时定位、快速应急处置以及 减少维护检查工作量的需求。
1高压供电电路过流保护功能及故障诊断原理地铁车辆牵引高压供电电路设备可分为牵引变电所输出 供电设备(主要为直流馈线断路器、接触网)以及车辆内部高 压设备(主要为受电弓、闸刀开关、高速断路器、熔断器等)。
在牵引变电所输出供电设备中,变电所馈线断路器为本供电 区间接触网和所有车辆高压系统设备提供短路过流保护。
在 车辆内部高压设备中,具备短路过流保护功能的部件为高速 断路器、熔断器。
高速断路器为牵引系统部件提供短路过流保 护;熔断器为辅助系统部件提供短路过流保护。
地铁牵引供电系统直流馈线保护技术探讨
地铁牵引供电系统直流馈线保护技术探讨随着城市化进程的加快和人口密集度的提高,地铁作为城市交通的重要组成部分,扮演着越来越重要的角色。
地铁的牵引供电系统是地铁运行的重要组成部分,它的稳定运行对地铁线路的安全运营至关重要。
在牵引供电系统中,直流馈线的保护技术一直是一个备受关注的问题。
本文将探讨地铁牵引供电系统直流馈线保护技术的现状和发展趋势。
一、直流馈线保护技术的重要性地铁牵引供电系统是地铁列车运行的动力来源,其中的直流馈线承担着将直流电能从变电所输送到地铁车辆的重要任务。
直流馈线的保护技术是保障地铁牵引供电系统正常运行的核心所在。
一旦直流馈线出现故障,不仅会影响地铁列车的正常运行,还有可能对乘客的安全造成威胁。
加强直流馈线的保护技术研究和应用具有极其重要的意义。
目前,地铁牵引供电系统的直流馈线保护技术主要包括过流保护、短路保护、接地保护等。
过流保护是直流馈线保护技术中最为基础的一环。
当直流馈线中的电流超出额定值时,过流保护装置将自动切断电路,以保护线路设备的安全运行。
短路保护则是针对直流馈线出现短路故障的情况而设计的保护技术,它可以快速检测并切除故障部分,防止故障扩大。
接地保护则是为了防止直流馈线出现接地故障而设计的保护技术,通过检测接地电流的变化情况,及时切断故障部分,保障线路设备的安全运行。
当前直流馈线保护技术在应对复杂多变的实际运行情况下存在一些不足。
一方面是保护动作速度不够快,无法满足地铁列车高速行驶时的需求;另一方面是对故障类型的识别能力有限,难以准确判断故障地点和故障原因。
提高直流馈线保护技术的灵敏度和准确性,成为当前急需解决的问题。
随着科学技术的不断进步,地铁牵引供电系统直流馈线保护技术也在不断向着智能化、高效化和可靠化的方向发展。
在智能化方面,借助人工智能技术,可以实现对直流馈线运行状态的实时监测和故障诊断,提高对故障的快速定位和处理能力。
在高效化方面,采用先进的电力电子技术和数字信号处理技术,可以实现直流馈线保护设备的快速动作和精确控制,提高保护装置应对复杂故障的能力。
石家庄地铁直流牵引供电系统继电保护
石家庄地铁直流牵引供电系统继电保护摘要随着城市轨道交通的不断发展,地铁牵引供电系统的安全稳定运行越来越受到关注。
直流牵引供电系统是地铁提供动力的核心部件,其电路中采用了大量的继电保护装置,以保障系统运行的可靠性和安全性。
本文基于石家庄地铁1号线牵引供电系统,从继电保护的原理、保护装置和应用实例三个方面,对直流牵引供电系统的继电保护进行了系统的介绍和分析。
一、继电保护原理1.1 继电保护概述继电保护是指利用电气参数(电流、电压、功率、频率等)或的变化来检测元件或设备的状态,从而实现对电气设备实现及时准确地保护的一种电气保护方式。
其基本原理是将电气故障或障碍通过检测等手段转化为电信号信息,并通过继电器、触发器等元件间接控制开关进行自动或手动保护。
继电保护可分为定值保护和差动保护两大类:1、定值保护:指固定阈值保护,按照故障电流的阈值进行判断,当电路中出现的电流大于设定值时,继电器将动作切断故障电路,以实现保护的目的。
2、差动保护:指通过比较不同设备电流之间的差值,来实现保护。
其原理是将各设备的电流进行量比,取得其差值并判断,当差值超过一定范围时,继电器会动作,从而实现保护的目的。
石家庄市地铁1号线为地铁系统的首条线路,全线共设站22个,设计时速为80 km/h,目前已建成并具备运营条件。
直流牵引供电系统是地铁系统中的核心设备之一,其主要作用是通过供电线路向列车提供动力,使列车发动机能够启动,实现列车的正常运行。
石家庄市地铁1号线直流牵引供电系统供电电压为750V,总功率为28.8MW。
1、过流保护:当牵引系统中的电流超过设定值时,过流保护装置将触发电路开关,切断电路,以避免设备损坏或人身伤害。
4、温度保护:对于涉及到电器元件的电路,温度保护装置可对其进行监控,当温度超过设定值时,保护装置将触发电路开关,停止供电。
2.3 应用实例——过流保护过流保护是石家庄地铁牵引供电系统中最基本、最常用的继电保护装置之一。
地铁直流1500v牵引供电系统馈线保护方法及应用实践分析
地铁直流1500v牵引供电系统馈线保护方法及应用实践分析摘要:现阶段,我国地铁供电系统中的保护措施能够准确、迅速的对短路故障进行切除。
但是正常运行电流与小电流故障依旧不易辨别,进而影响保护动作的正确性。
如此就需加大此种情况的研究力度,使其能够被保护装置准确的辨识,进而提升直流馈线保护的能力。
关键词:地铁;直流牵引供电系统;馈线保护方法1地铁直流保护系统的设计重点1500V直流开关选用SECHERON HSCB UR40-82s直流快速断路器,开关设置在小车上便于维护。
1500V直流开关主要由上部连接、下部连接、驱动装置、合闸机构、分闸机构、大电流脱扣保护装置、灭弧装置以及分合闸位置辅助触点组成。
其中驱动装置和大电流脱扣保护装置是1500V直流开关的核心部分。
通常情况下,通过直流开关设备实现直流牵引供电系统的保护。
系统中,根据功能状况的不同直流电路分为整流器回路断路器及馈线回路断路器两种类型。
通常情况下,整流器侧直流输出的保护以及控制是通过整流器回路断路器实现的,能够在第一时间切断整流器的故障,避免直流输出;对馈线侧牵引供电控制及保护通常使用直流馈线回路断路器,其可以在直流电缆及变电所接触网产生故障时第一时间将故障切除。
直流保护系统的设计重点有以下几点:一是,对一些特殊形势下的保护进行分析,例如屏蔽门与接触网短路故障、架空接地线与接触网短路、隧道电缆支架与接触网短路等等;二是,地铁正常运行时,要对直流保护误跳闸的情况进行有效的防治,避免其影响冲击电流及启动电压及电流,以此保证地铁能够安全平稳的运行,三是,对各类保护进行优化整合,以此提升直流系统短路时切除的时效性。
2保护配置的原则直流牵引系统保护配置原则对于不同的地铁牵引供电系统,直流牵引系统的保护配置可能不相同,但是保护的作用是相同的。
只要能够满足保护要求,保证系统安全可靠地供电,系统应尽量少配置一些保护,因为保护装置配置得太多,一方面增大了系统投资,另一方面会增加保护配合的难度。
浅谈地铁电气牵引系统
浅谈地铁电气牵引系统摘要:针对地铁DC1500V供电地铁车辆,本文从系统总体方案,系统控制方案,牵引及电制动计算数据方面进行了系统分析,并结合型式试验数据,验证牵引系统设计。
关键词:牵引性能试验验证1概述地铁车辆牵引系统是地铁车辆的核心系统,为列车提供动力。
牵引系统的性能直接关系到车辆的性能及乘客的舒适度。
B型地铁车辆,列车采用DC1500V架空接触网受电方式,不同于三轨受流B型地铁,具有高压受电弓受流,低噪声等技术特点,牵引系统设计具有优良性能、高可靠性、低维护成本等优势。
车辆为B型铝合金地铁,采用4动2拖的列车编组。
地铁最高80km/h的速度运行,列车构造速度90km/h。
电气牵引系统采用集成式VVVF逆变器-异步牵引电动机构成的交流传动系统;采用IGBT功率元件, VVVF逆变器为热管散热器走行风冷;采用高性能的交流传动直接转矩控制策略,具有反应迅速、可靠的空转/滑行保护并优先使用电制动等特点。
电气牵引系统主要包括牵引逆变器、牵引电机、制动电阻、高压箱等设备2牵引系统总体方案与性能2.1主电路系统方案Tc车、Mp车和M车组成一个动力单元;另一个动力单元与之完全对称。
两个动力单元之间牵引供电母线完全隔离,辅助供电母线互连,在辅助供电母线设置隔离二极管1D01,防止本动力单元牵引电源接入到另外动力单元的牵引回路。
图2 列车高压电源电路图列车牵引控制采用网络优先的控制方式,硬线控制作为备用。
在列车控制网络正常时,牵引和制动的控制通过列车控制网络来实现;当列车控制网络故障时,采用备用模式,由继电器逻辑电路和列车硬线来实现列车的牵引和制动控制。
2.2牵引系统动力性能仿真计算2.2.1主要动力性能指标(1)平均加速度:在超员AW3载荷情况下,在平直干燥轨道上,车轮半磨耗状态,额定电压DC1500V时,平均加速度为:列车从0加速到40km/h≥1.0m/s2列车从0加速到80km/h≥0.6m/s2(2)电制动能力在AW2载荷情况下,在平直干燥轨道上,车轮半磨耗状态及接触网压DC1650V 情况下,仅实施电制动时列车从最高运行速度80km/h 到停车,列车可达到的平均减速度应不小于1.0m/s22.2.2牵引力计算牵引力=动态质量*加速度+阻力轮周牵引功率=(最高速阻力+列车质量×剩余加速度)×列车最高速度2.3电制动特性(1)列车在半磨耗轮径、定员载荷AW2 及接触网压DC1650V 条件下,列车最大轮缘电制动力为 (取齿轮装置传动效率0.98):Fb2= 330(kN)。
地铁牵引整流技术概述
地铁牵引整流技术概述目前,地铁牵引供电系统多采用直流制,因此,变流设备成为该系统中的重要设备,并起着举足轻重的作用。
牵引直流电源是由牵引变电所通过整流机组降压整流而获得,为此就要充分研究整流技术的特点,并针对其特点对整流机组进行相应的保护。
2 地铁整流技术的特点2.1整流电路目前,在建和已建地铁的每座牵引变电所都设两套整流设备(也称为整流机组)。
由于地铁的直流牵引电压比较高(北京、武汉采用750V电压,其它城市都采用1 500V电压),所以整流设备几乎都是采用桥式整流电路。
为了减少地铁谐波电流对城市电网的污染,除北京部分地铁线路采用三相桥式六脉波整流电路外,轨道交通技术都采用三相桥式并联的十二脉波整流电路(简称双桥并联整流电路)。
采用两台阀侧电压相位差30。
的双绕组整流变压器牵引变压器与两台三相桥式整流器构成的等效十二脉波整流电路用一台三绕组或四象限整流变压器,阀侧电压相位差同样为30。
与一台双三相桥式整流器构成一套十二脉波整流机组。
两套十二脉波整流机组并联工作并不会改变整流脉波数,只有当两套机组的整流变压器网侧绕组分别移相+7.50,一7.50并联工作时,才形成等效二十四脉波整流。
2.2整流电路的特点(1)对于各种整流电路,其二次绕组容量、一绕组容量、网侧额定容量三者之间不尽相等,这是由于一次和二次绕组往往导电时间不等、电流波形不同、绕组利用率不一致所至。
(2)各种整流电路的变频变压器磁势不一定平衡。
2.3六脉波三相桥式整流电路的特点六脉波三相桥式整流电路是构成十二脉波整流电路的基础。
其特点如下:1关于容量对于各种单一的三相桥式整流电路(如Y/y、Y/d、D/y、D/d),其阀侧绕组容量、网次绕组容量、网侧额定容量三者均相等。
(2)关于磁势对于上述四种形式的整流电路,只要一次或二次有一个D(d)接绕组,则三次谐波就构成通路,从而消除激磁磁势不平衡现象,所以,工程上优先采用有D(d)接线形式,以利于磁势平衡。
地铁列车控制电路常见故障及控制措施分析
地铁列车控制电路常见故障及控制措施分析摘要:本文从深圳地铁2号线列车控制系统部件的年度故障率统计及各部件的典型故障分析两方面,介绍了地铁列车控制系统在列车验收及日常维护中需要注意的问题。
关键词:地铁车辆;牵引控制电路;故障;控制措施一、前言地铁车辆控制系统作为车辆的重要组成部分,在日常的正常行车及安全方面起到重要作用,同时也是检修方面重点工作。
控制系统包含的部件多,分布广,连接着车上的许多设备,其故障后带来的影响也比较大,因此更需提高其可靠性。
二、部件年度故障率统计根据对深圳地铁2号线控制电路常见故障统计表:从以上的统计可以看出,司控器、接线故障的故障率是逐渐降低的,而继电器故障却是逐年上升;故障总数上可以看出故障多发生在新车运营的前两年,后期故障较为平稳。
因此,在运营初期需重点关注的是司控器、接线检查,随着运营时间的增加需重点关注继电器的维保。
三、各部件典型故障1、司控器1)司控器分压电阻故障故障现象:2011年5月,229车、216车先后在正线报“司控器超量程故障”,HMI上显示“主控手柄”图标红色,推牵引手柄但无牵引力输出。
列车以TRB模式回库后,检查发现司控器分压定值电阻阻值都变为无穷大,判定为电阻故障导致牵引参考值输出超过了理论值,导致列车故障。
该分压定值电阻为陶瓷电阻,在震动工况下容易出现内部电阻丝熔断现象;将陶瓷电阻全部更换为金属电阻,故障再未次发现。
故障原因:陶瓷分压定值电阻不适用于强震动的工况。
2)警惕按钮无法按下故障现象:2012年1月19日,233车在正线出现司控器警惕按钮卡滞无法按下故障,检查发现主控手柄金属杆固定螺母压紧在警惕按钮下半部橡胶上,司机在转动警惕按钮时固定螺母产生联动,导致固定螺母上升脱出,无法按下警惕按钮;经普查发现共有24台司控器存在同样的问题,将有问题的警惕按钮下半部橡胶内圈深度减少0.5-1mm后恢复正常。
故障原因:警惕按钮下半部分橡胶块注塑工艺尺寸不统一。
郑州地铁1号线牵引系统接地故障的分析与处理
郑州地铁1号线牵引系统接地故障的分析与处理地铁作为城市重要的交通工具之一,牵引系统是地铁运营中不可或缺的关键系统之一、然而,由于各种原因,牵引系统可能会出现接地故障。
本文将对郑州地铁1号线牵引系统接地故障进行分析与处理,并提出相应的解决方案。
1.故障分析接地故障是指地铁牵引系统中的电气设备与地面之间存在异常电流流动的现象。
接地故障的主要原因可以归纳为以下几点:1.1.设备老化地铁牵引系统中的设备使用时间长了会产生老化现象,如绝缘材料老化、接线端子烧坏等。
设备老化导致绝缘强度下降,容易引发接地故障。
1.2.外界因素地铁运营环境恶劣,如雨水渗入设备、灰尘积累、温度过高等,也可能导致设备绝缘性能下降,产生接地故障。
1.3.人为操作不当人为操作不当也是接地故障的一个主要原因,如设备接线错误、设备保护维护不到位等。
2.故障处理2.1.寻找故障点在接地故障发生后,首先需要排除外界因素的影响,如排查是否有水渗入、设备温度是否正常等。
然后进行设备巡检,查找可能存在破损、老化的设备,并通过测量设备的绝缘电阻值,寻找可能存在的故障点。
2.2.故障隔离在找到故障点之后,需要进行故障隔离,即切断故障点与其他设备的连接,避免故障扩散。
可以通过切断故障点的电源、中断电路或更换故障设备等方式进行隔离。
2.3.故障修复根据故障隔离的结果,对具体的故障设备进行修复或更换。
如果是设备老化导致的故障,需要对老化设备进行更换。
如果是接线错误导致的故障,需要将接线调整至正确位置。
2.4.故障预防在故障修复后,需要对牵引系统进行全面巡检,确保其他设备正常运行。
并加强对维护人员的培训,提高其对地铁牵引系统的操作和维护水平,避免人为操作不当导致的接地故障。
3.解决方案3.1.定期检查对地铁牵引系统进行定期巡检和维护,及时排除设备故障隐患,以保障系统的正常运行。
检查内容包括设备接线是否松动、绝缘性能是否正常等。
3.2.引入智能监测引入智能监测系统,实时监测地铁牵引系统中的设备运行状态和绝缘电阻值,及时发现接地故障,并提供报警信息,便于及时处理。
地铁直流牵引供电系统保护配合的探讨
地铁直流牵引供电系统保护配合的探讨1. 引言1.1 背景介绍地铁直流牵引供电系统作为地铁运行的关键部件,其保护配合机制对地铁运营的安全和稳定起着至关重要的作用。
随着地铁运营规模的不断扩大和技术的不断创新,地铁直流牵引供电系统的保护需求也变得日益复杂和关键。
在地铁运营中,直流牵引供电系统往往面临各种潜在的故障和问题,如短路、过电流、过压等。
这些问题如果得不到及时有效的保护与配合控制,就会对地铁的正常运行造成严重影响甚至危害乘客的生命财产安全。
我们有必要对地铁直流牵引供电系统的保护配合进行深入研究和探讨,以提高其可靠性和稳定性,保障地铁运营的安全和效率。
本文旨在通过对现有保护配合机制的分析和研究,探讨如何完善和优化地铁直流牵引供电系统的保护配合机制,为地铁运营的安全和稳定做出更大贡献。
1.2 研究目的本文旨在探讨地铁直流牵引供电系统的保护配合机制,分析现有保护配合的方式,并提出完善保护配合的必要性。
通过深入研究地铁直流牵引供电系统的保护原理,分析其在实际运行中存在的问题和不足,从而确定优化保护配合的方向。
本文将探讨相关技术在这一领域的应用,为进一步提高地铁牵引供电系统的安全性和可靠性提供参考。
通过具体的案例分析和实验研究,为地铁牵引供电系统的保护配合提供理论支持和实践指导。
最终目的是为地铁运营单位和相关技术部门提供有效的保护配合方案,提高地铁系统的安全性和运行效率。
2. 正文2.1 地铁直流牵引供电系统保护原理地铁直流牵引供电系统保护原理是保证地铁运行安全稳定的关键环节。
该系统包括过电流保护、过压保护、短路保护等多种保护功能,主要通过监测电流、电压和功率参数来实现。
过电流保护是指当电流超出正常范围时,系统能够及时切断电源,避免设备损坏或火灾。
过压保护则是在电压过高时保护系统不受损坏,保证运行稳定。
短路保护则是在出现短路情况下,迅速切断电源,避免电路过载。
地铁直流牵引供电系统的保护原理实质上是通过各种保护器件和保护装置的配合工作来实现的。
地铁车辆牵引电路设计方案
地铁车辆牵引电路设计方案地铁车辆牵引电路是地铁系统中的核心元件之一,它负责传输电能、控制和监测牵引系统的运行情况,对于地铁的正常运行至关重要。
本文将介绍地铁车辆牵引电路的设计方案,包括牵引电机选型、谐振电容的选择、控制及保护电路等方面。
牵引电机选型牵引电机是牵引电路的核心部件,其选型需要考虑地铁列车的牵引性能和耐久性,并且需要满足相关的行业标准。
在选型时,需考虑以下几个因素:•额定功率:地铁牵引电机的功率一般在300 ~ 1500 kW之间。
•转速范围:转速范围需要能够适应地铁列车在不同速度下的牵引需求。
•轴承寿命:地铁系统的牵引电机使用寿命要求高,需要选择轴承寿命较长的电机。
•动态响应特性:地铁牵引电机需要具备良好的动态响应特性,以保证列车在加速和制动时的平稳性。
在选择合适的牵引电机时,需要综合考虑以上因素,并结合实际的应用情况作出选型决策。
谐振电容的选择为了提高牵引电路的效率和波形质量,谐振电路成为一种常用的电路形式。
谐振电容的选取需要满足以下条件:•安全性:选取的谐振电容需要满足额定电压、电容值等安全要求。
•电路原件匹配性:选取的谐振电容需要与其他电路原件匹配,避免因电路失调导致过电压、过电流等故障。
•稳定性:谐振电容需要具有较好的稳定性和长期可靠性。
根据地铁牵引系统的技术要求和行业标准,谐振电容一般选用金属化聚丙烯膜电容器,其具有可靠性高和温度系数低等优点。
控制电路设计地铁车辆牵引电路的控制电路主要包括直流母线电压测量、牵引功率控制、轴承温度检测等功能,其设计需要考虑电路稳定性、灵敏度以及安全性等方面:•直流母线电压测量:电路需要具有测量直流母线电压的功能,以便实现对电路状态的监测和维护。
•牵引功率控制:牵引功率控制应具有精度高、响应快等特点,以实现对列车行驶速度和加速度的控制。
•轴承温度检测:电路需要具备对牵引电机轴承温度的检测功能,以防止过热等故障。
在控制电路的设计中,需要综合考虑功能、性能和稳定性等方面,确保电路运行的安全和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牵引电路分析
1.列车牵引
02K06接合,通过02K56主风缸继电器检测到压缩空气系统中最小压力,所有停放制动缓解,02K57接合,所有门关闭,08K09 08K10激活。
HSCB 接通
如果司机被激活(02K04得电)02S04 HSCB接通键。
HSCB接通指令通过B车的04A15DX 模块被传输到控制和通讯系统。
高速断路器HSCB1 (LCB1)和HSCB2(LCB2)位于01A01箱内。
通过01A01箱内的DX输出,在继电器和接触器的帮助下,可以接通或切断这些高速断路器。
如果所有HSCB断开列车线被接通,那么01A01箱内的紧急跳闸继电器能够缓解高速断路器。
列车线断开连接:如果操作任何一司机室紧急切断按钮或由于某种原因将布置在整个列车上的紧急按钮安全回路中断。
2.警惕按钮
警惕按钮就是驾驶控制器主手柄头上的蘑菇形按钮。
主要防止驾驶员精神不集中,失去意识,神志不清。
在牵引过程中一旦松开警惕按钮,3到5秒内未重新按下,列车就紧急制动并报警。
自动运行时,可以通过继电器04K04触点33-34和触点43-44连接。
继电器02K09必须闭合才能使紧急制动无效。
手动驾驶时02K09得电,如果02K05触点43-44闭合,2K10被激活,列车静止。
当列车运行时,警惕按钮松开,就有报警。
如果超过了02K08的延时设置,02K09就会断开,施加紧急制动直到列车完全停止。
牵引制动控制器02A01-S20必须被设置在牵引槽外。
这时操作02A01-S00 警惕按钮列车可继续运行。
如果运行期间在非允许状况下改变了方向手柄的位置,02K09通过02K12和02K14触点33-34被断开,开始施加紧急制动直到列车完全停止。
3.方向选择
手柄打到F前进,S12闭合,继电器02K14得电,前行列车控
制线被接通。
(20210)
手柄打到R折返,S13闭合,继电器02K12得电,折返列车控制线被接通。
(20211)
4.运行模式
自动运行,04K04触点53-54接通,牵引继电器02K06被04A06 ATC系统接通。
人工驾驶,司机室被激活时需要一直操作警惕按钮,牵引控制器必须在牵引位,02K06才能被激活。