《细胞生物学》复习题第七章
细胞生物学《第七章》
细胞生物学第七章-----07园艺生技1班刘小茜200730050616王鑫柔200730050620许欢200730050621一、名词解释1、细胞质基质2、细胞内膜系统3、内质网4、高尔基体5、溶酶体二、填空题1、研究内膜系统的有效技术主要包括:、、。
2、是蛋白质将要被降解的重要标志。
3、在糙面内质网合成并进入内质网腔的蛋白质发生的主要化学修饰作用有、、。
4、内质网中的蛋白质糖基化包括:、;高尔基体中的蛋白质糖基化是。
5.指导分泌性蛋白在糙面内质网上合成的决定因素是6.蛋白质分选的两条途径、7. 是高尔基体中间几层扁平膜壤的标志反应。
8.用反应,可辨认出不同形态与大小的溶酶体9.过氧化物酶体中常含有的两种酶、10.溶酶体中所有的酶都有的共同标志是____11. 膜间隙中标志酶为,线粒体的基质为三、判断题1、电镜下识别过氧化物酶体的主要特征是尿酸氧化酶等常形成的晶格状结构。
()2、N—连接的糖基化反应起始发生在光面内质网中。
()3、蛋白质在高尔基体中分选及其转运的信息仅存在于编码这个蛋白质的基因本身。
()4. 膜泡运输是蛋白质的一种特有的方式,普遍存在于真核细胞中。
()5.高尔基体是一种有极性的细胞器()6.在很多细胞中,高尔基体靠近细胞核的一面,膜壤常呈凹面,面向细胞质膜的一面常呈凸面。
()7.高尔基体是一个复杂的由许多功能不同的间隔说组成的完整体系()8.日冕病毒的组装发生在TGN上()9.某些“晚期”的蛋白质修饰发生在CGN中()四、单项选择题1、下列哪项是稳定的蛋白质()A、N端的第一个氨基酸是LeuB、N端的第一个氨基酸是MetC、N端的第一个氨基酸是IleD、N端的第一个氨基酸是Phe2、下列哪一项不是高尔基体标志细胞化学反应()A、嗜锇反应B、TPP酶的细胞化学反应C、NAD酶的细胞化学反应D、NADP酶的细胞化学反应3.下例组装方式中,哪一种不属于生物大分子向复杂的细胞结构及结构体系的组装方式()A.自我组装B.复合组装C.协助组装D.直接组装五、问答题1、细胞质基质在细胞生命活动中有哪些作用?2、溶酶体有哪些基本功能?3、例举出三种类型的有被小泡及其主要的运输作用。
[新版]细胞生物学第七章试题
第七章细胞骨架一、选择题:1.下列物质中,抑制微管解聚的是()A秋水仙素 B 长春花碱 C 紫杉醇 D 鬼笔环肽2 . 骨架是存在于真核细胞内的以()纤丝为主的纤维网架体系。
ADNA蛋白质和DACRNAD蛋白质和RNA3研究细胞骨架常用的电子显微镜技术是()。
A冰冻蚀刻电子显微镜 B 扫描电子显微镜技术C 暗场电子显微镜技术D 整装细胞电子显微镜技术4.下列哪条能够将所给的句子补充完整且无误,“肌收缩中,钙的作用是()”。
A是肌球蛋白的头与肌动蛋白脱离B 将运动潜力从质膜扩大到收缩肌C 同肌钙蛋白结合,引起原肌球蛋白的移动,结果使肌动蛋白纤维同球蛋白头部接触D 维持肌球蛋白丝的结构5 微丝结合蛋白中,使肌动蛋白单体稳定的蛋白是()A a-辅肌动蛋白B 细丝蛋白C 抑制蛋白D 溶胶蛋白6. 下列有关核基质叙述正确的是()A.是细胞核内的液体成分B.主要成分为蛋白质,并有少量RNA和DNAC.是由核纤层蛋白与RNA形成的立体网络结构D.是由核纤层、中间纤维相联系的以蛋白质为主的网架结构。
7. 角蛋白分布于A.肌肉细胞B.表皮细胞C.神经细胞D.神经胶质细胞8. 以下关于中间纤维的描述哪条不正确?A.是最稳定的细胞骨架成分B.直径略小于微丝C.具有组织特异性D.肿瘤细胞转移后仍保留源细胞的IF9. 中间纤维之所以没有极性是因为其A.单体不具有极性B.二聚体不具有极性C.三聚体不具有极性D.四聚体不具有极性10. 鞭毛的轴丝由A.9+0微管构成B.9+1微管构成C.9+2微管构成D.由微丝构成11. 鞭毛基体和中心粒A.均由三联微管构成B.均由二联微管构成C.前者由二联微管、后者由三联微管构成D.前者由三联微管、后者由二联微管构成12. 微管α球蛋白结合的核苷酸可以是A.GTPB.GDPC.A TPD.ADP13. 以下关于微管的描述那一条不正确?A.微管是由13条原纤维构成的中空管状结构B.紫杉酚(taxol)能抑制微管的装配C.微管和微丝一样具有踏车行为D.微管是细胞器运动的导轨14.细胞骨架是由哪几种物质构成的A.糖类B.脂类C.核酸D.蛋白质15.下列哪种结构不是由细胞中的微管组成A.鞭毛B.纤毛C.中心粒D.内质网16.关于微管的组装,哪种说法是错误的A.微管可随细胞的生命活动不断的组装与去组装B.微管的组装分步进行C.微管的极性对微管的增长有重要意义D.微管两端的组装速度是相同的17.在电镜下可见中心粒的每个短筒状小体A.由9组二联微管环状斜向排列B.由9组单管微管环状斜向排列C.由9组三联微管环状斜向排列D.由9组外围微管和一个中央微管排列18.组成微丝最主要的化学成分是A.球状肌动蛋白B.纤维状肌动蛋白C.原肌球蛋白D.肌钙蛋白19.能够专一抑制微丝组装的物质是A.秋水仙素B.细胞松弛素BC.长春花碱D.鬼笔环肽20.在非肌细胞中,微丝与哪种运动无关A.支持作用B.吞噬作用C.主动运输D.变形运动二、名词解释1. 微管组织中心MTOC2. 应力纤维(stress fiber)3. 细胞骨架cytoskeletion4.网格蛋白clathrin5. 中心体centriole6. 基体basal body7. 轴突运输axonal transport8. 动力蛋白dynein9. 驱动蛋白kinesins10. 微管结合蛋白(MAP)三简答题1.微丝的化学组成及在细胞中的功能。
第七章细胞质基质与内膜系统习题及答案
细胞生物学章节习题-第七章一、选择题1、膜蛋白高度糖基化的细胞器是(B )。
A. 溶酶体B. 高尔基体C. 过氧化物酶体D. 线粒体2、能特异显示液泡系分布的显示剂是(B )。
A. 希夫试剂B. 中性红试剂C. 詹姆斯绿D. 苏丹黑试剂3、所有膜蛋白都具有方向性,其方向性在什么部位中确定(C )?A. 细胞质基质B. 高尔基体C. 内质网D. 质膜4、下列哪种细胞所含的粗面内质网比较丰富(E )?A. 肝细胞B. 脂肪细胞C. 红细胞D. 睾丸间质细胞E. 胰腺细胞5、以下哪种蛋白不属于分子伴侣(D )。
A. HSP70B. 结合蛋白(Bip)C. 蛋白二硫异构酶D. 泛素6、真核细胞合成膜脂的部位(C )。
A. 细胞质基质B. 高尔基体C. 光面内质网D. 粗面内质网7、下列有关蛋白质糖基化修饰的叙述,错误的是(C )A. 内质网和高尔基体中都可以发生蛋白质的糖基化B. O-连接的糖基化发生在高尔基体中C. 糖基化过程中不发生在高尔基体的顺面膜囊中D. 高尔基体糖基化相关酶的活性在其腔面8、糙面内质网上合成的蛋白质不包括( D )A. 向细胞外分泌的蛋白B. 膜整合蛋白C. 内膜系统细胞器中的可溶性驻留蛋白D. 核糖体蛋白9、下列细胞器中,对胞吞大分子物质起分选作用的是(A )A. 胞内体B. 高尔基体C. 光面内质网D. 糙面内质网10、膜蛋白高度糖基化的细胞器是(A )A. 溶酶体B. 高尔基体C. 过氧化物酶体D. 线粒体11、经常接触粉尘的人容易患肺部疾病,如矽粉引起的矽肺,下列哪种细胞器和矽肺的形成有关( D )A. 内质网B. 线粒体C. 高尔基体D. 溶酶体12、植物细胞中类似于动物细胞溶酶体的结构是(A)A. 液泡B. 过氧化物酶体C. 消化泡D. 高尔基体13、在细胞代谢过程中,直接需氧的细胞器是(D )A. 核糖体B. 叶绿体C. 溶酶体D. 过氧化物酶体二、填空题1、O-连接的糖基化主要发生在高尔基体,N-连接的糖基化主要发生在糙面内质网和高尔基体。
细胞生物学第七章线粒体与叶绿体知识点整理
细胞生物学第七章线粒体与叶绿体知识点整理线粒体和叶绿体是细胞中两个重要的细胞器。
它们在细胞代谢和能量转换中发挥着重要的作用。
以下是关于线粒体和叶绿体的一些重要知识点:线粒体:1.结构:线粒体是一个由两层膜包围的细胞器。
它包含一个外膜和一个内膜,内膜形成了许多内突起,称为线粒体内膜嵴。
2.能量转换:线粒体是细胞中的能量生产中心。
它通过细胞呼吸过程中的氧化磷酸化来产生能量,将食物分子中的化学能转化为细胞可以使用的三磷酸腺苷(ATP)。
3. 基因组:线粒体具有自己的基因组,称为线粒体DNA(mtDNA)。
它主要编码细胞呼吸过程中所需的蛋白质。
mtDNA由母亲遗传给子代,因此线粒体DNA有助于研究人类的遗传和进化。
4.线粒体疾病:线粒体功能障碍可以导致许多疾病,如线粒体脑肌病、线粒体糖尿病和阿尔茨海默病。
这些疾病通常会影响能量的产生和细胞的正常功能。
叶绿体:1.结构:叶绿体是植物和一些原生生物中的细胞器。
它也是由两层膜包围,并且内膜形成了一系列叫做叶绿体嵴的结构。
2.光合作用:叶绿体是光合作用的主要场所,其中光能转化为化学能以供细胞使用。
叶绿体中的叶绿素能够吸收太阳能,并将其转化为光合作用的产物,如葡萄糖。
3. 基因组:叶绿体也具有自己的基因组,称为叶绿体DNA(cpDNA)。
它主要编码参与光合作用和叶绿体功能的蛋白质。
4.叶绿体疾病:类似于线粒体疾病,叶绿体功能障碍也会导致一系列疾病,在植物中称为叶绿体遗传病。
这些疾病通常会导致叶绿体的正常结构和功能受损。
1.起源:线粒体起源于古代原核生物,而叶绿体起源于古代蓝藻细菌。
这些细菌进化成为现代细胞中的线粒体和叶绿体。
2.功能:线粒体主要参与能量转换,而叶绿体主要参与光合作用。
它们在细胞代谢中的角色不同,但都与能量生产和细胞功能密切相关。
3.基因组:线粒体和叶绿体都有自己的基因组,具有其中一种程度的自主复制和表达能力。
不过,线粒体基因组比较小,叶绿体基因组比较大。
《细胞生物学》复习题第七章
《细胞生物学》复习题第七章第七章细胞骨架与细胞的运动1.名词解释:细胞骨架、微管组织中心(MTOC)、γ-微管蛋白环形复合体(γ-TuRC)、中心体、踏车运动、驱动蛋白、动力蛋白。
※细胞骨架:真核细胞质中的蛋白质纤维网架体系,由3种不同的蛋白纤维结构组成——微管、微丝、中间丝。
※微管组织中心:微管的聚合从特异性核心形成位点开始,主要是中心体、纤毛的基体。
帮助微管装配的成核。
※γ-微管蛋白环形复合体:可形成10~13个γ-微管蛋白分子的环形结构(螺旋花排列),组成一个开放的环状模板,与围观具有相同直径。
可刺激微管核心形成,包裹微管负端,阻止微管蛋白渗入。
还能影响微管从中心粒上释放。
※中心体:是动物细胞中决定微管形成的一种细胞器,包括中心粒和中心粒旁物质。
两个桶状、垂直排列的中心粒,包埋在中心粒旁物质中。
在细胞间期,中心体位于细胞核附近,在有丝分裂期,位于纺锤体的两极。
※踏车运动:微管的聚合与解聚持续进行,经常是一端聚合,为正端;另一端解聚,是负端,这种微管装配方式,称“踏车运动”。
※细胞内各细胞器和所有的物质转运都与微管密切相关;微管的物质运输由微管动力蛋白(或马达蛋白)完成,共有几十种,可分为三大家族:驱动蛋白kinesin,动力蛋白dynein和肌球蛋白myosin家族(肌球蛋白以肌动蛋白纤维为运行轨道)驱动蛋白与动力蛋白的两个球状头部是与微管专一结合,具有ATP酶活性,水解ATP供能完成与微管结合、解离、再结合的动作。
驱动蛋白:由两条重链和两条轻链组成。
一对与微管结合的球状头部——ATP水解酶,水解ATP产生能量进行运动;将货物由负端运输向正端。
动力蛋白:目前已知的最大的、最快的分子运输蛋白。
由两条重链和几种中等链、轻链组成,头部具有ATP水解酶活性。
沿着微管的正端向负端移动。
为物质运输,也为纤毛运动提供动力。
在分裂间期,参与细胞器的定位和转运。
2.三种骨架蛋白的分布如何?微丝:主要分布在细胞质膜的内侧。
细胞生物学 第七章 细胞内膜系统及蛋白质分选与泡膜运输
周围大小不等的囊泡——物质运输
高尔基体与细胞骨架关系密切; 高尔基的膜囊上存在微管的马达蛋白(
kinesin)和微丝的马达蛋白(myosin)。最近 还发现特异的血影蛋白(spectrin)网架 。它 们在维持高尔基体动态的空间结构以及复杂的 膜泡运输中起重要的作用。
❖ 残余小体(residual body),次级溶酶体未被消化 的残渣,又称后溶酶体。
用电镜细胞化学技术显示其中含有的酸性磷酸酶, M:线粒体,L:溶酶体(朴英杰)
动物细胞溶酶体系统示意图
溶酶体膜的特征: 嵌有质子泵,形成和维持溶酶体中酸性的内环境; 具有多种载体蛋白用于水解的产物向外转运; 膜蛋白高度糖基化,可能有利于防止自身膜蛋白的
❖ 二、内膜系统的结构与功能 ❖ (二)高尔基体( Golgi complex ) ❖ 2、功能
❖ (3)蛋白酶的水解和其他加工过程
蛋白质在高尔基体中酶解加工的几种类型
无生物活性的蛋白原(proprotein)高尔基体切除 N-端或两端的序列成熟的多肽。如胰岛素、胰高血糖 素及血清白蛋白等
蛋白质前体高尔基体水解同种有活性的多肽,如 神经肽等
一种分选途径。
❖ 二、内膜系统的结构与功能
❖ (二)高尔基体( Golgi complex ) ❖ 2、功能
(1)高尔基体与细胞的分泌活动 ❖ 蛋白质的分选及其转运 ❖ 溶酶体酶的分选 (2)蛋白质糖基化及其修饰
(3)蛋白酶的水解和其他加工过程
蛋白质糖基化类型
特征
N-连接
O-连接
1. 合成部位
2. 合成方式
细胞生物学 章节提要 第七章 线粒体和过氧化物酶体
线粒体和过氧化物酶体研究方法(study method)脉冲示踪研究(定位线粒体蛋白)、光谱分析(电子载体在内膜上的排序)、负染色技术(偶联因子1的发现)、线粒体膜重建实验(ATP酶功能的鉴定)、放线菌酮(抑制蛋白质的合成)、差速离心、等密度离心(过氧化物酶体的发现)、去垢剂的应用。
细胞的生存需要的两个基本要素是:构成细胞结构的化学元件和能量。
线粒体(mitochondrion)是细胞的动力工厂。
其直径一般为0.5—1.0um,最大可达40um。
具有两层膜结构,外膜起界膜作用,内膜向内皱褶成嵴(crista)。
具有膜间间隙和基质。
线粒体干重中蛋白质的含量为65%-70%,脂质占20%-30%。
内外膜的区别主要表现在蛋白质和脂质的含量比例不同。
内膜的酶类较复杂,包括运输酶类、合成酶类、电子传递和ATP合成酶类。
线粒体基质中酶类最多,与三羧酸循环、脂肪酸氧化、氨基酸降解相关的酶类大都存在于基质中。
单胺氧化酶是外膜的标志酶;细胞色素氧化酶是内膜的标志酶;腺苷酸激酶是膜间间隙酶的标志酶;苹果酸脱氢酶是基质的标志酶。
线粒体是Ca+贮存地,可以调节细胞质钙离子浓度。
蛋白质的转运方式有两种:翻译后转运(post-translational translocation)和共翻译转运(co-translational translocation)。
蛋白质的转运需要转运信号,这种信号一般位于肽链的N端,是优先翻译的方向,称为导向序列(targeting sequence)或导向信号(targeting signal)。
也称为转运肽(transit peptide)、前导肽(leading peptide)。
转运肽具有的一般特性:需要受体、从接触点进入、蛋白质要折叠、需要能量、需要转运肽酶、需要分子伴侣的协助。
线粒体基质蛋白的转运、外膜内膜蛋白的转运和膜间间隙蛋白的转运方式不同,膜间间隙蛋白的转运分为保守型寻靶(conservation targeting)和非保守性寻靶(nonconservative targeting)。
细胞生物学第七章线粒体与叶绿体知识点整理
《第七章 线粒体与叶绿体》知识点整理一、线粒体与氧化磷酸化 1. 形态结构 外膜:标志酶:单胺氧化酶 是线粒体最外面一层平滑的单位膜结构; 通透性高;50%蛋白,50%脂类; 内膜:标志酶:细胞色素氧化酶 是位于外膜内侧的一层单位膜结构;缺乏胆固醇,富含心磷脂-—决定了内膜的不透性(限制所有分子和离子的自由通过);蛋白质/ 脂类:3:1; 氧化磷酸化的关键场所 膜间隙:标志酶:腺苷酸激酶 其功能是催化ATP 大分子末端磷酸基团转移到AMP ,生成ADP 嵴:内膜内折形成,增加面积;需能大的细胞线粒体嵴数多 片状(板状):高等动物细胞中,垂直于线粒体长轴 管状:原生动物和植物中 基粒(ATP 合成酶):位于线粒体内膜的嵴上的规则排列的颗粒 基质:标志酶:苹果酸脱氢酶 为内膜和嵴包围的空间,富含可溶性蛋白质的胶状物质,具有特定的pH 和渗透压; 三羧酸循环、脂肪酸和丙酮酸氧化进行场所 含有大量蛋白质和酶,DNA,RNA ,核糖体,Ca2+ 2. 功能 (1) 通过基质中的三羧酸循环,进行糖类、脂肪和氨基酸的最终氧化 (2) 通过内膜上的电子传递链,形成跨内膜的质子梯度 (3) 通过内膜上的ATP 合成酶,合成ATP ATP 合成酶的结合变化和旋转催化机制(书P90)头部F 1(α3β3γδε) 亲水性 α、β亚基具有ATP 结合位点,β亚基具有催化ATP 合成的活性 γε结合为转子,旋转以调节β亚基的3种构象状态δ与a 、b 亚基结合为定子基部F 0(a 1b 2c 10-12) 疏水性 C 亚基12 聚体形成一个环状结构定子在一侧将α3β3与F 0连接起来>〉氧化磷酸化的具体过程① 细胞内的储能大分子糖类、脂肪经酵解或分解形成丙酮酸和脂肪酸,氨基 酸可被分解为丙酮酸,脂肪酸或氨基酸进入线粒体后进一步分解为乙酰CoA;② 乙酰CoA 通过基质中的TCA 循环,产生含有高能电子的NADH 和FADH2; ③ 这两种分子中的高能电子通过电子传递链,在过程中形成跨内膜的质子梯度; 氧化磷酸化*Delta *epsilon《第七章 线粒体与叶绿体》知识点整理④ 质子梯度驱动ATP 合成酶将ADP 磷酸化成ATP,势能转变为化学能。
(完整word版)细胞生物学题库第7章(含答案)
《细胞生物学》题库第七章细胞器一、单选题1、下列哪个细胞器不属于内膜系统:()A. 高尔基复合体B. 过氧化物酶体C. 线粒体D. 溶酶体E. 内质网2、对细胞质基质描述错误的是下面哪一项:()A. 为细胞器正常结构的维持提供所需要的离子环境B. 为细胞器完成其功能活动供给所必需的一切底物C. 是进行某些生化反应的场所D. 是细胞所需能量合成的场所3、不属于滑面内质网结构特征的是:()A. 扁囊B. 小管C. 小泡D. 管网E.与粗面内质网相连4、不属于高尔基复合体结构的是:()A. 顺面高尔基体网状结构B. 反面高尔基体网状结构C. 高尔基体中间膜囊D. 分泌泡E. 都不是5、高尔基体中间膜囊的标志酶是:()A. NADP酶B. 葡萄糖-6-磷酸酶C. 酯酶D. 磷酸酶E. 羟化酶6、下列不属于高尔基复合体功能的是:()A. 浓缩溶酶体的酶,帮助初级溶酶体的形成B. 运送膜定位蛋白至细胞膜上C. 将内质网上所需的蛋白质运回D. 分泌糖蛋白E. 帮助线粒体内外膜上的蛋白运输7、属于高尔基体中间膜囊功能的是:()A. 接受来自于内质网的运输小泡B. 将含有内质网蛋白驻留信号的蛋白再使其返还至内质网C. 对糖蛋白进行O-连接方式的糖基化修饰D. 分选来自内质多新合成的蛋白质和脂质E. 分泌磷酸酶8、执行功能作用的溶酶体的是:()A. 初级溶酶体B. 大泡性溶酶体C. 残余小体D. 内体性溶酶体E. 吞噬性溶酶体9、溶酶体内的水解酶与其他糖蛋白的主要区别是:()A. 溶酶体内的水解酶是酸性水解酶B. 溶酶体内的水解酶的糖链上含有6-磷酸甘露糖C. 糖类部分是通过多萜醇加到蛋白上的D. 溶酶体内的水解酶是由粗面内质网合成的E. 溶酶体的水解酶没有活性10、不能与内体性溶酶体结合形成吞噬性溶酶体的是:()A. 胞饮小体B. 吞噬小体C. 自噬小体D. 残余小体E. 都可以11、不属于细胞内溶酶体功能的是:()A. 在骨质更新中起重要作用B. 协助助精子与卵细胞受精C. 参与甲状腺素的生成D. 对细胞内物质的消化E. 大分子降解12、以下不属于过氧化物酶体功能的是:()A. 把血液中的乙醇氧化成乙醛,起到解毒作用B. 先将底物氧化成过氧化氢,再把过氧化氢氧化成水和氧气C. 将脂肪中的脂肪酸转化成糖D. 分解脂肪酸等高分子直接向细胞提供热量E. 都不是13、有关线粒体说法不正确的是:()A. 嵴通常常垂直纵轴B. 内、外膜组成线粒体的支架C. 所有线粒体均含有DNAD. 内室与外室不相通E. 内、外囊相通14、有关线粒体内膜说法错误的是:()A. 膜厚度约6~7nmB. 嵴内的空隙称为嵴内腔C. 哺乳动物细胞线粒体的嵴大多呈板层状D. 需要能量多的细胞,不仅线粒体数目多,线粒体的嵴也较多E. 产生向内的板状突起E. 都不是15、叶绿体基质中的主要化学组分是:()A. 核酸和无机盐B. RNA和酶C. DNA和蛋白质D. 酶和其他可溶性蛋白16、内质网与下列那些功能无关()A.蛋白质的合成B.脂质的合成C.O-连接的蛋白糖基化D.N-连接的蛋白糖基化E.新生的多肽的折叠与装配17、下列选项属于粗面内质网功能的是()A.脂蛋白的合成B.分泌蛋白和膜蛋白的合成C.糖原的合成与分解D.骨骼肌的收缩18、下列关于内质网在细胞中分布的说法不正确的是()A.细胞质膜有时与内质网相连接B.内质网膜常与外核连接C.粗面内质网常在高尔基体的反面D.光面内质网在细胞中所占区域通常很小19、下列搭配正确的是()A.顺面——运输小泡——凹形B.反面——运输小泡——凹形C.顺面——分泌小泡——凸形D.反面——分泌小泡——凹形20、有关溶酶体说法不正确的是()A.是细胞内的消化器官B.所有动物细胞(除成熟的红细胞)均具有溶酶体C.含60多种水解酶,最适合PH=6.0D.被称为异型细胞器21、下列有关核糖体的论述正确的是()A.核糖体是合成蛋白质的细胞器B.核糖体常分为附着核糖体和游离核糖体C.核糖体属于细胞内膜系统,为颗粒状的结构,没有被膜包围D.核糖体存在于一切细胞内二、多选题1、下列不是粗面内质网功能的是:A. 分泌蛋白的合成B. 膜脂的合成C. 糖原的合成与分解D. 脂蛋白的合成E. 骨骼肌收缩2、滑面内质网的功能有:A. 脂类的合成B. 膜脂的合成C. 糖原的合成与分解D. 解毒作用E. 胆汁的形成3、可用于电镜观察高尔基体的染色方法有:A. 硝酸银B. 锇酸C. HE染色D. 苏木精E. 洋红4、溶酶体的主要生理功能有:A. 对细胞内物质的消化B. 参与甲状腺素的形成C. 参与肌体的器官组织变态和退化D. 协助精子与卵细胞受精E. 在骨质更新过程中起作用5、与溶酶体相关的疾病有:A. 矽肺B. 先天性溶酶体病C. 类风湿性关节炎D. 恶性肿瘤E. 心肌炎三、填空题1、内质网是与的合成基地。
《细胞生物学》习题集参考答案
《细胞生物学》习题集参考答案第一章绪论一.填空题1.胡克,1665,原生动物,红细胞2.细胞的发现,细胞学说的建立,细胞学经典时期,实验细胞学时期3.能量守恒定律,细胞学说,达尔文进化论4.遗传信息的形成,膜的形成5.细胞内基因选择性表达特异功能蛋白质, 生物发育6.碱基互补配对7.全能性8.体细胞9.染色体DNA与蛋白质相互作用关系;细胞增殖、分化、凋亡(程序性死亡)的相互关系及调控;细胞信号转导研究或细胞结构体系的组装二.选择题1.C 2:D 3:C 4:D 5. B三:判断题1.√ 2。
√ 3。
√ 4:×(原生质包括细胞内所有的生活物质)5.×四.名词解释1.细胞生物学是应用现代物理学与化学的技术成就和分子生物学的概念与方法,以细胞作为生命活动的基本单位的思维为出发点,探索生命活动规律的学科,其核心问题将遗传与发育在细胞水平上结合起来。
2.生物大分子是指细胞中存在的那些分子质量巨大、结构复杂、具有生物活性的有机化合物,如以蛋白质、核酸、多糖及脂类等四大类为典型的生物大分子,它们是由多个氨基酸或核苷酸等小分子聚合而成的,具有广泛的生物活性,既是细胞的结构成分,又是细胞和种生命活动的执行者或体现者。
五.简答题1.Science Nature /Nature Cell Biology /Cell /Molecular Cell/ Developmental Cell /Cancer Cell/ Neuron/Journal of Cell Biology /Gene and Biology /Journal of Cell Science(参看课本P14)国内的相关学术刊物《中国科学》.《科学通报》.《分子细胞生物学报》.《细胞生物学杂志》.《遗传学报》.《动物学报》.《微生物学报》等(参看课本P14-15)2.(1)细胞结构功能→细胞生命活动。
细胞生命活动的研究,将进一步加深对细胞结构与功能的了解;(2)细胞中单一基因与蛋白→基因组与蛋白质组及在细胞生命活动中的协同作用,特别是复合体的相互作用;(3)细胞信号转导途径→信号调控网络;(4)体外(in vitro)研究→体内(in vivo)研究;(5)静态研究→活细胞的动态研究;(6)实验室研究为主→计算生物学更多地介入并与之结合;(7)细胞生物学与生物学其他学科的渗透→与数、理、化及纳M科学等多学科的交叉。
2014细胞生物学复习题
2014年细胞生物学复习题第七章细胞质基质与内膜系统1.试述泛素化和蛋白酶体所介导的蛋白质降解的机制。
泛素化和蛋白酶体所介导的蛋白质降解机制是识别并降解错误折叠或不稳定蛋白质的机制。
其中,蛋白酶体是细胞内降解蛋白质的大分子复合体,富含ATP依赖的蛋白酶活性。
泛素是由氨基酸残基组成的小分子球蛋白,普遍存在与真核细胞中。
在蛋白质降解过程中,多个泛素分子共价结合到含有不稳定氨基酸残基的蛋白质N端,更常见的是与靶蛋白赖氨酸残基的ε氨基相连接。
然后带有泛素化标签的蛋白质被蛋白酶体识别并降解,通过该途径降解的蛋白质大体包括两大类:一是错误折叠或异常的蛋白质;二是需要进行存量调控和不稳定的蛋白质。
蛋白质的泛素化需要多酶复合体发挥作用,通过3种酶的先后催化来完成,包括泛素活化酶(E1)、泛素结合酶(E2,又称泛素载体蛋白)和泛素连接酶(E3)。
泛素化过程涉及如下步骤:(1)泛素活化酶E1通过形成酰基-腺苷酸中介物使泛素分子C端被激活,该反应需要ATP;(2)转移活化的泛素分子与泛素结合酶E2的半胱氨酸残基结合;(3)异肽键形成,即与E2结合的泛素羧基和靶蛋白赖氨酸侧链的氨基之间形成异肽键,该反应由泛素连接酶E3催化完成。
重复上述步骤,形成具有寡聚泛素链的泛素化靶蛋白。
泛素化标签被蛋白酶体帽识别,并利用ATP水解提供的能量驱动泛素分子的切除和靶蛋白解折叠,去折叠的蛋白质转移至蛋白酶体核心腔内被降解。
当泛素化的靶蛋白其泛素自身的赖氨酸残基也被泛素化时,便形成具有寡聚泛素链的泛素化蛋白。
2.试述高尔基体的结构及其功能。
高尔基体是有极性的细胞器,面向细胞核扁囊弯曲成凸面称形成面(forming face)或顺面(cis face),面向质膜的凹面(concave)称成熟面(mature face)或反面(trans face)高尔基体的结构由三部分组成:(1)顺面管网状结构(CGN) 和顺面膜囊(cis膜囊):该区域接受来自内质网新合成的物质并将其分类后大部分转入高尔基体中间膜囊,少部分蛋白质与脂质再返回内质网。
细胞生物学第七章线粒体叶绿体习题及答案 done
第七章线粒体和叶绿体1.比较线粒体和叶绿体在基本结构上的异同点。
答:相同点:他们都是双层膜结构的细胞器,都有外膜、内膜、膜间隙、基质等结构。
不同点:线粒体的内膜向内凹陷形成众多的脊,上面结合有ATP合成酶;叶绿体的内膜是一层光滑的膜,没有脊结构。
除了内膜外膜之外,叶绿体还有存在于其基质之中的类囊体结构。
(具体的一些细节结构还要参考教材)2.比较线粒体氧化磷酸化和叶绿体光合磷酸化的异同点。
氧化磷酸化:(1)电子从高能位经电子传递链跃迁至低能位(NADH->NAD)(2)一对电子跨膜3次,向膜内转移6个质子(3)质子浓度是内低外高(4)质子流由线粒体内膜外穿过F0-F1进入基质(5) 2个质子的跨膜产生1分子的ATP(6)形成H2O,利用O2,放出CO2(7)化学能—>高能键能光和磷酸化:(1)电子从低能位经电子传递链跃迁至高能位(NADP->NADPH) (2)一对电子跨膜2次,向膜内转移4个质子(3)质子浓度是内高外低(4)质子流由类囊体膜内穿过CF0-CF1进入基质(5) 3个质子的跨膜产生1分子的ATP(6)分解H2O,放出O2,固定CO2(暗反应)(7)光能—>高能键能(—>化学能)3.概述ATP酶复合体的分子结构及ATP合成酶的作用机制。
答: ATP酶复合体由F1头部和F0基部以及两者共同形成的柄部组成。
F1是ATP酶的活性部位,由α3β3γδε五种亚基组成,3个α和3个β亚基聚在一起形成橘瓣状的结构,β亚基是ATP的结合位点;γ和ε亚基结合形成转子。
F是嵌入内膜的疏水性蛋白质,由a、b、c三种亚基组成,是跨膜质子通道(质子通过产生扭力让转子转动)。
柄部实质上是F1δ亚基与F的a、b亚基共同构成的起固定作用的“定子”。
ATP合成酶的作用机制:质子通过跨膜通道产生扭力让“转子”逆时针转动,而顺序调节三个β亚基上催化位点依次开启和关闭,三个β亚基分别随即发生和核苷酸紧密结合(T态)、松散结合(L态)和定置状态(O态)三种构象的交替变化,“转子”每旋转1200就与一个β亚基结合就会使该β亚基变成L态,从而释放ATP分子。
细胞生物学第七章 细胞质基质与细胞内膜系统
3 内质网(endoplasmic reticulum, ER)
• 内质网是由K.R.Porter和 A.D.Claude等在1945年发现的。 • (1)形态结构和化学组成形态: • 内质网是由一层单位膜所形成的扁 平囊状、泡状和管状结构,并形成 一个连续的网膜系统。由于它靠近 细胞质的内侧,故称为内质网。 • 分类: • 粗面内质网和光面内质网。 • 结构: • 由于内质网是一种封闭的囊状、泡 状和管状结构,它就有两个面,内 质网的外表面称为胞质溶胶面, 内 表面称为潴泡面。
• ● 信号序列的一般特征
• 长度一般为15~35个 氨基酸残基, • N-末端含有1个或多个 带正电荷的氨基酸,其 后是6~12个连续的疏 水残基; • 在蛋白质合成中将核糖 体引导到内质网,进入 内质网后通常被切除。
图 ER跨膜可切除信号的一般结构
• 信号序列的发现与 作用: • (a) 在不含RER小 泡的无细胞体系中 翻译分泌蛋白,其 N-端有信号序列, 故比从细胞中分泌 出来的相同蛋白质 肽链长; • (b)在加有RER小 泡的无细胞体系中 翻译分泌蛋白,信 号序列在RER小泡 中被切除,得到的 产物与从细胞中合 成分泌的相同。
• 3、供给细胞器行使其功能所需要的一切底物。
• 4、细胞骨架参与维持细胞形态,做为细胞器和酶的附 着点,并与细胞运动、物质运输和信号转导有关。 • 5、参与合成蛋白质的加工、运输、选择性降解:
磷酸化与去磷酸化,糖基化,甲基化,酰基化。
依赖泛素标记的蛋白酶体中的蛋白质降解途径。 热休克蛋白HSP帮助变性或畸形蛋白质重新折叠。 •
图 核膜和ER膜进化的可能途径
2.2 内膜系统与蛋白质分选(protein sorting) • 蛋白质是由核糖体合 成的,合成之后必须 准确无误地运送到细 胞的各个部位。 • 细胞中蛋白质的运输 有两种方式:共翻译 运输和翻译后运输, 内膜系统参与共翻译 运输,是分泌蛋白质 分选的主要系统。
南开大学细胞生物学7第七章 线粒体和叶绿体 复习题
第七章线粒体和叶绿体学习要求:掌握线粒体的分离与鉴定、结构与功能的知识。
掌握氧化磷酸化的过程原理和区别,掌握线粒体和叶绿体蛋白质合成及其转运知识点。
理解线粒体与叶绿体的半自主性及其增殖与起源的相关知识。
了解叶绿体的结构和功能。
本章的难点与重点:氧化磷酸化的机制;线粒体和叶绿体蛋白的运送与装配。
基本概念:呼吸链:也称电子传递链,是位于线粒体内膜上的有一系列电子传递提案一定顺序排列起来形成的呼吸电子传递轨道。
电子传递体是一些氧化还原迅速而可逆的分子,其在电子传递链中是按氧化还原电位由低到高的顺序依次排列的。
呼吸底物氧化分解过程脱出的电子经呼吸电子传递链最终传递给分子氧,将氧还原成水。
氧化磷酸化:呼吸链上氧化作用释放出的能量与ADP的磷酸化作用偶联起来形成ATP的过程称为氧化磷酸化。
因此氧化磷酸化特指呼吸链上磷酸化作用,有别于底物水平的磷酸化和光合磷酸化。
ATP合成酶:又称为F1F0-ATP酶,广泛存在于线粒体、叶绿体、异养菌和光合细菌中,是生物体能量转换的核心酶。
该酶分别位于线粒体内膜、类囊体膜或质膜上,是跨膜的通道蛋白,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下,或者说在他的引导下,质子通过膜来驱动从ADP和无机磷合成ATP。
化学渗透假说:是1961年由Mitchell等提出的,用来解释氧化磷酸化耦连机理学说。
该假说的主要内容是:呼吸链的各组分在线粒体内膜中的分布式不对称的,当高能电子在膜中沿呼吸链传递时,所释放的能量能将H+从膜基质侧泵至膜间隙,由于膜对质子是不通透的,从而使膜间隙的H+浓度高于基质,因而在内膜的两侧形成电化学质子梯度。
在这个梯度驱动下,H+穿过内膜上的ATP合成酶流回到基质中,其能量促使ADP和Pi合成ATP,从而使体内能源物质氧化释放的化学能通过转变成渗透后,再转移到ATP中的过程。
半自主性细胞器:指线粒体和叶绿体两种细胞器具有自我增殖所需要的基本组分,具有独立进行转录和翻译的功能;但两种细胞器基因组信息量是有限的,绝大多数蛋白质是由核基因组编码,在细胞质核糖体上合成后转运至之,即两种细胞器的自主性是有限的,基因在转录和翻译过程中在很大程度上要依赖于核质遗传系统,故称为半自主性细胞器。
细胞生物学第七章和第八章 课后思考题
第七章细胞质基质与内膜系统1.流感病毒包着一层膜,膜上含有能被酸性pH活化的融合蛋白,活化以后,此蛋白质引起病毒膜与细胞膜融合。
有一种古老的民间治疗流感的方法,建议患者到马棚内过一夜。
听起来可能很怪,但是这项建议有一个合理的解释。
马棚中的空气含有马尿中的细菌产生的氨气(NH3)。
请解释NH3如何能保护细胞免受病毒感染。
答:流感病毒通过内吞作用进入细胞然后被递送到内体,在这里它处于酸性的pH中,激活了它的融合蛋白。
病毒的膜与内体膜融合,释放病毒基因组到细胞质。
NH3是一个可以迅速穿透膜的小分子。
因此,它可以通过扩散作用进入所有包括内体在内的细胞内区室。
一旦区室内是酸性pH, NH3结合H+ 形成NH4+ ,这是一个带电离子因而不能通过扩散作用穿膜。
NH4+因此在酸性区室聚集并升高pH。
当内体的pH升高,病毒依然被内吞,但是由于病毒融合蛋白不能被激活,因而病毒不能进入细胞质。
第八章蛋白质分选和膜泡运输1.Which of the following statements are correct? Explain your answers.A.The amino acid sequence Leu-His-Arg-Leu-Asp-Ala-Gln-Ser-Lys-Leu-Ser-Ser is a signal sequence that directs proteins to the ER.氨基酸序列Leu-His-Arg-Leu-Asp-Ala-Gln-Ser-Lys-Leu-Ser-Ser是一个指引蛋白质到内质网中去的信号序列。
错。
引导蛋白质到内质网膜的信号序列包括一个含8个以上疏水氨基酸的核心。
这里显示的这个序列包括很多亲水氨基酸侧链,包括带电氨基酸组氨酸、精氨酸、天冬氨酸和赖氨酸,以及不带电的亲水氨基酸谷氨酰胺和丝氨酸。
B.Transport vesicles deliver proteins and lipids to the cell surface.转运膜泡将蛋白质和脂质运到细胞表面。
细胞生物学课后练习题及答案chapter7
第七章线粒体与叶绿体一、名词解释:1. 类囊体(thylakoid)2. 光合磷酸化(photophosphorylation)3. 半自主细胞器(semiautonomous organelle)4. 氧化磷酸化5. 呼吸链6. 细胞色素7. 捕光色素8. 质体醌9. 非循环光合磷酸化10. 光反应11. 暗反应二、选择题:请在以下每题中选出正确答案,每题正确答案为1-6个,多选和少选均不得分1. 以下哪一种情况有A TP合成A.用高钾低钠溶液浸泡细胞,然后转入低钾高钠溶液B.用酸性溶液浸泡亚线粒体颗粒,然后转入中性溶液C.用溶液碱性浸泡类囊体,然后转入中性溶液2. 叶绿体质子动力势的产生是因为A.膜间隙的pH值低于叶绿体基质的pH值B.膜间隙的pH值高于叶绿体基质的pH值C.内囊体腔的pH值低于叶绿体基质的pH值D.内囊体腔的pH值高于叶绿体基质的pH值3. 信号肽引导蛋白质进入线粒体、叶绿体之后,被信号肽酶切除,这种现象叫做A.co-translationB.post-translationC.co-transcriptionD.post-transcription4. 以下哪一种复合体能将蛋白质转运到线粒体膜间隙A.TOMC.TIM22D.OXA5. 绿色植物的细胞内存在几个遗传系统A.1B.2C.3D.46. 类囊体膜上电子传递的方向为A.PSI → PSII → NADP+B.PSI → NADP+ → PSIIC.PSI → PSII → H2OD.PSII → PSI → NADP+7. 植物光合作用释放的氧气来源于A.二氧化碳B.水分子8. 当植物在缺乏NADP+时,会发生A.循环式光合磷酸化B.非循环式光合磷酸化9. 光系统Ⅰ的中心色素为A.叶绿素bB.叶绿素aC.类胡萝卜素D.叶黄素10. 叶绿素是含有哪一类原子的卟啉衍生物A.Mn2+B.Mg2+C.Ca2+D.Fe2+11. 以下哪些复合物位于类囊体膜上B.光系统ⅡC.CF1-CF0D.细胞色素b6/f复合体12. 以下关于线粒体增殖的描述哪些是错误的A.线粒体来源于原有线粒体的分裂B.线粒体的分裂与细胞分裂同步C.细胞质中合成的蛋白质在信号序列的帮助下,被运入线粒体D.线粒体不能合成自身需要的蛋白质13. 细胞核的RNA聚合酶能被哪一种药物抑制A.放线菌素DB.溴化乙锭14. 线粒体的蛋白质合成能被哪一种药物抑制A.氯霉素B.放线菌酮15. 线粒体质子动力势的产生是因为膜间隙的pH值A.低于线粒体基质的pH值B.高于线粒体基质的pH值16. 2,4-二硝基酚(DNP) 抑制线粒体的A TP合成,因为它是一种A.质子载体B.质子通道C.是一种质子通道的阻断剂17. 寡霉素(oligomycin)抑制线粒体的ATP合成,因为它是一种A.质子载体B.质子通道C.质子通道的阻断剂18. 叠氮钠可抑制以下部位的电子传递A.NADH→CoQB.Cyt b→Cyt c1C.细胞色素氧化酶→O2。
细胞生物学 第七章 核糖体
L11-rRNA复合物的三维结构 复合物的三维结构 (引自Porse et.al.,1999)
三、 细菌核糖体的分离和重组
1.分离 细菌的70s核糖体,含有二个亚单位,它们的漂浮 单位分别为50s和30s,都含有RNA和蛋白质。这些 RNA和蛋白质都可分离,其步骤如下: (1)在离心的溶液中Mg2+的浓度降低到1mmol/L以 下就可把70s核糖体(单体)分裂成50s和30s大小 两个亚单位; (2)将收集的亚单位在氯化铯溶液中离心,就可分 裂为分裂蛋白质和核心(由RNA和蛋白质组成), 核心的漂浮单位分别为40s和23s。这些核心没有合 成蛋白质的能力,但还可进一步分离;
第七章 核糖核蛋白体 (ribosome) )
核糖体颗粒存在于所有类型的活细胞中,游离在 细胞质中或附着在粗糙型内质网上,特别在快速增殖 的细胞中含量更多。也存在于细胞核、线粒体和叶绿 体内。 在真核细胞中很多核糖体附着在内质网的膜上, 称为附着核糖体,它与内质网形成复合细胞器,即粗 面内质网。在原核细胞质膜内侧也常有核糖体着附。 还有一些核糖体不附着在膜上,呈游离状态,分 布在细胞质基质内,称游离核糖体。附着在内质网膜 上的核糖体与游离核糖体所合成的蛋白质种类不同, 但核糖体的结构与化学组成是完全相同的。
在正常生长的细胞中,大多数的核糖体 担负着蛋白质的合成任务,它们经常丛集或 串联在一起,由一条宽度为1nm的mRNA 细 线贯通着。这些聚集的核糖体叫做多核糖体。 一个多核糖体由5-6个核糖体串联而成,也 可多至50个以上。
二、
核糖体的结构与组成
核糖体是无膜的细胞器,主要成分是蛋白 质与RNA。核糖体的RNA称为rRNA,约占 60%,蛋白质约占40%,蛋白质分子主要分布 在核糖体的表面,而rRNA则位于内部,二者靠 非共价键结合在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章细胞骨架与细胞的运动1.名词解释:细胞骨架、微管组织中心(MTOC)、γ-微管蛋白环形复合体(γ-TuRC)、中心体、踏车运动、驱动蛋白、动力蛋白。
※细胞骨架:真核细胞质中的蛋白质纤维网架体系,由3种不同的蛋白纤维结构组成——微管、微丝、中间丝。
※微管组织中心:微管的聚合从特异性核心形成位点开始,主要是中心体、纤毛的基体。
帮助微管装配的成核。
※γ-微管蛋白环形复合体:可形成10~13个γ-微管蛋白分子的环形结构(螺旋花排列),组成一个开放的环状模板,与围观具有相同直径。
可刺激微管核心形成,包裹微管负端,阻止微管蛋白渗入。
还能影响微管从中心粒上释放。
※中心体:是动物细胞中决定微管形成的一种细胞器,包括中心粒和中心粒旁物质。
两个桶状、垂直排列的中心粒,包埋在中心粒旁物质中。
在细胞间期,中心体位于细胞核附近,在有丝分裂期,位于纺锤体的两极。
※踏车运动:微管的聚合与解聚持续进行,经常是一端聚合,为正端;另一端解聚,是负端,这种微管装配方式,称“踏车运动”。
※细胞内各细胞器和所有的物质转运都与微管密切相关;微管的物质运输由微管动力蛋白(或马达蛋白)完成,共有几十种,可分为三大家族:驱动蛋白kinesin,动力蛋白dynein和肌球蛋白myosin家族(肌球蛋白以肌动蛋白纤维为运行轨道)驱动蛋白与动力蛋白的两个球状头部是与微管专一结合,具有ATP酶活性,水解ATP供能完成与微管结合、解离、再结合的动作。
驱动蛋白:由两条重链和两条轻链组成。
一对与微管结合的球状头部——ATP水解酶,水解ATP产生能量进行运动;将货物由负端运输向正端。
动力蛋白:目前已知的最大的、最快的分子运输蛋白。
由两条重链和几种中等链、轻链组成,头部具有ATP水解酶活性。
沿着微管的正端向负端移动。
为物质运输,也为纤毛运动提供动力。
在分裂间期,参与细胞器的定位和转运。
2.三种骨架蛋白的分布如何?微丝:主要分布在细胞质膜的内侧。
微管:主要分布在核周围,并呈放射状向胞质四周扩散。
中间纤维:分布在整个细胞中。
3.微管由哪三种微管蛋白组成?各有什么结构功能特点?α管蛋白,β管蛋白,γ管蛋白。
α-微管蛋白和β-微管蛋白各有一个GTP结合位点。
α-微管蛋白的GTP不进行水解也不进行交换;β-微管蛋白的GTP 可水解呈GDP,而此GDP也可换成GTP,这一变换对微管的动态性有重要作用。
γ管蛋白定位于微管组织中心,对微管的形成、数量、位置、极性、细胞分裂有重要作用。
4.哪一种微管蛋白有GTP酶活性?β-微管蛋白。
5.微管结合蛋白有几种?分布和功能如何?微管结合蛋白(MAP):MAP1、MAP2、MAP4和tau。
分布:MAP1-2和tau只存在于脑组织;MAP4在哺乳动物非神经元、神经元细胞中,在进化上具有保守性。
Tau只存在于轴突;MAP2分布于神经元胞体和树突中。
功能:(1)使微管相互交联成束,使微管同其他细胞结构交联,如质膜、微丝和中间丝等;(2)与微管成核点的作用,促进微管的聚合;(3)与微管壁的结合,提高微管的稳定性。
6.为什么说微管具有动态不稳定性?增长的微管末端有微管蛋白-GTP帽,在微管组装期间或组装后GTP 被水解成GDP,从而使GDP-微管蛋白成为微管的主要部分。
微管蛋白-GTP帽及短小的微管原纤维从微管末端脱落则使微管解聚。
7.微管的装配分为哪三个时期?(1)成核期:α-β异二聚体,首尾相接和侧面相连,当片状带加宽到13根原纤维,合拢成一段微管;是微管聚合的开始,速度较慢——限速过程。
(2)聚合期:高浓度游离的微管蛋白聚合速度大于解聚速度,新的二聚体不断加到微管正端,微管延长,直至游离微管蛋白浓度降低。
(3)稳定期:胞质中游离微管蛋白达到临界浓度,微管的聚合与解聚速度相等。
8.微管的体外装配需要哪些条件?微管蛋白异二聚体达到一定的临界浓度(约为1mg/ml),加入Mg2+、GTP和EDTA(Ca2+的螯合剂,去除Ca2+的抑制聚合作用)、适当的pH (pH6.9)和温度(37°C)的缓冲液。
9.微管的体内装配是怎样的?在细胞内微管形成时,γ-TuRC存在于微管组织中心,成为α-β异二聚体结合上去的核心,微管从此生长、延长。
由于γ-TuRC像帽子一样戴在微管的负端而使微管负端稳定。
γ-TuRC组织微管形成的能力受细胞周期的调节。
间期此能力被关闭,G2期到M期,受细胞周期调节激酶作用,磷酸化γ-TuRC成分,开放微管组织能力。
10.温度、压力、紫杉醇、秋水仙素、长春花碱对微管的稳定性如何影响的?紫杉醇:只结合到聚合的微管上,维持了微管的稳定。
秋水仙素:结合并稳定游离的微管蛋白,抑制微管的聚合。
长春新碱:能结合微管蛋白异二聚体,抑制它们的结合作用。
温度:低温中微管解聚。
温度升高时,微管聚合。
11.微管的功能有哪些?(1)微管构成细胞内的网状支架,支持和维持细胞形态。
微管本身不能收缩,有一点的强度,抗压力、抗弯曲,为细胞提供机械支持力。
微管对细胞突起部分,如纤毛、鞭毛、轴突形成和维持起重要作用。
(2)微管参与中心粒、纤毛和鞭毛的形成。
中心粒是9组三联体微管围成的圆筒状结构。
纤毛、鞭毛是细胞表面的特化结构,在来源和结构上基本相同。
两者主干部分都是9组二联管构成,中央是两条微管——中央微管。
(3)微管参与细胞内物质运输。
细胞内各细胞器和所有的物质转运都与微管密切相关;微管的物质运输由微管动力蛋白完成。
(4)微管维持细胞内细胞器的定位和分布。
微管及其相关马达蛋白在膜性细胞器的定位上起着重要作用。
(5)微管参与染色体的运动,调节细胞分裂。
微管是有丝分裂器的主要成分,有丝分裂前期微管聚合,核膜崩解时侵入核区,结合动粒;姊妹染色单体的动粒分别与来自两极的微管结合,被拉到细胞两极。
(6)微管参与细胞内信号传导。
已证明微管参与hedgehog、JNK、Wnt、ERK、PAK蛋白激酶信号转导通路。
信号分子直接或通过马达蛋白、支架蛋白等与微管作用,调节包括微管的稳定/不稳定、微管方向性、微管组织中心位置、细胞极化等。
12.哪些结构是9组三联管、9组二联管结构?每个中心粒由9组三联管组成。
纤毛、鞭毛的主干部分都是9组二联管构成。
13.微管马达蛋白主要有哪两个家族?有何共同特点?驱动蛋白、动力蛋白。
两者都有两个球状头部,是与微管专一结合,具有ATP酶活性,水解ATP供能完成与微管结合、解离、再结合的动作。
14.驱动蛋白与动力蛋白在微管上的运动方向如何?驱动蛋白:由负端运输向正端。
动力蛋白:由正端向负端移动。
15.微丝又称什么?占肌肉细胞与非肌肉细胞各多少百分比?肌动蛋白丝。
占肌肉细胞总蛋白的10%,非肌肉细胞的1~5%。
16.肌动蛋白丝直径多少?是由什么组成的什么样的结构?约8nm;由肌动蛋白单体组成双股螺旋纤维。
17.肌动蛋白的保守性如何?在不同真核生物间相似性如何?很保守;不同种类的生物间有90%的相似性。
18.什么是微丝的正端、负端?它们又名什么?正端:相对生长快的一端;又称秃端。
负端:相对生长慢的一端;又称指向端。
19.微丝结合蛋白共约多少种?书上介绍了哪些种?各有什么作用?100多种。
单体隔离蛋白:没有单体隔离蛋白,肌动蛋白都将组装成纤维,这些蛋白的活性和浓度,决定了肌动蛋白趋向聚合还是解聚。
交联蛋白:改变细胞内肌动蛋白纤维的三维结构。
末端阻断蛋白:与肌动蛋白纤维的一端或两端结合,调节或维持肌动蛋白纤维的长度。
结合肌动蛋白末端,相当于加上了帽子,抑制微丝生长,导致胞内出现较多短的微丝。
纤维切割蛋白:与肌动蛋白纤维结合并切断它;由于能控制肌动蛋白丝的长度,可大大降低细胞中的黏度。
切割产生的新末端可作为生长点,促进肌动蛋白装配。
切割蛋白也可作为帽子封住肌动蛋白纤维的末端。
肌动蛋白纤维解聚蛋白:存在于肌动蛋白丝骨架快速变化的部位,结合肌动蛋白丝,并引起肌动蛋白丝的快速解聚。
膜结合蛋白:是非肌细胞质膜下方产生收缩的机器。
在剧烈活动时,由收缩蛋白作用于质膜产生的力引起质膜向内或向外移动。
这种运动是由肌动蛋白纤维直接或间接与质膜相结合后所形成的。
20.何种交联蛋白能使微丝成有弹性网络?杆状交联蛋白21.微丝组装的三个阶段是什么?成核期(延迟期):成核作用发生在质膜下,由ARP2/3复合物催化,是微丝组装的限速过程。
聚合期(生长期):微丝两端的组装速度有差异,快速增长的一端是正端,缓慢增长的一端是负端,正端添加单体的速率是负端的10倍以上。
平衡期:肌动蛋白聚合微丝的速度与其解离微丝的速度达到平衡,微丝长度不变,仍进行着聚合、解聚活动。
22.为什么说微丝有踏车行为?在微丝装配时,当肌动蛋白分子添加到肌动蛋白丝上的速率正好等于肌动蛋白分子从肌动蛋白丝上解离的速率时,微丝净长度没改变,这种过程称“踏车行为”。
23.微丝装配的成核发生在哪里?质膜24.哪些离子、药物因素能影响微丝的组装?Mg2+存在,微丝聚合;Ca2+存在,微丝解聚。
细胞松弛素B:从霉菌中提取,与微丝正端结合,抑制微丝的聚合。
鬼笔环肽:从有毒蘑菇中提取,结合聚合型微丝,稳定微丝抑制解聚。
25.微丝的功能有哪些?(1)微丝构成细胞的支架并维持细胞的形态:微丝在细胞内构成网络或成束才能发挥作用。
而应力纤维是在细胞膜下方由微丝束构成的纤维状结构,常与细胞的长轴平行,往往一端与细胞膜连接,另一端插入胞质,或与中间丝结合,应力纤维赋予细胞韧性和强度。
(2)微丝参与细胞运动:许多动物细胞位置移动时采用变形运动;这些细胞含有丰富的微丝,通过肌动蛋白和微丝结合蛋白的相互作用,进行变形运动。
(3)微丝参与细胞分裂:有丝分裂的核分裂完成后,两个即将形成的子细胞间,在赤道面膜下,肌动蛋白微丝与肌球蛋白II组装成瞬时性收缩束——收缩环,收缩产生动力,将质膜向内拉,完成一分为二后解体。
(4)微丝参与肌肉收缩:许多微丝结合蛋白都是在肌细胞中发现;肌细胞由数百个肌原纤维组成;每根肌原纤维由细肌丝和粗肌丝重叠而形成;肌肉收缩的基本单位是肌小节,由肌原纤维组成。
(5)微丝参与细胞内物质运输:微丝也介导一些靠近细胞膜的远端物质运输,肌球蛋白I从微丝负端向正端运输货物;肌球蛋白I尾部同质膜结合,利用其头部,可将微丝从一个部位运向另一个部位。
(6)微丝参与细胞内信号传递:细胞膜表面的受体在收到外界信号作用时,可触发膜下肌动蛋白结构变化,启动细胞内激酶变化的信号传导。
26.参与有丝分裂胞质收缩环形成的是哪种肌球蛋白?肌球蛋白II27.组成肌肉粗肌丝的是哪种肌球蛋白?肌球蛋白II28.微丝马达蛋白是哪种肌球蛋白?运动方向如何?肌球蛋白-1;沿微丝的负端向正端移动。
29.中间纤维的直径?结构?类型?直径:10nm;结构:中间纤维是丝状蛋白多聚体,是一种坚韧持久的蛋白质纤维。
中间纤维单体(亚基)是蛋白质纤维分子,具有共同的结构域:一个α-螺旋的中间去,两侧是球形的N端和C端。