2012江苏省高考数学试卷分析
2012江苏高考数学试卷答案及其解析
![2012江苏高考数学试卷答案及其解析](https://img.taocdn.com/s3/m/d20297b7b0717fd5370cdc16.png)
2012江苏高考数学试卷答案及其解析一.填空题:1.已知集合{124}A =,,,{246}B =,,,则AB = .【答案】 {}6,4,2,1 【解析】根据集合的并集运算,两个集合的并集就是所有属于集合A 和集合B 的元素组成的集合,从所给的两个集合的元素可知,它们的元素是1 ,2,4,6,所以答案为{}6,4,2,1. 【点评】本题重点考查集合的运算.容易出错的地方是审错题目,把并集运算看成交集运算.属于基本题,难度系数较小.2. 某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生. 【答案】15【解析】根据分层抽样的方法步骤,按照一定比例抽取,样本容量为50,那么根据题意得:从高三一共可以抽取人数为:1510350=⨯人,答案 15 . 【点评】本题主要考查统计部分知识:抽样方法问题,分层抽样的具体实施步骤.分层抽样也叫做“按比例抽样”,也就是说,要根据每一层的个体数的多少抽取,这样才能够保证样本的科学性与普遍性,这样得到的数据才更有价值、才能够较精确地反映总体水平,本题属于容易题,也是高考热点问题,希望引起重视. 3. 设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 . 【答案】8【解析】据题i ii i i i i i bi a 3551525)21)(21()21)(711(21711+=+=+-+-=--=+,所以 ,3,5==b a 从而 8=+b a .【点评】本题主要考查复数的基本运算和复数相等的条件运用,属于基本题,一定要注意审题,对于复数的除法运算,要切实掌握其运算技巧和常规思路,再者,需要注意分母实数化的实质.4. 右图是一个算法流程图,则输出的k 的值是 . 【答案】5【解析】根据循环结构的流程图,当1=k 时,此时0452=+-k k ;不满足条件,继续执行循环体,当2=k 时,6452-=+-k k ;不满足条件,继续执行循环,当3=k 时,2452-=+-k k 不满足条件,然后依次出现同样的结果,当5=k 时,此时4452=+-k k ,此时满足条件跳出循环,输出k 的值为5.【点评】本题主要考查算法的定义、流程图及其构成,考查循环结构的流程图.注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环的k 的值.这是新课标的新增内容,也是近几年的常考题目,要准确理解循环结构流程图的执行过程.5. 函数()f x =的定义域为 .【答案】(【解析】根据题意得到 0log 216≥-x ,同时,x >0 ,解得21log 6≤x ,解得6≤x ,又x >0,所以函数的定义域为:(.【点评】本题主要考查函数基本性质、对数函数的单调性和图象的运用.本题容易忽略x >0这个条件,因此,要切实对基本初等函数的图象与性质有清晰的认识,在复习中应引起高度重视.本题属于基本题,难度适中.6. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 . 【答案】53 【解析】组成满足条件的数列为:.19683,6561,2187,729,243,81,27.9,3,1-----从中随机取出一个数共有取法10种,其中小于8的取法共有6种,因此取出的这个数小于8的概率为C1AC53. 【点评】本题主要考查古典概型.在利用古典概型解决问题时,关键弄清基本事件数和基本事件总数,本题要注意审题,“一次随机取两个数”,意味着这两个数不能重复,这一点要特别注意.7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.【答案】36cm【解析】如图所示,连结AC 交BD 于点O ,因为 平面D D BB ABCD 11⊥,又因为BD AC ⊥,所以,D D BB AC 11平面⊥,所以四棱锥D D BB A 11-的高为AO ,根据题意3cm AB AD ==,所以223=AO ,又因为BD =,12cm AA =,故矩形D D BB 11的面积为2,从而四棱锥D D BB A 11-的体积316cm 3V =⨯=. 【点评】本题重点考查空间几何体的体积公式的运用.本题综合性较强,结合空间中点线面的位置关系、平面与平面垂直的性质定理考查.重点找到四棱锥D D BB A 11-的高为AO ,这是解决该类问题的关键.在复习中,要对空间几何体的表面积和体积公式记准、记牢,并且会灵活运用.本题属于中档题,难度适中.8. 在平面直角坐标系xOy 中,若双曲线22214x y m m -=+,则m 的值为 . 【答案】2DABC1C 1D 1A1B【解析】根据题目条件双曲线的焦点位置在x 轴上(否则不成立),因此m >0,由离心率公式得到542=++mm m ,解得 2=m . 【点评】本题考查双曲线的概念、标准方程和简单的几何性质.这是大纲中明确要求的,在对本部分复习时要注意:侧重于基本关系和基本理论性质的考查,从近几年的高考命题趋势看,几乎年年都有所涉及,要引起足够的重视.本题属于中档题,难度适中.9. 如图,在矩形ABCD中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 .【答案】2【解析】根据题意,→→→+=DF BC AF 所以()cos 0AB AF AB BC DF AB BC AB DF AB DF AB DF →→→→→→→→→→→→→→•=•+=•+•=•=⋅︒==从而得到1=→DF ,又因为→→→→→→+=+=CF BC BF DF AD AE ,,所以2180cos 00)()(2=⋅+++=+•+=•︒→→→→→→→→→CF DF BC CF BC DF AD BF AE .【点评】本题主要考查平面向量的基本运算,同时,结合平面向量的数量积运算解决.设法找到1=→DF ,这是本题的解题关键,本题属于中等偏难题目.10. 设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 .【答案】10- .【解析】因为1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,函数()f x 的周期为2,所以)21()223()21(-=-=f f f ,根据0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,得到223-=+b a , 又)1()1(-=f f ,得到02,221=++=+-b a b a 即,结合上面的式子解得4,2-==b a ,所以103-=+b a .【点评】本题重点考查函数的性质、分段函数的理解和函数周期性的应用.利用函数的周期性将式子化简为)21()223()21(-=-=f f f 然后借助于分段函数的解析式解决.属于中档题,难度适中.11. 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(πα+的值为 .【答案】50217 【解析】根据4cos 65απ⎛⎫+= ⎪⎝⎭,2571251621)6(cos 2)32cos(2=-⨯=-+=+παπα, 因为0)32cos( πα+,所以25242571)32sin(2=⎪⎭⎫⎝⎛-=+πα,因为502174sin)32cos(4cos)32sin(]4)32sin[()122sin(=+-+=-+=+ππαππαππαπα. 【点评】本题重点考查两角和与差的三角公式、角的灵活拆分、二倍角公式的运用.在求解三角函数值时,要注意角的取值情况,切勿出现增根情况.本题属于中档题,运算量较大,难度稍高.12. 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 . 【答案】34 【解析】根据题意228150x y x +-+=将此化成标准形式为:()1422=+-y x ,得到,该圆的圆心为M ()0,4半径为1 ,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需要圆心M ()0,4到直线2y kx =-的距离11+≤d ,即可,所以有21242≤+-=k k d ,化简得0)43(≤-k k 解得340≤≤k ,所以k 的最大值是34 .【点评】本题主要考查直线与圆的位置关系、点到直线的距离公式、圆的一般式方程和标准方程的互化,考查知识较综合,考查转化思想在求解参数范围中的运用.本题的解题关键就是对若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,这句话的理解,只需要圆心M ()0,4到直线2y kx =-的距离11+≤d 即可,从而将问题得以转化.本题属于中档题,难度适中.13. 已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 . 【答案】9【解析】根据函数0)(2≥++=b ax x x f ,得到042=-b a ,又因为关于x 的不等式()f x c <,可化为:20x ax b c ++-<,它的解集为()6,+m m ,设函数c b ax x x f -++=2)(图象与x 轴的交点的横坐标分别为21,x x ,则6612=-+=-m m x x ,从而,36)(212=-x x ,即364)(21221=-+x x x x ,又因为a x x cb x x -=+-=2121,,代入得到 9=c .【点评】本题重点考查二次函数、一元二次不等式和一元二次方程的关系,根与系数的关系.二次函数的图象与二次不等式的解集的对应关系要理清.属于中档题,难度不大. 14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 . 【答案】[]7,e【解析】根据条件4ln 53ln b c a a c c c a c b -+-≤≤≥,,()cbc c b c a lnln ln =-≤,得到 ln ,1ac b a b e c c c ≥≥>,得到c b <.又因为b a c ≤-35,所以35a b c +<,由已知a c b -≤4,得到4a b c +>.从而b b a ≤+4,解得31≥a b .【点评】本题主要考查不等式的基本性质、对数的基本运算.关键是注意不等式的等价变形,做到每一步都要等价.本题属于中高档题,难度较大. 二、解答题15. (本小题满分14分)在ABC ∆中,已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 【答案及解析】【点评】本题主要考查向量的数量积的定义与数量积运算、两角和与差的三角公式、三角恒等变形以及向量共线成立的条件.本题综合性较强,转化思想在解题中灵活运用,注意两角和与差的三角公式的运用,考查分析问题和解决问题的能力,从今年的高考命题趋势看,几乎年年都命制该类型的试题,因此平时练习时加强该题型的训练.本题属于中档题,难度适中.16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE . 【答案及解析】【点评】本题主要考查空间中点、线、面的位置关系,考查线面垂直、面面垂直的性质与判定,线面平行的判定.解题过程中注意中点这一条件的应用,做题规律就是“无中点、取中点,相连得到中位线”.本题属于中档题,难度不大,考查基础为主,注意问题的等价转化. 17. (本小题满分14分) 【答案及解析】【点评】本题主要考查二次函数的图象与性质以及求解函数最值问题.在利用导数求解函数的最值问题时,要注意增根的取舍,通过平面几何图形考查函数问题时,首先审清题目,然后建立数学模型,接着求解数学模型,最后,还原为实际问题.本题属于中档题,难度适中. 18.(【答案及解析】【点评】本题综合考查导数的定义、计算及其在求解函数极值和最值中的运用.考查较全面系统,要注意变形的等价性和函数零点的认识、极值和极值点的理解.本题主要考查数形结合思想和分类讨论思想,属于中高档试题,难度中等偏上,考查知识比较综合,全方位考查分析问题和解决问题的能力,运算量比较大. 19. (本小题满分16分)(i )若12AF BF -=1AF 的斜率; (ii )求证:12PF PF +是定值. 【答案及解析】【点评】本题主要考查椭圆的定义、几何性质以及直线与椭圆的关系.本题注意解题中,待。
2012年江苏省高考数学真题(解析版)
![2012年江苏省高考数学真题(解析版)](https://img.taocdn.com/s3/m/2cb4475bbe1e650e52ea99d4.png)
2012 年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求: 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题) 。本卷满分为 160 分。考试 时间为 120 分钟。考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、考试证号用 0.5 毫米黑色墨水的签字笔填写在试卷及 答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.作答试题必须用 0.5 毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置 作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
2 1 2
1≤ x 0 , ax 1, 其中 a , 若 f ( x) bx 2 bR . , 0 ≤ x ≤ 1, x 1
【答案】 10 。 【考点】周期函数的性质。
1 f 2
3 则 a 3b 的值为 f , 2
【答案】2。 【考点】双曲线的性质。 【解析】由
.
x2 y2 2 1 得 a = m,b = m 2 4,c = m m 2 4 。 m m 4
c m m2 4 ∴ e= = = 5 ,即 m 2 4m 4=0 ,解得 m =2 பைடு நூலகம் a m
9.如图,在矩形 ABCD 中, AB 2 , BC 2 ,点 E 为 BC 的中点,
【答案】 0, 6 。 【解析】根据二次根式和对数函数有意义的条件,得
x > 0 x > 0 x > 0 0< x 6 。 1 1 2= 6 1 2log 6 x 0 log 6 x x 6 2
2012年高考数学试卷(江苏卷)解析版
![2012年高考数学试卷(江苏卷)解析版](https://img.taocdn.com/s3/m/8453062efc4ffe473368ab6f.png)
2012江苏高考数学试卷答案与解析一.填空题:1.已知集合{124}A =,,,{246}B =,,,则A B = ▲ .【答案】 {}6,4,2,1【解析】根据集合的并集运算,两个集合的并集就是所有属于集合A 和集合B 的元素组成的集合,从所给的两个集合的元素可知,它们的元素是1 ,2,4,6,所以答案为{}6,4,2,1. 【点评】本题重点考查集合的运算.容易出错的地方是审错题目,把并集运算看成交集运算.属于基本题,难度系数较小.2. 某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 【答案】15【解析】根据分层抽样的方法步骤,按照一定比例抽取,样本容量为50,那么根据题意得:从高三一共可以抽取人数为:1510350=⨯人,答案 15 . 【点评】本题主要考查统计部分知识:抽样方法问题,分层抽样的具体实施步骤.分层抽样也叫做“按比例抽样”,也就是说,要根据每一层的个体数的多少抽取,这样才能够保证样本的科学性与普遍性,这样得到的数据才更有价值、才能够较精确地反映总体水平,本题属于容易题,也是高考热点问题,希望引起重视. 3. 设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ . 【答案】8【解析】据题i ii i i i i i bi a 3551525)21)(21()21)(711(21711+=+=+-+-=--=+,所以 ,3,5==b a从而 8=+b a .【点评】本题主要考查复数的基本运算和复数相等的条件运用,属于基本题,一定要注意审题,对于复数的除法运算,要切实掌握其运算技巧和常规思路,再者,需要注意分母实数化的实质.4. 右图是一个算法流程图,则输出的k 的值是 ▲ .【答案】5【解析】根据循环结构的流程图,当1=k 时,此时0452=+-k k ;不满足条件,继续执行循环体,当2=k 时,6452-=+-k k ;不满足条件,继续执行循环,当3=k 时,2452-=+-k k 不满足条件,然后依次出现同样的结果,当5=k 时,此时4452=+-k k ,此时满足条件跳出循环,输出k 的值为5.【点评】本题主要考查算法的定义、流程图及其构成,考查循环结构的流程图.注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环的k 的值.这是新课标的新增内容,也是近几年的常考题目,要准确理解循环结构流程图的执行过程. 5. 函数6()12log f x x -的定义域为 ▲ . 【答案】(6【解析】根据题意得到 0log 216≥-x ,同时,x >0 ,解得21log 6≤x ,解得6≤x ,又x >0,所以函数的定义域为:(6 .【点评】本题主要考查函数基本性质、对数函数的单调性和图象的运用.本题容易忽略x >0这个条件,因此,要切实对基本初等函数的图象与性质有清晰的认识,在复习中应引起高度重视.本题属于基本题,难度适中.6. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ . 【答案】53 【解析】组成满足条件的数列为:.19683,6561,2187,729,243,81,27.9,3,1-----从中随机取出一个数共有取法10种,其中小于8的取法共有6种,因此取出的这个数小于8的概率为53. 【点评】本题主要考查古典概型.在利用古典概型解决问题时,关键弄清基本事件数和基本事件总数,本题要注意审题,“一次随机取两个数”,意味着这两个数不能重复,这一点要特别注意.7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.【答案】36cmDABC1C 1D 1A1BOD1A1C1B1ACD B【解析】如图所示,连结AC 交BD 于点O ,因为 平面D D BB ABCD 11⊥,又因为BD AC ⊥,所以,D D BB AC 11平面⊥,所以四棱锥D D BB A 11-的高为AO ,根据题意3cm AB AD ==,所以223=AO ,又因为BD =,12cmAA =,故矩形D D BB 11的面积为2,从而四棱锥D D BB A 11-的体积316cm 3V =⨯=.【点评】本题重点考查空间几何体的体积公式的运用.本题综合性较强,结合空间中点线面的位置关系、平面与平面垂直的性质定理考查.重点找到四棱锥D D BB A 11-的高为AO ,这是解决该类问题的关键.在复习中,要对空间几何体的表面积和体积公式记准、记牢,并且会灵活运用.本题属于中档题,难度适中.8. 在平面直角坐标系xOy 中,若双曲线22214x y m m -=+,则m 的值为 ▲ . 【答案】2【解析】根据题目条件双曲线的焦点位置在x 轴上(否则不成立),因此m >0,由离心率公式得到542=++mm m ,解得 2=m . 【点评】本题考查双曲线的概念、标准方程和简单的几何性质.这是大纲中明确要求的,在对本部分复习时要注意:侧重于基本关系和基本理论性质的考查,从近几年的高考命题趋势看,几乎年年都有所涉及,要引起足够的重视.本题属于中档题,难度适中.9. 如图,在矩形ABCD中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 ▲ .【答案】2【解析】根据题意,→→→+=DF BC AF 所以()cos 0AB AF AB BC DF AB BC AB DF AB DF AB DF DF →→→→→→→→→→→→→→•=•+=•+•=•=⋅︒==从而得到1=→DF ,又因为→→→→→→+=+=CF BC BF DF AD AE ,,所以2180cos 00)()(2=⋅+++=+•+=•︒→→→→→→→→→CF DF BC CF BC DF AD BF AE .【点评】本题主要考查平面向量的基本运算,同时,结合平面向量的数量积运算解决.设法找到1=→DF ,这是本题的解题关键,本题属于中等偏难题目.10. 设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 【答案】10- .【解析】因为1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,函数()f x 的周期为2,所以)21()223()21(-=-=f f f ,根据0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,得到223-=+b a , 又)1()1(-=f f ,得到02,221=++=+-b a b a 即,结合上面的式子解得4,2-==b a ,所以103-=+b a .【点评】本题重点考查函数的性质、分段函数的理解和函数周期性的应用.利用函数的周期性将式子化简为)21()223()21(-=-=f f f 然后借助于分段函数的解析式解决.属于中档题,难度适中.11. 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(πα+的值为 ▲ . 【答案】50217 【解析】根据4cos 65απ⎛⎫+= ⎪⎝⎭,2571251621)6(cos 2)32cos(2=-⨯=-+=+παπα, 因为0)32cos( πα+,所以25242571)32sin(2=⎪⎭⎫⎝⎛-=+πα,因为502174sin)32cos(4cos)32sin(]4)32sin[()122sin(=+-+=-+=+ππαππαππαπα. 【点评】本题重点考查两角和与差的三角公式、角的灵活拆分、二倍角公式的运用.在求解三角函数值时,要注意角的取值情况,切勿出现增根情况.本题属于中档题,运算量较大,难度稍高.12. 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ . 【答案】34 【解析】根据题意228150x y x +-+=将此化成标准形式为:()1422=+-y x ,得到,该圆的圆心为M ()0,4半径为1 ,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需要圆心M ()0,4到直线2y kx =-的距离11+≤d ,即可,所以有21242≤+-=k k d ,化简得0)43(≤-k k 解得340≤≤k ,所以k 的最大值是34 . 【点评】本题主要考查直线与圆的位置关系、点到直线的距离公式、圆的一般式方程和标准方程的互化,考查知识较综合,考查转化思想在求解参数范围中的运用.本题的解题关键就是对若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,这句话的理解,只需要圆心M ()0,4到直线2y kx =-的距离11+≤d 即可,从而将问题得以转化.本题属于中档题,难度适中.13. 已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ . 【答案】9【解析】根据函数0)(2≥++=b ax x x f ,得到042=-b a ,又因为关于x 的不等式()f x c <,可化为:20x ax b c ++-<,它的解集为()6,+m m ,设函数c b ax x x f -++=2)(图象与x 轴的交点的横坐标分别为21,x x ,则6612=-+=-m m x x ,从而,36)(212=-x x ,即364)(21221=-+x x x x ,又因为 a x x c b x x -=+-=2121,,代入得到 9=c .【点评】本题重点考查二次函数、一元二次不等式和一元二次方程的关系,根与系数的关系.二次函数的图象与二次不等式的解集的对应关系要理清.属于中档题,难度不大. 14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ . 【答案】[]7,e 【解析】【点评】本题主要考查不等式的基本性质、对数的基本运算.关键是注意不等式的等价变形,做到每一步都要等价.本题属于中高档题,难度较大. 二、解答题15. (本小题满分14分)在ABC ∆中,已知3AB AC BA BC =. (1)求证:tan 3tan B A =; (2)若5cos 5C =,求A 的值. 【答案及解析】【点评】本题主要考查向量的数量积的定义与数量积运算、两角和与差的三角公式、三角恒等变形以及向量共线成立的条件.本题综合性较强,转化思想在解题中灵活运用,注意两角和与差的三角公式的运用,考查分析问题和解决问题的能力,从今年的高考命题趋势看,几乎年年都命制该类型的试题,因此平时练习时加强该题型的训练.本题属于中档题,难度适中.16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B A C =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE . 【答案及解析】【点评】本题主要考查空间中点、线、面的位置关系,考查线面垂直、面面垂直的性质与判定,线面平行的判定.解题过程中注意中点这一条件的应用,做题规律就是“无中点、取中点,相连得到中位线”.本题属于中档题,难度不大,考查基础为主,注意问题的等价转化. 17. (本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.【答案及解析】【点评】本题主要考查二次函数的图象与性质以及求解函数最值问题.在利用导数求解函数的最值问题时,要注意增根的取舍,通过平面几何图形考查函数问题时,首先审清题目,然后建立数学模型,接着求解数学模型,最后,还原为实际问题.本题属于中档题,难度适中. 18.(本小题满分16分)已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数. 【答案及解析】x (千米)y (千米)O(第17题)【点评】本题综合考查导数的定义、计算及其在求解函数极值和最值中的运用.考查较全面系统,要注意变形的等价性和函数零点的认识、极值和极值点的理解.本题主要考查数形结合思想和分类讨论思想,属于中高档试题,难度中等偏上,考查知识比较综合,全方位考查分析问题和解决问题的能力,运算量比较大. 19. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和32e ⎛ ⎝,都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线1AFABPO1F2Fxy (第19题)与直线2BF 平行,2AF 与1BF 交于点P . (i )若1262AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值. 【答案及解析】【点评】本题主要考查椭圆的定义、几何性质以及直线与椭圆的关系.本题注意解题中,待定系数法在求解椭圆的标准方程应用,曲线和方程的关系.在利用条件2621=-BF AF 时,需要注意直线1AF 和直线2BF 平行这个条件.本题属于中档题. 20. (本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a b a n a b *++=∈+N .(1)设11n n nb b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设12nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 【答案与解析】【点评】本题综合考查等差数列的定义、等比数列的有关知识的灵活运用、指数幂和根式的互化.数列通项公式的求解.注意利用等差数列的定义证明问题时一般思路和基本方法,本题是有关数列的综合题;从近几年的高考命题趋势看,数列问题仍是高考的热点、重点问题,在训练时,要引起足够的重视.数学Ⅱ(附加题)21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答......................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD = DC,连结AC,AE,DE.求证:E C∠=∠.AE BDCO【答案与解析】【点评】本题主要考查圆的基本性质,等弧所对的圆周角相等,同时结合三角形的基本性质考查.本题属于选讲部分,涉及到圆的性质的运用,考查的主要思想方法为等量代换法,属于中低档题,难度较小,从这几年的选讲部分命题趋势看,考查圆的基本性质的题目居多,在练习时,要有所侧重.B.[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A的逆矩阵113 44 11 22-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A,求矩阵A的特征值.【答案与解析】【点评】本题主要考查矩阵的构成、矩阵的基本运算以及逆矩阵的求解、矩阵的特征多项式(第21-A题)与特征值求解.在求解矩阵的逆矩阵时,首先分清求解方法,然后,写出相应的逆矩阵即可;在求解矩阵的特征值时,要正确的写出该矩阵对应的特征多项式,难度系数较小,中低档题. C .[选修4 - 4:坐标系与参数方程](本小题满分10分) 在极坐标中,已知圆C 经过点()24P π,,圆心为直线()3sin 32ρθπ-=-与极轴的交点,求圆C 的极坐标方程. 【答案与解析】【点评】本题主要考查直线的参数方程和圆的参数方程、普通方程与参数方程的互化、两角和与差的三角函数.本题要注意已知圆的圆心是直线23)3sin(-=-πθρ与极轴的交点,考查三角函数的综合运用,对于参数方程的考查,主要集中在常见曲线的考查上,题目以中低档题为主.D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 【答案与解析】【点评】本题主要考查不等式的基本性质、绝对值不等式及其运用,属于中档题,难度适中.切实注意绝对值不等式的性质与其灵活运用.22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ. 【答案与解析】【点评】本题主要考查概率统计知识:离散型随机变量的分布列、数学期望的求解、随机事件的基本运算.本题属于基础题目,难度中等偏上.考查离散型随机变量的分布列和期望的求解,在列分布列时,要注意ξ的取值情况,不要遗漏ξ的取值情况. 23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数:①n A P ⊆;②若x A ∈,则2x A ∉;③若nP x A ∈,则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示). 【答案与解析】【点评】本题重点考查集合的概念、组成、元素与集合的基本关系、集合的基本运算—补集和函数的解析式的求法.本题属于中档题,难度适中.。
高考数学试题及答案 (1)
![高考数学试题及答案 (1)](https://img.taocdn.com/s3/m/0df5be552cc58bd63086bd28.png)
普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =, 其中S 为底面积, h 为高. 一、填空题:本大题共14小题, 每小题5分, 共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{124}A =,,, {246}B =,,, 则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本, 则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,, 117ii 12ia b -+=-(i 为虚数单位), 则a b +的值 为 ▲ .4.右图是一个算法流程图, 则输出的k 的值是 ▲ . 5.函数6()12log f x x =-的定义域为 ▲ .6.现有10个数, 它们能构成一个以1为首项, 3-为公比的 等比数列, 若从这10个数中随机抽取一个数, 则它小于8 的概率是 ▲ .7.如图, 在长方体1111ABCD A B C D -中, 3cm AB AD ==, 12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+的离心率5 则m 的值为 ▲ .9.如图, 在矩形ABCD 中, 22AB BC ==,点E 为BC 的中点, 点F 在边CD 上, 若2AB AF =, 则AE BF 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数, 在区间[11]-,上,开始 结束k ←1k 2-5k +4>0输出k k ←k +1NY (第4题)FD DABC 1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角, 若4cos 65απ⎛⎫+= ⎪⎝⎭, 则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中, 圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点, 使得以该点为圆心,1为半径的圆与圆C 有公共点, 则k 的最大值是 ▲ . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,, 则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题, 共计90分.请在答题卡指定区域.......内作答, 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中, 已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若5cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中, 1111A B AC =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ), 且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C FDCAE1B17.(本小题满分14分) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小), 其飞行高度为3.2千米,试问它的横坐标a 不超过多少时, 炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a , b 是实数, 1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+, 求()g x 的极值点;(3)设()(())h x f f x c =-, 其中[22]c ∈-,, 求函数()y h x =的零点个数.19.(本小题满分16分)如图, 在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和3e ⎛ ⎝⎭,都在椭圆上, 其中e(第16题)x (千米y (千米)O(第17题)(1)求椭圆的离心率;(2)设A , B 是椭圆上位于x 轴上方的两点, 且直线1AF与直线2BF 平行, 2AF 与1BF 交于点P .(i )若126AF BF -=, 求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1)设11n n nb b n a *+=+∈N ,, 求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设12nn nb b n a *+=∈N ,, 且{}n a 是等比数列, 求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题, 请选定其中两题.......,. 并在相应的答题区域内作...........答...若多做, 则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图, AB 是圆O 的直径, D , E 为圆上位于AB 异侧的两点, 连结BD 并延长至点C , 使BD= DC , 连结AC , AE , DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A , 求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分)(第21-A 题)AED CO在极坐标中,已知圆C 经过点()24Pπ,,圆心为直线()3sin 32ρθπ-=-与极轴的交点, 求圆C 的极坐标方程. D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x , y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题, 每题10分, 共计20分.请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量, 从棱长为1的正方体的12条棱中任取两条, 当两条棱相交时, 0ξ=;当两条棱平行时, ξ的值为两条棱之间的距离;当两条棱异面时, 1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列, 并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…, n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈, 则2x A ∉;③若nP x A ∈, 则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示).江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B= {1,2,4,6} .考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中,令y=0,得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.:(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根 x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:( i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.( i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.点评本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.数列递推式;等差关系的确定;等比数列的性质.考点:等差数列与等比数列.专题:分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,。
(完整版)2012年江苏省高考数学试卷答案与解析
![(完整版)2012年江苏省高考数学试卷答案与解析](https://img.taocdn.com/s3/m/32396e9559eef8c75fbfb3e1.png)
2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题.每小题5分.共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1.2.4}.B={2.4.6}.则A∪B={1.2.4.6} .考点:并集及其运算.专题:集合.分析:由题意.A.B两个集合的元素已经给出.故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1.2.4}.B={2.4.6}.∴A∪B={1.2.4.6}故答案为{1.2.4.6}点评:本题考查并集运算.属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比.做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例.得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例.这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(2012•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意.可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值.从而得到所求的答案解答:解:由题.a.b∈R.a+bi=所以a=5.b=3.故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算.解题的关键是分子分母都乘以分母的共轭.复数的四则运算是复数考查的重要内容.要熟练掌握.复数相等的充分条件是将复数运算转化为实数运算的桥梁.解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图.则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值.判断是否循环.达到满足题目的条件.结束循环.得到结果即可.解答:解:1﹣5+4=0>0.不满足判断框.则k=2.22﹣10+4=﹣2>0.不满足判断框的条件.则k=3.32﹣15+4=﹣2>0.不成立.则k=4.42﹣20+4=0>0.不成立.则k=5.52﹣25+4=4>0.成立.所以结束循环.输出k=5.故答案为:5.点评:本题考查循环框图的作用.考查计算能力.注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0.] .考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0.真数要大于0.得到不等式组.根据对数的单调性解出不等式的解集.得到结果.解答:解:函数f(x)=要满足1﹣2≥0.且x>0∴.x>0∴.x>0.∴.x>0.∴0.故答案为:(0.]点评:本题考查对数的定义域和一般函数的定义域问题.在解题时一般遇到.开偶次方时.被开方数要不小于0.;真数要大于0;分母不等于0;0次方的底数不等于0.这种题目的运算量不大.是基础题.6.(5分)(2012•江苏)现有10个数.它们能构成一个以1为首项.﹣3为公比的等比数列.若从这10个数中随机抽取一个数.则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为.然后找出小于8的项的个数.代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1.﹣3.(﹣3)2.(﹣3)3…(﹣3)9其中小于8的项有:1.﹣3.(﹣3)3.(﹣3)5.(﹣3)7.(﹣3)9共6个数这10个数中随机抽取一个数.则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用.属于基础试题7.(5分)(2012•江苏)如图.在长方体ABCD﹣A1B1C1D1中.AB=AD=3cm.AA1=2cm.则四棱锥A ﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O.求出AO.然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O.AO是棱锥的高.所以AO==.所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法.考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中.若双曲线的离心率为.则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0.所以双曲线的焦点必在x轴上.因此a2=m>0.可得c2=m2+m+4.最后根据双曲线的离心率为.可得c2=5a2.建立关于m的方程:m2+m+4=5m.解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0.b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为.∴.可得c2=5a2.所以m2+m+4=5m.解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程.在已知离心率的情况下求参数的值.着重考查了双曲线的概念与性质.属于基础题.9.(5分)(2012•江苏)如图.在矩形ABCD中.AB=.BC=2.点E为BC的中点.点F在边CD 上.若=.则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形.把已知向量用矩形的边所在的向量来表示.做出要用的向量的模长.表示出要求得向量的数量积.注意应用垂直的向量数量积等于0.得到结果.解答:解:∵.====||=.∴||=1.||=﹣1.∴=()()==﹣=﹣2++2=.故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式.本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数.在区间[﹣1.1]上.f (x)=其中a.b∈R.若=.则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数.由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0.解关于a.b的方程组可得到a.b的值.从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数.f(x)=.∴f()=f(﹣)=1﹣ a.f()=;又=.∴1﹣a=①又f(﹣1)=f(1).∴2a+b=0.②由①②解得a=2.b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性.考查分段函数的解析式的求法.着重考查方程组思想.得到a.b的方程组并求得a.b的值是关键.属于中档题.(2012•江苏)设α为锐角.若cos(α+)=.则sin(2α+)的值为.11.(5分)考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+.根据cosβ求出sinβ.进而求出sin2β和cos2β.最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+.∴sinβ=.s in2β=2sinβcosβ=.cos2β=2cos2β﹣1=.∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下.求2α+的正弦值.着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式.考查了三角函数中的恒等变换应用.属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中.圆C的方程为x2+y2﹣8x+15=0.若直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1.由题意可知.只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0.整理得:(x﹣4)2+y2=1.即圆C是以(4.0)为圆心.1为半径的圆;又直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4.0)到直线y=kx﹣2的距离为d.则d=≤2.即3k2﹣4k≤0.∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系.将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键.考查学生灵活解决问题的能力.属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).若关于x 的不等式f(x)<c的解集为(m.m+6).则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系.然后根据不等式的解集可得f(x)=c的两个根为m.m+6.最后利用根与系数的关系建立等式.解之即可.解答:解:∵函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).∴f(x)=x2+ax+b=0只有一个根.即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m.m+6).即为x2+ax+<c解集为(m.m+6).则x2+ax+﹣c=0的两个根为m.m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用.以及根与系数的关系.同时考查了分析求解的能力和计算能力.属于中档题.14.(5分)(2012•江苏)已知正数a.b.c满足:5c﹣3a≤b≤4c﹣a.clnb≥a+clnc.则的取值范围是[e.7] .考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2.而5×﹣3≤≤4×﹣1.于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln.从而≥.设函数f(x)=(x>1).利用其导数可求得f (x)的极小值.也就是的最小值.于是问题解决.解答:解:∵4c﹣a≥b>0∴>.∵5c﹣3a≤4c﹣a.∴≤2.从而≤2×4﹣1=7.特别当=7时.第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc.∴0<a≤cln.从而≥.设函数f(x)=(x>1).∵f′(x)=.当0<x<e时.f′(x)<0.当x>e时.f′(x)>0.当x=e时.f′(x)=0.∴当x=e时.f(x)取到极小值.也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e.=e成立.代入第一个不等式知:2≤=e≤3.不等式成立.从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e.7]双闭区间.点评:本题考查不等式的综合应用.得到≥.通过构造函数求的最小值是关键.也是难点.考查分析与转化、构造函数解决问题的能力.属于难题.二、解答题:本大题共6小题.共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中.已知.(1)求证:tanB=3tanA;(2)若cosC=.求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边.然后两边同时除以c 化简后.再利用正弦定理变形.根据cosAcosB≠0.利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角.及cosC的值.利用同角三角函数间的基本关系求出sinC的值.进而再利用同角三角函数间的基本关系弦化切求出tanC的值.由tanC的值.及三角形的内角和定理.利用诱导公式求出tan(A+B)的值.利用两角和与差的正切函数公式化简后.将tanB=3tanA代入.得到关于tanA的方程.求出方程的解得到tanA的值.再由A为三角形的内角.利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•.∴cb cosA=3cacosB.即bcosA=3acosB.由正弦定理=得:sinBcosA=3sinAcosB.又0<A+B<π.∴cosA>0.cosB>0.在等式两边同时除以cosAcosB.可得tanB=3tanA;(2)∵cosC=.0<C<π.sinC==.∴tanC=2.则tan[π﹣(A+B)]=2.即tan(A+B)=﹣2.∴=﹣2.将tanB=3tanA代入得:=﹣2.整理得:3tan2A﹣2tanA﹣1=0.即(tanA﹣1)(3tanA+1)=0.解得:tanA=1或tanA=﹣.又cosA>0.∴tanA=1.又A为三角形的内角.则A=.点评:此题属于解三角形的题型.涉及的知识有:平面向量的数量积运算法则.正弦定理.同角三角函数间的基本关系.诱导公式.两角和与差的正切函数公式.以及特殊角的三角函数值.熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图.在直三棱柱ABC﹣A1B1C1中.A1B1=A1C1.D.E分别是棱1上的点(点D 不同于点C).且AD⊥DE.F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣AB1C1是直三棱柱.得到CC1⊥平面ABC.从而AD⊥CC1.结合已知1条件AD⊥DE.DE、CC1是平面BCC1B1内的相交直线.得到AD⊥平面BCC1B1.从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中.A1F⊥B1C1.再用类似(1)的方法.证出A1F⊥平面BCC1B1.结合AD⊥平面BCC1B1.得到A1F∥AD.最后根据线面平行的判定定理.得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣AB1C1是直三棱柱.1∴CC1⊥平面ABC.∵AD⊂平面ABC.∴AD⊥CC1又∵AD⊥DE.DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1.∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中.A1B1=A1C1.F为B1C1的中点∴A1F⊥B1C1.∵CC1⊥平面A1B1C1.A1F⊂平面A1B1C1.∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1.∴A1F∥AD∵A1F⊄平面ADE.AD⊂平面ADE.∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体.考查了直线与平面平行的判定和平面与平面垂直的判定等知识点.属于中档题.17.(14分)(2012•江苏)如图.建立平面直角坐标系xOy.x轴在地平面上.y轴垂直于地平面.单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上.其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小).其飞行高度为3.2千米.试问它的横坐标a 不超过多少时.炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求 y=kx﹣(1+k2)x2(k>0)与x轴的横坐标.求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值.由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中.令y=0.得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0.k>0.∴.当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0.∴炮弹可以击中目标等价于存在 k>0.使ka﹣(1+k2)a2=3.2成立.即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0.两根之积大于0.故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时.k=>0.∴当a不超过6千米时.炮弹可以击中目标.点评:本题考查函数模型的运用.考查基本不等式的运用.考查学生分析解决问题的能力.属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值.则称x0为函数y=f(x)的极值点.已知a.b是实数.1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2.求g(x)的极值点;(3)设h(x)=f(f(x))﹣c.其中c∈[﹣2.2].求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数.根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x.求出g′(x).令g′(x)=0.求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx.得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点.∴f′(1)=3﹣2a+b=0.f′(﹣1)=3+2a+b=0.解得a=0.b=﹣3.(2)由(1)得.f(x)=x3﹣3x.∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0.解得x1=x2=1.x3=﹣2.∵当x<﹣2时.g′(x)<0;当﹣2<x<1时.g′(x)>0.∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时.g′(x)>0.∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t.则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况.d∈[﹣2.2]当|d|=2时.由(2 )可知.f(x)=﹣2的两个不同的根为1和一2.注意到f(x)是奇函数.∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时.∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0.f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0.∴一2.﹣1.1.2 都不是f(x)=d 的根.由(1)知.f′(x)=3(x+1)(x﹣1).①当x∈(2.+∞)时.f′(x)>0.于是f(x)是单调增函数.从而f(x)>f(2)=2.此时f(x)=d在(2.+∞)无实根.②当x∈(1.2)时.f′(x)>0.于是f(x)是单调增函数.又∵f(1)﹣d<0.f(2)﹣d>0.y=f(x)﹣d的图象不间断.∴f(x)=d在(1.2 )内有唯一实根.同理.在(一2.一1)内有唯一实根.③当x∈(﹣1.1)时.f′(x)<0.于是f(x)是单调减函数.又∵f(﹣1)﹣d>0.f(1)﹣d<0.y=f(x)﹣d的图象不间断.∴f(x)=d在(一1.1 )内有唯一实根.因此.当|d|=2 时.f(x)=d 有两个不同的根 x1.x2.满足|x1|=1.|x2|=2;当|d|<2时.f (x)=d 有三个不同的根x3.x4.x5.满足|x i|<2.i=3.4.5.现考虑函数y=h(x)的零点:( i )当|c|=2时.f(t)=c有两个根t1.t2.满足|t1|=1.|t2|=2.而f(x)=t1有三个不同的根.f(x)=t2有两个不同的根.故y=h(x)有5 个零点.( i i )当|c|<2时.f(t)=c有三个不同的根t3.t4.t5.满足|t i|<2.i=3.4.5.而f(x)=t i有三个不同的根.故y=h(x)有9个零点.综上所述.当|c|=2时.函数y=h(x)有5个零点;当|c|<2时.函数y=h(x)有9 个零点.点评:本题考查导数知识的运用.考查函数的极值.考查函数的单调性.考查函数的零点.考查分类讨论的数学思想.综合性强.难度大.19.(16分)(2012•江苏)如图.在平面直角坐标系xOy中.椭圆(a>b>0)的左、右焦点分别为F1(﹣c.0).F2(c.0).已知(1.e)和(e.)都在椭圆上.其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A.B是椭圆上位于x轴上方的两点.且直线AF1与直线BF2平行.AF2与BF1交于点P.(i)若AF1﹣BF2=.求直线AF1的斜率;(ii)求证:PF1+PF2是定值.直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.考点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1.e)和(e.).都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my.x﹣1=my.与椭圆方程联立.求出|AF1|、|BF2|.根据已知条件AF1﹣BF2=.用待定系数法求解;(ii)利用直线AF1与直线BF2平行.点B在椭圆上知.可得..由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2.e=.由点(1.e)在椭圆上.得.∴b=1.c2=a2﹣1.由点(e.)在椭圆上.得∴.∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1.0).F2(1.0).又∵直线AF1与直线BF2平行.∴设AF1与BF2的方程分别为x+1=my.x﹣1=my.设A(x1.y1).B(x2.y2).y1>0.y2>0.∴由.可得(m2+2)﹣2my1﹣1=0.∴.(舍).∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=.∴.解得m2=2.∵注意到m>0.∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行.∴.即.由点B在椭圆上知..∴.同理.∴PF1+PF2==由①②得...∴PF1+PF2=.∴PF 1+PF 2是定值.点评: 本题考查椭圆的标准方程.考查直线与椭圆的位置关系.考查学生的计算能力.属于中档题.20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n }和{b n }满足:a n+1=.n ∈N *.(1)设b n+1=1+.n ∈N*.求证:数列是等差数列;(2)设b n+1=•.n ∈N*.且{a n }是等比数列.求a 1和b 1的值.考点: 数列递推式;等差关系的确定;等比数列的性质. 专题: 等差数列与等比数列. 分析:(1)由题意可得.a n+1===.从而可得.可证(2)由基本不等式可得..由{a n }是等比数列利用反证法可证明q==1.进而可求a 1.b 1解答:解:(1)由题意可知.a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n >0.b n >0∴从而(*)设等比数列{a n}的公比为q.由a n>0可知q>0下证q=1若q>1.则.故当时.与(*)矛盾0<q<1.则.故当时.与(*)矛盾综上可得q=1.a n=a1.所以.∵∴数列{b n}是公比的等比数列若.则.于是b1<b2<b3又由可得∴b1.b2.b3至少有两项相同.矛盾∴.从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用.解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答.22、23必做题)(共3小题.满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图.AB是圆O的直径.D.E为圆上位于AB异侧的两点.连接BD并延长至点C.使BD=DC.连接AC.AE.DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵.求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中.已知圆C经过点P(.).圆心为直线ρsin(θ﹣)=﹣与极轴的交点.求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x.y满足:|x+y|<.|2x﹣y|<.求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C.就得找一个中间量代换.一方面考虑到∠B.∠E是同弧所对圆周角.相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵.根据定义可求出矩阵A.从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(.).求出圆的半径.从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径.∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC.∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D.E 为圆上位于AB异侧的两点.∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵.∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1.λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点.∴在ρsin(θ﹣)=﹣中令θ=0.得ρ=1.∴圆C的圆心坐标为(1.0).∵圆C 经过点P(.).∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|.|x+y|<.|2x﹣y|<.∴3|y|<.∴点评:本题是选作题.综合考查选修知识.考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明.综合性强22.(10分)(2012•江苏)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条.当两条棱相交时.ξ=0;当两条棱平行时.ξ的值为两条棱之间的距离;当两条棱异面时.ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列.并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数.即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对.即可求出相应的概率.从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交.则交点必为正方体8个顶点中的一个.过任意1个顶点恰有3条棱.∴共有8对相交棱.∴P(ξ=0)=.(2)若两条棱平行.则它们的距离为1或.其中距离为的共有6对.∴P(ξ=)=.P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算.考查离散型随机变量的分布列与期望.求概率是关键.23.(10分)(2012•江苏)设集合P n={1.2.….n}.n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A.则2x∉A;③若x∈ A.则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}.故4可求f(4)(2)任取偶数x∈p n.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.可知.若m∈A.则x∈A.⇔k为偶数;若m∉A.则x∈A⇔k为奇数.可求解答:解(1)当n=4时.P={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}4故f(4)=4(2)任取偶数x∈p n.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.于是x=m•2k.其中m为奇数.k∈N*由条件可知.若m∈A.则x∈A.⇔k为偶数若m∉ A.则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定.设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数.当n为偶数时(或奇数时).P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用.解题的关键是准确应用题目中的定义。
2010-2012江苏高考数学分析
![2010-2012江苏高考数学分析](https://img.taocdn.com/s3/m/14c69fde3186bceb19e8bb0e.png)
三年江苏数学高考试题分析
1、题型、题量以及分值:填空题(14×5=70)+解答题(14×3+16×3=90)+附加考查·理科独具(选做,4选2,20分+必做20分)
2、考查模块:必修1、2、
3、
4、5;文科:选修1-1、1-2;理科:选修2-1、2-2、2-3、选考4-1、4-2、4-4、4-5;
3、不考查内容:江苏文科不考积化和差与和差化积、半角公式、三视图、直观图、算法案例、选修的回归分析及独立性检验、选修的框图,理科在文科的基础上加定积分、选修超几何分布、正态分布。
4、2010、2011、2012年,填空题70分,考查知识点、分值分析表格
1
2
5、2010、2011、2012年,解答题90分,考查知识点、分值分析表格
综合三年的试题,我们可以看出,15、16题较简单,17题中档,18、19的第一问简单,第二问较难;20题难度较大;六道试题考查的知识点基本相同:平面向量、三角函数、三角恒等变换以及解三角形交汇;直线与平面、平面与平面的位置关系;实际应用题;圆锥曲线的综合问题(以椭圆为主);数列综合问题(常与不等式结合);导数与函数的综合应用;
3
4。
2012年江苏高考数学试卷含答案和解析
![2012年江苏高考数学试卷含答案和解析](https://img.taocdn.com/s3/m/91582f7902d276a201292e66.png)
2012年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={1,2,4},B={2,4,6},则A∪B=_________.2.(5分)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_________名学生.3.(5分)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为_________.4.(5分)图是一个算法流程图,则输出的k的值是_________.5.(5分)函数f(x)=的定义域为_________.6.(5分)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是_________.7.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为_________ cm3.8.(5分)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为_________.9.(5分)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是_________.10.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为_________.11.(5分)设a为锐角,若cos(a+)=,则sin(2a+)的值为_________.12.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是_________.13.(5分)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为_________.14.(5分)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是_________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.17.(14分)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.18.(16分)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.19.(16分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=求直线AF1的斜率;(ii)求证:PF1+PF2是定值.20.(16分)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.22.(10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).23.(10分)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).2012年江苏高考数学参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={1,2,4},B={2,4,6},则A∪B={1,2,4,6}.考点:并集及其运算.专题:计算题.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生.考点:分层抽样方法.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)图是一个算法流程图,则输出的k的值是5.考点:循环结构.专题:计算题.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:计算题.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:计算题.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为2.考点:双曲线的简单性质.专题:计算题;压轴题.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题: 计算题.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:计算题.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)设a为锐角,若cos(a+)=,则sin(2a+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:计算题;压轴题.分析:根据a为锐角,cos(a+)=为正数,可得a+也是锐角,利用平方关系可得sin(a+)=.接下来配角,得到cosa=,sina=,再用二倍角公式可得sin2a=,cos2a=,最后用两角和的正弦公式得到sin(2a+)=sin2acos+cosasin=.解答:解:∵a为锐角,cos(a+)=,∴a+也是锐角,且sin(a+)==∴cosa=cos[(a+)﹣]=cos+sin=sina=sin[(a+)﹣]=cos﹣sin=由此可得sin2a=2sinacosa=,cos2a=cos2a﹣sin2a=又∵sin=sin()=,cos=cos()=∴sin(2a+)=sin2acos+cosasin=•+•=故答案为:点评:本题要我们在已知锐角a+的余弦值的情况下,求2a+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:计算题.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=4与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=4与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2≤4k,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9.考点:一元二次不等式的应用.专题: 计算题;压轴题.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题: 计算题;综合题;压轴题.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.点评:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:计算题.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又coaA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点: 平面与平面垂直的判定;直线与平面平行的判定.专题:计算题.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:综合题.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在y=kx﹣(1+k2)x2(k>0)中,令y=0,得kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在k>0,使ka﹣(1+k2)a2=3.2成立,即关于的方程a2k2﹣20ak+a2+64=0有正根.由△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:综合题.分析:(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:(i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5 个零点.(i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点: 直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:综合题;压轴题.分析:(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.20.(16分)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.考点: 数列递推式;等差关系的确定;等比数列的性质.专题: 综合题;压轴题.分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:选作题.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+2|2x﹣y|,:|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强22.(10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:压轴题.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有8对相交棱,∴P(ξ=0)=.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴P(ξ=)=,P(ξ=1)1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,求概率是关键.23.(10分)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点: 函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题: 计算题;压轴题.分析:(1)由题意可得P4={1,2,3,,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4) (2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4} 故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义参与本试卷答题和审题的老师有:涨停;sllwyn;俞文刚;wfy814;刘长柏;qiss;xintrl;minqi5;邢新丽(排名不分先后)菁优网2013年12月29日2012数学21。
2012年江苏高考数学解析
![2012年江苏高考数学解析](https://img.taocdn.com/s3/m/66dce42d3169a4517723a38f.png)
2012年江苏省高考数学试卷评析一、主要知识点分布考查知识点难度所占分值备注集合及其应用中等难度13 填空题第1题较容易概率、统计难18 填空题第2题较容易向量中等难度15等差数列、等比数列难17 填空题第6题较容易直线与圆、椭圆和圆锥曲线的应用中等难度18函数解析式、性质及其应用中等难度34 填空题第5题较容易不等式及其应用难22二、考卷整体评析2012年的数学考卷仍然延续了前几年的风格,稳中有变,重基础,考能力,具有较好的信度和效度,充分体现了新课程改革风向标的作用。
整体难度较去年加大,学生想获得高分并非易事,但却为不同层次的高校选拔合适人才提供了标准。
填空题中的1~8题均属于基础题,主要考查集合、统计、复数、对数函数、等比数列和概率的计算公式,考生在这几道题上基本不容易失分。
9~14题计算的复杂程度增大,思维强度、思维品质加强。
更加注重对概念本质的理解和数学思想方法的应用。
尤其是14题,考查分析与转化、构造函数解决问题的能力,对于考生来说,无疑是一个挑战。
解答题中的15题和16题构成了第一梯度,侧重基础知识的考查和推理论证,但考查的能力较低;17题构成了第二个梯度,侧重函数模型的应用,考查学生对知识和方法的综合运用,以及基本的运算能力;19题可谓是第三个梯度,考查知识和方法的综合运用,以及较强的计算能力,同时加大对学生思维能力和思维品质的考查;18题和20题构成了第四个梯度,要求学生面对新的情境,能够用已学过的知识解决问题,更加侧重对高层次思维品质和数学素养的考查。
难度虽大,如果学生能善加利用各小问之间的逻辑关系,可在解题时事半功倍。
综上所述,2012年江苏省高考数学试卷中等难度题的难度加大,也使整张试卷的难度加大。
学生拿高分不易,获得保底分却是较易的。
另外,由于更加侧重学生逻辑思维能力和较高层次的数学素养的考查,文科生做此试卷确实不易。
这也提醒即将升入高三的同学以及高三的老师们,在学习和教学中,应更加侧重分析能力、解决问题能力的培养,侧重思维的深刻性、灵活性、抽象度的培养。
(推荐)2012高考全国2卷数学理科试题及答案详解
![(推荐)2012高考全国2卷数学理科试题及答案详解](https://img.taocdn.com/s3/m/9bfc1fcf168884868662d699.png)
2012年普通高等学校招生全国统一考试数学理科数学(全国二卷)一、选择题1、 复数131i i-++= A 2+i B 2-i C 1+2i D 1- 2i2、已知集合A =},B ={1,m} ,A B =A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =14 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列1n a 1+n a 的前100项和为 (A)100101 (B) 99101 (C) 99100 (D) 101100(6)△ABC 中,AB 边的高为CD ,若a CB =→,b CA=→,a ·b=0,|a|=1,|b|=2,则=→AD (A)b a 31-31(B )b a 32-32 (C)b a 53-53 (D)b a 54-54(7)已知α为第二象限角,sin α+sin β=3,则cos2α=(A) (B ) (8)已知F 1、F 2为双曲线C :2-x 22=y 的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
2012年高考数学理试卷分析
![2012年高考数学理试卷分析](https://img.taocdn.com/s3/m/b75ad3f40722192e4436f624.png)
2012年高考数学理试卷分析2012年新课标高考理科数学试卷分析一.题型、题量全卷包括第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题.第Ⅱ卷为非选择题.考试时间为120分钟,总分为150分.试题分选择题、填空题和解答题.其中,选择题有12个小题,每题5分,共计60分;填空题有4个小题,每题5分,共计20分;解答题有8个题,其中第17题~21题各12分,第22~24题(各10分)选考一题内容分别为选修4—1(几何选讲)、选修4—4(坐标系与参数方程)、4—5(不等式选讲),共计70分.全部试题都要求在答题卡上作答.题型、题量同教育部考试中心近几年命制的新高考数学理科卷相同.总体来看,今年的高考数学题型不变,各题型内容所占比例也基本不变,各题型顺序大同小异,但在传统题目上却非常新颖,别具一格。
在难易的顺序上可谓是在挑战极限。
具体来讲:集合内容占0.03%、排列组合占0.03%、复数占0.03%、向量占0.03%、线性规划占0.03%、算法占0.03%、数列占0.06%、概率占0.114%、立体几何占0.15%、解析几何占0.15%、函数占0.15%、三角函数占0.114%,试题覆盖面广,涉猎高中数学的所有内容。
当学生满怀信心,摩拳擦掌地投入到战斗中去时,才恍然发觉,今非昔比。
和去年相比较,试题的难度着实上了一个很高的台阶。
布1)注重全面考查2012年课标卷中各种知识点题型起点较高、较综合、不易入手,多数试题源数列递推数列、一般数列求和于教材,但考查较深入,强调对基本知识、基本技能和基本方法的考查,又注重考查知识间的紧密联系,第(1)、(5)、(7)、(9)、(13)、(14)题分别对集合、排列组合、等比数列、三视图、三角函数、平面向量、线性规划等基本概念和基本运算进行了考查。
试卷注重考查通性通法,有效检测考生对数学知识所蕴涵的数和方法的掌握情况,第(3)题考查命题,而内容是复数的计算;第(4)、(8)题考查圆锥曲线的性质,注重联系平面几何与平面坐标系的转化;第(6)、(15)题分别考查了新课改中增加的程序框图、正态加强调对新知识定义的理解,更加的贴近实际操作;第(10)、(12)题考查了函数的性质和反函数,研究函数图象在解题中的巧妙作用;第(16)题考查了数列的性质和求和。
(完整版)2012年江苏省高考数学试卷答案与解析
![(完整版)2012年江苏省高考数学试卷答案与解析](https://img.taocdn.com/s3/m/32396e9559eef8c75fbfb3e1.png)
2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题.每小题5分.共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1.2.4}.B={2.4.6}.则A∪B={1.2.4.6} .考点:并集及其运算.专题:集合.分析:由题意.A.B两个集合的元素已经给出.故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1.2.4}.B={2.4.6}.∴A∪B={1.2.4.6}故答案为{1.2.4.6}点评:本题考查并集运算.属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比.做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例.得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例.这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(2012•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意.可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值.从而得到所求的答案解答:解:由题.a.b∈R.a+bi=所以a=5.b=3.故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算.解题的关键是分子分母都乘以分母的共轭.复数的四则运算是复数考查的重要内容.要熟练掌握.复数相等的充分条件是将复数运算转化为实数运算的桥梁.解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图.则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值.判断是否循环.达到满足题目的条件.结束循环.得到结果即可.解答:解:1﹣5+4=0>0.不满足判断框.则k=2.22﹣10+4=﹣2>0.不满足判断框的条件.则k=3.32﹣15+4=﹣2>0.不成立.则k=4.42﹣20+4=0>0.不成立.则k=5.52﹣25+4=4>0.成立.所以结束循环.输出k=5.故答案为:5.点评:本题考查循环框图的作用.考查计算能力.注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0.] .考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0.真数要大于0.得到不等式组.根据对数的单调性解出不等式的解集.得到结果.解答:解:函数f(x)=要满足1﹣2≥0.且x>0∴.x>0∴.x>0.∴.x>0.∴0.故答案为:(0.]点评:本题考查对数的定义域和一般函数的定义域问题.在解题时一般遇到.开偶次方时.被开方数要不小于0.;真数要大于0;分母不等于0;0次方的底数不等于0.这种题目的运算量不大.是基础题.6.(5分)(2012•江苏)现有10个数.它们能构成一个以1为首项.﹣3为公比的等比数列.若从这10个数中随机抽取一个数.则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为.然后找出小于8的项的个数.代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1.﹣3.(﹣3)2.(﹣3)3…(﹣3)9其中小于8的项有:1.﹣3.(﹣3)3.(﹣3)5.(﹣3)7.(﹣3)9共6个数这10个数中随机抽取一个数.则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用.属于基础试题7.(5分)(2012•江苏)如图.在长方体ABCD﹣A1B1C1D1中.AB=AD=3cm.AA1=2cm.则四棱锥A ﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O.求出AO.然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O.AO是棱锥的高.所以AO==.所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法.考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中.若双曲线的离心率为.则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0.所以双曲线的焦点必在x轴上.因此a2=m>0.可得c2=m2+m+4.最后根据双曲线的离心率为.可得c2=5a2.建立关于m的方程:m2+m+4=5m.解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0.b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为.∴.可得c2=5a2.所以m2+m+4=5m.解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程.在已知离心率的情况下求参数的值.着重考查了双曲线的概念与性质.属于基础题.9.(5分)(2012•江苏)如图.在矩形ABCD中.AB=.BC=2.点E为BC的中点.点F在边CD 上.若=.则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形.把已知向量用矩形的边所在的向量来表示.做出要用的向量的模长.表示出要求得向量的数量积.注意应用垂直的向量数量积等于0.得到结果.解答:解:∵.====||=.∴||=1.||=﹣1.∴=()()==﹣=﹣2++2=.故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式.本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数.在区间[﹣1.1]上.f (x)=其中a.b∈R.若=.则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数.由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0.解关于a.b的方程组可得到a.b的值.从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数.f(x)=.∴f()=f(﹣)=1﹣ a.f()=;又=.∴1﹣a=①又f(﹣1)=f(1).∴2a+b=0.②由①②解得a=2.b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性.考查分段函数的解析式的求法.着重考查方程组思想.得到a.b的方程组并求得a.b的值是关键.属于中档题.(2012•江苏)设α为锐角.若cos(α+)=.则sin(2α+)的值为.11.(5分)考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+.根据cosβ求出sinβ.进而求出sin2β和cos2β.最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+.∴sinβ=.s in2β=2sinβcosβ=.cos2β=2cos2β﹣1=.∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下.求2α+的正弦值.着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式.考查了三角函数中的恒等变换应用.属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中.圆C的方程为x2+y2﹣8x+15=0.若直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1.由题意可知.只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0.整理得:(x﹣4)2+y2=1.即圆C是以(4.0)为圆心.1为半径的圆;又直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4.0)到直线y=kx﹣2的距离为d.则d=≤2.即3k2﹣4k≤0.∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系.将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键.考查学生灵活解决问题的能力.属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).若关于x 的不等式f(x)<c的解集为(m.m+6).则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系.然后根据不等式的解集可得f(x)=c的两个根为m.m+6.最后利用根与系数的关系建立等式.解之即可.解答:解:∵函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).∴f(x)=x2+ax+b=0只有一个根.即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m.m+6).即为x2+ax+<c解集为(m.m+6).则x2+ax+﹣c=0的两个根为m.m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用.以及根与系数的关系.同时考查了分析求解的能力和计算能力.属于中档题.14.(5分)(2012•江苏)已知正数a.b.c满足:5c﹣3a≤b≤4c﹣a.clnb≥a+clnc.则的取值范围是[e.7] .考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2.而5×﹣3≤≤4×﹣1.于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln.从而≥.设函数f(x)=(x>1).利用其导数可求得f (x)的极小值.也就是的最小值.于是问题解决.解答:解:∵4c﹣a≥b>0∴>.∵5c﹣3a≤4c﹣a.∴≤2.从而≤2×4﹣1=7.特别当=7时.第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc.∴0<a≤cln.从而≥.设函数f(x)=(x>1).∵f′(x)=.当0<x<e时.f′(x)<0.当x>e时.f′(x)>0.当x=e时.f′(x)=0.∴当x=e时.f(x)取到极小值.也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e.=e成立.代入第一个不等式知:2≤=e≤3.不等式成立.从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e.7]双闭区间.点评:本题考查不等式的综合应用.得到≥.通过构造函数求的最小值是关键.也是难点.考查分析与转化、构造函数解决问题的能力.属于难题.二、解答题:本大题共6小题.共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中.已知.(1)求证:tanB=3tanA;(2)若cosC=.求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边.然后两边同时除以c 化简后.再利用正弦定理变形.根据cosAcosB≠0.利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角.及cosC的值.利用同角三角函数间的基本关系求出sinC的值.进而再利用同角三角函数间的基本关系弦化切求出tanC的值.由tanC的值.及三角形的内角和定理.利用诱导公式求出tan(A+B)的值.利用两角和与差的正切函数公式化简后.将tanB=3tanA代入.得到关于tanA的方程.求出方程的解得到tanA的值.再由A为三角形的内角.利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•.∴cb cosA=3cacosB.即bcosA=3acosB.由正弦定理=得:sinBcosA=3sinAcosB.又0<A+B<π.∴cosA>0.cosB>0.在等式两边同时除以cosAcosB.可得tanB=3tanA;(2)∵cosC=.0<C<π.sinC==.∴tanC=2.则tan[π﹣(A+B)]=2.即tan(A+B)=﹣2.∴=﹣2.将tanB=3tanA代入得:=﹣2.整理得:3tan2A﹣2tanA﹣1=0.即(tanA﹣1)(3tanA+1)=0.解得:tanA=1或tanA=﹣.又cosA>0.∴tanA=1.又A为三角形的内角.则A=.点评:此题属于解三角形的题型.涉及的知识有:平面向量的数量积运算法则.正弦定理.同角三角函数间的基本关系.诱导公式.两角和与差的正切函数公式.以及特殊角的三角函数值.熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图.在直三棱柱ABC﹣A1B1C1中.A1B1=A1C1.D.E分别是棱1上的点(点D 不同于点C).且AD⊥DE.F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣AB1C1是直三棱柱.得到CC1⊥平面ABC.从而AD⊥CC1.结合已知1条件AD⊥DE.DE、CC1是平面BCC1B1内的相交直线.得到AD⊥平面BCC1B1.从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中.A1F⊥B1C1.再用类似(1)的方法.证出A1F⊥平面BCC1B1.结合AD⊥平面BCC1B1.得到A1F∥AD.最后根据线面平行的判定定理.得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣AB1C1是直三棱柱.1∴CC1⊥平面ABC.∵AD⊂平面ABC.∴AD⊥CC1又∵AD⊥DE.DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1.∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中.A1B1=A1C1.F为B1C1的中点∴A1F⊥B1C1.∵CC1⊥平面A1B1C1.A1F⊂平面A1B1C1.∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1.∴A1F∥AD∵A1F⊄平面ADE.AD⊂平面ADE.∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体.考查了直线与平面平行的判定和平面与平面垂直的判定等知识点.属于中档题.17.(14分)(2012•江苏)如图.建立平面直角坐标系xOy.x轴在地平面上.y轴垂直于地平面.单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上.其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小).其飞行高度为3.2千米.试问它的横坐标a 不超过多少时.炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求 y=kx﹣(1+k2)x2(k>0)与x轴的横坐标.求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值.由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中.令y=0.得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0.k>0.∴.当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0.∴炮弹可以击中目标等价于存在 k>0.使ka﹣(1+k2)a2=3.2成立.即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0.两根之积大于0.故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时.k=>0.∴当a不超过6千米时.炮弹可以击中目标.点评:本题考查函数模型的运用.考查基本不等式的运用.考查学生分析解决问题的能力.属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值.则称x0为函数y=f(x)的极值点.已知a.b是实数.1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2.求g(x)的极值点;(3)设h(x)=f(f(x))﹣c.其中c∈[﹣2.2].求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数.根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x.求出g′(x).令g′(x)=0.求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx.得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点.∴f′(1)=3﹣2a+b=0.f′(﹣1)=3+2a+b=0.解得a=0.b=﹣3.(2)由(1)得.f(x)=x3﹣3x.∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0.解得x1=x2=1.x3=﹣2.∵当x<﹣2时.g′(x)<0;当﹣2<x<1时.g′(x)>0.∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时.g′(x)>0.∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t.则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况.d∈[﹣2.2]当|d|=2时.由(2 )可知.f(x)=﹣2的两个不同的根为1和一2.注意到f(x)是奇函数.∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时.∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0.f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0.∴一2.﹣1.1.2 都不是f(x)=d 的根.由(1)知.f′(x)=3(x+1)(x﹣1).①当x∈(2.+∞)时.f′(x)>0.于是f(x)是单调增函数.从而f(x)>f(2)=2.此时f(x)=d在(2.+∞)无实根.②当x∈(1.2)时.f′(x)>0.于是f(x)是单调增函数.又∵f(1)﹣d<0.f(2)﹣d>0.y=f(x)﹣d的图象不间断.∴f(x)=d在(1.2 )内有唯一实根.同理.在(一2.一1)内有唯一实根.③当x∈(﹣1.1)时.f′(x)<0.于是f(x)是单调减函数.又∵f(﹣1)﹣d>0.f(1)﹣d<0.y=f(x)﹣d的图象不间断.∴f(x)=d在(一1.1 )内有唯一实根.因此.当|d|=2 时.f(x)=d 有两个不同的根 x1.x2.满足|x1|=1.|x2|=2;当|d|<2时.f (x)=d 有三个不同的根x3.x4.x5.满足|x i|<2.i=3.4.5.现考虑函数y=h(x)的零点:( i )当|c|=2时.f(t)=c有两个根t1.t2.满足|t1|=1.|t2|=2.而f(x)=t1有三个不同的根.f(x)=t2有两个不同的根.故y=h(x)有5 个零点.( i i )当|c|<2时.f(t)=c有三个不同的根t3.t4.t5.满足|t i|<2.i=3.4.5.而f(x)=t i有三个不同的根.故y=h(x)有9个零点.综上所述.当|c|=2时.函数y=h(x)有5个零点;当|c|<2时.函数y=h(x)有9 个零点.点评:本题考查导数知识的运用.考查函数的极值.考查函数的单调性.考查函数的零点.考查分类讨论的数学思想.综合性强.难度大.19.(16分)(2012•江苏)如图.在平面直角坐标系xOy中.椭圆(a>b>0)的左、右焦点分别为F1(﹣c.0).F2(c.0).已知(1.e)和(e.)都在椭圆上.其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A.B是椭圆上位于x轴上方的两点.且直线AF1与直线BF2平行.AF2与BF1交于点P.(i)若AF1﹣BF2=.求直线AF1的斜率;(ii)求证:PF1+PF2是定值.直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.考点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1.e)和(e.).都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my.x﹣1=my.与椭圆方程联立.求出|AF1|、|BF2|.根据已知条件AF1﹣BF2=.用待定系数法求解;(ii)利用直线AF1与直线BF2平行.点B在椭圆上知.可得..由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2.e=.由点(1.e)在椭圆上.得.∴b=1.c2=a2﹣1.由点(e.)在椭圆上.得∴.∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1.0).F2(1.0).又∵直线AF1与直线BF2平行.∴设AF1与BF2的方程分别为x+1=my.x﹣1=my.设A(x1.y1).B(x2.y2).y1>0.y2>0.∴由.可得(m2+2)﹣2my1﹣1=0.∴.(舍).∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=.∴.解得m2=2.∵注意到m>0.∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行.∴.即.由点B在椭圆上知..∴.同理.∴PF1+PF2==由①②得...∴PF1+PF2=.∴PF 1+PF 2是定值.点评: 本题考查椭圆的标准方程.考查直线与椭圆的位置关系.考查学生的计算能力.属于中档题.20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n }和{b n }满足:a n+1=.n ∈N *.(1)设b n+1=1+.n ∈N*.求证:数列是等差数列;(2)设b n+1=•.n ∈N*.且{a n }是等比数列.求a 1和b 1的值.考点: 数列递推式;等差关系的确定;等比数列的性质. 专题: 等差数列与等比数列. 分析:(1)由题意可得.a n+1===.从而可得.可证(2)由基本不等式可得..由{a n }是等比数列利用反证法可证明q==1.进而可求a 1.b 1解答:解:(1)由题意可知.a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n >0.b n >0∴从而(*)设等比数列{a n}的公比为q.由a n>0可知q>0下证q=1若q>1.则.故当时.与(*)矛盾0<q<1.则.故当时.与(*)矛盾综上可得q=1.a n=a1.所以.∵∴数列{b n}是公比的等比数列若.则.于是b1<b2<b3又由可得∴b1.b2.b3至少有两项相同.矛盾∴.从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用.解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答.22、23必做题)(共3小题.满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图.AB是圆O的直径.D.E为圆上位于AB异侧的两点.连接BD并延长至点C.使BD=DC.连接AC.AE.DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵.求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中.已知圆C经过点P(.).圆心为直线ρsin(θ﹣)=﹣与极轴的交点.求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x.y满足:|x+y|<.|2x﹣y|<.求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C.就得找一个中间量代换.一方面考虑到∠B.∠E是同弧所对圆周角.相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵.根据定义可求出矩阵A.从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(.).求出圆的半径.从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径.∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC.∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D.E 为圆上位于AB异侧的两点.∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵.∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1.λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点.∴在ρsin(θ﹣)=﹣中令θ=0.得ρ=1.∴圆C的圆心坐标为(1.0).∵圆C 经过点P(.).∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|.|x+y|<.|2x﹣y|<.∴3|y|<.∴点评:本题是选作题.综合考查选修知识.考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明.综合性强22.(10分)(2012•江苏)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条.当两条棱相交时.ξ=0;当两条棱平行时.ξ的值为两条棱之间的距离;当两条棱异面时.ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列.并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数.即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对.即可求出相应的概率.从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交.则交点必为正方体8个顶点中的一个.过任意1个顶点恰有3条棱.∴共有8对相交棱.∴P(ξ=0)=.(2)若两条棱平行.则它们的距离为1或.其中距离为的共有6对.∴P(ξ=)=.P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算.考查离散型随机变量的分布列与期望.求概率是关键.23.(10分)(2012•江苏)设集合P n={1.2.….n}.n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A.则2x∉A;③若x∈ A.则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}.故4可求f(4)(2)任取偶数x∈p n.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.可知.若m∈A.则x∈A.⇔k为偶数;若m∉A.则x∈A⇔k为奇数.可求解答:解(1)当n=4时.P={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}4故f(4)=4(2)任取偶数x∈p n.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.于是x=m•2k.其中m为奇数.k∈N*由条件可知.若m∈A.则x∈A.⇔k为偶数若m∉ A.则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定.设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数.当n为偶数时(或奇数时).P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用.解题的关键是准确应用题目中的定义。
2012年全国高考新课标卷数学试题分析
![2012年全国高考新课标卷数学试题分析](https://img.taocdn.com/s3/m/9baf90310b4c2e3f572763b2.png)
2012年全国高考新课标卷数学试题分析2012年高考已经结束,今年是河北省自2009年进入高中新课改以来的第一年高考,所以试题一直备受一线教师及考生的关注和期待。
一.总体分析2012年全国卷数学高考试题总体难度高于去年全国课标卷,学生需要更多的思考时间与更大的思考空间。
与去年全国课标卷数学试题结构相同,分值相同,依然遵循着“稳定、变化、改革、创新”的出题方针。
今年数学试卷命题按照考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平。
试题主要内容分布在函数(含导数)、不等式、数列、立体几何、解析几何、概率统计、三角等主干知识上,不刻意追求知识的覆盖面,如新增内容中函数的零点、二分法、幂函数、茎叶图、条件概率、全称命题与特称命题、合情推理与演绎推理、独立性检验等今年就没有涉及到。
而对支撑学科知识体系的重点知识,考查时保持了较高的比例,构成了数学试卷的主体。
如理科试卷中函数与导数知识约22分(文科27分),立体几何约17分(文科17分),圆锥曲线约22分(文科22分)三角知识约17分(文科17分),概率统计约17分(文科17分)不等式及其应用约15分(文科15分,含三选一),其余小的知识点,在理科试卷中:集合、排列组合、复数、算法、平面向量、推理与证明、等比数列各5分;文科试卷中类似,新增内容在全卷中所占比例较小(本次只考查了三视图、程序框图、相关关系(文科)),同时无创新题,这也体现了保稳定,做好新课标过渡的出题宗旨。
虽然今年考题总体来说难度高于去年课标卷难度,但相对还是比较平稳的,具有很高的可信度,出题遵循了考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”这一原则。
很多题目似曾相识,但又不完全相同,适度创新,更加体现了对考生思维能力和灵活应用知识的考查。
2012年高考数学分值及分析
![2012年高考数学分值及分析](https://img.taocdn.com/s3/m/9f856b242f60ddccda38a0de.png)
数学Ⅰ(必做题)一、填空题:(共14小题,每小题5分,共计70分)二、解答题:15.(本小题满分14分)16.(本小题满分14分)17.(本小题满分14分)18.(本小题满分16分)19.(本小题16分)20.(本小题满分16分)数学Ⅱ(附加题)21.【选做题】:A.[选修4-1:几何证明选讲](本小题满分10分)B.[选修4-2:矩阵与变换](本小题满分10分)C.[选修4-4:坐标系与参数方程] (本小题满分10分)D.[选修4-5:不等式选讲] (本小题满分10分)【必做题】第22题、第23题,每题10分,共计20分22. (本小题满分10分)23. (本小题满分10分)2012年江苏高考数学试卷分析一、试卷整体评价2012年江苏高考数学试卷整体难度较去年有所上升,试卷中的基础题所涉及的知识面有所增加,中难题要求的数学运算能力有所加强。
整份试卷的区分度较好,能较好的测试出学生的水平和能力。
从下表的最近5年江苏高考数学均分统计数据也可以看出,今年江苏高考试卷难度较去年有所提高,去前年基本持平。
年份2008年2009年2010年2011年2012年89/160 98/160 83.5/160 90/160 82/160平均分值(不含附加题)二、2012年江苏高考数学试卷分析(1) 近几年主要知识点考查情况比较2008年2009年2010年2011年2012年分数比重分数比重分数比重分数比重分数比重集合 5 2.70% 5 2.70% 5 2.70% 10 6% 5 2.9% 函数40 22% 31 17% 31 17% 50 28% 45 26.5% 三角函数19 11% 19 11% 34 19% 24 13.30% 19 11.2% 平面向量10 6% 5 2.70% 14 7.77% 5 2.70% 5 2.9% 数列21 12% 29 16.10% 21 12% 21 12% 21 12.4% 不等式 5 2.70% 16 8.88% 5 2.70% 0 0% 10 5.9% 立体几何24 13% 24 13.30% 14 7.77% 24 13% 19 11.2% 解析几何26 14.40% 31 17.00% 26 14.40% 16 8.88% 31 18.2% 概率10 6% 10 6% 20 11.10% 10 6% 15 8.8%计数原理20 11.10% 10 6% 10 6% 20 11.10% 0 0.0% 总计180 180 180 180 170从以上统计数据可以看出:最近几年各重点知识模块的考查在高考试卷中所占的比例基本不变,只有2012年有所下降,这说明今年的高考试题考查的知识面更宽。
2012年江苏高考数学试题及答案
![2012年江苏高考数学试题及答案](https://img.taocdn.com/s3/m/6c0dba9b650e52ea551898d7.png)
2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B =U ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +为 ▲ .4.右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数()f x =的定义域为 ▲ .6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 ▲ .7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率m 的值为 ▲ .9.如图,在矩形ABCD 中,2AB BC =,点E 为BC 的中点,点F 在边CD 上,若AB AF =u u u r u u u r g AE BF u u u r u u u rg 的值是 ▲ .10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,(第4题)DABC1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =u u u r u u u r u u u r u u u rg g .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C(第16题)FDCABE1B17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和2e ⎛ ⎝⎭,都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n *+=∈N .(1)设11n n nb b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)准考证号21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,D ,E 为圆上位于AB 异侧的两点,连结BD 并延长至点C ,使BD = DC ,连结AC ,AE ,DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分) 在极坐标中,已知圆C 经过点()4P π,,圆心为直线()sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程.D .[选修4 - 5:不等式选讲](本小题满分10分)(第21-A 题)已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示).2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则A∪B={1,2,4,6}.考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是5.考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx ﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9.考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e 可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.点评:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c 化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC 的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在y=kx﹣(1+k2)x2(k>0)中,令y=0,得kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:(i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5 个零点.(i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.点评:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.考点:数列递推式;等差关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b 1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有8对相交棱,∴P(ξ=0)=.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴P(ξ=)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,求概率是关键.23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).。
2012年江苏省高考数学试卷答案与解析
![2012年江苏省高考数学试卷答案与解析](https://img.taocdn.com/s3/m/59543fe658fb770bf78a55d8.png)
2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共 小题 每小题 分 共计 分.请把答案填写在答题卡相应位置上..( 分)( ❿江苏)已知集合✌❝❝则 ✌✉❝.考点:并集及其运算.专题:集合.分析:由题意 ✌两个集合的元素已经给出 故由并集的运算规则直接得到两个集合的并集即可解答:解: ✌❝❝✌✉❝故答案为 ❝点评:本题考查并集运算 属于集合中的简单计算题 解题的关键是理解并的运算定义.( 分)( ❿江苏)某学校高一、高二、高三年级的学生人数之比为 : : 现用分层抽样的方法从该校高中三个年级的学生中抽取容量为 的样本 则应从高二年级抽取 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比 做出高二所占的比例 用要抽取得样本容量乘以高二所占的比例 得到要抽取的高二的人数.解答:解: 高一、高二、高三年级的学生人数之比为 : : 高二在总体中所占的比例是用分层抽样的方法从该校高中三个年级的学生中抽取容量为 的样本 要从高二抽取故答案为: 点评:本题考查分层抽样方法 本题解题的关键是看出三个年级中各个年级所占的比例 这就是在抽样过程中被抽到的概率 本题是一个基础题..( 分)( ❿江苏)设♋♌ ♋♌♓(♓为虚数单位) 则♋♌的值为 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意 可对复数代数式分子与分母都乘以 ♓再由进行计算即可得到♋♌♓♓再由复数相等的充分条件即可得到♋♌的值 从而得到所求的答案解答:解:由题 ♋♌ ♋♌♓所以♋♌故♋♌故答案为点评:本题考查复数代数形式的乘除运算 解题的关键是分子分母都乘以分母的共轭 复数的四则运算是复数考查的重要内容 要熟练掌握 复数相等的充分条件是将复数运算转化为实数运算的桥梁 解题时要注意运用它进行转化..( 分)( ❿江苏)图是一个算法流程图 则输出的 的值是 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值 判断是否循环 达到满足题目的条件 结束循环 得到结果即可.解答:解: ﹣ > 不满足判断框.则 ﹣ ﹣ > 不满足判断框的条件则 ﹣ ﹣ > 不成立 则 ﹣ > 不成立 则 ﹣ > 成立所以结束循环输出 .故答案为: .点评:本题考查循环框图的作用 考查计算能力 注意循环条件的判断. .( 分)( ❿江苏)函数♐(⌧) 的定义域为( .考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于 真数要大于 得到不等式组 根据对数的单调性解出不等式的解集 得到结果.解答:解:函数♐(⌧) 要满足 ﹣ ♏且⌧>⌧>⌧> ⌧> 故答案为:( 点评:本题考查对数的定义域和一般函数的定义域问题 在解题时一般遇到 开偶次方时 被开方数要不小于 ;真数要大于 ;分母不等于 ; 次方的底数不等于 这种题目的运算量不大 是基础题..( 分)( ❿江苏)现有 个数 它们能构成一个以 为首项 ﹣ 为公比的等比数列 若从这 个数中随机抽取一个数 则它小于 的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的 个数为 然后找出小于 的项的个数 代入古典概论的计算公式即可求解解答:解:由题意成等比数列的 个数为: ﹣ (﹣ ) (﹣ ) ⑤(﹣ ) 其中小于 的项有: ﹣ (﹣ ) (﹣ ) (﹣ ) (﹣ ) 共 个数这 个数中随机抽取一个数 则它小于 的概率是 故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用 属于基础试题.( 分)( ❿江苏)如图 在长方体✌﹣✌ 中✌✌♍❍✌✌ ♍❍则四棱锥✌﹣ 的体积为 ♍❍ .考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过✌作✌于 求出✌然后求出几何体的体积即可.解答:解:过✌作✌于 ✌是棱锥的高 所以✌所以四棱锥✌﹣ 的体积为✞ .故答案为: .点评:本题考查几何体的体积的求法 考查空间想象能力与计算能力. .( 分)( ❿江苏)在平面直角坐标系⌧⍓中 若双曲线的离心率为 则❍的值为 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得⍓ 的分母❍ > 所以双曲线的焦点必在⌧轴上.因此♋ ❍> 可得♍ ❍ ❍最后根据双曲线的离心率为 可得♍ ♋ 建立关于❍的方程:❍ ❍❍解之得❍.解答:解: ❍ >双曲线的焦点必在⌧轴上因此♋ ❍> ♌ ❍ ♍ ❍❍ ❍ ❍双曲线的离心率为可得♍ ♋所以❍ ❍❍解之得❍故答案为:点评:本题给出含有字母参数的双曲线方程 在已知离心率的情况下求参数的值 着重考查了双曲线的概念与性质 属于基础题..( 分)( ❿江苏)如图 在矩形✌中 ✌ 点☜为 的中点 点☞在边 上 若 则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形 把已知向量用矩形的边所在的向量来表示 做出要用的向量的模长 表示出要求得向量的数量积 注意应用垂直的向量数量积等于 得到结果.解答:解: ﹣ ()() ﹣ ﹣ 故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式 本题是一个中档题目..( 分)( ❿江苏)设♐(⌧)是定义在 上且周期为 的函数 在区间☯﹣ 上 ♐(⌧) 其中♋♌ .若 则♋♌的值为﹣ .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于♐(⌧)是定义在 上且周期为 的函数 由♐(⌧)的表达式可得♐() ♐(﹣) ﹣♋♐() ;再由♐(﹣ ) ♐( )得 ♋♌解关于♋♌的方程组可得到♋♌的值 从而得到答案.解答:解: ♐(⌧)是定义在 上且周期为 的函数 ♐(⌧) ♐() ♐(﹣) ﹣♋♐() ;又﹣♋♊又♐(﹣ ) ♐( )♋♌♋由♊♋解得♋♌﹣ ;♋♌﹣ .故答案为:﹣ .点评:本题考查函数的周期性 考查分段函数的解析式的求法 着重考查方程组思想 得到♋♌的方程组并求得♋♌的值是关键 属于中档题..( 分)( ❿江苏)设↑为锐角 若♍☐♦(↑) 则♦♓⏹( ↑)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设↓↑ 根据♍☐♦↓求出♦♓⏹↓进而求出♦♓⏹↓和♍☐♦↓最后用两角和的正弦公式得到♦♓⏹( ↑)的值.解答:解:设↓↑♦♓⏹↓ ♦♓⏹↓♦♓⏹↓♍☐♦↓ ♍☐♦↓♍☐♦ ↓﹣♦♓⏹( ↑) ♦♓⏹( ↑﹣) ♦♓⏹( ↓﹣) ♦♓⏹↓♍☐♦﹣♍☐♦↓♦♓⏹ .故答案为:.点评:本题要我们在已知锐角↑的余弦值的情况下 求 ↑的正弦值 着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式 考查了三角函数中的恒等变换应用 属于中档题..( 分)( ❿江苏)在平面直角坐标系⌧⍓中 圆 的方程为⌧ ⍓ ﹣⌧若直线⍓⌧﹣ 上至少存在一点 使得以该点为圆心 为半径的圆与圆 有公共点 则 的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆 的方程为(⌧﹣ ) ⍓ 由题意可知 只需(⌧﹣ ) ⍓ 与直线⍓⌧﹣ 有公共点即可.解答:解: 圆 的方程为⌧ ⍓ ﹣ ⌧整理得:(⌧﹣ ) ⍓ 即圆 是以( )为圆心 为半径的圆;又直线⍓⌧﹣ 上至少存在一点 使得以该点为圆心 为半径的圆与圆 有公共点只需圆 :(⌧﹣ ) ⍓ 与直线⍓⌧﹣ 有公共点即可.设圆心 ( )到直线⍓⌧﹣ 的距离为♎则♎♎即 ﹣ ♎♎♎.的最大值是.故答案为:.点评:本题考查直线与圆的位置关系 将条件转化为❽(⌧﹣ ) ⍓ 与直线⍓⌧﹣ 有公共点❾是关键 考查学生灵活解决问题的能力 属于中档题..( 分)( ❿江苏)已知函数♐(⌧) ⌧ ♋⌧♌(♋♌ )的值域为☯ ) 若关于⌧的不等式♐(⌧)<♍的解集为(❍❍) 则实数♍的值为 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出♋与♌的关系 然后根据不等式的解集可得♐(⌧) ♍的两个根为❍❍最后利用根与系数的关系建立等式 解之即可.解答:解: 函数♐(⌧) ⌧ ♋⌧♌(♋♌ )的值域为☯ )♐(⌧) ⌧ ♋⌧♌只有一个根 即 ♋ ﹣ ♌则♌不等式♐(⌧)<♍的解集为(❍❍)即为⌧ ♋⌧<♍解集为(❍❍)则⌧ ♋⌧﹣♍的两个根为❍❍❍﹣❍ 解得♍故答案为:点评:本题主要考查了一元二次不等式的应用 以及根与系数的关系 同时考查了分析求解的能力和计算能力 属于中档题..( 分)( ❿江苏)已知正数♋♌♍满足: ♍﹣ ♋♎♌♎♍﹣♋♍●⏹♌♏♋♍●⏹♍则的取值范围是☯♏.考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得♎♎而 ﹣ ♎♎﹣ 于是可得♎;由♍ ●⏹ ♌♏♋♍ ●⏹ ♍可得 <♋♎♍●⏹ 从而♏ 设函数♐(⌧) (⌧> ) 利用其导数可求得♐(⌧)的极小值 也就是的最小值 于是问题解决.解答:解: ♍﹣♋♏♌>>♍﹣ ♋♎♍﹣♋♎.从而 ♎﹣ 特别当 时 第二个不等式成立.等号成立当且仅当♋:♌:♍: : .又♍●⏹♌♏♋♍●⏹♍<♋♎♍●⏹从而♏ 设函数♐(⌧) (⌧> )♐(⌧) 当 <⌧<♏时 ♐(⌧)< 当⌧>♏时 ♐(⌧)> 当⌧♏时 ♐(⌧) 当⌧♏时 ♐(⌧)取到极小值 也是最小值.♐(⌧)❍♓⏹ ♐(♏) ♏.等号当且仅当 ♏ ♏成立.代入第一个不等式知: ♎ ♏♎不等式成立 从而♏可以取得.等号成立当且仅当♋:♌:♍:♏: .从而的取值范围是☯♏双闭区间.点评:本题考查不等式的综合应用 得到♏ 通过构造函数求的最小值是关键 也是难点 考查分析与转化、构造函数解决问题的能力 属于难题.二、解答题:本大题共 小题 共计 分.请在答题卡指定区域内作答 解答时应写出文字说明、证明过程或演算步骤..( 分)( ❿江苏)在 ✌中 已知.( )求证:♦♋⏹♦♋⏹✌;( )若♍☐♦ 求✌的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:( )利用平面向量的数量积运算法则化简已知的等式左右两边 然后两边同时除以♍化简后 再利用正弦定理变形 根据♍☐♦✌♍☐♦♊利用同角三角函数间的基本关系弦化切即可得到♦♋⏹♦♋⏹✌;( )由 为三角形的内角 及♍☐♦的值 利用同角三角函数间的基本关系求出♦♓⏹的值 进而再利用同角三角函数间的基本关系弦化切求出♦♋⏹的值 由♦♋⏹的值 及三角形的内角和定理 利用诱导公式求出♦♋⏹(✌)的值 利用两角和与差的正切函数公式化简后 将♦♋⏹♦♋⏹✌代入 得到关于♦♋⏹✌的方程 求出方程的解得到♦♋⏹✌的值 再由✌为三角形的内角 利用特殊角的三角函数值即可求出✌的度数.解答:解:( ) ❿ ❿♍♌♍☐♦✌♍♋♍☐♦即♌♍☐♦✌♋♍☐♦由正弦定理 得:♦♓⏹♍☐♦✌♦♓⏹✌♍☐♦又 <✌<⇨♍☐♦✌> ♍☐♦> 在等式两边同时除以♍☐♦✌♍☐♦可得♦♋⏹♦♋⏹✌;( ) ♍☐♦ < <⇨♦♓⏹♦♋⏹则♦♋⏹☯⇨﹣(✌) 即♦♋⏹(✌) ﹣ ﹣ 将♦♋⏹♦♋⏹✌代入得: ﹣ 整理得: ♦♋⏹ ✌﹣ ♦♋⏹✌﹣ 即(♦♋⏹✌﹣ )( ♦♋⏹✌) 解得:♦♋⏹✌或♦♋⏹✌﹣又♍☐♦✌> ♦♋⏹✌又✌为三角形的内角则✌.点评:此题属于解三角形的题型 涉及的知识有:平面向量的数量积运算法则 正弦定理 同角三角函数间的基本关系 诱导公式 两角和与差的正切函数公式 以及特殊角的三角函数值 熟练掌握定理及公式是解本题的关键..( 分)( ❿江苏)如图 在直三棱柱✌﹣✌ 中 ✌ ✌ ☜分别是棱 上的点(点 不同于点 ) 且✌☜☞为 的中点.求证:( )平面✌☜平面 ;( )直线✌ ☞平面✌☜.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:( )根据三棱柱✌﹣✌ 是直三棱柱 得到 平面✌从而✌ 结合已知条件✌☜☜、 是平面 内的相交直线 得到✌平面 从而平面✌☜平面 ;( )先证出等腰三角形 ✌ 中 ✌ ☞ 再用类似( )的方法 证出✌ ☞平面 结合✌平面 得到✌ ☞✌最后根据线面平行的判定定理 得到直线✌ ☞平面✌☜.解答:解:( ) 三棱柱✌﹣✌ 是直三棱柱 平面✌✌②平面✌✌又 ✌☜☜、 是平面 内的相交直线✌平面 ✌②平面✌☜平面✌☜平面 ;( ) ✌ 中 ✌ ✌ ☞为 的中点✌ ☞ 平面✌ ✌ ☞②平面✌✌ ☞又 、 是平面 内的相交直线✌ ☞平面 又 ✌平面 ✌ ☞✌✌ ☞④平面✌☜✌②平面✌☜直线✌ ☞平面✌☜.点评:本题以一个特殊的直三棱柱为载体 考查了直线与平面平行的判定和平面与平面垂直的判定等知识点 属于中档题..( 分)( ❿江苏)如图 建立平面直角坐标系⌧⍓⌧轴在地平面上 ⍓轴垂直于地平面 单位长度为 千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程⍓⌧﹣( )⌧ ( > )表示的曲线上 其中 与发射方向有关.炮的射程是指炮弹落地点的横坐标.( )求炮的最大射程;( )设在第一象限有一飞行物(忽略其大小) 其飞行高度为 千米 试问它的横坐标♋不超过多少时 炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:( )求炮的最大射程即求 ⍓⌧﹣( )⌧ ( > )与⌧轴的横坐标 求出后应用基本不等式求解.( )求炮弹击中目标时的横坐标的最大值 由一元二次方程根的判别式求解.解答:解:( )在 ⍓⌧﹣( )⌧ ( > )中 令⍓得 ⌧﹣( )⌧ .由实际意义和题设条件知⌧> > .当且仅当 时取等号.炮的最大射程是 千米.( ) ♋> 炮弹可以击中目标等价于存在 > 使 ♋﹣( )♋ 成立即关于 的方程♋ ﹣ ♋♋ 有正根.由韦达定理满足两根之和大于 两根之积大于 故只需 ♋ ﹣ ♋ (♋ )♏得♋♎.此时 > .当♋不超过 千米时 炮弹可以击中目标.点评:本题考查函数模型的运用 考查基本不等式的运用 考查学生分析解决问题的能力 属于中档题..( 分)( ❿江苏)若函数⍓♐(⌧)在⌧⌧ 处取得极大值或极小值 则称⌧ 为函数⍓♐(⌧)的极值点.已知♋♌是实数 和﹣ 是函数♐(⌧) ⌧ ♋⌧ ♌⌧的两个极值点.( )求♋和♌的值;( )设函数♑(⌧)的导函数♑(⌧) ♐(⌧) 求♑(⌧)的极值点;( )设♒(⌧) ♐(♐(⌧))﹣♍其中♍ ☯﹣ 求函数⍓♒(⌧)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:( )求出 导函数 根据 和﹣ 是函数的两个极值点代入列方程组求解即可.( )由( )得♐(⌧) ⌧ ﹣ ⌧求出♑(⌧) 令♑(⌧) 求解讨论即可.( )先分 ♎和 ♎< 讨论关于的方程♐(⌧) ♎的情况;再考虑函数⍓♒(⌧)的零点.解答:解:( )由 ♐(⌧) ⌧ ♋⌧ ♌⌧得 ♐(⌧) ⌧ ♋⌧♌. 和﹣ 是函数♐(⌧)的两个极值点♐( ) ﹣ ♋♌♐(﹣ ) ♋♌解得♋♌﹣ .( )由( )得 ♐(⌧) ⌧ ﹣ ⌧♑(⌧) ♐(⌧) ⌧ ﹣ ⌧(⌧﹣ ) (⌧) 解得⌧ ⌧ ⌧ ﹣ .当⌧<﹣ 时 ♑(⌧)< ;当﹣ <⌧< 时 ♑(⌧)> ﹣ 是♑(⌧)的极值点.当﹣ <⌧< 或⌧> 时 ♑(⌧)> 不是♑(⌧) 的极值点.♑(⌧)的极值点是﹣ .( )令♐(⌧) ♦则♒(⌧) ♐(♦)﹣♍.先讨论关于⌧的方程♐(⌧) ♎根的情况 ♎ ☯﹣ 当 ♎时 由( )可知 ♐(⌧) ﹣ 的两个不同的根为 和一 注意到♐(⌧)是奇函数♐(⌧) 的两个不同的根为﹣ 和 .当 ♎< 时 ♐(﹣ )﹣♎♐( )﹣♎﹣♎> ♐( )﹣♎♐(﹣ )﹣♎﹣ ﹣♎< 一 ﹣ 都不是♐(⌧) ♎ 的根.由( )知 ♐(⌧) (⌧)(⌧﹣ ).♊当⌧ ( )时 ♐(⌧)> 于是♐(⌧)是单调增函数 从而♐(⌧)>♐( ) .此时♐(⌧) ♎在( )无实根.♋当⌧ ( )时 ♐(⌧)> 于是♐(⌧)是单调增函数.又 ♐( )﹣♎< ♐( )﹣♎> ⍓♐(⌧)﹣♎的图象不间断♐(⌧) ♎在( )内有唯一实根.同理 在(一 一 )内有唯一实根.♌当⌧ (﹣ )时 ♐(⌧)< 于是♐(⌧)是单调减函数.又 ♐(﹣ )﹣♎> ♐( )﹣♎< ⍓♐(⌧)﹣♎的图象不间断♐(⌧) ♎在(一 )内有唯一实根.因此 当 ♎ 时 ♐(⌧) ♎ 有两个不同的根 ⌧ ⌧ 满足 ⌧ ⌧ ;当 ♎< 时 ♐(⌧) ♎ 有三个不同的根⌧ ⌧ ⌧ 满足 ⌧♓ < ♓.现考虑函数⍓♒(⌧)的零点:( ♓ )当 ♍时 ♐(♦) ♍有两个根♦ ♦ 满足 ♦ ♦ .而♐(⌧) ♦ 有三个不同的根 ♐(⌧) ♦ 有两个不同的根 故⍓♒(⌧)有 个零点.( ♓ ♓ )当 ♍< 时 ♐(♦) ♍有三个不同的根♦ ♦ ♦ 满足 ♦♓ < ♓.而♐(⌧) ♦♓有三个不同的根 故⍓♒(⌧)有 个零点.综上所述 当 ♍时 函数⍓♒(⌧)有 个零点;当 ♍< 时 函数⍓♒(⌧)有 个零点.点评:本题考查导数知识的运用 考查函数的极值 考查函数的单调性 考查函数的零点 考查分类讨论的数学思想 综合性强 难度大..( 分)( ❿江苏)如图 在平面直角坐标系⌧⍓中 椭圆(♋>♌> )的左、右焦点分别为☞ (﹣♍) ☞ (♍).已知( ♏)和(♏)都在椭圆上 其中♏为椭圆的离心率.( )求椭圆的方程;( )设✌是椭圆上位于⌧轴上方的两点 且直线✌☞ 与直线 ☞ 平行 ✌☞ 与 ☞ 交于点 .(♓)若✌☞ ﹣ ☞ 求直线✌☞ 的斜率;(♓♓)求证: ☞ ☞ 是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:( )根据椭圆的性质和已知( ♏)和(♏) 都在椭圆上列式求解.( )(♓)设✌☞ 与 ☞ 的方程分别为⌧❍⍓⌧﹣ ❍⍓与椭圆方程联立求出 ✌☞ 、 ☞ 根据已知条件✌☞ ﹣ ☞ 用待定系数法求解;(♓♓)利用直线✌☞ 与直线 ☞ 平行 点 在椭圆上知 可得由此可求得 ☞ ☞ 是定值.解答:( )解:由题设知♋ ♌ ♍ ♏ 由点( ♏)在椭圆上 得♌♍ ♋ ﹣ .由点(♏)在椭圆上 得♋ 椭圆的方程为.( )解:由( )得☞ (﹣ ) ☞ ( )又 直线✌☞ 与直线 ☞ 平行 设✌☞ 与 ☞ 的方程分别为⌧❍⍓⌧﹣❍⍓.设✌(⌧ ⍓ ) (⌧ ⍓ ) ⍓ > ⍓ > 由 可得(❍ )﹣ ❍⍓ ﹣ .(舍)✌☞ ﹣⍓ ♊同理 ☞ ♋(♓)由♊♋得 ✌☞ ﹣ ☞ 解得❍ . 注意到❍> ❍.直线✌☞ 的斜率为.(♓♓)证明: 直线✌☞ 与直线 ☞ 平行 即.由点 在椭圆上知 . 同理.☞ ☞由♊♋得☞ ☞ . ☞ ☞ 是定值.点评:本题考查椭圆的标准方程 考查直线与椭圆的位置关系 考查学生的计算能力 属于中档题..( 分)( ❿江苏)已知各项均为正数的两个数列 ♋⏹❝和 ♌⏹❝满足:♋⏹ ⏹ ☠✉( )设♌⏹ ⏹ ☠✉求证:数列是等差数列;( )设♌⏹ ❿ ⏹ ☠✉且 ♋⏹❝是等比数列 求♋ 和♌ 的值.考点:数列递推式;等差关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:( )由题意可得 ♋⏹ 从而可得可证( )由基本不等式可得 由 ♋⏹❝是等比数列利用反证法可证明❑ 进而可求♋ ♌解答:解:( )由题意可知 ♋⏹从而数列 ❝是以 为公差的等差数列( ) ♋⏹> ♌⏹>从而(✉)设等比数列 ♋⏹❝的公比为❑由♋⏹> 可知❑>下证❑若❑> 则 故当时 与(✉)矛盾<❑< 则 故当时 与(✉)矛盾综上可得❑♋⏹ ♋所以数列 ♌⏹❝是公比的等比数列若 则 于是♌ <♌ <♌又由可得♌ ♌ ♌ 至少有两项相同 矛盾从而点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用 解题的关键是反证法的应用.三、附加题☎选做题:任选 小题作答 、 必做题)(共 小题 满分 分).( 分)( ❿江苏)✌.☯选修 ﹣ :几何证明选讲如图 ✌是圆 的直径 ☜为圆上位于✌异侧的两点 连接 并延长至点 使 连接✌✌☜☜.求证: ☜ ..☯选修 ﹣ :矩阵与变换已知矩阵✌的逆矩阵 求矩阵✌的特征值..☯选修 ﹣ :坐标系与参数方程在极坐标中 已知圆 经过点 ( ) 圆心为直线⇧♦♓⏹(→﹣) ﹣与极轴的交点 求圆 的极坐标方程..☯选修 ﹣ :不等式选讲已知实数⌧⍓满足: ⌧⍓< ⌧﹣⍓< 求证: ⍓<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法☎选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:✌.要证 ☜ 就得找一个中间量代换 一方面考虑到 ☜是同弧所对圆周角 相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证..由矩阵✌的逆矩阵 根据定义可求出矩阵✌从而求出矩阵✌的特征值..根据圆心为直线⇧♦♓⏹(→﹣) ﹣与极轴的交点求出的圆心坐标;根据圆经过点 ( ) 求出圆的半径 从而得到圆的极坐标方程..根据绝对值不等式的性质求证.解答:✌.证明:连接 ✌.✌是圆 的直径 ✌(直径所对的圆周角是直角). ✌(垂直的定义).又 ✌是线段 的中垂线(线段的中垂线定义).✌✌(线段中垂线上的点到线段两端的距离相等). (等腰三角形等边对等角的性质).又 ☜ 为圆上位于✌异侧的两点 ☜(同弧所对圆周角相等).☜ (等量代换).、解: 矩阵✌的逆矩阵 ✌♐(↖) ↖ ﹣ ↖﹣ ↖ ﹣ ↖ 、解: 圆心为直线⇧♦♓⏹(→﹣) ﹣与极轴的交点在⇧♦♓⏹(→﹣) ﹣中令→得⇧. 圆 的圆心坐标为( ).圆 经过点 ( ) 圆 的半径为 .圆 的极坐标方程为⇧♍☐♦→.、证明: ⍓⍓(⌧⍓)﹣( ⌧﹣⍓) ♎⌧⍓⌧﹣⍓⌧⍓< ⌧﹣⍓<⍓<点评:本题是选作题 综合考查选修知识 考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明 综合性强.( 分)( ❿江苏)设↘为随机变量 从棱长为 的正方体的 条棱中任取两条 当两条棱相交时 ↘;当两条棱平行时 ↘的值为两条棱之间的距离;当两条棱异面时↘.( )求概率 (↘);( )求↘的分布列 并求其数学期望☜(↘).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:( )求出两条棱相交时相交棱的对数 即可由概率公式求得概率.( )求出两条棱平行且距离为的共有 对 即可求出相应的概率 从而求出随机变量的分布列与数学期望.解答:解:( )若两条棱相交 则交点必为正方体 个顶点中的一个 过任意 个顶点恰有 条棱共有 对相交棱(↘) .( )若两条棱平行 则它们的距离为 或 其中距离为的共有 对(↘) (↘) ﹣ (↘)﹣ (↘) .随机变量↘的分布列是:↘其数学期望☜(↘) .点评:本题考查概率的计算 考查离散型随机变量的分布列与期望 求概率是关键..( 分)( ❿江苏)设集合 ⏹ ⑤⏹❝⏹ ☠✉.记♐(⏹)为同时满足下列条件的集合✌的个数:♊✌⑥⏹;♋若⌧ ✌则 ⌧⇧✌;♌若⌧ ✌则 ⌧⇧✌.( )求♐( );( )求♐(⏹)的解析式(用⏹表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:( )由题意可得 ❝符合条件的集合✌为:❝❝❝❝故可求♐( )( )任取偶数⌧ ☐⏹ 将⌧除以 若商仍为偶数 再除以 ⑤经过 次后 商必为奇数 此时记商为❍可知 若❍ ✌则⌧ ✌为偶数;若❍⇧✌则⌧ ✌为奇数 可求解答:解( )当⏹时 ❝符合条件的集合✌为:❝❝❝❝故♐( ) ( )任取偶数⌧ ☐⏹ 将⌧除以 若商仍为偶数 再除以 ⑤经过 次后 商必为奇数 此时记商为❍于是⌧❍❿ 其中❍为奇数 ☠✉由条件可知 若❍ ✌则⌧ ✌为偶数若❍⇧✌则⌧ ✌为奇数于是⌧是否属于✌由❍是否属于✌确定 设✈⏹是 ⏹中所有的奇数的集合因此♐(⏹)等于✈⏹的子集个数 当⏹为偶数时(或奇数时) ⏹中奇数的个数是(或)点评:本题主要考查了集合之间包含关系的应用 解题的关键是准确应用题目中的定义。
2012年高考数学试题
![2012年高考数学试题](https://img.taocdn.com/s3/m/ea830b1c03d8ce2f0066232d.png)
2012年全国统一高考数学试卷(新课标版)(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种考点:排列、组合及简单计数问题.专题:计算题.分析:将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果解答:解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A点评:本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数的四个命题:其中的真命题为(),p1:|z|=2,,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4考点:复数的基本概念;命题的真假判断与应用.专题:计算题.分析:由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.解答:解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.点评:本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:计算题.分析:利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.解答:解:∵△F2PF1是底角为30°的等腰三角形∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.点评:本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题5.(5分)已知{a n} 为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5 D.﹣7考点:等比数列的性质;等比数列的通项公式.专题:计算题.分析:由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可解答:解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D点评:本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数考点:循环结构.专题:计算题.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n 中最大的数和最小的数.解答:解:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选C.点评:本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12 D.18考点:由三视图求面积、体积.专题:计算题.分析:通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.解答:解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选B.点评:本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为()A.B.C.4D.8考点:圆锥曲线的综合.专题:计算题.分析:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.解答:解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)(2012•黑龙江)已知ω>0,函数在上单调递减.则ω的取值范围是()A.B.C.D.(0,2]考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.解答:解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.点评:本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数;则y=f(x )的图象大致为()A.B.C.D.考点:对数函数图象与性质的综合应用;对数函数的图像与性质.专题:计算题.分析:考虑函数f(x )的分母的函数值恒小于零,即可排除A,C,D,这一性质可利用导数加以证明解答:解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,D故选B点评:本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径,∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.考点:点到直线的距离公式;反函数.专题:计算题.分析:由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求解答:解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称函数上的点到直线y=x的距离为设g(x)=,(x>0)则由≥0可得x≥ln2,由<0可得0<x<ln2∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增∴当x=ln2时,函数g(x)min=1﹣ln2由图象关于y=x对称得:|PQ|最小值为故选B点评:本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•黑龙江)已知向量夹角为45°,且,则=3.考点:平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:由已知可得,=,代入|2|====可求解答:解:∵,=1∴=∴|2|====解得故答案为:3点评:本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为[﹣3,3].考点:简单线性规划.专题:计算题.分析:先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围解答:解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A 时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]点评:平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为;求b,c.考点:解三角形.专题:计算题.分析:(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A(2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA 可求b+c,进而可求b,c解答:解:(1)∵acosC+asinC﹣b﹣c=0∴sinAcosC+sinAsinC﹣sinB﹣sinC=0∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC∵sinC≠0∴sinA﹣cosA=1∴sin(A﹣30°)=∴A﹣30°=30°∴A=60°(2)由由余弦定理可得,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA即4=(b+c)2﹣3bc=(b+c)2﹣12∴b+c=4解得:b=c=2点评:本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.考点:概率的应用;离散型随机变量的期望与方差.专题:综合题.分析:(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.解答:解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7X的分布列为X 60 70 80P 0.1 0.2 0.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4 ∵76.4>76,∴应购进17枝点评:本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC(2)求二面角A1﹣BD﹣C1的大小.考点:二面角的平面角及求法;空间中直线与直线之间的位置关系.专题:综合题.分析:(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.解答:(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD∵OH⊥BD,∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°点评:本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l 于B,D两点;(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.考点:圆锥曲线的综合;圆的标准方程;抛物线的简单性质.专题:综合题.分析:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD 的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.解答:解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线切点直线坐标原点到m,n距离的比值为.点评:本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)(2012•黑龙江)已知函数f(x)满足;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;探究型;转化思想.分析:(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值解答:解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b ∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为点评:本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,难度较大,计算量也大,易马虎出错四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•黑龙江)选修4﹣1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD~△GBD.考点:综合法与分析法(选修).专题:证明题.分析:(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,根据等弧对等角,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.解答:证明:(1)∵AB∥CF,∴∠DAE=∠ECF.根据等弧对等角可知,,∴∠BDC=∠ADF.∵D,E分别为△ABC边AB,AC的中点∴DE∥BC∴∠ADF=∠DBC.∴∠BDC=∠DBC∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.点评:本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.考点:椭圆的参数方程;简单曲线的极坐标方程;点的极坐标和直角坐标的互化.专题:综合题.分析:(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.解答:解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]点评:本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.考点:绝对值不等式的解法;带绝对值的函数.专题:计算题.分析:(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.解答:解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:吕静;qiss;席泽林;邢新丽;刘长柏;xintrl;caoqz;minqi5;zlzhan(排名不分先后)菁优网2013年5月30日。
2012年江苏高考数学题目及解析
![2012年江苏高考数学题目及解析](https://img.taocdn.com/s3/m/f43f521c6bd97f192279e938.png)
参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.(2012年江苏省5分)已知集合{124}A =,,,{246}B =,,,则A B = ▲ .【答案】{}1,2,4,6。
【考点】集合的概念和运算。
【分析】由集合的并集意义得{}1,2,4,6A B = 。
2.(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 【答案】15。
【考点】分层抽样。
【解析】分层抽样又称分类抽样或类型抽样。
将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
因此,由350=15334⨯++知应从高二年级抽取15名学生。
3.(2012年江苏省5分)设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ .【答案】8。
【考点】复数的运算和复数的概念。
【分析】由117ii 12ia b -+=-得()()()()117i 12i 117i 1115i 14i ===53i 12i 12i 12i 14a b -+-+++=+--++,所以=5=3a b ,,=8a b + 。
4.(2012年江苏省5分)下图是一个算法流程图,则输出的k 的值是 ▲ .【答案】5。
【考点】程序框图。
【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:是否继续循环k 2k 5k 4-+循环前 0 0 第一圈 是 1 0 第二圈 是 2 -2 第三圈 是 3 -2 第四圈 是 4 0 第五圈 是 5 4 第六圈否输出5∴最终输出结果k=5。
2012年江苏高考数学试题及标准答案
![2012年江苏高考数学试题及标准答案](https://img.taocdn.com/s3/m/5d903a87ba1aa8114431d9d5.png)
2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B =U ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +为 ▲ .4.右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数()f x =的定义域为 ▲ .6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 ▲ .7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率m 的值为 ▲ .9.如图,在矩形ABCD 中,2AB BC =,点E 为BC 的中点,点F 在边CD 上,若AB AF =u u u r u u u r g AE BF u u u r u u u rg 的值是 ▲ .10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,(第4题)DABC1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =u u u r u u u r u u u r u u u rg g .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C(第16题)FDCABE1B17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和2e ⎛ ⎝⎭,都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(第19题)(i)若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a n *+=∈N .(1)设11n n nb b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)准考证号21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,D ,E 为圆上位于AB 异侧的两点,连结BD 并延长至点C ,使BD = DC ,连结AC ,AE ,DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分) 在极坐标中,已知圆C 经过点()4P π,,圆心为直线()sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程.D .[选修4 - 5:不等式选讲](本小题满分10分)(第21-A 题)已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示).2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则A∪B={1,2,4,6}.考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是5.考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx ﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9.考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e 可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.点评:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c 化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC 的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在y=kx﹣(1+k2)x2(k>0)中,令y=0,得kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:(i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5 个零点.(i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.点评:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.考点:数列递推式;等差关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b 1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有8对相交棱,∴P(ξ=0)=.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴P(ξ=)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,求概率是关键.23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).。
2012江苏高考数学试卷(完整版)理科
![2012江苏高考数学试卷(完整版)理科](https://img.taocdn.com/s3/m/26fc3dc785254b35eefdc8d376eeaeaad0f31659.png)
绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ..【答案】 {1,2,4,6}【命题意图】本题考察集合中并集运算,意在考察学生对集合概念的掌握情况。
【解析】集合A,B 都是以列举法的形式给出,易得A B ={1,2,4,6}2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取的样本,则应从高二年级抽取 名学生.名学生.名学生.【答案】 15 【命题意图】本题考查统计中有关分层抽样的简单运算,意在考察考生应用统计知识解决实际问题的能力。
【解析】由题意得高二年纪的学生人数占该学校高中人数的103,利用分层抽样的有关知识得应从高二年纪抽取5050××103=15名学生。
名学生。
3.设a b ÎR ,,117i i 12ia b -+=-(i 为虚数单位),则a b +的值的值为 .. 【答案】 8【命题意图】本题考查复数的定义,复数相等及复数的四则运算等,意在考查考生对复数这部分内容的掌握情况注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
展变化。 2、卷Ⅰ的填空题着重考查基础知识和基本技能,对数学能力考查体
现不同的要求,较去年稳中有降. 3、2012年高考数学科(江苏卷)考试对知识的考查要求依次分为了解
(A)、理解(B)、掌握(C)三个层次。必做题部分A级考点29个,B级考点 36个,C级考点8个。附加题部分A级考点11个,B级考点36个,无C级 考点。
5. 函数的定义域为 . 【解析】根据题意得到 ,同时,> ,解得,解得,又>,所以函数的 定义域为: . 【点评】本题主要考查函数基本性质、对数函数的单调性和图象的运 用.本题容易忽略>这个条件,因此,要切实对基本初等函数的图象与 性质有清晰的认识,在复习中应引起高度重视.本题属于基本题,难度 适中. 6. 现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从 这10个数中随机抽取一个数,则它小于8的概率是 . 【解析】组成满足条件的数列为:从中随机取出一个数共有取法种,其 中小于的取法共有种,因此取出的这个数小于的概率为. 【点评】本题主要考查古典概型.在利用古典概型解决问题时,关键弄 清基本事件数和基本事件总数,本题要注意审题,“一次随机取两个 数”,意味着这两个数不能重复,这一点要特别注意.
最大值是 . 【点评】本题主要考查直线与圆的位置关系、点到直线的距离公式、圆 的一般式方程和标准方程的互化,考查知识较综合,考查转化思想在求 解参数范围中的运用.本题的解题关键就是对若直线上至少存在一点,使 得以该点为圆心,1为半径的圆与圆C有公共点,这句话的理解,只需要 圆心到直线的距离即可,从而将问题得以转化.本题属于中档题,难度适 中. 13. 已知函数的值域为,若关于x的不等式的解集为,则实数c的值为 . 【解析】根据函数,得到,又因为关于的不等式,可化为:,它的解集 为,设函数图象与轴的交点的横坐标分别为,则,从而,,即,又因为 ,代入得到 . 【点评】本题重点考查二次函数、一元二次不等式和一元二次方程的关 系,根与系数的关系.二次函数的图象与二次不等式的解集的对应关系 要理清.属于中档题,难度不大. 14. 已知正数满足:则的取值范围是 . 【解析】根据条件,得到 ,得到.又因为,所以,由已知,得到.从而,解得. 【点评】本题主要考查不等式的基本性质、对数的基本运算.关键是注 意不等式的等价变形,做到每一步都要等价.本题属于中高档题,难度 较大. 二、解答题 15. (本小题满分14分) 在中,已知. (1)求证:; (2)若求A的值. 【点评】本题主要考查向量的数量积的定义与数量积运算、两角和与差 的三角公式、三角恒等变形以及向量共线成立的条件.本题综合性较
E F D 【解析】根据题意所以
从而得到,又因为,所以 . 【点评】本题主要考查平面向量的基本运算,同时,结合平面向量的数 量积运算解决.设法找到,这是本题的解题关键,本题属于中等偏难题 目. 10. 设是定义在上且周期为2的函数,在区间上,其中.若,则的值为 . 【解析】因为,函数的周期为,所以 ,根据得到, 又,得到,结合上面的式子解得,所以. 【点评】本题重点考查函数的性质、分段函数的理解和函数周期性的应 用.利用函数的周期性将式子化简为然后借助于分段函数的解析式解决. 属于中档题,难度适中. 11. 设为锐角,若,则的值为 . 【解析】根据,, 因为,所以 ,因为. 【点评】本题重点考查两角和与差的三角公式、角的灵活拆分、二倍角 公式的运用.在求解三角函数值时,要注意角的取值情况,切勿出现增 根情况.本题属于中档题,运算量较大,难度稍高. 12. 在平面直角坐标系中,圆C的方程为,若直线上至少存在一点,使得 以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是 . 【解析】根据题意将此化成标准形式为:,得到,该圆的圆心为半径为 ,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公 共点,只需要圆心到直线的距离,即可,所以有,化简得解得,所以k的
今年高考数学试卷在学生、家长和教师中,在学校、民间和社会上总体 上获得良好的评价。 2、新题难题总结
1~9题是体现最低要求的容易题,只需稍作运算即可顺利完成;10~ 14题复杂程度、能力要求和解题难度有所提升,对把握概念本质属性和 运用数学思想方法提出较高要求,对考生的想像力、抽象度、灵活性、 深刻性等思维品质提出更大的挑战。解答题着重考查综合运用知识,分 析和解决数学问题的能力。
函数
函数的应 函数模型的选择与应 14
用
用
导数及其 函数在某点取得极值 16
应用
的条件
导数在最大值、最小 5 值问题中的应用
一元二次不等式的应 5 不等式
用
数16
平面向量数量积的运 5 平面向量
算
数系的扩 复数代数形式的乘除 5
充与复数
运算
排列组合
统计与统
与概率统
分层抽样方法
5
计案例
计
概率
离散型随机变量的期 10
望与方差
算法与框 算法初步
循环结构
5
图
与框图
2.50% 2.50% 7.00% 8.00% 2.50% 2.50% 2.50% 8.00% 2.50% 2.50%
2.50%
5.00% 2.50%
三角函数 三角函数 三角函数中的恒等变 5
及其恒等
换应用
变换
三角函数
(2)直线平面ADE. 【点评】本题主要考查空间中点、线、面的位置关系,考查线面垂直、 面面垂直的性质与判定,线面平行的判定.解题过程中注意中点这一条 件的应用,做题规律就是“无中点、取中点,相连得到中位线”.本题属于 中档题,难度不大,考查基础为主,注意问题的等价转化. 17. (本小题满分14分) 如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面, 单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表 示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐 标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米, 试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由. x(千米)
3、今年数学高考试卷最大的亮点
我觉得今年考题的最大亮点应该在于对重点模块的考察上,更侧 重于对重点模块的考察。大多数的题,基本上都是可以按部就班的,按 照我们平时的这些做题的步骤写出来了,而且侧重于学生的基础知识的 考察,而且侧重于对学生能力的考察,比如说抽象概括能力,空间想象 能力,推理论证能力,还有一些比如分析问题能力,解决问题的能力, 侧重于这些能力的考察。今年的题虽然简单,但是对咱们学生能力的考 察还是体现的比较强烈。
2012年江苏省高中数学(高考理综)试卷 分析
——高中讲师张友军
一、试卷综述
1、总体评价
2012年高考江苏数学试卷继续遵循了新课程高考方案的基本思 想,试卷结构稳定,突出双基,重视能力,知识点广,容易上手,难度 递增,区分提升,利于选拔,各种层次考生可以充分展现自己的真实能 力。 首先考卷的结构基本是不变的,14个客观题加5个主观题,5个 主观题主要是考查三角函数、概率统计、立体几何、解析几何、数列、 导数、函数这些东西。然后从整体上看,今年的考试更侧重于对重点模 块的考察,这让大家也感觉比较舒服一些,因为毕竟平时的时候大家把 更多的精力都放在这些重点模块上。2012年高考试题重点突出,层次分 明,逐步深入,使学生解题入手容易,心理状态平和,正常发挥能力, 自我满意程度提高。今年试题能力要求提高,层次区分明显,获得高分 并非易事,但有利于不同层次的高校选拔各自满意的人才。
7.如图,在长方体中,,,则四棱锥的体积为 cm3.
D A B C
【解析】如图所示,连结交于点,因为 平面,又因为,所以,,所以 四棱锥的高为,根据题意,所以,又因为,,故矩形的面积为,从而四 棱锥的体积. 【点评】本题重点考查空间几何体的体积公式的运用.本题综合性较 强,结合空间中点线面的位置关系、平面与平面垂直的性质定理考查. 重点找到四棱锥的高为,这是解决该类问题的关键.在复习中,要对空 间几何体的表面积和体积公式记准、记牢,并且会灵活运用.本题属于 中档题,难度适中. 8. 在平面直角坐标系中,若双曲线的离心率为,则m的值为 . 【解析】根据题目条件双曲线的焦点位置在轴上(否则不成立),因此 >,由离心率公式得到,解得 . 【点评】本题考查双曲线的概念、标准方程和简单的几何性质.这是大 纲中明确要求的,在对本部分复习时要注意:侧重于基本关系和基本理 论性质的考查,从近几年的高考命题趋势看,几乎年年都有所涉及,要 引起足够的重视.本题属于中档题,难度适中. 9. 如图,在矩形ABCD中,点E为BC的中点,点F在边CD上,若,则的 值是 . A B C
二、整体分析
1、试题结构与分值
题量 总分
填空题 14 70
解答题 6 90
附加题 3 40
总题数 23 200
2、知识模块分析 一级考点 二级考点
代数
集合 函数概念
三级考点
分值 占试卷百 比例
并集及其运算
5
2.50%
函数解析式的求解及 10 常用方法
5.00%
函数的周期性
5
基本初等
5
对数函数的定义域
从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽 取 名学生. 【解析】根据分层抽样的方法步骤,按照一定比例抽取,样本容量为, 那么根据题意得:从高三一共可以抽取人数为:人,答案 . 【点评】本题主要考查统计部分知识:抽样方法问题,分层抽样的具体 实施步骤.分层抽样也叫做“按比例抽样”,也就是说,要根据每一层的个 体数的多少抽取,这样才能够保证样本的科学性与普遍性,这样得到的 数据才更有价值、才能够较精确地反映总体水平,本题属于容易题,也 是高考热点问题,希望引起重视. 3. 设,(i为虚数单位),则的值为 .
三、试题分析
一.填空题: 1.已知集合,,则 . 【解析】根据集合的并集运算,两个集合的并集就是所有属于集合A和 集合B的元素组成的集合,从所给的两个集合的元素可知,它们的元素 是 ,,,,所以答案为. 【点评】本题重点考查集合的运算.容易出错的地方是审错题目,把并 集运算看成交集运算.属于基本题,难度系数较小. 2. 某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法