简明物理化学第二章答案
物理化学-课后答案-热力学第一定律

第二章热力学第一定律【复习题】【1】判断下列说法是否正确。
(1)状态给定后,状态函数就有一定的值,反之亦然。
(2)状态函数改变后,状态一定改变。
(3)状态改变后,状态函数一定都改变。
(4)因为△U=Q v, △H =Q p,所以Q v,Q p是特定条件下的状态函数。
(5)恒温过程一定是可逆过程。
(6)汽缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则△H= Q p=0。
(7)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。
(8)系统从状态Ⅰ变化到状态Ⅱ,若△T=0,则Q=0,无热量交换。
(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则△H = Q p = 0。
(10)理想气体绝热变化过程中,W=△U,即W R=△U=C V△T,W IR=△U=C V△T,所以W R=W IR。
(11)有一个封闭系统,当始态和终态确定后;(a)若经历一个绝热过程,则功有定值;(b)若经历一个等容过程,则Q有定值(设不做非膨胀力);(c)若经历一个等温过程,则热力学能有定值;(d)若经历一个多方过程,则热和功的代数和有定值。
(12)某一化学反应在烧杯中进行,放热Q1,焓变为△H1,若安排成可逆电池,使终态和终态都相同,这时放热Q2,焓变为△H2,则△H1=△H2。
【答】(1)正确,因为状态函数是体系的单质函数,体系确定后,体系的一系列状态函数就确定。
相反如果体系的一系列状态函数确定后,体系的状态也就被惟一确定。
(2)正确,根据状态函数的单值性,当体系的某一状态函数改变了,则状态函数必定发生改变。
(3)不正确,因为状态改变后,有些状态函数不一定改变,例如理想气体的等温变化,内能就不变。
(4)不正确,ΔH=Qp,只说明Qp 等于状态函数H的变化值ΔH,仅是数值上相等,并不意味着Qp 具有状态函数的性质。
ΔH=Qp 只能说在恒压而不做非体积功的特定条件下,Qp 的数值等于体系状态函数H 的改变,而不能认为Qp 也是状态函数。
物理化学课后习题第二章答案

2.15 容积为0.1m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4mol的Ar(g)及150℃,2mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的ΔH 。
已知:Ar(g)和Cu(s)的摩尔定压热容C p,m分别为20.786J·mol-1·K-1及24.435 J·mol-1·K-1,且假设均不随温度而变。
解: 恒容绝热混合过程Q = 0 W = 0∴由热力学第一定律得过程ΔU=ΔU(Ar,g)+ΔU(Cu,s)= 0ΔU(Ar,g) = n(Ar,g) C V,m (Ar,g)×(t2-0)ΔU(Cu,S) ≈ΔH (Cu,s) = n(Cu,s)C p,m(Cu,s)×(t2-150)解得末态温度t2 = 74.23℃又得过程ΔH =ΔH(Ar,g) + ΔH(Cu,s)=n(Ar,g)C p,m(Ar,g)×(t2-0) + n(Cu,s)C p,m(Cu,s)×(t2-150)= 2.47kJ或ΔH =ΔU+Δ(pV) =n(Ar,g)RΔT=4×8314×(74.23-0)= 2.47kJ2.17 单原子理想气体A与双原子理想气体B的混合物共5mol,摩尔分数y=0.4,B始态温度T1=400K,压力P1=200kPa,今该混合气体绝热反抗恒外压p=100kPa 膨胀到平衡态,求末态温度T2及过程的W,ΔU及ΔH。
2.21 已知水(H2O,l)在100℃的饱和蒸气压p s=101.325kPa,在此温度、压力下水的摩尔蒸发焓。
求在100℃,101.325kPa下使1kg水蒸气全部凝结成液体水时的W,Q,ΔU,ΔH和ΔH。
设水蒸气适用理想气体状态方程式。
解: 题给过程的始末态和过程特性如下:n = m/M = 1kg/18.015g·mol-1 = 55.509mol题给相变焓数据的温度与上述相变过程温度一致,直接应用公式计算W=-p ambΔV =-p(V l-V g )≈pVg = n g RT=172.2kJΔU = Q p + W =-2084.79kJ2.24蒸气锅炉中连续不断地注入20℃的水,将其加热并蒸发成180℃,饱和蒸气压为1.003Mpa的水蒸气。
《简明物理化学》第二章答案

1.2mol 298K,5dm3的He(g),经过下列可逆变化:(1)等温压缩到体积为原来的一半;(2)再等容冷却到初始的压力。
求此过程的。
已知20.8J•K—1•mol-1.等温压缩等容冷却解:体系变化过程可表示为W=W1+W2=nRTln+0=2×8。
314×298×ln0.5=—3435(J)Q=Q1+Q2=W1+ΔU2=—3435+nΔT=—3435+n(298—298/2)=—3435+(—3716)=—7151(J)ΔU=ΔU1+ΔU2=ΔU2=—3716(J)ΔS=ΔS1+ΔS2=nRln+=2×8.314×ln0。
5+2×1。
5×8.314ln0。
5=—2818()2.10mol理想气体从40℃冷却到20℃,同时体积从250dm3变化到50dm3.已知该气体的=29。
20J•K—1•mol-1,求。
解:假设体系发生如下两个可逆变化过程250dm3 等温50dm3 等容50dm340℃ΔS1 40℃ΔS220℃ΔS=ΔS1+ΔS2=nRln+=10Rln+10×(29.20-8。
314)×ln=-147。
6()3.2mol某理想气体(=29。
36 J•K-1•mol-1)在绝热条件下由273.2K,1。
0MPa膨胀到203.6K,0.1MPa求该过程的。
解:273。
2K 绝热203。
6K1。
0MPa 膨胀0。
1MPa∵=29。
36∴ =29.36-8.314=21。
046且Q=0ΔU==2×21。
046×(203.6-273.2)=-2930(J)W=—ΔU=2930(J)4.有一带隔板的绝热恒容箱,在隔板两侧分别充以不同温度的H2和O2,且V1=V2(见图),若将隔板抽去,试求算两种气体混合过程的(假设此两种气体均为理想气体)。
解:先由能量衡算求终温。
O 2 与 H 2均为双原子分子理想气体,故均有=5R/2,设终温为T,则 (293.2—T)=(T-283。
物理化学简明教程(第四版)第二章热力学第二定律解析

• Q表示不可逆过程的热效应。由上式得
Q1* Q2* 0 T1 T2
• 对一任意不可逆循环来说,必有
Q*
T
0
(2) 不可逆过程的热温商
• 假定有一不可逆循环如图所示
2 T T 2 Q 2 Q r ir > 1 T 1 T 2 Q > 不可逆 S 1 T = 可逆 Q > 不可逆 dS T = 可逆 1
自发过程的实例
• (1) 理想气体向真空膨胀 • 此过程Q=0;W=0;U=0;T=0。如 果要让膨胀后的气体变回原状,必须要 对系统做压缩功。 • (2) 热由高温物体传向低温物体 • 如果要使已经传到低温物体的热回到高 温物体,则必须要做功。 • (3) 自发化学反应 • Cd(s) + PbCl2 (aq) = CdCl2 (aq) + Pb(s)
Q=0 ,W=ΔU=nCV,m (T2-T1) ③恒温可逆压缩
Q2 W2
V4
V3
V4 pdV nRT2 ln( ) V3
④绝热可逆压缩 Q=0,W= ΔU= nCV,m (T1-T2) 状态1和4 在一条绝热线上,2和3 在另外一条绝热线上。
按理想气体的可逆绝热过程方程式 TVγ-1=常数,有
§2.5 熵变的计算及其应用
• (1)定温过程的熵变 • 对定温可逆过程来说,则
Qr Qr S T T
• 对理想气体定温可逆过程来说
V2 nRT ln V1 V2 p1 S nR ln nR ln T V1 p2
例题3
• (1) 在300K时,5mol的某理想气体由 10dm3定温可逆膨胀到100dm3。计算此过 程中系统的熵变; • (2)上述气体在300K时由10dm3向真空膨 胀变为100dm3。试计算此时系统的S。 并与热温商作比较。 V 100 S nR ln 5 8.314 ln • 解 (1) J K 95.7J K V 10 • (2) 熵变仍为95.7J K-1。热温商为
物理化学课后解答第二章

=1/690.96=0.00145
(3) 亨利标准态
1600℃时,Si 以液态存在
γ =α , /α , 0
Si
R Si(l)
H Si(l)
α ,H Si(l) =αR,Si(l)/γ0Si =0.00145/0.00116=1.25
4)=3)- 1)-2),
△rG0(4)=-576842.28-(-5715.35)=-571126.93J/mol △rG0(4)=-RTlnK4=-8.314*1873 lnK4
5
lnK3=36.676, K3=8.476X1015 据 4), K3= αSiO2(s)/(αSi(l)*(pO2/p*))
α =α /γ X %,Ag(l)
R,Ag(l)
0
0
Ag(l) Ag(l)
αR,Ag(l) 可由习题 2-2 中热力学等温方程式求出。
关键:
因为 Ag 和 Zn 服从 Henry law, Ag 和 Zn 在铅液中含量又很低,可近
似认为 f%,Ag(l) =1,f%,Zn(l) =1。
2-5 高炉渣中(SiO2)与生铁中的[Si]可发生下述反应
)( s )
PO2 P0
⎟⎟⎠⎞
⎟ ⎟
公式(2)
⎟
⎟⎠平衡态
选择不同
Si
的标准态,公式(2)中仅
a[Si]( s )
和
μ0
[Si ]( s )
值发生变化。
若炉渣中 SiO2(s)是纯物质,则 SiO2(s)在炉渣中的活度定义为 1, 即
物理化学(简明版)作者天津大学物理化学教研室习题答案

。重复上面的过程,第 n 次充氮气后,系统的摩尔分数
设系统为理想气体混合物, 则
1.11 有某温度下的 2dm3 湿空气,其压力为 101.325kPa,相对湿度为 60%。设空气中 O2 与 N2 的体积分数 分别为 0.21 与 0.79,求水蒸气、O2 与 N2 的分体积。已知该温度下水的饱和蒸汽压为 20.55kPa(相对湿 度即该温度下水蒸气的分压与水的饱和蒸汽压之比)。
3
n = 5mol
CV,m = 3/2R
QV =ΔU = n CV,mΔT = 5×1.5R×50 = 3.118kJ
却使体积缩小至 25dm 。求整个过程的 W,Q,ΔH 和 ΔU。 解:过程图示如下
由于
,则
,对有理想气体
和
只是温度的函数
该途径只涉及恒容和恒压过程,因此计算功是方便的
根据热力学第一定律
1.7 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)
保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试 求两种气体混合后的压力。
(2) (3)
隔板抽取前后,H2 及 N2 的摩尔体积是否相同? 隔板抽取后,混合气体中 H2 及 N2 的分压立之比以及它们的分体积各为若干?
也可以用直接迭代法,
,取初值
,迭代十次结果 1.15 试由波义尔温度 TB 的定义式,证明范德华气体的 TB 可表示为 TB=a/(bR)
式中 a,b 为范德华常数。
1.16 把 25℃的氧气充入 40dm3 的氧气钢瓶中,压力达 202.7×102kPa。试用普遍化压缩因子图求钢瓶中 氧气的质量。 解:氧气的 TC=-118.57℃,PC=5.043MPa 氧气的 Tr=298.15/(273.15-118.57)=1.93, Pr=20.27/5.043=4.02 Z=0.95 PV=ZnRT n=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol) 氧气的质量 m=344.3×32/1000=11(kg)
2023年大学_物理化学简明教程(邵谦著)课后答案下载

2023年物理化学简明教程(邵谦著)课后答案下载2023年物理化学简明教程(邵谦著)课后答案下载绪论0.1 物理化学的研究对象及其重要意义0.2 物理化学的研究方法0.3 学习物理化学的方法第一章热力学第一定律(一)热力学概论1.1 热力学的研究对象1.2 几个基本概念(二)热力学第一定律1.3 能量守恒--热力学第一定律1.4 体积功1.5 定容及定压下的热1.6 理想气体的热力学能和焓1.7 热容1.8 理想气体的绝热过程1.9 实际气体的节流膨胀(三)热化学1.10 化学反应的热效应1.11 生成焓及燃烧焓1.12 反应焓与温度的关系--基尔霍夫方程思考题第二章热力学第二定律2.1 自发过程的共同特征2.2 热力学第二定律的经典表述2.3 卡诺循环与卡诺定理2.4 熵的概念2.5 熵变的计算及其应用2.6 熵的物理意义及规定熵的计算2.7 亥姆霍兹函数与吉布斯函数2.8 热力学函数的?些重要关系式2.9 厶C的计算__2.10 非平衡态热力学简介思考题第三章化学势3.1 偏摩尔量3.2 化学势3.3 气体物质的化学势3.4 理想液态混合物中物质的化学势 3.5 理想稀溶液中物质的化学势3.6 不挥发性溶质理想稀溶液的依数性 3.7 非理想多组分系统中物质的化学势思考题第四章化学平衡4.1 化学反应的方向和限度4.2 反应的标准吉布斯函数变化4.3 平衡常数的各种表示法4.4 平衡常数的实验测定4.5 温度对平衡常数的影响4.6 其他因素对化学平衡的影响思考题第五章多相平衡5.1 相律(一)单组分系统5.2 克劳修斯一克拉佩龙方程5.3 水的相图(二)二组分系统5.4 完全互溶的双液系统__5.5 部分互溶的双液系统__5.6 完全不互溶的双液系统5.7 简单低共熔混合物的固一液系统 5.8 有化合物生成的固一液系统__5.9 有固溶体生成的固一液系统(三)三组分系统5.10 三角坐标图组成表示法__5.11 二盐一水系统__5.12 部分互溶的三组分系统思考题第六章统计热力学初步6.1 引言6.2 玻耳兹曼分布6.3 分子配分函数6.4 分子配分函数的求算及应用第七章电化学(一)电解质溶液7.1 离子的迁移7.2 电解质溶液的电导7.3 电导测定的应用示例7.4 强电解质的活度和活度系数__7.5 强电解质溶液理论简介(二)可逆电池电动势7.6 可逆电池7.7 可逆电池热力学7.8 电极电势7.9 由电极电势计算电池电动势7.10 电极电势及电池电动势的应用(三)不可逆电极过程7.11 电极的.极化7.12 电解时的电极反应7.13 金属的腐蚀与防护__7.14 化学?源简介第八章表面现象与分散系统(一)表面现象8.1 表面吉布斯函数与表面张力 8.2 纯液体的表面现象8.3 气体在固体表面上的吸附 8.4 溶液的表面吸附8.5 表面活性剂及其作用(二)分散系统8.6 分散系统的分类8.7 溶胶的光学及力学性质8.8 溶胶的电性质8.9 溶胶的聚沉和絮凝8.10 溶胶的制备与净化__8.11 高分子溶液思考题第九章化学动力学基本原理9.1 引言9.2 反应速率和速率方程9.3 简单级数反应的动力学规律9.4 反应级数的测定9.5 温度对反应速率的影响9.6 双分子反应的简单碰撞理论9.7 基元反应的过渡态理论大意__9.8 单分子反应理论简介思考题第十章复合反应动力学10.1 典型复合反应动力学10.2 复合反应近似处理方法10.3 链反应__10.4 反应机理的探索和确定示例10.5 催化反应10.6 光化学概要__10.7 快速反应与分子反应动力学研究方法简介思考题附录Ⅰ.某些单质、化合物的摩尔热容、标准摩尔生成焓、标准摩尔生成吉布斯函数及标准摩尔熵Ⅱ.某些有机化合物的标准摩尔燃烧焓(298K)Ⅲ.不同能量单位的换算关系Ⅳ.元素的相对原子质量表Ⅴ.常用数学公式Ⅵ.常见物理和化学常数物理化学简明教程(邵谦著):内容简介本教材自8月出版以来,受到了广大读者,特别是相关高校师生的厚爱,并被许多高校选作教材。
简明物理化学 第二版 习题解答 杜凤沛

第一章热力学第一定律习题解答1. 1mol 理想气体依次经过下列过程:(1)恒容下从 25℃升温至 100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q、W、∆U及∆H。
解:将三个过程中Q、∆U及W的变化值列表如下:过程Q∆U W(1)CV ,m(T1末−T1初)CV ,m(T1末−T1初)(2)000(3)C p,m(T3末−T3初) Cv,m(T3末−T3初)p(V3末−V3初)则对整个过程:T= T=298.15K T= T= 373.15K1初3末1末3初Q =nC v,m(T1末-T1初)+0+ nC p,m(T3末-T3初)=nR(T3末−T3初)=[1×8.314×(-75)]J=-623.55J∆U=nC v,m(T1末-T1初)+0+nC v,m(T3末-T3初)=0W =- p(V3末−V3初)=-nR(T3末−T3初)=-[1×8.314×(-75)]J=623.55J因为体系的温度没有改变,所以∆H=02.0.1mol 单原子理想气体,始态为 400K、101.325kPa,经下列两途径到达相同的终态:(1)恒温可逆膨胀到10dm3,再恒容升温至610K;(2) 绝热自由膨胀到6.56dm3,再恒压加热至610K。
分别求两途径的Q、W、∆U及∆H。
若只知始态和终态,能否求出两途径的∆U及∆H?解:(1)始态体积V1=nRT1/p1=(0.1×8.314×400/101325)dm3=32.8dm3W =W恒温+W恒容=nRT ln VV2+01=(0.1×8.314×400×ln3210.8+0)J=370.7JQ =∆U +W =632.6J∆H=nC p,m(T2−T1)=[0.1×52 ×8.314 ×(610− 400)]=436.4J(2)Q =Q绝热+Q恒压=0+nC p,m(T2−T1)=463.4J∆U=∆U绝热+ ∆U恒压=0+nC V,m(T2−T1)=261.9J∆H=∆H绝热+ ∆H恒压=0+Q绝热=463.4JW =∆U -Q=174.5J若只知始态和终态也可以求出两途径的∆U及∆H,因为U和H是状态函数,其值只与体系的始终态有关,与变化途径无关。
物理化学第二章作业及答案

2007-4-24 §2.1 均相多组分系统热力学 练习1 水溶液(1代表溶剂水,2代表溶质)的体积V 是质量摩尔浓度b 2的函数,若 V = A +B b 2+C (b 2)2(1)试列式表示V 1和V 2与b 的关系;答: b2: 1kg 溶剂中含溶质的物质的量, b 2=n 2, 112222,,,,2T P n T P n V V V B cb n b ⎛⎫⎛⎫∂∂===+ ⎪ ⎪∂∂⎝⎭⎝⎭ ∵ V=n 1V 1+n 2V 2( 偏摩尔量的集合公式)∴ V 1=(1/n 1)(V-n 2V 2)= (1/n 1)( V-b 2V 2)= (1/n 1)(A+Bb 2+c(b 2)2-Bb 2-2cb 2)= (1/n 1)[A-c(b 2)2] (2)说明A ,B , A/n 1由V = A +B b 2+C (b 2)2 , V=A;A: b 2→0, 纯溶剂的体积,即1kg 溶剂的体积B; V 2=B+2cb 2, b 2→0, 无限稀释溶液中溶质的偏摩尔体积A/n 1:V 1= (1/n 1)[A-c(b 2)2],∵b 2→0,V = A +B b 2+C (b 2)2, 纯溶剂的体积为A, ∴A/n 1 为溶剂的摩尔体积。
(3)溶液浓度增大时V 1和V 2将如何变化?由V 1,V 2 的表达式可知, b 2 增大,V 2 也增加,V 1降低。
2哪个偏微商既是化学势又是偏摩尔量?哪些偏微商称为化学势但不是偏摩尔量?答: 偏摩尔量定义为,,c B B T P n Z Z n ⎛⎫∂= ⎪∂⎝⎭所以,,c B B T P n G G n ⎛⎫∂= ⎪∂⎝⎭ ,,c B B T P n H H n ⎛⎫∂= ⎪∂⎝⎭ ,,cBB T P n F F n ⎛⎫∂= ⎪∂⎝⎭ ,,cB B T P n U U n ⎛⎫∂= ⎪∂⎝⎭ 化学势定义为:,,c B B T P n G n μ⎛⎫∂=⎪∂⎝⎭= ,,c B T V n F n ⎛⎫∂ ⎪∂⎝⎭= ,,c B S V n U n ⎛⎫∂ ⎪∂⎝⎭= ,,cB S P n H n ⎛⎫∂ ⎪∂⎝⎭可见,偏摩尔Gibbs 自由能既是偏摩尔量又是化学势。
物理化学课后习题答案第二章

第二章2.1 1mol 理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol恒压升温p 1, V 1, T 1 p 2, V2, T 2 对于理想气体恒压过程,应用式(2.2.3)W =-p amb ΔV =-p(V 2-V 1) =-(nRT 2-nRT 1) =-8.314J2.2 2.2 1mol 1mol 水蒸气(H 2O,g)在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol H 2O(g) H 2O(l)恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p amb ΔV =-p(V l -V g ) ≈ pVg = nRT = 3.102kJ 2.3 在25℃及恒定压力下,电解1mol 水(H 2O,l),求过程的体积功。
H 2O(l) = H 2(g) + 1/2O 2(g) 解: n = 1mol H 2O(l) H 2(g) + + O 2(g) n 1=1mol 1mol + 0.5mol = n 0.5mol = n 2V 1 = V l V(H 2) + V (O V(O 2) = V2 恒温恒压化学变化过程, 应用式(2.2.3)W=-p amb ΔV =-(p 2V 2-p 1V 1)≈-p 2V 2 =-n 2RT=-3.718kJ100℃,101.325kPa25℃,101.325kPa2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ ,Wa=-4.157kJ ;而途径b 的Q b =-0.692kJ 。
求W b 解: 热力学能变只与始末态有关,与具体途径无关,故 ΔU a = ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b ∴ W b = Q a + W a -Q b = -1.387kJ2.6 4mol 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
物理化学第二章课后习题解答

第二章习题及答案2.1mol 某理想气体(11m ,mol K J 10.29−−⋅⋅=p C ),从始态(400K 、200kPa )分别经下列不同过程达到指定的终态。
试计算各过程的Q 、W 、∆U 、∆H 、及∆S 。
(1)恒压冷却至300K ;(2)恒容加热至600K ;(3)绝热可逆膨胀至100kPa ;解:(1)==111p nRT V L 63.16m 1063.1610200400314.81333=×=×××−1122V T V T =47.1263.164003001122=×=×=V T T V L 832)63.1647.12102003−=−××=∆=(外V P W kJ)400300()314.810.29(1m ,−×−×=∆=∆T nC U V kJ08.2−=,m 129.10(300400)p H nC T ∆=∆=××−2.92kJ=−kJ830=−∆=W U Q ∫=∆21d T T P T T C S =37.810.29300400−=×∫T dT J∙K -1(2)0=W )400600()314.810.29(1m ,−×−×=∆=∆T nC U V kJ16.4=,m 129.10(600400)p H nC T ∆=∆=××−5.82kJ=kJ16.4=−∆=W U Q ∫=∆21d T T V T T C S =43.8)314.810.29(600400=×−∫T dT J∙K -1(3)40.1314.810.2910.29,,=−==m V m P C C γ,γγγγ−−=122111P T P T 40.1140.1240.1140.1100200400−−=T 3282=T K=Q)400328()314.810.29(1m ,−×−×−=∆−=∆−=T nC U W V kJ50.1=)400328(314.810.291m ,−×××=∆=∆T nC H p kJ4.17−=0==∆TQ S R 12.1mol He(g)在400K 、0.5MPa 下恒温压缩至1MPa ,试计算其Q 、W 、∆U 、∆H 、∆S 、∆A 、∆G 。
简明物理化学知到章节答案智慧树2023年中国农业大学

简明物理化学知到章节测试答案智慧树2023年最新中国农业大学绪论单元测试1.下述内容不属于物理化学研究的范畴的是参考答案:核反应堆发电2.下述研究思路不属于物理化学的研究方法的是参考答案:直接从最难的问题开始研究第一章测试1.下列说法中正确是:( )。
理想气体等容过程,ΔH=2.H2和O2以2:1的摩尔比在绝热钢瓶中反应生成H2O,此过程中下面哪个表示式是正确的()参考答案:D U=03.理想气体从同一始态(P1,V1)出发,经绝热可逆压缩和恒温可逆压缩,使其终态都达到体积V2,则两过程作的功的绝对值应有( )参考答案:绝热可逆压缩功大于恒温可逆压缩功4.理想气体向真空容器中膨胀,以所有的气体作为研究体系,一部分气体进入真空容器后,余下的气体继续膨胀所做的体积功( )参考答案:W=05.化学反应A→B,A→C的焓变分别为Δr H1和Δr H2,那么化学反应B→C的焓变Δr H3为()Δr H3=-Δr H1+Δr H26.在101.325kPa,l00℃的水恒温蒸发为100℃的水蒸气。
若水蒸气可视为理想气体,由于过程等温,所以该过程D U=0。
参考答案:错7.当系统向环境传热时,系统的热力学能不一定减少。
参考答案:对8.热容是状态函数参考答案:错9.气体的热力学能和焓只是温度的函数参考答案:错10.理想气体经过等温可逆膨胀,对外所做的功数值上等于吸收的热量参考答案:对第二章测试1.∆S=∆H/T适合下列哪个过程熵变的计算()参考答案:水在100℃一个大气压下蒸发为水蒸气2.反应 CaCO3(s) == CaO(s) + CO2(g) 的D r S (T) > 0 ,则该反应的D r G(T) 将随温度的升高如何变化(假设D r H不随温度变化而变化)参考答案:减小3.液态水在100℃及101.325 kPa下蒸发成水蒸气,则该过程的(_)参考答案:D G = 04.可逆热机的热功转换效率最高,因此由可逆热机带动的火车与不可逆热机带动的火车比较参考答案:速度慢,节能5.某化学反应R→P在等压过程焓变D S与温度无关,则该过程的()参考答案:D H与温度无关6.吉布斯自由能减小的变化过程一定是自发过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 2mol 298K ,5dm 3的He(g),经过下列可逆变化:(1) 等温压缩到体积为原来的一半; (2) 再等容冷却到初始的压力。
求此过程的Q W U H S ∆∆∆、、、和。
已知=),(,g He C m p ?K -1?mol -1。
解:体系变化过程可表示为W=W 1+W 2=nRTln 12V V+0=2××298×=-3435(J)Q=Q 1+Q 2=W 1+ΔU 2=-3435+n m v C ,ΔT=-3435+n m v C ,(298-298/2)=-3435+(-3716)=-7151(J) ΔU=ΔU 1+ΔU 2=ΔU 2=-3716(J)2. ΔS=ΔS 1+ΔS 2=nRln 12V V +⎰21,TT m v TdT nC =2××+2××1-•K J 理想气体从40℃冷却到20℃,同时体积从250dm 3 变化到50dm 3。
已知该气体的m p C ,=?K -1?mol -1,求S ∆。
解:假设体系发生如下两个可逆变化过程250dm 3 等温 50dm 3 等容 50dm 340℃ ΔS 1 40℃ ΔS 2 20℃ΔS=ΔS 1+ΔS 2=nRln 12V V +⎰21,T T m v TdTnC=10Rln 25050+10×4015.2732015.273++ =(1-•K J )3. 2mol某理想气体(m p C ,= J ?K -1?mol -1)在绝热条件下由,膨胀到,求该过程的Q W U H S ∆∆∆、、、和。
解: 绝热膨胀 ∵m p C ,=11--••mol K J∴ m v C ,=1-•K J且Q=0ΔU=⎰21,T T m v dT nC =2×× W=-ΔU=2930(J)等温压缩 等容冷却4. 有一带隔板的绝热恒容箱,在隔板两侧分别充以不同温度的H 2和O 2,且V 1=V 2(见图),若将隔板抽去,试求算两种气体混合过程的S ∆(假设此两种气体均为理想气体)。
解:先由能量衡算求终温。
O 2 与 H 2均为双原子分子理想气体,故均有m v C ,=5R/2,设终温为T,则)(2,H C m v =)(2,O C m v⇒ T=整个混合过程可分以下三个过程进行:1mol,O 2, 1mol,O 2,T1mol,H 2, 1mol,H 2,T 当过程①与②进行后,容器两侧气体物质的量相同,温度与体积也相同,故压力也必然相同,即可进行过程③。
三步的熵变分别为:ΔS 1=)(2,O C m v 2.2832.288ln =⎥⎦⎤⎢⎣⎡⨯2.2832.288ln 314.8251-•K J =1-•K J5. 100g 、10℃的水与200g 、40℃的水在绝热的条件下混合,求此过程的熵变。
已知水的比热容为?K -1?g -1。
解:∵绝热混合 ∴0=+放吸Q Q吸Q =-放QC?m 1(t-t 1)=-C?m 2(t-t 2) t 为混合后的温度∴ 21002001221===--m m t t t t ⇒ t-10=2(40-t) ⇒ t=30℃=ΔS=10015.28315.303lnp C +20015.31315.303ln p C =(1-•K J )恒容ΔS 1① 恒容ΔS 2②6. 过冷CO 2(l)在-59℃时其蒸气压为,而同温度下CO 2(s)的蒸气压为。
求在-59℃、下,1mol过冷CO 2(l)变成同温、同压的固态CO 2(s)时过程的S ∆,设压力对液体与固体的影响可以忽略不计。
已知过程中放热?g -1. 解: CO 2(l) CO 2(s) -59℃,θp ΔG -59℃,θpCO 2(l) CO 2(s)-59℃,p (l) -59℃,p (s)CO 2(g) CO 2(g) -59℃,p (l) -59℃,p (s)ΔG 1≈0,ΔG 5≈0 ΔG 2=ΔG 4=0∴ ΔG=ΔG 3=⎰)()(s p l p Vdp =nRTln)()(l p s p =1××96.46530.439= ∵ ΔG=ΔH-T ΔS ΔH=×44=∴ ΔS=(ΔH-ΔG)/T=2.214)9.104(76.8339---=1-•K J7. 2molO 2(g)在正常沸点-℃时蒸发为101325Pa 的气体,求此过程的S ∆。
已知在正常沸点时O 2(l)的=∆m vap H ?K -1。
解:O 2在θp ,-℃时的饱和蒸气压为,该相变为等温可逆相变 Q=n m vap H ∆ 故ΔS=Q/T=n m vap H ∆/T=97.18215.27310820.623-⨯⨯=1511-•K J8. 1mol 水在100℃及标准压力下向真空蒸发变成100℃及标准压力的水蒸气,试计算此过程的S ∆,并与实际过程的热温熵相比较以判断此过程是否自发。
解:ΔS=TH mvap θ∆=2.3731067.403⨯=11--••mol K J向真空膨胀,W=0, Q=ΔU=ΔH-Δ)(pV =ΔH-nRT=×310×ΔG 1 ΔG 5 ΔG 2 ΔG 4 ΔG 3=1-•mol kJQ/T=2.373567.37=11--••mol K JΔS >Q/T, 所以此过程为不可逆过程9. 1molH 2O(l)在100℃,101325Pa 下变成同温同压下的H 2O(g),然后等温可逆膨胀到4104⨯Pa ,求整个过程的S ∆。
已知水的蒸发焓=∆m vap H ?K-1.解:W 1=外p ΔV=θp (水ρθOH M pnRT 2-)≈nRT=W 2=nRTln21p p =××ln 40000101325=故W=W 1+W 2= Q 1=n m vap H ∆= Q 2=W 2=故Q=Q 1+Q 2=+= ΔU 1=Q 1-W 1= ΔU=ΔU 1= ΔH 1=n m vap H ∆= ΔH 2=0故ΔH=ΔH 1+ΔH 2=ΔS 1=Q 1/T=15.3731067.403⨯=1091-•K JΔS 2=nRln 21p p =×=1-•K J故ΔS=ΔS 1+ΔS 2=1-•K J10.1mol0℃,101325Pa 的理想气体反抗恒定的外压力等温膨胀到压力等于外压力,体积为原来的10倍,试计算此过程的Q W U H S G F ∆∆∆∆∆、、、、、和。
解:W=-外p ΔV=-外p (V 2-V 1)=-外p (10V 1-V 1)=-109θp V 1==××= Q=-W=ΔU=ΔH=0 ΔS=nRln 12V V =×ln10=1-•K J ΔG=ΔH-T ΔS=≈ ΔF=ΔU-T ΔS=≈11.若-5℃时,C 5H 6(s)的蒸气压为2280Pa ,-5℃时C 6H 6(l)凝固时=∆m S -?K -1?mol -1,放热9874J ?mol -1,试求-5℃时C 6H 6(l)的饱和蒸气压为多少 解: C 6H 6(l) C 5H 6(s) -5℃,p -5℃,pC 6H 6(l) C 6H 6(s)-5℃,p (l) -5℃,p (s)C 6H 6(g) C 6H 6(g) -5℃,p (l) -5℃,p (s) ΔG 1≈0,ΔG 5≈0 ΔG 2=ΔG 4=0 ∴ ΔG=ΔG 3ΔG=ΔH-T ΔS=×=1-•mol J ΔG 3=⎰)()(s p l p Vdp =nRTln)()(l p s p =1×××ln )(2280l p = =⇒)(l p 2632Pa12.在298K 及101325Pa 下有下列相变化:CaCO 3(文石) → CaCO 3(方解石)已知此过程的=∆θmtrs G -8001-•mol J , =∆θm trs V 13-•mol cm 。
试求在298K 时最少需施加多大压力方能使文石成为稳定相解: CaCO 3(文石) CaCO 3(方解石) 298K,θp 298K,θp文石 方解石 298K,p 298K,p设298K,压力p 时,CaCO 3(文石) CaCO 3(方解石) 这个反应以可逆方式进行,ΔG 1 ΔG 3ΔG 2ΔG 1 ΔG 5 ΔG 2 ΔG 4 ΔG 3ΔG即 ΔG 2=0∴ θm trs G ∆=ΔG 1+ΔG 2+ΔG 3=⎰⎰⎰⎰-=+pp ppppppdp V dp V dp V dp V θθθθ2121=⎰=-ppdp V V θ)(21θm trs V ∆)(θp p -=×10-6×=-)101325(p 800∴=p ×108Pa13.在-3℃时,冰的蒸气压为,过冷水的蒸气压为,试求在-3℃时1mol 过冷H 2O 转变为冰的G ∆。
解: H 2O(l) H 2O(s) -3℃,p ΔG -3℃,pH 2O(l) H 2O(s)-3℃,p (l) -3℃,p (s)H 2O(g) H 2O(g) -3℃,p (l) -3℃,p (s)ΔG 1≈0,ΔG 5≈0 ΔG 2=ΔG 4=0ΔG=ΔG 3=⎰)()(s p l p Vdp =nRTln)()(l p s p =1××2.4894.475 =14.已知下有关数据如下:物质 O 2(g))(6126s O H CCO 2(g) H 2O(l) θm f H ∆/J ?K-1?mol -10 - - θB S /J ?K-1?mol -1求在标准状态下,1mo l α-右旋糖[])(6126s O H C 与氧反应的标准摩尔吉布斯自由能。
解:因为化学反应一般是在恒T 、恒V 下或者在恒T 、恒p 下进行,所以求化学反应的G ∆最基本公式应为 )(T G m r ∆=)(T H m r ∆-T )(T S m r ∆ 本题求、标准状态下α-右旋糖的氧化反应如下:ΔG 1 ΔG 5 ΔG 2 ΔG 4 ΔG 3)(6126s O H C +6)(2g O 6)(6)(22l O H g CO +故的计算式为θm r G ∆()的计算式为 θm r G ∆()=θm r H ∆×θm r S ∆据题给数据θm f H ∆=∑∆)15.298(K H m f B θυ=6θm f H ∆(H 2O,l)+6θm f H ∆(CO 2,g)- θm f H ∆(s O H C ,6126)=6×1-•mol kJ +6×1-•mol kJ -1-•mol kJ = kJ?mol-1θm r S ∆=∑)15.298(K S m B θυ=6θm S (H 2O,l)+6θm S (CO 2,g)-θm S (),(6126s O H C -6θm S (O 2,g)=11--••mol K J∴ )15.298(K G r θ∆=θm r H ∆×θm r S ∆=1-•mol kJ 1-•mol kJ=1-•mol kJ15. 生物合成天冬酰胺的θm r G ∆为-?mol -1,反应式为:天冬氨酸++4NH ATP + 天冬酰胺PPi AMP ++(无机焦磷酸) (0) 已知此反应是由下面四步完成的:天冬氨酸ATP + β-天冬氨酰腺苷酸PPi + (1)β-天冬氨酰腺苷酸++4NH 天冬酰胺AMP + (2)β-天冬氨酰腺苷酸O H 2+ 天冬氨酸AMP + (3) ATP O H 2+ AMP PPi + (4)已知反应(3)和(4)的θm r G ∆分别为-?mol -1和-?mol -1,求反应(2)的θm r G ∆值.解: 反应方程式(1)+(2)⇒(0)标准状态下θθθm r m r m r S H G ∆∆∆,,∴ θm r G ∆(1)+θm r G ∆(2)= θm r G ∆又有反应方程式2×(1)+(2)+(3)-(4)=(0)∴ 2θm r G ∆(1)+θm r G ∆(2)+θm r G ∆(3)-θm r G ∆(4)=θm r G ∆ ∴ θm r G ∆(1)+θm r G ∆(2)=2θm r G ∆(1)+θm r G ∆(2)=⇒θm r G ∆1-•mol kJ 固体碘化银AgI 有α和β两种晶型,这两种晶型的平衡转化温度为℃,由α型转化为β型时,转化热等于6462J?mol-1。