Fluent 中判断收敛的方法、残差的概念及不收敛通常的解决方式

合集下载

FLUENT中是否收敛的判定方法

FLUENT中是否收敛的判定方法

FLUENT中判断收敛的方法
判断计算是否收敛,没有一个通用的方法。

通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。

因此,正确的做法是,不仅要通过残差值,也要通过监测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。

1、监测残差值。

在迭代计算过程中,当各个物理变量的残差值都达到收敛标准时,计算就会发生收敛。

Fluent 默认的收敛标准是:除了能量的残差值外,当所有变量的残差值都降到低于10-3 时,就认为计算收敛,而能量的残差值的收敛标准为低于10-6。

2、计算结果不再随着迭代的进行发生变化。

有时候,因为收敛标准设置得不合适,物理量的残差值在迭代计算的过程中始终无法满足收敛标准。

然而,通过在迭代过程中监测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。

此时也可以认为计算收敛。

3、整个系统的质量,动量,能量都守恒。

在Flux Reports 对话框中检查流入和流出整个系统的质量,动量,能量是否守恒。

守恒,则计算收敛。

不平衡误差少于0.1%,也可以认为计算是收敛的。

fluent残差曲线不收敛

fluent残差曲线不收敛

当使用Fluent进行流体模拟时,如果残差曲线不收敛,可能是由于多种原因导致的。

以下是一些可能的原因和解决方法:
1.网格质量差:劣质的网格会导致数值不稳定性,从而影响残差曲线的收敛。

确保网格质量良好,没有过度扭曲或不良的网格连接。

2.初始条件设置不当:初始条件设置不当可能导致数值不收敛。

检查初始条件是否合理,特别是速度和压力等参数的设置。

3.边界条件设置不合理:边界条件的设置对数值收敛也有重要影响。

确保边界条件正确设置,没有遗漏或错误。

4.材料参数不准确:材料参数的不准确可能导致数值不收敛。

检查材料参数是否准确,特别是密度、粘度等关键参数。

5.求解器设置不当:求解器的设置也会影响数值收敛。

检查求解器的设置是否合理,特别是松弛因子和时间步长的设置。

针对以上问题,可以采取以下解决方法:
1.优化网格质量:使用高质量的网格可以提高数值稳定性,使残差曲线更快收敛。

2.合理设置初始条件:确保初始条件设置合理,避免初始条件对数值收敛产生不利影响。

3.正确设置边界条件:边界条件的正确设置是保证数值收敛的重要因素,确保边界条件没有遗漏或错误。

4.精确设置材料参数:确保材料参数的准确性,特别是关键参数的准确性。

5.调整求解器设置:根据具体问题调整求解器的设置,特别是松弛因子和时间步长的设置,以提高数值收敛的速度和稳定性。

谈FLUENT如何判断收敛

谈FLUENT如何判断收敛

谈FLUENT如何判断收敛1.观察点处的值不再随计算步骤的增加而变化;2.各个参数的残差随计算步数的增加而降低,最后趋于平缓;3.要满足质量守恒(计算中不牵涉到能量)或者是质量与能量守恒(计算中牵涉到能量)。

特别要指出的是,即使前两个判据都已经满足了,也并不表示已经得到合理的收敛解了,因为,如果松弛因子设置得太紧,各参数在每步计算的变化都不是太大,也会使前两个判据得到满足。

此时就要再看第三个判据了。

还需要说明的就是,一般我们都希望在收敛的情况下,残差越小越好,但是残差曲线是全场求平均的结果,有时其大小并不一定代表计算结果的好坏,有时即使计算的残差很大,但结果也许是好的,关键是要看计算结果是否符合物理事实,即残差的大小与模拟的物理现象本身的复杂性有关,必须从实际物理现象上看计算结果。

比如说一个全机模型,在大攻角情况下,解震荡得非常厉害,而且残差的量级也总下不去,但这仍然是正确的,为什么呢,因为大攻角下实际流动情形就是这样的,不断有涡的周期性脱落,流场本身就是非定常的,所以解也是波动的,处理的时候取平均就可以。

但是,如果只满足判据三和判据一,也有可能没有收敛,或者没有计算稳定,最常见的就是溶液里面的浓度扩散模拟,一开始计算几步就可能已经满足了判据三,并且过会也会满足判据一,但是残差曲线一直在降,还没有到平缓的阶段,此时说明浓度场还没有把整个计算域计算完,仅仅只是计算了连续性方程。

在report->flux里面操作,mass flow rate,把所有进出口都选上,compute一下,看看nut flux是什么水平,如果它的值小于总进口流量的1%,并且其他检测量在继续迭代之后不会发生波动,也可以认为你的解是收敛的。

1.网格质量,主要可能是相邻单元的尺寸大小相差较大,它们的尺寸之比最好控制在1.2以内,不能超过1.42.离散格式及压力速度耦合方法,如果是结构网格,建议使用高阶格式,如2阶迎风格式等,如果是非结构网格,除pressure保持standard格式不变外,其他格式改用高阶格式;压力速度耦合关系,如果使用SIMPLE,SIMPLEC,PISO等segerated solver对联系方程收敛没有提高的话,可以尝试使用coupled solver。

FLUENT不收敛的解决方法

FLUENT不收敛的解决方法

利用FLUENT不收敛通常怎么解决?①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。

②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个靠经验③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。

④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。

就收敛了⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。

B从算至发散前几步,看presure分布,看不出来的话,再算几步, 看看问题大概出在那个区域。

C网格,配合第二点作修正,就重建个更漂亮的,或是更粗略的来处理。

D再找不出来的话,换个solver。

⑥、解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。

⑦、调节松弛因子也能影响收敛,不过代价是收敛速度。

亚松弛因子对收敛的影响所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。

用通用变量来写出时,为松驰因子(Relaxation Factors)。

《数值传热学-214》FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制变化。

一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了变化量。

亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积:分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。

这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。

在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。

fluent中影响收敛的因素及解决方法(转)

fluent中影响收敛的因素及解决方法(转)

fluent中影响收敛的因素及解决方法(转)FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?一. 残差波动的主要原因:1、高精度格式; 2、网格太粗;3、网格质量差;4、流场本身边界复杂,流动复杂;5、模型的不恰当使用。

二. 问:在进行稳态计算时候,开始残差线是一直下降的,可是到后来各种残差线都显示为波形波动,是不是不收敛阿?答:有些复杂或流动环境恶劣情形下确实很难收敛。

计算的精度(2 阶),网格太疏,网格质量太差,等都会使残差波动。

经常遇到,一开始下降,然后出现波动,可以降低松弛系数,我的问题就能收敛,但如果网格质量不好,是很难的。

通常,计算非结构网格,如果问题比较复杂,会出现这种情况,建议作网格时多下些功夫。

理论上说,残差的震荡是数值迭代在计算域内传递遭遇障碍物反射形成周期震荡导致的结果,与网格亚尺度雷诺数有关。

例如,通常压力边界是主要的反射源,换成OUTFLOW 边界会好些。

这主要根据经验判断。

所以我说网格和边界条件是主要因素。

三. 1、网格问题:比如流场内部存在尖点等突变,导致网格在局部质量存在问题,影响收敛。

2、可以调整一下courant number,courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。

在fluent中,用courant number来调节计算的稳定性与收敛性。

一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。

所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。

fluent 收敛判断问题

fluent 收敛判断问题

FLUENT 收敛判断问题及解决方法1 Under-Relaxation Factors(亚松弛因子)所谓亚松弛,就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。

用通用变量来写出时,为亚松弛因子(Relaxation Factors)。

FLUENT中的亚松弛:由于FLUENT所解方程组的非线性,我们有必要控制变化。

一般用亚松弛方法来实现控制,该方法在每一部迭代中减少了变化量。

亚松弛最简单的形式为:单元内变量等于原来的值加上亚松弛因子a与变化的积。

分离解算器使用亚松弛来控制每一步迭代中的计算变量的更新。

这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松弛因子。

在FLUENT中,所有变量的默认亚松弛因子都是对大多数问题的最优值。

这个值适合于很多问题,但是对于一些特殊的非线性问题(如某些湍流或者高Raleigh数自然对流问题),在计算开始时要慎重减小亚松弛因子。

使用默认的亚松弛因子开始计算是很好的习惯,如果经过4到5步的迭代残差仍然增长,你就需要减小亚松弛因子。

有时候,如果发现残差开始增加,你可以改变亚松弛因子重新计算。

在亚松弛因子过大时通常会出现这种情况。

最为安全的方法就是在对亚松弛因子做任何修改之前先保存数据文件,并对解的算法做几步迭代以调节到新的参数。

最典型的情况是,亚松弛因子的增加会使残差有少量的增加,但是随着解的进行残差的增加又消失了。

如果残差变化有几个量级你就需要考虑停止计算并回到最后保存的较好的数据文件。

注意:粘性和密度的亚松弛是在每一次迭代之间的。

而且,如果直接解焓方程而不是温度方程(即对PDF计算),基于焓的温度的更新是要进行亚松驰的。

要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。

对于大多数流动,不需要修改默认亚松弛因子。

但是,如果出现不稳定或者发散你就需要减小默认的亚松弛因子了,其中压力、动量、k和e的亚松弛因子默认值分别为0.2,0.5,0.5和0.5。

fluent中判断收敛的方法、残差的概念及不收敛通常的解决方式

fluent中判断收敛的方法、残差的概念及不收敛通常的解决方式

fluent中判断收敛的方法[引用]FLUENT中判断收敛的方法判断计算是否收敛,没有一个通用的方法。

通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。

因此,正确的做法是,不仅要通过残差值,也要通过监测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。

1、监测残差值。

在迭代计算过程中,当各个物理变量的残差值都达到收敛标准时,计算就会发生收敛。

Fluent默认的收敛标准是:除了能量的残差值外,当所有变量的残差值都降到低于10-3 时,就认为计算收敛,而能量的残差值的收敛标准为低于10-6。

2、计算结果不再随着迭代的进行发生变化。

有时候,因为收敛标准设置得不合适,物理量的残差值在迭代计算的过程中始终无法满足收敛标准。

然而,通过在迭代过程中监测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。

此时也可以认为计算收敛。

3、整个系统的质量,动量,能量都守恒。

在Flux Reports对话框中检查流入和流出整个系统的质量,动量,能量是否守恒。

守恒,则计算收敛。

不平衡误差少于0.1%,也可以认为计算是收敛的。

FLUENT中残差的概念残差是cell各个face的通量之和,当收敛后,理论上当单元内没有源项使各个面流入的通量也就是对物理量的输运之和应该为零。

最大残差或者RSM残差反映流场与所要模拟流场(只收敛后应该得到的流场,当然收敛后得到的流场与真实流场之间还是存在一定的差距)的残差,残差越小越好,由于存在数值精度问题,不可能得到0残差,对于单精度计算一般应该低于初始残差1e-03以下才好,当注意具体情况,看各个项的收敛情况(比方说连续项不易收敛而能量项容易)。

一般在FLUENT中可以进行进出口流量监控,当残差收敛到一定程度后,还要看进出口流量是否稳定平衡,才可确定收敛与否(翼型计算时要监控升阻力的平衡)。

残差在较高位震荡,需要检查边界条件是否合理,其次检查初始条件是否合理,比如激波的流场,初始条件的不合适会造成流场的振荡。

fluent中判断收敛的方法

fluent中判断收敛的方法

fluent中判断收敛的方法[引用]FLUENT中判断收敛的方法判断计算是否收敛,没有一个通用的方法。

通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。

因此,正确的做法是,不仅要通过残差值,也要通过监测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。

1、监测残差值。

在迭代计算过程中,当各个物理变量的残差值都达到收敛标准时,计算就会发生收敛。

Fluent默认的收敛标准是:除了能量的残差值外,当所有变量的残差值都降到低于10-3 时,就认为计算收敛,而能量的残差值的收敛标准为低于10-6。

2、计算结果不再随着迭代的进行发生变化。

有时候,因为收敛标准设置得不合适,物理量的残差值在迭代计算的过程中始终无法满足收敛标准。

然而,通过在迭代过程中监测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。

此时也可以认为计算收敛。

3、整个系统的质量,动量,能量都守恒。

在Flux Reports对话框中检查流入和流出整个系统的质量,动量,能量是否守恒。

守恒,则计算收敛。

不平衡误差少于0.1%,也可以认为计算是收敛的。

FLUENT中残差的概念残差是cell各个face的通量之和,当收敛后,理论上当单元内没有源项使各个面流入的通量也就是对物理量的输运之和应该为零。

最大残差或者RSM残差反映流场与所要模拟流场(只收敛后应该得到的流场,当然收敛后得到的流场与真实流场之间还是存在一定的差距)的残差,残差越小越好,由于存在数值精度问题,不可能得到0残差,对于单精度计算一般应该低于初始残差1e-03以下才好,当注意具体情况,看各个项的收敛情况(比方说连续项不易收敛而能量项容易)。

一般在FLUENT中可以进行进出口流量监控,当残差收敛到一定程度后,还要看进出口流量是否稳定平衡,才可确定收敛与否(翼型计算时要监控升阻力的平衡)。

残差在较高位震荡,需要检查边界条件是否合理,其次检查初始条件是否合理,比如激波的流场,初始条件的不合适会造成流场的振荡。

FLUENT不收敛的解决方法

FLUENT不收敛的解决方法

利用FLUENT不收敛通常怎么解决?①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。

②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个靠经验③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。

④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。

就收敛了⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。

B从算至发散前几步,看presure分布,看不出来的话,再算几步, 看看问题大概出在那个区域。

C网格,配合第二点作修正,就重建个更漂亮的,或是更粗略的来处理。

D再找不出来的话,换个solver。

⑥、解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。

⑦、调节松弛因子也能影响收敛,不过代价是收敛速度。

亚松弛因子对收敛的影响所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。

用通用变量来写出时,为松驰因子(Relaxation Factors)。

《数值传热学-214》FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制变化。

一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了变化量。

亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积:分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。

这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。

在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。

Fluent模拟结果不收敛及解决办法,CFD模拟仿真

Fluent模拟结果不收敛及解决办法,CFD模拟仿真

Fluent模拟不收敛及解决办法
原创声明:本教程由百度文库店铺:第七代师兄,独家原创,版权所有
Fluent是主流的流体动力学仿真软件,在模拟过程中可能会出现计算结果不收敛的情况。

以下是一些可能导致不收敛的原因以及相应的解决办法:
1)网格质量差:不收敛的问题可能是因为网格质量不好,导致计算无法稳定地进行。

解决方法是优化网格,使网格更加精细,以提高计算精度。

2)边界条件设置不当:边界条件设置不当可能导致计算不收敛。

解决方法是确保边界条件设置正确,并且与实际情况相符。

3)模型简化不合理:模型简化不合理可能导致计算不收敛。

解决方法是尽可能准确地模拟模型,并避免简化模型过于严重。

4)数值方法选择不当:数值方法选择不当可能导致计算不收敛。

解决方法是选择合适的数值方法,并确保参数设置正确。

5)计算机性能不足:计算机性能不足可能导致计算不收敛。

解决方法是使用更强大的计算机,或者减少计算量以提高计算速度。

6)模拟参数不合理:模拟参数设置不合理可能导致计算不收敛。

解决方法是调。

FLUENT不收敛的解决方法

FLUENT不收敛的解决方法

FLUENT不收敛的解决方法解决FLUENT不收敛的问题是一个复杂的过程,因为它涉及到多个因素的相互影响。

下面是一些解决FLUENT不收敛问题的常用方法:1.初始条件的选择:在开始数值求解之前,需要确定一个合适的初始条件。

初始条件对于解的收敛性至关重要。

初始条件应该尽可能接近真实的解,以便尽快地达到收敛状态。

2.网格的质量:网格的质量对于解的收敛性有重要影响。

不合适的网格质量可能导致剧烈的数值振荡和不收敛。

因此,在进行数值求解之前,要确保网格是充分细化和适当分布的。

3.边界条件的设置:边界条件是数值求解的重要组成部分。

正确选择和设置边界条件可以帮助解决不收敛的问题。

边界条件应该与实际情况相适应,并且在数值上稳定。

4.松弛因子的调整:松弛因子是迭代求解过程中的一个重要参数。

它可以控制数值振荡的幅度和求解的速度。

调整松弛因子可以帮助改善解的收敛性。

通常,可以通过逐步调整松弛因子的值来找到合适的取值。

5.改变求解方法:FLUENT提供了多种求解方法,包括迭代解法、隐式解法等。

在遇到不收敛的情况下,可以尝试改变求解方法。

例如,从显式求解器切换到隐式求解器,或者改变迭代收敛准则等。

6.缩小时间步长:时间步长是时间离散化的重要参数。

当模拟流体现象有快速变化时,时间步长可能需要相应缩小。

缩小时间步长可以提高求解的稳定性和收敛性。

7.考虑物理特性:在建立数学模型和设定边界条件时,要充分考虑物理特性。

不合理的模型和边界条件可能导致不收敛的问题。

合理的物理模型和边界条件可以提高解的收敛性。

8.自适应网格:自适应网格技术可以根据流场的变化情况动态调整网格,从而提高求解的精度和收敛性。

在遇到不收敛的问题时,可以尝试使用自适应网格技术。

9.并行计算:FLUENT支持并行计算,可以利用多个处理器进行求解。

并行计算可以加速求解过程,并有助于解决不收敛的问题。

通过提高计算效率,可以增加求解的稳定性和收敛性。

10.稳定化技术:当遇到不稳定的流场时,可以尝试使用稳定化技术来提高求解的稳定性。

FLUENT模拟残差曲线震荡及收敛问题

FLUENT模拟残差曲线震荡及收敛问题

FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?一. 残差波动的主要原因:1、高精度格式;2、网格太粗;3、网格质量差;4、流场本身边界复杂,流动复杂;5、模型的不恰当使用。

二. 问:在进行稳态计算时候,开始残差线是一直下降的,可是到后来各种残差线都显示为波形波动,是不是不收敛阿?答:有些复杂或流动环境恶劣情形下确实很难收敛。

计算的精度(2 阶),网格太疏,网格质量太差,等都会使残差波动。

经常遇到,一开始下降,然后出现波动,可以降低松弛系数,我的问题就能收敛,但如果网格质量不好,是很难的。

通常,计算非结构网格,如果问题比较复杂,会出现这种情况,建议作网格时多下些功夫。

理论上说,残差的震荡是数值迭代在计算域内传递遭遇障碍物反射形成周期震荡导致的结果,与网格亚尺度雷诺数有关。

例如,通常压力边界是主要的反射源,换成OUTFLOW 边界会好些。

这主要根据经验判断。

所以我说网格和边界条件是主要因素。

三. 1、网格问题:比如流场内部存在尖点等突变,导致网格在局部质量存在问题,影响收敛。

2、可以调整一下courant number,courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。

在fluent中,用courant number来调节计算的稳定性与收敛性。

一般来说,随着courant number 的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。

所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。

FLUENT模拟残差曲线震荡及收敛问题

FLUENT模拟残差曲线震荡及收敛问题

FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?一. 残差波动的主要原因:1、高精度格式;2、网格太粗;3、网格质量差;4、流场本身边界复杂,流动复杂;5、模型的不恰当使用。

二. 问:在进行稳态计算时候,开始残差线是一直下降的,可是到后来各种残差线都显示为波形波动,是不是不收敛阿?答:有些复杂或流动环境恶劣情形下确实很难收敛。

计算的精度(2 阶),网格太疏,网格质量太差,等都会使残差波动。

经常遇到,一开始下降,然后出现波动,可以降低松弛系数,我的问题就能收敛,但如果网格质量不好,是很难的。

通常,计算非结构网格,如果问题比较复杂,会出现这种情况,建议作网格时多下些功夫。

理论上说,残差的震荡是数值迭代在计算域内传递遭遇障碍物反射形成周期震荡导致的结果,与网格亚尺度雷诺数有关。

例如,通常压力边界是主要的反射源,换成OUTFLOW 边界会好些。

这主要根据经验判断。

所以我说网格和边界条件是主要因素。

三. 1、网格问题:比如流场内部存在尖点等突变,导致网格在局部质量存在问题,影响收敛。

2、可以调整一下courant number,courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。

在fluent中,用courant number来调节计算的稳定性与收敛性。

一般来说,随着courant number 的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。

所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。

FLUENT不收敛的解决方法

FLUENT不收敛的解决方法

利用FLUENT不收敛通常怎么解决?①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。

②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个靠经验③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。

④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。

就收敛了⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。

B从算至发散前几步,看presure分布,看不出来的话,再算几步, 看看问题大概出在那个区域。

C网格,配合第二点作修正,就重建个更漂亮的,或是更粗略的来处理。

D再找不出来的话,换个solver。

⑥、解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。

⑦、调节松弛因子也能影响收敛,不过代价是收敛速度。

亚松弛因子对收敛的影响所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。

用通用变量来写出时,为松驰因子(Relaxation Factors)。

《数值传热学-214》FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制变化。

一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了变化量。

亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积:分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。

这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。

在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。

Fluent的CFD计算不收敛怎么办?

Fluent的CFD计算不收敛怎么办?

Fluent的CFD计算不收敛怎么办?一、fluent计算收敛,应满足以下要求1、各个项目的迭代残差降低到足够小的数值;2、某些宏观物理量(例如管路出口流量)数值基本平稳不波动;二、计算不能收敛原因主要是这几个类型:1、网格单元质量太差;2、材料参数、边界条件的设定等组合不恰当或者违背物理规律;3、求解方式和参数设定不合理;单元质量太差是一个很常见的导致计算不收敛的原因,劣质的单元会导致某些敏感区域数值不稳定。

三、对于fluent计算,建议网格标准如下1、面单元,三角形内角范围20-120度,四边形单元45-135度;2、四面体单元,扭曲度不超过0.9,最好控制在0.85以下;3、相邻单元之间尺寸比例不超过1.5;4、边界层区域,注意是否满足湍流模型相对应的y+数值要求;5、单元密度是否分布合理,在流动复杂的区域有较密集的单元;材料参数、边界条件等涉及物理实际场景的设定,如果设定不合理,也会导致计算不收敛。

因为软件中设置的情况,很有可能在现实世界不可能发生。

典型例子,多相流计算中,各个副相体积比总和超过100%,导致主相体积比为负数。

此时计算不收敛是正常现象,因为这个在现实中不可能出现(某种组分在混合物的比例,只可能0-100%)。

此情况下即使计算收敛,结果也是非物理解,没有参考价值。

从数值计算角度,某些求解方式本身就存在数值不稳定或者难以收敛的问题。

对于瞬态计算,过大的时间步长也会引起计算不收敛。

四、不收敛原因排查步骤:1、检查单元质量,保证不存在劣质单元;2、如果问题复杂,考虑因素很多,则先采用考虑因素较少的简单模型;3、是否收敛,随后依次添加各影响因素;4、仔细查看各个设定,检查是否存在违反物理规律的设定;5、修改计算格式,瞬态计算还可以减少时间步长;6、修改松弛因子;如果网格质量良好,迭代残差在开始后不久就向着无穷大方向上升,通常在步骤2、3中会发现问题。

如果是迭代残差经历多次计算后仍然在比较低的值波动但是无法达到收敛标准,通常需要采用步骤4、5的操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fluent中判断收敛的方法[引用]
FLUENT中判断收敛的方法
判断计算是否收敛,没有一个通用的方法。

通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。

因此,正确的做法是,不仅要通过残差值,也要通过监测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。

1、监测残差值。

在迭代计算过程中,当各个物理变量的残差值都达到收敛标准时,计算就会发生收敛。

Fluent默认的收敛标准是:除了能量的残差值外,当所有变量的残差值都降到低于10-3 时,就认为计算收敛,而能量的残差值的收敛标准为低于10-6。

2、计算结果不再随着迭代的进行发生变化。

有时候,因为收敛标准设置得不合适,物理量的残差值在迭代计算的过程中始终无法满足收敛标准。

然而,通过在迭代过程中监测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。

此时也可以认为计算收敛。

3、整个系统的质量,动量,能量都守恒。

在Flux Reports对话框中检查流入和流出整个系统的质量,动量,能量是否守恒。

守恒,则计算收敛。

不平衡误差少于0.1%,也可以认为计算是收敛的。

FLUENT中残差的概念
残差是cell各个face的通量之和,当收敛后,理论上当单元内没有源项使各个面流入的通量也就是对物理量的输运之和应该为零。

最大残差或者RSM残差反映流场与所要模拟流场(只收敛后应该得到的流场,当然收敛后得到的流场与真实流场之间还是存在一定的差距)的残差,残差越小越好,由于存在数值精度问题,不可能得到0残差,对于单精度计算一般应该低于初始残差1e-03以下才好,当注意具体情况,看各个项的收敛情况(比方说连续项不易收敛而能量项容易)。

一般在FLUENT中可以进行进出口流量监控,当残差收敛到一定程度后,还要看进出口流量是否稳定平衡,才可确定收敛与否(翼型计算时要监控升阻力的平衡)。

残差在较高位震荡,需要检查边界条件是否合理,其次检查初始条件是否合理,比如激波的流场,初始条件的不合适会造成流场的振荡。

有时流场可能有分离或者回流,这本身是非定常现象,计算时残差会在一定程度上发生振荡,这是如果进出口流量是否达到稳定平衡,也可以认为流场收敛。

另外fluent缺省
采用多重网格,在计算后期将多从网格设置为0可以避免一些波长的残差在细网格上发生震荡。

---------------------------------------------------------------------------------------------------------------------- FLUENT不收敛通常的解决方式
①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。

②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个靠经验。

③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。

④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。

就收敛了。

⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。

B从算至发散前几步,看presure 分布,看不出来的话,再算几步, 看看问题大概出在那个区域。

C网格,配合第二点作修正,就重建个更漂亮的,或是更粗略的来处理。

D再找不出来的话,换个solver。

⑥、解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。

⑦、调节松弛因子也能影响收敛,不过代价是收敛速度。

相关文档
最新文档