计算机组成原理实验
计算机组成原理实验(接线、实验步骤)
计算机组成原理实验(接线、实验步骤)实验⼀运算器[实验⽬的]1.掌握算术逻辑运算加、减、乘、与的⼯作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。
[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]⼀、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输⼊10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输⼊10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显⽰灯的显⽰与进位结果C的显⽰)6.改变S2S1S0的值,对同⼀组数做不同的运算,观察显⽰灯的结果。
⼆、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执⾏不同的运算[思考]M1、M2控制信号的作⽤是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输⼊时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验⼆双端⼝存储器[实验⽬的]1.了解双端⼝存储器的读写;2.了解双端⼝存储器的读写并⾏读写及产⽣冲突的情况。
计算机组成原理实验报告
实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。
二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。
先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。
(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。
7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。
四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。
本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。
计算机组成原理数据通路实验报告
计算机组成原理数据通路实验报告计算机组成原理实验报告计算机组成原理实验报告实验一基本运算器实验一、实验目的1. 了解运算器的组成结构2. 掌握运算器的工作原理3. 深刻理解运算器的控制信号二、实验设备PC机一台、TD-CMA实验系统一套三、实验原理1. (思考题)运算器的组成包括算数逻辑运算单元ALU(Arithmetic and Logic Unit)、浮点运算单元FPU(Floating Point Unit)、通用寄存器组、专用寄存器组。
①算术逻辑运算单元ALU (Arithmetic and Logic Unit)ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。
在某些CPU中还有专门用于处理移位操作的移位器。
通常ALU由两个输入端和一个输出端。
整数单元有时也称为IEU(IntegerExecution Unit)。
我们通常所说的“CPU 是XX位的”就是指ALU所能处理的数据的位数。
②浮点运算单元FPU(Floating Point Unit)FPU主要负责浮点运算和高精度整数运算。
有些FPU还具有向量运算的功能,另外一些则有专门的向量处理单元。
③通用寄存器组通用寄存器组是一组最快的存储器,用来保存参加运算的操作数和中间结果。
④专用寄存器专用寄存器通常是一些状态寄存器,不能通过程序改变,由CPU自己控制,表明某种状态。
而运算器内部有三个独立运算部件,分别为算术、逻辑和移位运算部件,逻辑运算部件由逻辑门构成,而后面又有专门的算术运算部件设计实验。
下图为运算器内部原理构造图2. 运算器的控制信号实验箱中所有单元的T1、T2、T3、T4都连接至控制总线单元的T1、T2、T3、T4,CLR都连接至CON单元的CLR按钮。
T4由时序单元的TS4提供(脉冲信号),其余控制信号均由CON单元的二进制数据开关模拟给出。
控制信号中除T4为脉冲信号外,其余均为电平信号,其中ALU_B为低有效,其余为高有效。
计算机组成原理实验2.1总线与寄存器
1) 令#R0_BUS= #DR_BUS= #SFT_BUS=1,#SW_BUS=0;启动仿 真,通过拨码开关送入总线BUS任意八位二进制数,赋值 74LS194的输入端D0D1D2D3。按照后页的逻辑功能表置位 74LS194的MR、S1、S0 、SL、SR端,观察并记录CLK端上升 沿和下降沿跳变时刻输出端Q0Q1Q2Q3的状态。
2) 令#SW_BUS=0,三态门74LS244导通,记录BUS总线上的数 据,与总线BIN相比较:
BUS_7 BUS_6 BUS_5 BUS_4 BUS_3 BUS_2 BUS_1 BUS_0 BUS总线
单位D触发器:74LS74 四位D触发器:74LS175
D触发器逻辑功能 表
【2】D触发器实验(一Fra bibliotek总线与寄存器 实验 电路图
三态门74LS244
拨码开关与总线缓冲器(注意观察74LS244左右电平)
【1】总线实验
实验步骤:
1) #SW_BUS = #R0_BUS= #DR_BUS= #SFT_BUS=1;启动仿真, 手动拨码开关在总线DIN上置位数据0x55。比较拨码开关 所在的总线DIN与总线BUS上的数据。
实验步骤:
1) 令#R0_BUS= #DR_BUS= #SFT_BUS=1, #SW_BUS=0,启动 仿真,手动拨码开关输入数据到BUS总线,改变74LS74的 D端(即BUS总线的BUS_0)状态,按照后页逻辑功能表置 位74LS74的#Sd端、#Rd端,观察并记录CLK端上升沿 、 下降沿跳变时刻的Q端和#Q端状态。
的0xAA数据存入DR。观察寄存器74LS273的输出端。 6) 再令#R0_BUS=1;观察寄存器74LS374的输出端,请比较器
计算机组成原理实验1_脱机运算器
实验一.脱机运算器部件实验一、教学计算机的通电启动和关闭操作1.教学计算机系统通电启动的操作步骤:(1) 准备一台串行接口运行正常的PC机;(2) 将TH-union计原16放在实验台上,打开实验箱的盖子,确定电源处于断开状态;(3) 将黑色的电源线一端接220V交流电源,另一端插在计原16实验箱的电源插座;(4) 取出通讯线,将通讯线的9芯插头接在计原16实验箱后板上左侧位置的串口插座,另一端接到PC机的串口上;(5) 将计原16实验系统左下方的五个黑色的功能控制开关置于00010的位置(连续、内存读指令、微程序、联机、16位),开关拨向上方表示“1”,拨向下方表示“0”;(6) 接通电源,船形开关和5V电源指示灯亮。
(7) 在PC机上运行PCEC16.EXE文件,根据使用的PC机的串口情况选“1”或“2”,其它的设置一般不用改动,直接回车即可。
(具体步骤附后)(8) 按一下“RESET”按键,再按一下“START”按键,PC机屏幕上显示:TH-union CRT MONITORVersion 1.0 April 2001Computer Architectur Lab., Tsinghua UniversityProgrammed by He Jia>这个版权信息显示出来之后,表示教学机已经进入正常运行状态,等待输入监控命令。
实验注意事项:1.连接电源线和通讯线前TH-union计原16实验系统的电源开关一定要处于断开状态,否则可能损坏教学计算机系统的或PC机的串行接口电路;2.五个黑色控制开关的功能示意图如下:开关位置,自左向右共5个,分别控制1 2 3 4 5向上拨:单步手工拨指令组合逻辑运算器联机 8位向上拨:连续读内存指令微程序运算器脱机 16位几种常用的工作方式,(开关向上拨表示为1,向下拨表示0)工作方式功能开关状态连续运行程序、硬连线控制器、联机、16位机 00110连续运行程序、微程序控制器、联机、16位机 00010单步、手拨指令、硬连线控制器、联机、16位机 11110单步、手拨指令、微程序控制器、联机、16位机 11010单步、脱机运算器实验、16位机 100002.关闭教学计算机系统在需要关闭教学计算机系统时,应首先通过安装在机箱右侧板上的开关关闭交流电源,教学机上的全部指示灯都会熄灭。
计算机组成原理实验介绍
计算机组成原理实验介绍《计算机组成原理实验介绍》1. 引言嘿,你有没有想过,当你打开电脑玩游戏或者处理文档的时候,电脑内部到底在发生着什么样神奇的事情呢?就像一个神秘的黑盒子,我们只看到了它呈现出来的效果,却不太清楚里面的构造和运行机制。
今天啊,咱们就来一起探索计算机组成原理实验的那些事儿,从最基础的概念到实际的应用,再到一些常见的问题,就像给这个神秘的黑盒子打开一道缝,好好地瞧一瞧里面的奥秘。
在这篇文章里,我们会先讲讲计算机组成原理实验的基本概念和理论背景,然后分析它的运行机制,还会看看在生活和高端技术领域的应用,也会聊聊大家对它可能存在的误解,最后再补充一些相关知识,总结一下并且展望未来。
2. 核心原理2.1基本概念与理论背景计算机组成原理啊,说白了就是研究计算机到底是由哪些部分组成的,以及这些部分是怎么协同工作的这么一门学科。
它的理论来源可以追溯到计算机诞生的时候,最早的那些计算机科学家们就开始琢磨怎么把一些基本的计算功能通过硬件组合起来。
就好比盖房子,你得先有砖头、水泥这些基本的材料(也就是计算机的各种硬件组件),然后还得知道怎么把它们搭在一起(各组件的连接和协同工作方式)。
从发展历程来看,最开始的计算机可不像现在这么小巧玲珑、功能强大。
早期的计算机那可是庞大无比,像个巨兽一样,而且功能还很单一。
随着时间的推移,计算机组成的理论不断发展,各种新的组件被发明出来,它们之间的协作也变得越来越高效。
比如说,从简单的算术逻辑单元,发展到现在复杂的中央处理器(CPU),这里面包含了无数科学家和工程师的智慧结晶。
2.2运行机制与过程分析咱们先把计算机想象成一个超级大的工厂。
首先是输入设备,这就像是工厂的原材料进货口。
比如说你敲键盘输入信息,就相当于把原材料送进了工厂。
这些原材料(数据)通过系统总线这个“传送带”,被送到了CPU 这个“加工中心”。
CPU呢,就像是工厂里最聪明的工程师,它能根据接收到的数据进行各种运算和处理。
计组实验报告(共10篇)
计组实验报告(共10篇)计组实验报告计算机组成原理实验报告一一、算术逻辑运算器1. 实验目的与要求:目的:①掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
②掌握简单运算器的数据传输通道。
③验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。
④能够按给定数据,完成实验指定的算术/逻辑运算。
要求:完成实验接线和所有练习题操作。
实验前,要求做好实验预习,掌握运算器的数据传送通道和ALU 的特性,并熟悉本实验中所用的模拟开关的作用和使用方法。
实验过程中,要认真进行实验操作,仔细思考实验有关的内容,把自己想得不太明白的问题通过实验去理解清楚,争取得到最好的实验结果,达到预期的实验教学目的。
实验完成后,要求每个学生写出实验报告。
2. 实验方案:1.两片74LS181(每片4位)以并/串联形式构成字长为8为的运算器。
2.8为运算器的输出经过一个输入双向三态门(74LS245)与数据总线相连,运算器的两个数据输入端分别与两个8位寄存器(74LS273)DR1和DR2的输出端相连,DR1和DR2寄存器是用于保存参加运算的数据和运算的结果。
寄存器的输入端于数据总线相连。
3.8位数据D7~D0(在“INPUT DEVICE”中)用来产生参与运算的数据,并经过一个输出三态门(74LS245)与数据总线相连。
数据显示灯(BUS UNIT)已与数据总线相连,用来显示数据总线上所内容。
4.S3、S2、S1、S0是运算选择控制端,由它们决定运算器执行哪一种运算(16种算术运算或16种逻辑运算)。
5.M是算术/逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算。
6.Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关。
7.ALU-B是输出三态门的控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
运算器实验-计算机组成原理
实验题目运算器实验一、算术逻辑运算器1.实验目的与要求:1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
2.掌握简单运算器的数据传送通道。
3.验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。
4.能够按给定数据,完成实验指定的算术/逻辑运算。
2.实验方案:(一)实验方法与步骤1实验连线按书中图1-2在实验仪上接好线后,仔细检查正确与否,无误后才接通电源。
每次实验都要接一些线,先接线再开电源,这样可以避免烧坏实验仪。
2 用二进制数据开关分别向DR1寄存器和DR2寄存器置数。
3 通过总线输出寄存器DR1和DR2的内容。
(二)测试结果3.实验结果和数据处理:1)SW-B=0时有效,SW-B=1时无效,因其是低电平有效。
ALU-B=0时有效,ALU-B=1时无效,因其是低电平有效。
S3,S2,S1,S0高电平有效。
2)做算术运算和逻辑运算时应设以下各控制端:ALU-B SW-B S3 S2 S1 S0 M Cn DR1 DR23)输入三态门控制端SW-B和输出三态门控制端ALU-B不能同时为“0”状态,否则存在寄存器中的数据无法准确输出。
4)S3,S2,S1,S0是运算选择控制端,有它们决定运算器执行哪一种运算;M是算术逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算;Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关;、ALU-B是输出三态门控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
SW-B是输入三态门的控制端,控制“INPUT DEVICE”中的8位数据开关D7~D0的数据是否送到数据总线BUS上。
低电平有效。
5)DR1、DR2置数完成后之所以要关闭控制端LDDR1、LDDR2是为了确保输入数据不会丢失。
6)A+B是逻辑运算,控制信号状态000101;A加B是算术运算,控制信号状态100101。
计算机组成原理实验报告精品9篇
计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。
2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。
3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。
实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。
4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。
5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。
指导-组成原理DICE-CP226实验一至五
实验指导DICE-CP226系统概述1.1 DICE-CP226特点1、采用总线结构DICE-CP226实验系统使用三组总线即地址总线ABUS、数据总线DBUS、指令总线IBUS和控制信号,CPU、主存、外设和管理单片机等部件之间通过外部数据总线传输,CPU内部则通过内部数据总线传输信息。
各部件之间,通过三态缓冲器作接口连接。
2、计算机功能模块化设计DICE-CP2226为实验者提供运算器模块ALU,众多寄存器模块(A,W,IA ,ST,MAR,R0…R3等),程序计数器模块PC,指令部件模块IR,主存模块EM,微程序控制模块〈控存〉uM,微地址计数器模块UPC,组合逻辑控制模块及I/O等控制模块。
各模块间的电源线、地线、地址总线和数据总线等已分别连通,模块内各芯片间数据通路也已连好,各模块的控制信号及必要的输出信号已被引出到主板插孔,供实验者按自己的设计进行连接。
3、智能化控制系统在单片机监控下,管理模型机运行和读写,当模型机停机时,实验者可通过系统键盘,读写主存或控存指定单元的内容,使模型机实现在线开发。
模型机运行时,系统提供单步一条微指令(微单步)、单步一条机器指令(程单步),连续运行程序及无限止暂停等调试手段,能动态跟踪数据,流向、捕捉各种控制信息。
4、提供两种实验模式①手动运行“Hand……”:通过拨动开关和发光二极管二进制电平显示,支持最底层的手动操作方式的输入/输出和机器调试。
②自动运行:通过系统键盘及液晶显示器或PC机,直接接输入或编译装载用户程序<机器码程序和微程序>,实现微程序控制运行。
5、开放性设计运算器采用了EDA技术设计,随机出厂时,已提供一套已装载的方案,能进行加、减、与、或、带进位加、带进位减、取反、直通八种运算方式,若用户不满意该套方案,可自行重新设计并通过JTAG 口下载。
用户还可以设计自己的指令/微指令系统。
系统中已带三套指令/微程序系统,用户可参照来设计新的指令/微程序系统。
计算机组成原理的实验报告
计算机组成原理的实验报告一、实验目的本次实验的主要目的是深入理解计算机组成原理中的关键概念和组件,通过实际操作和观察,增强对计算机硬件系统的认识和掌握能力。
具体包括:1、了解计算机内部各部件的工作原理和相互关系。
2、熟悉计算机指令的执行流程和数据的传输方式。
3、掌握计算机存储系统的组织和管理方法。
4、培养分析和解决计算机硬件相关问题的能力。
二、实验设备本次实验使用的设备包括计算机、逻辑分析仪、示波器以及相关的实验软件和工具。
三、实验内容1、运算器实验进行了简单的算术运算和逻辑运算,如加法、减法、与、或等操作。
观察运算结果在寄存器中的存储和变化情况。
2、控制器实验模拟了指令的取指、译码和执行过程。
分析不同指令对计算机状态的影响。
3、存储系统实验研究了内存的读写操作和地址映射方式。
考察了缓存的工作原理和命中率的计算。
4、总线实验观察数据在总线上的传输过程和时序。
分析总线竞争和仲裁的机制。
四、实验步骤1、运算器实验步骤连接实验设备,将运算器模块与计算机主机相连。
打开实验软件,设置运算类型和操作数。
启动运算,通过逻辑分析仪观察运算过程中的信号变化。
记录运算结果,并与预期结果进行比较。
2、控制器实验步骤连接控制器模块到计算机。
输入指令序列,使用示波器监测控制信号的产生和变化。
分析指令执行过程中各个阶段的状态转换。
3、存储系统实验步骤搭建存储系统实验电路。
进行内存读写操作,改变地址和数据,观察存储单元的内容变化。
分析缓存的替换策略和命中率的影响因素。
4、总线实验步骤连接总线模块,配置总线参数。
多个设备同时发送数据,观察总线的仲裁过程。
测量数据传输的时序和带宽。
五、实验结果与分析1、运算器实验结果加法、减法等运算结果准确,符合预期。
逻辑运算的结果也正确无误。
观察到在运算过程中,寄存器的值按照预定的规则进行更新。
分析:运算器的功能正常,能够准确执行各种运算操作,其内部的电路和逻辑设计合理。
2、控制器实验结果指令能够正确取指、译码和执行,控制信号的产生和时序符合指令的要求。
计算机组成原理实验(TEC-6)
【实验步骤】
3.以下是加法、减法实 验步骤
⑴设置操作模式为加法、减法实验
按一次复位按钮 CLR,微地址指示灯µA5—µA0 显示 20H。将操作模式开关设置为 SWC=1、
SWB=0、SWA=0,准备进入加法、减法实验。按一次 QD 按钮,产生一组时序信号 T1、T2、T3,
进入下一步。
⑵设置数 A
【实验分析】 1.为什么在 A 总线上出现数据 A、在 B 总线上出现数据 B 后,在数据总线 DBUS 上能够直接
观测运算的数据结果,而标志结果却在下一步才能观测到?
• 感谢阅读
图2-2,运算器实验的电路图。
• 在TEC-6模型计算机中,寄存器组由4个寄存器R0(U50)、R1(U51)、R2(U45)、R3(U46)以及2个三3输入正与门组成 (U33和U38)。4个寄存器R0、R1、R2和R3都是74LS374。R0是累加器,它的输出通过A总线送运算器的A端口;R1、R2和R3 是通用寄存器,它们的输出通过B总线送运算器的B端口。R0、R1、R2和R3从数据总线DBUS接收数据。
示灯 D7—D0 显示运算结果 A+B。按一次 QD 按钮,进入下一步。
⑸进行减法运算 微地址指示灯显示 26H。这时指示灯 C(红色)显示加法运算得到的进位 C,指示灯 Z (绿色)显示加法运算得到的结果为 0 信号。信号 SEL1=0、SEL0=1,指示将 R1 中的数据送 B 总线。信号 M=0、S3=0、S2=1、S1=1、S0=0,指示进行减法运算。ALUBUS=1,指示将运算 数据结果送数据总线 DBUS。信号 LDC=1,指示将运算后得到的进位 C 保存;信号 LDZ=1,指 示将运算后得到的结果为 0 标志保存。这时 A 总线指示灯 A7—A0 显示被减数 A,B 总线指示 灯显示减数 B,数据总线 DBUS 指示灯 D7—D0 显示运算结果 A-B。按一次 QD 按钮,进入下一 步。
计算机组成原理 实验八 简单模型计算机实验
实验八简单模型计算机实验一、实验目的1)通过实验分析简单模型机结构,了解计算机的工作原理。
2)掌握计算机微程序控制器的控制方法,掌握计算机指令执行过程二、实验原理基本整机模型数据框图如图所示,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
数据的通路从程序计数器PC的地址送到主存的地址寄存器,根据地址寄存器的内容找到相应的存储单元。
存储器中的数据是指令时,那么数据是从RAM送到总线,再从总线送到IR 中。
存储器中的数据是需要加工的数据时,那么数据是从RAM送到总线,再动总线送到通用寄存器中等待加工。
数据加工过程中,两个数据是从总线上将数据分别分时压入两个暂存器中,等待运算部件的加工,在数据加工完成以后。
运算结果是通过三太门送到总线上。
三态门的控制时由微控制器来控制。
图:模型机的数据通路图SW-G三、实验过程1.连线按实验逻辑原理图连接以下控制信号。
1)时钟单元(CLOCK UNIT)的T1-T4接到微程序控制单元(MAIN CONTROL UNIT)的T1-T4.2)手动控制开关单元(MANUAL UNIT)的KA ,KB接到指令单元(INS UNIT)的KA,KB。
3)指令单元(INS UNIT)的J(1)-J(5)、SE6-SE0、B-IR 接到的微程序控制单元(MAIN CONTROL UNIT)的J(1)-J(5)、SE6-SE0、B-IR。
4)输入/输出单元(INPUT/OUTPUT UNIT)IO-W,IO-R接到微程序控制单元(MAINCONTROL UNIT)的IO-W,IO-R,Ai接到地址单元(ADDRESS UNIT)的A0. 5)主存储器单元(MEM UNIT)M-W、M-R接到微程序控制单元(MAIN CONTROL UNIT)的M-W、M-R,A7-A0 接到地址单元(ADDRESS UNIT)的A7-A0.6)地址单元(ADDRESS UNIT)的B-AR、B-PC、PC+1、PC-B接到微程序控制单元(MAIN CONTROLUNIT)的B-AR、B-PC、PC+1、PC-B.7)通用寄存器单元(REG UNIT)的B-R、R0-B 接到微程序控制单元(MAIN CONTROLUNIT)的B-DR、DR-B。
计算机组成原理实践环节第4部分计算机组成原理实验
ALU为8位逻辑运算部件,它的输出为F0~F8,
(其中F8为进位输出)。它可有如下8种功能,具体
由开关K13、K14、K16选择: F=A+B 允许有进位输入(K9)和进位输出(L9)。 F=A+l 允许有进位输入(K9)和进位输出(L9)。 F=A∧B, F=A∨B, F=B, F=A, F=全1, F=全零。
三 存储部件实验 存储器部件实验请大家自己参考实验讲义。
使数码管的小数点全亮。
(4).实验操作: a.使K8~K16处于非有效状态。 b.置K0~K7为10010110,使74244导通
至IDB,并使74373接数。 c.置KO~K7为11110000,使74244导通,
并使74374接数。 d.关闭74244。
e.使74373输出至IDB,并写入M(6116)中。 f.使74374输出至IDB,并使74373接数。 g.读出M至IDB,并使74374接数 。 h.使74373输出至IDB,并使74377接数, L0~L7为11110000使74374输出至IDB,并使 74377接数,L0~L7为10010110。
(3). 74377、74374等D触发器,需定义它 们的NODE为REG类型(ISTYPE‘REG')。
(4). 对D触发器,需定义D端输人和时钟输 入的表达式,例对74374可如下定义:
[U374Q0...U374Q7]=[IDB0...IDB7]; [U374Q0...U374Q7].CLK=U374CK;
据。
74244为8位三态门,OE=0时,把K7~K0的数 据输入到IDB上。
74377为8位D触发器,CK为上跳有效时钟,EN 为允许输入(恒接为0),它的输出接L8~Ll5。
计算机组成原理实验报告
实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。
2.了解通用寄存器的构成和运用。
二、实验要求掌握通用寄存器R3~R0的读写操作。
三、实验原理实验中所用的通用寄存器数据通路如下图所示。
由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。
图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。
RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。
DRCK信号为寄存器组打入脉冲,上升沿有效。
准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。
图2-3-3 通用寄存器数据通路四、实验内容1.实验连线2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表。
通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表。
通用寄存器“手动/搭接”源编码④通用寄存器的读出五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。
实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能。
二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。
三、实验原理实验中所用的运算器数据通路如图2-3-1所示。
ALU运算器由CPLD描述。
运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。
计算机组成原理实验
1. 采用 Cache-Memory 存储层次。 2. 地址长度为 16 位,数据寄存器长度 16 位,存储字长是 8 位,采用小端存储模式。 3. Cache 采用二路组相联,Cache 大小为 1KB,每个字块 4 个字,字长为 2B。 4. 能根据有效地址读 Cache 和内存,把数据读入数据寄存器中;能根据有效地址把
1、 运算器由 ALU,状态寄存器,通用寄存器组成。 2、 ALU 能够进行加、减、乘、除等四则运算,与、或、非、异或等逻辑运算以及移
位求补等操作。其中乘除法要实现原码 1 位乘、补码 1 位乘(Booth)、原码加减 交替除法、补码加减交替除法 4 种算法。选作原码/补码 2 位乘算法。 3、 通用寄存器组用于保存参加运算的操作数和运算结果。 4、 状态寄存器用于记录算术、逻辑运算的结果状态。程序设计中,这些状态通常用 作条件转移指令的判断条件,所以又称为条件码寄存器。一般均设置如下几种状 态位:零标志位(Z),负标志位(N),溢出标志位(v),仅为或借位标志(C)。 【输入】从 ins_input.txt 读入。每行有一个操作码和两个操作数,用空格分开,操作数用原 码表示。 e.g. Add 0.110111 1.101110 Sub 0.100111 0.101011 Mul 1.101110 0.110111 【输出】将运算过程和结果输入到 output.txt 例如: ori_onebit_times [x]ori=1.101110 [y]ori=0.110111 x*=0.101110 y*=0.110111 0.000000 110111 + 0.101110 -------------------------------0.101110 0.010111 0 11011 + 0.101110 -------------------------------1.000101 0 0.100010 10 1101 + 0.101110 -------------------------------1.010000 10 0.101000 010 110 0.010100 0010 11 + 0.101110 -------------------------------1.000010 0010 0.100001 00010 1 + 0.101110 --------------------------------
计算机组成原理全部实验
计算机科学技术系王玉芬2012年11月3日基础实验部分该篇章共有五个基础实验组成,分别是:实验一运算器实验实验二存储器实验实验三数据通路组成与故障分析实验实验四微程序控制器实验实验五模型机CPU组成与指令周期实验实验一运算器实验运算器又称作算术逻辑运算单元(ALU),是计算机的五大基本组成部件之一,主要用来完成算术运算和逻辑运算。
运算器的核心部件是加法器,加减乘除运算等都是通过加法器进行的,因此,加快运算器的速度实质上是要加快加法器的速度。
机器字长n位,意味着能完成两个n位数的各种运算。
就应该由n个全加器构成n位并行加法器来实现。
通过本实验可以让学生对运算器有一个比较深刻的了解。
一、实验目的1.掌握简单运算器的数据传输方式。
2.掌握算术逻辑运算部件的工作原理。
3. 熟悉简单运算器的数据传送通路。
4. 给定数据,完成各种算术运算和逻辑运算。
二、实验内容:完成不带进位及带进位的算术运算、逻辑运算实验。
总结出不带进位及带进位运算的特点。
三、实验原理:1.实验电路图图4-1 运算器实验电路图2.实验数据流图图4-2 运算器实验数据流图3.实验原理运算器实验是在ALU UNIT单元进行;单板方式下,控制信号,数据,时序信号由实验仪的逻辑开关电路和时序发生器提供,SW7-SW0八个逻辑开关用于产生数据,并发送到总线上;系统方式下,其控制信号由系统机实验平台可视化软件通过管理CPU来进行控制,SW7-SW0八个逻辑开关由可视化实验平台提供数据信号。
(1)DR1,DR2:运算暂存器,(2)LDDR1:控制把总线上的数据打入运算暂存器DR1,高电平有效。
(3)LDDR2:控制把总线上的数据打入运算暂存器DR2,高电平有效。
(4)S3,S2,S1,S0:确定执行哪一种算术运算或逻辑运算(运算功能表见附录1或者课本第49页)。
(5)M:M=0执行算术操作;M=1执行逻辑操作。
(6)/CN :/CN=0表示ALU运算时最低位加进位1;/CN=1则表示无进位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3 MIPS指令系统和MIPS体系结构
一.实验目的
(1)了解和熟悉指令级模拟器
(2)熟悉掌握MIPSsim模拟器的操作和使用方法
(3)熟悉MIPS指令系统及其特点,加深对MIPS指令操作语义的理解(4)熟悉MIPS体系结构
二. 实验内容和步骤
首先要阅读MIPSsim模拟器的使用方法,然后了解MIPSsim的指令系统。
(1)、启动MIPSsim
(2)、选择“配置”->“流水方式”选项,使模拟器工作在非流水方式。
(3)、参照使用说明,熟悉MIPSsim模拟器的操作和使用方法。
(4)、选择“文件”->“载入程序”选项,加载样例程序 alltest.asm,然后查看“代码”窗口,查看程序所在的位置。
(5)、查看“寄存器”窗口PC寄存器的值:[PC]= 0x00000000 。
(6)、执行load和store指令,步骤如下:
1)单步执行一条指令(F7)。
2)下一条指令地址为 0x00000004 ,是一条有(有,无)符号载入字节 (字节,半字,字)指令。
3)单步执行一条指令(F7)。
4)查看R1的值,[R1]=-128。
5)下一条指令地址为 0x00000008 ,是一条(有,无)符号载入字(字节,半字,字)指令。
6)单步执行1条指令。
7)查看R1的值,[R1]=128。
8)下一条指令地址为 0x0000000C ,是一条无(有,无)符号载入字(字节,半字,字)指令。
9)单步执行1条指令。
10)查看R1的值,[R1]=128。
11)单步执行1条指令。
12)下一条指令地址为 0x00000014 ,是一条保存字(字节,半字,字)指令。
13)单步执行一条指令。
14)查看内存BUFFER处字的值,值为0x00000018 。
(7)、执行算术运算类指令。
步骤如下:
1)双击“寄存器”窗口中的R1,将其值修改为2。
2)双击“寄存器”窗口中的R2,将其值修改为3。
3)单步执行一条指令。
4)下一条指令地址为 0x00000020 ,是一条加法指令。
5)单步执行一条指令。
6)查看R3的值,[R3]=5。
7)下一条指令地址为 0x00000024 ,是一条乘法指令。
8)单步执行一条指令。
9)查看LO、HI的值,[LO]=0x0000000000000006,[HI]= 0x0000000000000000 。
(8)、执行逻辑运算类指令。
步骤如下:
1)双击“寄存器”窗口中的R1,将其值修改为0XFFFF0000。
2)双击“寄存器”窗口中的R2,将其值修改为0XFF00FF00。
3)单步执行一条指令。
4)下一条指令地址为 0x00000030 ,是一条逻辑与运算指令,第二个操作数寻址方式是立即数寻址(寄存器直接寻址,立即数寻址)。
5)单步执行一条指令。
6)查看R3的值,[R3]=0x00000000FF000000 。
7)下一条指令地址为 0x00000034 ,是一条逻辑或指令,第二个操作数寻址方式是寄存器直接寻址(寄存器直接寻址,立即数寻址)。
8)单步执行一条指令。
9)查看R3的值,[R3]= 0x0000000000000000 。
(9)、执行控制转移类指令。
步骤如下:
1)双击“寄存器”窗口中R1,将其值修改为2。
2)双击“寄存器”窗口中R2,将其值修改为2。
3)单步执行一条指令。
4)下一条指令地址为0x00000040 ,是一条BEQ指令,其测试条件是R0值为空。
5) 单步执行1条指令。
6) 查看PC的值,[PC]= 0x0000004C ,表明分支成功(成功,失败)。
7) 一条指令是一条BGEZ指令,其测试条件是大于或等于零,目标地址为
0x00000058。
8) 单步执行1条指令。
9) 查看PC的值,[PC]= 0x00000058 ,表明分支成功(成功,失败)。
10) 下一条指令是一条BGEZAL指令,其测试条件是小于或等于零转移,目标地址为0x00000064。
11) 单步执行1条指令。
12) 查看PC的值,[PC]= 0x00000064 ,表明分支成功(成功,失败);查看R31的值,[R31]= 92 。
13) 单步执行1条指令。
14)查看R1的值,[R1]=116。
15)下一条指令地址为 0x00000068,是一条JALR指令,保存目标地址的寄存器为R1 ,保存返回地址的目标寄存器为R3。
16)单步执行1条指令。
17)查看PC和R3的值,[PC]= 0x00000074,[R3]=108。
三、实验结果分析
机器语言是由一条条语句构成的,每条语句都能表达某种语义,计算机就是连续执行每一条机器语句而实现全自动工作的,人们习惯把每条机器语言的语句称机器指令,计算机使用者根据机器指令所描述的的机器功能,能很清楚的知道计算机内部寄存器存储器的结果,以及计算机直接支持的各种数据类型,一句机器提供的指令系统,来执行相应操作。
1.模拟器启动时,自动将自己初始化为默认状态。
所设置的默认值为:
①所有通用寄存器和浮点寄存器全为0,内存清零;
②流水寄存器全为0;
③清空时钟图、断点、统计数据;
④内存大小为4096字节;
⑤载入起始地址为0;
⑥浮点加法、乘法、除法部件的个数均为1;
⑦浮点加法、乘法、除法运算延迟分别为6、7/10个时钟周期;
⑧采用流水方式,不采用定向机制;
⑨不采用延迟槽,采用符号地址;
⑩采用绝对周期计数。
2.代码窗口
地址:以十六进制的形式给出。
内存是按字节寻址的,每条指令占4个字节。
当采用符号地址时,会在相应的位置给出汇编程序中出现的标号;
断点标记:如果在该指令处设有断点,则显示相应的标记。
断点标记的形式为B.X(X为段名),表示该断点是设置在该指令的“X”段。
例如,若某行的断点标记为“B.EX”,则表示在该指令的EX段设置了断点;当模拟器工作在非流水方式下,断点的标记为B。
机器码:该行所对应的指令的十六进制机器码。
若该行无指令,则仅仅显示4字节数据;
流水段标记:表示当该指令正在执行时,它在当前周期该指令所处的流水段。
当模拟器工作在非流水方式下时,它没有意义;
符号指令:机器代码所对应的符号指令。
3.寄存器窗口
寄存器窗口显示MIPSsim模拟器中的寄存器的内容。
共有4组寄存器:通用寄存器、浮点寄存器、特殊寄存器和流水寄存器,分为4栏来显示。
每一栏分别有各自的数据格式选项。
通用寄存器:MIPSsim有三32个64位通用寄存器:R0、R1、R2、...、R31。
它们被简称为GPRs(General-Purpose Registers),有时也被称为整数寄存器。
R0的值永远是0。
通过数据格式选项,可以选择显示的格式有十进制和十六进制。
浮点寄存器:共有32个64位浮点数寄存器:F0、F1、F2、...、F31。
它们被简称为FPRs(Floating-Point Registers)。
它们既可以用来存放32个单精度浮点数(32)位,也可以用来存放32个双精度浮点数(64位)。
存储单精度浮点数(32位)时,只用到FPRs的一半,另一半没用。
特殊寄存器:PC-程序计数器(32位);LO-乘法寄存器的低位;HI-乘法寄存器的高位;FCSR-浮点状态寄存器。
流水寄存器:
IF/ID.IR:流水段IF与ID之间的指令寄存器;
IF/ID.NPC:流水段IF与ID之间的下一指令程序计数器;
ID/EX.A:流水段ID与EX之间的第一操作数寄存器;
ID/EX.B:流水段ID与EX之间的第二操作数寄存器;
ID/EX.Imm:流水段ID与EX之间的立即数寄存器;
ID/EX.IR:存放IF/ID.IR传来的指令;
EX/MEM.ALUo:流水段EX与MEM之间的ALU计算结果寄存器;
EX/MEM.IR:存放从ID/EX.IR传来的指令;
MEM/WB.LMD:流水段MEM与WB之间的数据寄存器,用于存放从存储器读出的数据;
MEM/WB.ALUo:存放从EX/MEM.ALUo传来的计算结果;
MEM/WB.IR:存房从EX/MEM.IR传过来的指令。
四.实验心得
更进一步了解计算机是通过哪些方式将人们所想要执行的操作进行转化后进而得到结果,计算机通过连续执行每一条机器语句来实现相应结果。