计算机组成原理实验五
计算机组成原理实验报告
3)在增大合法码的码距时,所有码的码距应尽量均匀增大,以保证对所有码的检错能力平衡提高。
下面具体看一下对一个字节进行海明编码的实现过程。
只实现一位纠错两位检错,由前面的表可以看出,8位数据位需要5位校验位,可表示为H13H12…H2H1。
0
0
1
1
0
0
1
1
0
S1
0
0
1
0
1
0
1
0
1
0
1
0
1
由此可得校验后的数据位表达式为:
D1=D1 (S1•S2• • •S5)
D2=D2 (S1• •S3• •S5)
D3=D3 ( •S2•S3• •S5)
D4=D4 (S1•S2•S3• •S5)
D5=D5 (S1• • •S4•S5)
D6=D6 ( •S2• •S4•S5)
答:我们认为16位数据位的编码原理与8位数据位的hamming编码原理基本相同。即:,在k个数据位之外加上r个校验位,从而形成一个k+r位的新的码字,使新的码字的码距比较均匀地拉大。把数据的每一个二进制位分配在几个不同的偶校验位的组合中,当某一位出错后,就会引起相关的几个校验位的值发生变化,这不但可以发现出错,还能指出是哪一位出错,为进一步自动纠错提供了依据。
《计算机组成原理》
实验报告
实验室名称:S402
任课教师:邹洋
小组成员:王娜任芬
学号:2010212121 2010212119
实验一_Hamming码2
实验二_乘法器7
计算机组成原理实验报告
计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。
实验一,逻辑门电路实验。
在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。
逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。
在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。
实验二,寄存器和计数器实验。
在本次实验中,我们学习了寄存器和计数器的原理和应用。
寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。
通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。
实验三,存储器实验。
在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。
通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。
实验四,指令系统实验。
在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。
通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。
实验五,CPU实验。
在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。
通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。
实验六,总线实验。
在本次实验中,我们学习了计算机的总线结构和工作原理。
通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。
结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。
通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。
希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。
计算机组成原理实验五报告
实验报告课程计算机组成原理姓名学号实验项目微程序控制单元实验同组姓名学号指导教师专业班级计算机科学与技术09实验时间2011-6-20实验五 微程序控制单元实验一、实验目的⒈掌握时序产生器的组成方式。
⒉熟悉微程序控制器的原理。
⒊掌握微程序编制及微指令格式。
二、实验要求按照实验步骤完成实验项目,熟悉微程序的编制、写入、观察运行状态。
三、实验原理⒈微程序控制电路微程序控制器的组成见图7-7-1,其中控制存储器采用4片6116静态存储器,微命令寄存器32位,用三片8D触发器(273)和一片4D(175)触发器组成。
微地址寄存器6位,用三片正沿触发的双D触发器(74)组成,它们带有清零端和置位端。
在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令地址。
当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过置位端将某一触发器输出端置为“1”状态,完成地址修改。
⒉微指令格式表7-7-1M25M24M23M22M21中断M19M18M17M16M15M14M13M12M11M10M9M8C B A AR保留位PX3A9A8CE LOAD CN M S0S1S2S3PX2LDARM7M6M5M4M3M2876543M1M0 LDPC LDIR LDDR2LDDR1LDR0WE UA0UA1UA2UA3UA4UA5PX1SW-BA 字段B 字段⒊ 微程序流程与代码图7-7-3为几条机器指令对应的参考微程序流程图,将全部微程序按微指令格式变成二进制代码,可得到模型机(一)所列举的8位指令代码。
图7-7-3 微程序流程图中断M9M1PX3PX2PX1选择测试字关闭测试001P (1)识别操作码010P (2)判寻址方式011P (Z)Z 标志测试100P (I)中断响应101P (D)中断服务11P (C)C 标志测试111保留位图7-7-1 微控制器其中UA5~UA0为6位的后续微地址,A 、B 二译码字段,分别由6个控制位译码输出多位。
运算器实验实验报告(计算机组成原理)
运算器实验实验报告(计算机组成原理)西安财经学院信息学院《计算机组成原理》实验报告实验名称运算器实验实验室实验楼 418实验日期第一部分8 位算术逻辑运算实验一、实验目的 1、掌握算术逻辑运算器单元 ALU(74LS181)的工作原理。
2、掌握简单运算器的数据传送通路组成原理。
3、验证算术逻辑运算功能发生器 74LSl8l 的组合功能。
4、按给定数据,完成实验指导书中的算术/逻辑运算。
二、实验内容 1 、实验原理实验中所用的运算器数据通路如图 1-1 所示。
其中运算器由两片 74LS181以并/串形成 8 位字长的 ALU 构成。
运算器的输出经过一个三态门 74LS245(U33)到内部数据总线 BUSD0~D7 插座 BUS1~2 中的任一个(跳线器JA3 为高阻时为不接通),内部数据总线通过 LZD0~LZD7 显示灯显示;运算器的两个数据输入端分别由二个锁存器 74LS273(U29、U30)锁存,两个锁存器的输入并联后连至内部总线BUS,实验时通过 8 芯排线连至外部数据总线 E_D0~D7 插座E_J1~E_J3 中的任一个;参与运算的数据来自于 8 位数据开并KD0~KD7,并经过一三态门 74LS245(U51)直接连至外部数据总线 E_D0~E_D7,通过数据开关输入的数据由 LD0~LD7 显示。
图 1-1 中算术逻辑运算功能发生器 74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M 并行相连后连至 6 位功能开关,以手动方式用二进制开关 S3、S2、S1、S0、CN、M 来模拟74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M;其它电平控制信号 LDDR1、LDDR2、ALUB`、SWB`以手动方式用二进制开关 LDDR1、LDDR2、ALUB、SWB 来模拟,这几个信号姓名学号班级年级指导教师李芳有自动和手动两种方式产生,通过跳线器切换,其中ALUB`、SWB`为低电平有效,LDDR1、LDDR2 为高电平有效。
计算机组成原理实验报告
实验一报告内容实验题目:运算器实验实验目的: 1、掌握简单运算器的数据传输方式 2、验证运算功能发生器( 74LS181)及进位控制的组合功能。
实验要求:完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用。
实验器材:电子试验箱运算器组成框图:ALU的功能图实验原理:实验中所用的运算器原理如图1-1所示。
其中运算器山两片74LS181以并/串形式构8位字长的ALU。
运算器的输出经过一个三态门(74LS245)和数据总线相连’运算器的两个数据输入端分别由-个锁存器(74LS273)锁存,锁存器的输入已连至数据总线,数据丌关(INPUT UNIT)用来给出参与运算的数据,经一三态门(74LS245)和数据总线相连,数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内容。
本实验装置的控制线(CTR-IN UNIT)应与(CTR-OUT UNIT)相连,数据总线、时序电路( TIME UNIT)产生的脉冲信号(T1-T4)、P(1)、P(2)、P(3)本实验装置已作连接, ( CLK UNIT)必须选择一档合适的时钟,其余均为电平控制信号(HC-UNIT)。
进行实验时,首先按动位于本实验装置右中则的复位按钮使系统进入初始待令状态,在LED显示器闪动出现“P.”的环境下,按动增址命令键使LED显示器自左向右第一位显示提示符H”,表示本装置已进入手动单元实验状态,在该状态下按动单步命令键,即可获得实验所需的单脉冲信号,而各电平控制信号用位于LED显示器左方的K25~KO二进制数据开关来模拟。
在进行手动实验时,必须先预置开关电平:,Load=l, /CE- 1,其余开关控制信号电平均置为0,这在以后手动实验时不再说明,敬请注意。
实验连接:按上图实验线路作以下连接:1、八付运算器控制信号连接:位于实验装置左上方的控制信号(CrR_OLff UNIT)中的(S3、S2. S1. SO.M、/CN. LDDRl. LDDR2. LDCZY. C、B.A)与位于实验装置右中方的(CTR-IN UNIT)、位于实验装置左中方的(UPC UNIT)、位于右J二方的(艮UNIT)作对应连接。
计算机组成原理 实验报告
计算机组成原理实验报告计算机组成原理实验报告引言计算机组成原理是计算机科学与技术专业中的一门重要课程,通过实验学习可以更好地理解和掌握计算机的基本原理和结构。
本实验报告将介绍我在学习计算机组成原理课程中进行的实验内容和实验结果。
实验一:二进制与十进制转换在计算机中,数据以二进制形式存储和处理。
通过这个实验,我们学习了如何将二进制数转换为十进制数,以及如何将十进制数转换为二进制数。
通过实际操作,我更深入地了解了二进制与十进制之间的转换原理,并且掌握了转换的方法和技巧。
实验二:逻辑门电路设计逻辑门电路是计算机中的基本组成部分,用于实现不同的逻辑运算。
在这个实验中,我们学习了逻辑门的基本原理和功能,并通过电路设计软件进行了实际的电路设计和模拟。
通过这个实验,我深入理解了逻辑门电路的工作原理,并且掌握了电路设计的基本方法。
实验三:组合逻辑电路设计组合逻辑电路是由多个逻辑门组合而成的电路,用于实现复杂的逻辑功能。
在这个实验中,我们学习了组合逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了多个逻辑门的组合。
通过这个实验,我进一步掌握了逻辑电路设计的技巧,并且了解了组合逻辑电路在计算机中的应用。
实验四:时序逻辑电路设计时序逻辑电路是由组合逻辑电路和触发器组合而成的电路,用于实现存储和控制功能。
在这个实验中,我们学习了时序逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了存储和控制功能。
通过这个实验,我进一步了解了时序逻辑电路的工作原理,并且掌握了时序逻辑电路的设计和调试技巧。
实验五:计算机指令系统设计计算机指令系统是计算机的核心部分,用于控制计算机的操作和运行。
在这个实验中,我们学习了计算机指令系统的设计原理和方法,并通过实际的指令系统设计和模拟,实现了基本的指令功能。
通过这个实验,我深入了解了计算机指令系统的工作原理,并且掌握了指令系统设计的基本技巧。
实验六:计算机硬件系统设计计算机硬件系统是由多个模块组成的,包括中央处理器、存储器、输入输出设备等。
计算机组成原理综合实验报告
计算机组成原理综合实验报告一、实验目的本次计算机组成原理综合实验旨在深入理解计算机组成的基本原理,通过实际操作和设计,巩固所学的理论知识,并培养实践动手能力和创新思维。
二、实验设备本次实验所使用的设备包括计算机硬件实验平台、数字逻辑实验箱、示波器、万用表等。
三、实验内容1、运算器实验设计并实现一个简单的运算器,能够完成加法、减法、乘法和除法运算。
通过实验,深入理解运算器的工作原理,包括数据的输入、运算过程和结果的输出。
2、控制器实验构建一个基本的控制器,实现指令的读取、译码和执行过程。
了解控制器如何控制计算机的各个部件协同工作,以完成特定的任务。
3、存储系统实验研究计算机的存储系统,包括主存和缓存的工作原理。
通过实验,掌握存储单元的读写操作,以及如何提高存储系统的性能。
4、输入输出系统实验了解计算机输入输出系统的工作方式,实现与外部设备的数据传输。
四、实验步骤1、运算器实验步骤(1)确定运算器的功能和架构,选择合适的逻辑器件。
(2)连接电路,实现加法、减法、乘法和除法运算的逻辑。
(3)编写测试程序,输入不同的数据进行运算,并观察结果。
2、控制器实验步骤(1)分析控制器的工作流程和指令格式。
(2)设计控制器的逻辑电路,实现指令的译码和控制信号的生成。
(3)编写测试程序,验证控制器的功能。
3、存储系统实验步骤(1)连接存储单元,设置地址线、数据线和控制线。
(2)编写读写程序,对存储单元进行读写操作,观察数据的存储和读取情况。
(3)通过改变缓存策略,观察对存储系统性能的影响。
4、输入输出系统实验步骤(1)连接输入输出设备,如键盘、显示器等。
(2)编写程序,实现数据的输入和输出。
(3)测试输入输出系统的稳定性和可靠性。
五、实验结果1、运算器实验结果通过测试程序的运行,运算器能够准确地完成加法、减法、乘法和除法运算,结果符合预期。
2、控制器实验结果控制器能够正确地译码指令,并生成相应的控制信号,使计算机各个部件按照指令的要求协同工作。
计算机组成原理实验报告精品9篇
计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。
2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。
3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。
实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。
4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。
5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。
计算机组成原理实验报告
当x≥0时;x原=x;当x≤0时;x原=2^n-1-x或2^n-1+|x|;“^”表示指数..
B反码
1.如果真值是正数;反码的最高位为“0”;其余各位与真值的对应位相同;
2.如果真值是负数;反码的最高位为“1”;其余各位将真值的各位取反;
5.如果两个操作数没有超出补码的表示范围;而运算结果超出补码的表示范围;称为“溢出”;结果大于补码的表示范围的上限;称为“上溢”;结果小于补码的表示范围的上限;称为“下溢”..
6.通常有两种判断溢出的方法;一是双符号位法;即两个操作数以及结果均用两个符号位变形补码;如果结果的两个符号位一致;表示没有溢出;如果不一致;表示溢出..最高的一位始终表示运算结果的正确的符号:0为正或上溢;1为负或下溢..
1.乘数最低位的后面增加一个附加位;初值为0..在运算过程中;和乘数一起做右移..
2.为防止溢出;设三个符号位;在运算过程中;最高位才表示真正的符号..
3.每一步加的值取决于移位后的乘数寄存器的最低两位和附加位的值..
4补码一位乘法运算
1.乘数和被乘数都以补码表示本程序允许数值位4位;符号位一位;运算结果也是补码..运算过程中;为防止溢出;加法器需使用两位符号位..
图 1-1 静态 RAM 6264的电路
由于地址寄存器为 8位;故接入 6264的地址为 A0~A7;而高 4位 A8~A12接地;所以其实际使用容量为 256 字节..6264 有四个控制线:CS1 第一片选线、CS2 第二片选线、OE读线、WE写线..其功能如表 1-1所示..CS1片选线由 CE`控制对应开关 CE、OE读线直接接地、WE写线由 W/R`控制对应开关 WE、CS2直接接+5V..图中信号线 LDAR由开关 LDAR提供;手动方式实验时;跳线器 LDAR拨在左边;脉冲信号 T3由实验机上时序电路模块 TS3提供;实验时只需将 J22跳线器连上即可;T3的脉冲宽度可调..
指导-组成原理DICE-CP226实验一至五
实验指导DICE-CP226系统概述1.1 DICE-CP226特点1、采用总线结构DICE-CP226实验系统使用三组总线即地址总线ABUS、数据总线DBUS、指令总线IBUS和控制信号,CPU、主存、外设和管理单片机等部件之间通过外部数据总线传输,CPU内部则通过内部数据总线传输信息。
各部件之间,通过三态缓冲器作接口连接。
2、计算机功能模块化设计DICE-CP2226为实验者提供运算器模块ALU,众多寄存器模块(A,W,IA ,ST,MAR,R0…R3等),程序计数器模块PC,指令部件模块IR,主存模块EM,微程序控制模块〈控存〉uM,微地址计数器模块UPC,组合逻辑控制模块及I/O等控制模块。
各模块间的电源线、地线、地址总线和数据总线等已分别连通,模块内各芯片间数据通路也已连好,各模块的控制信号及必要的输出信号已被引出到主板插孔,供实验者按自己的设计进行连接。
3、智能化控制系统在单片机监控下,管理模型机运行和读写,当模型机停机时,实验者可通过系统键盘,读写主存或控存指定单元的内容,使模型机实现在线开发。
模型机运行时,系统提供单步一条微指令(微单步)、单步一条机器指令(程单步),连续运行程序及无限止暂停等调试手段,能动态跟踪数据,流向、捕捉各种控制信息。
4、提供两种实验模式①手动运行“Hand……”:通过拨动开关和发光二极管二进制电平显示,支持最底层的手动操作方式的输入/输出和机器调试。
②自动运行:通过系统键盘及液晶显示器或PC机,直接接输入或编译装载用户程序<机器码程序和微程序>,实现微程序控制运行。
5、开放性设计运算器采用了EDA技术设计,随机出厂时,已提供一套已装载的方案,能进行加、减、与、或、带进位加、带进位减、取反、直通八种运算方式,若用户不满意该套方案,可自行重新设计并通过JTAG 口下载。
用户还可以设计自己的指令/微指令系统。
系统中已带三套指令/微程序系统,用户可参照来设计新的指令/微程序系统。
计算机组成原理实验报告
计算机组成原理实验报告计算机组成原理实验报告姓名:专业:计算机科学与技术学号:计算机组成原理实验(⼀)实验题⽬:时标系统的设置和组合成绩:⼀、实验⽬的1、了解时标系统的作⽤2、会设计、组装简单的时标发⽣器⼆、实验内容参照时标系统的设计⽅法,⽤组合逻辑⽅法设计⼀个简单的节拍脉冲发⽣器,产⽣图1-6所⽰的节拍脉冲,并⽤单脉冲验证设计的正确性。
在实验报告中画出完整电路,写出1W 、0W 和1N 的表达式。
图1-6 简单的节拍脉冲发⽣器⼀周期的波形设计提⽰:1、由波形图求出节拍脉冲1W 和0W 的表达式,进⽽组合成1N 的表达式。
2、注意节拍电平1T 和0T 的翻转时刻应在0M 下降沿与M 的上升沿同时出现的时刻。
3、注意D 触发器的触发翻转要求。
三、实验仪器及器材1、计算机组成原理实验台和+5V 直流稳压电源2、集成电路由附录A “集成电路清单”内选⽤四、实验电路原理(实验电路原理图)时标系统主要由时钟脉冲发⽣器、启停电路和节拍脉冲发⽣器三部分组成成,结构如图1-1所⽰。
图1-1 时标系统组成1、时钟脉冲发⽣器主要由振荡电路、分频电路组成,其作⽤是产⽣⼀定频率的时钟脉冲,作为计算机中基准时钟信号。
如图1-2所⽰。
图1-2 时钟脉冲发⽣器组成2、启停电路计算机是靠⾮常严格的节拍脉冲,按时间的先后次序⼀步⼀步地控制各部件⼯作的,所以,机器启停的标志是有⽆节拍脉冲,⽽控制节拍脉冲按⼀定的时序发⽣和停⽌,不能简单地⽤电源开关来实现。
如图1-3所⽰。
图1-3 简单的启停电路为了使机器可靠地⼯作,要求启停电路在机器启动或停机时,保证每次从规定的第⼀个脉冲开始启动,到最后⼀个脉冲结束才停机,并且必须保证第⼀个和最后⼀个脉冲的波形完整。
如图1-4所⽰。
图1-4 利⽤维持阻塞原理的启停电路3、节拍脉冲发⽣器节拍脉冲发⽣器的作⽤是产⽣⼀序列的节拍电平和⼯作脉冲。
节拍电平是保证计算机微操作的时序性,⼯作脉冲是各寄存器数据的打⼊脉冲。
计算机组成原理实验
计算机组成原理实验报告(一) 1.1基本运算器实验一、实验目的:运算器ALU的组成结构及工作原理二、实验内容:使用PC机一台,TD-CMA实验系统一套完成对算术逻辑单元ALU的验证实验三、实验步骤:1 、连线:按照实验电路连线,检查无误后,合上开关。
2、存数:分别向运算器A、B存入相应的二进制数(此数可以自定)。
3、置位:置ALU_B=0,LDA=0,LDB=0,准备验证。
4、验证:按照实验手册上的表格分别置位 S3、S2、S1、S0和控制位 CN,观察实验系统上验证结果(由CPU内总线显示运算结果),以及进位标志FC,零标志FZ的状态。
四、实验结果:1、实验连线图:2、实验数据:运算类型逻辑运算A B S3 S2 S1 S0 CNXXXXX结果65656565656565A7A7A7A7A7A7A71111111111F=(65)FC=(0)FZ=(0)F=(A7)FC=(0)FZ=(0)F=(25)FC=(0)FZ=(0)F=(E7)FC=(0)FZ=(0)F=(65)FC=(0)FZ=(0)F=(32)FC=(0)FZ=(0)F=(32)FC=(0)FZ=(0)移位运算165 65 A7A71111111F=(CA)FC=(0)FZ=(0)F=(CA)FC=(0)FZ=(0)65 65 65 A7A7A71111111XXXF=(0C)FC=(1)FZ=(0)F=(66)FC=(1)FZ=(0)F=(64)FC=(0)FZ=(0)算术运算图 1-1五:实验分析:原理分析:由于计算机算术逻辑单元ALU内嵌了相应的逻辑,移位,算是运算功能部件,并且控制型号位S3、S2、S1、S0和控制位CN共同决定ALU实现什么样的运算功能,任何时候,多路选择开关只选择三部件的结果作为ALU的输出,当中,若有影响进位的运算,还将置进位标志FC,爱运算结果输出前,我们需要置零标志位。
错误分析:在按照实验电路连线的时候,由于某些实线在输入输出没有相互对应,导致最终的CPU内总线显示运算结果与进位标志有些许的错误,经检查纠正过后,最终验证结果如上图1-1。
计算机组成原理实验实验五
实验报告课程名称计算机组成原理部件实验实验项目实验五微程序控制器组成实验系别___ _计算机学院 _ ______专业___ 计算机科学与技术 ___班级/学号___计科1601/2016011155___学生姓名 ______罗坤__ ________实验日期_(2018年5月24日)成绩_______________________指导教师吴燕实验五微程序控制器组成实验一.实验目的1)了解微程序控制器的结构组织与工作原理2)了解微程序控制器的工作过程3)了解机器指令和微指令之间的关系4)掌握控制台指令的使用方法5)学会编写ADD与STA两条指令的微程序二.实验电路三.实验设备1)数据通路板(B板),控制信号板(A板),微程序控制板(C板)四.实验内容将下述程序,利用控制台指令WM,写入储存器M2114,按2.7小结的微程序流程图执行,观察其工作流程,理解计算机内机器指令的执行过程。
10H 0 1 0 0 0 0 0 1 LDI 06H,R1 06H→R1 11H 0 0 0 0 0 1 1 012H 0 1 0 0 0 0 1 0 LDI 03H,R2 03H→R2 13H 0 0 0 0 0 0 1 114H 1 1 0 1 0 1 1 0 ADD R1,R2 (R1)+(R2)→R2 15H 0 0 0 0 0 1 1 0 STA X0,18,R2 (R2)→M18 16H 0 0 0 1 1 0 0 017H 0 1 1 1 0 0 0 0 HLT 停机五.实验数据μAR=00SW=11H(SW)→BUS,BUS→IRK QD(T4)μAR=01,TJ=1SW=10H(SW)→BUS,BUS→PCK QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1SW=41H(SW)→BUS,BUS→DR1K QD(T4)μAR=53,TJ=1(DR1)→BUS,BUS→RAM,(PC)+1K QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1SW=06H(SW)→BUS,BUS→DR1K QD(T4)μAR=53,TJ=1(DR1)→BUS,BUS→RAM,(PC)+1 K QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1SW=42H(SW)→BUS,BUS→DR1K QD(T4)μAR=53,TJ=1(DR1)→BUS,BUS→RAM,(PC)+1 K QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1SW=03H(SW)→BUS,BUS→DR1K QD(T4)μAR=53,TJ=1(DR1)→BUS,BUS→RAM,(PC)+1 K QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1SW=D6H(SW)→BUS,BUS→DR1K QD(T4)μAR=53,TJ=1(DR1)→BUS,BUS→RAM,(PC)+1 K QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1SW=06H(SW)→BUS,BUS→DR1K QD(T4)μAR=53,TJ=1(DR1)→BUS,BUS→RAM,(PC)+1 K QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1SW=18H(SW)→BUS,BUS→DR1K QD(T4)μAR=53,TJ=1(DR1)→BUS,BUS→RAM,(PC)+1 K QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1SW=70H(SW)→BUS,BUS→DR1K QD(T4)μAR=53,TJ=1(DR1)→BUS,BUS→RAM,(PC)+1 K QD(T4)μAR=00SW=00H(SW)→BUS,BUS→IRK QD(T4)μAR=01,TJ=1SW=10H(SW)→BUS,BUS→PCK QD(T4)μAR=02(PC)→ARK QD(T4)μAR=03,TJ=1(SW)→BUS,BUS→DR1K QD(T4)μAR=50,TJ=1(DR1)→BUS,BUS→PCK QD(T4)μAR=580→INIRK QD(T4)μAR=57(PC)→AR,(PC)+1K QD(T4)μAR=56RAM→BUS,BUS→IRK QD(T4)μAR=14(PC)→AR,(PC)+1K QD(T4)μAR=08RAM→BUS,BUS→Rd (R1=06H)K QD(T4)μAR=57(PC)→AR,(PC)+1K QD(T4)μAR=56RAM→BUS,BUS→IRK QD(T4)μAR=14(PC)→AR,(PC)+1K QD(T4)μAR=08RAM→BUS,BUS→Rd (R2=03H)K QD(T4)μAR=57(PC)→AR,(PC)+1K QD(T4)μAR=56RAM→BUS,BUS→IRK QD(T4)μAR=1D(Rs)→BUS,BUS→DR2K QD(T4)μAR=0D(Rd)→BUS,BUS→DR1K QD(T4)μAR=2D(DR1)+(DR2)→BUS→Rd (SW=09H→R2) K QD(T4)μAR=57(PC)→AR,(PC)+1K QD(T4)μAR=56RAM→BUS,BUS→IRK QD(T4)μAR=21(Rd)→BUS,BUS→RAM (R2=09H→M18) K QD(T4)μAR=57(PC)→AR,(PC)+1K QD(T4)μAR=56RAM→BUS,BUS→IRK QD(T4)μAR=17TJμAR=55六.实验总结通过对实验五微程序控制器组成实验的学习,了解了微程序控制器的结构组织与工作原理,了解了微程序控制器的工作过程,了解了机器指令和微指令之间的关系,掌握了控制台指令的使用方法,学会了编写ADD与STA两条指令的微程序,并通过吴燕老师的详细讲解,使得我对微程序控制器组成有了进一步的理解,对今后自行设计微程序控制器的学习奠定了一定的基础,也对实验的流程更加深入掌握,进而形成良性学习。
计算机组成原理实验报告
1. 寄存器五、实验总结按照实验要求进行连接和操作,对通用寄存器组进行了数据的写入和读出,两组数据完全对照,得到了预期效果,说明了存入数据的正确性,在整个过程中也对寄存器组的构成和硬件电路有了更深层次的理解。
2. 运算器五、实验总结基本熟悉了整个实验系统的基本结构,了解了该实验装置按功能分成几大区,学会何时操作各种开关、按键。
最重要的是通过实验掌握了运算器工作原理,熟悉了算术/逻辑运算的运算过程以及控制这种运算的方法,了解了进位对算术与逻辑运算结果的影响,对时序是如何起作用的没太弄清楚,相信随着后续实验的进行一定会搞清楚的3。
存储器五、实验总结按照实验要求连接器材设备元件,按照给定步骤进行实验操作.通过向静态RAM中写入数据并读出数据,在INPUT单元输入数并存入地址寄存器,再向相应的地址单元存入数,验证读出数据时,只需再INPUT单元输入想要读出单元的地址,再通过片选端CE读出存储单元内的数据,其中We=0是控制写端,WE=1控制读,CE低电平有效。
实验过程遇到一些问题,对实验内容不是很熟,有待提高。
4. CPU与简单模型机设计实验一、实验目的(1) 掌握一个简单CPU的组成原理.(2)在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机。
(3)为其定义五条机器指令,编写相应的微程序,并上机调试掌握整机概念.二、实验设备PC机一台,TD—CMA实验系统一套。
三、实验原理本实验要实现一个简单的CPU,并且在此CPU的基础上,继续构建一个简单的模型计算机。
CPU 由运算器(ALU)、微程序控制器(MC)、通用寄存器(R0),指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成,如图5-1—1 所示。
这个CPU 在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU 必须和主存挂接后,才有实际的意义,所以还需要在该CPU的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。
淮海工学院计算机组成原理实验五
淮海工学院计算机工程学院实验报告书课程名《计算机组成原理》题目:微控制器实验班级:计算机131学号:2013122699姓名:李健伟一、实验目的1、掌握时序信号发生电路组成原理。
2、掌握微程序控制器的设计思想和组成原理。
3、掌握微程序的编制、写入,观察微程序的运行。
二、实验原理实验所用的时序电路原理如图2.6.1所示,可产生4个等间隔的时序信号TS1~TS4 ,其中SP为时钟信号,由实验机上时钟源提供,可产生频率及脉宽可调的方波信号。
学生可根据实验要求自行选择方波信号的频率及脉宽。
为了便于控制程序的运行,时序电路发生器设计了一个启停控制触发器UN1B,使TS1~TS4信号输出可控。
图中“运行方式”、“运行控制”、“启动运行”三个信号分别是来自实验机上三个开关。
当“运行控制”开关置为“运行”,“运行方式”开关置为“连续”时,一旦按下“启动运行”开关,运行触发器UN1B的输出QT一直处于“1”状态,因此时序信号TS1~TS4将周而复始地发送出去;当“运行控制”开关置为“运行”,“运行方式”开关置为“单步”时,一旦按下“启动运行”开关,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机。
利用单步方式,每次只运行一条微指令,停机后可以观察微指令的代码和当前微指令的执行结果。
另外,当实验机连续运行时,如果“运行方式”开关置“单步”位置,也会使实验机停机。
⑴微程序控制电路微程序控制器的组成如图2.6.2,其中控制存储器采用3片E2PROM 2816芯片,具有掉电保护功能,微命令寄存器18位,用两片8D触发器74LS273(U23、U24)和一片4D 触发器74LS175(U27)组成。
微地址寄存器6位,用三片正沿触发的双D触发器74LS74(U14~U16)组成,它们带有清“0”端和预置端。
在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令地址。
当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。
计算机组成原理实验报告
计算机组成原理实验报告一、实验目的本次计算机组成原理实验的主要目的是深入理解计算机的内部结构和工作原理,通过实际操作和观察,巩固和拓展课堂上学到的理论知识,培养实践动手能力和解决问题的能力。
二、实验设备本次实验所使用的设备包括计算机主机、逻辑分析仪、示波器、面包板、各种芯片(如 74LS 系列、8255 芯片等)、导线若干。
三、实验内容1、算术逻辑运算单元(ALU)实验通过使用芯片搭建一个简单的算术逻辑运算单元,实现加法、减法、与、或等基本运算,并观察运算结果。
2、存储单元实验构建一个存储单元,了解存储器的读写操作和存储原理,包括随机存储器(RAM)和只读存储器(ROM)。
3、控制器实验设计一个简单的控制器,实现指令的译码和执行,理解计算机如何按照指令序列进行工作。
4、总线结构实验研究计算机内部的总线结构,包括数据总线、地址总线和控制总线,了解它们在信息传输中的作用。
四、实验原理1、算术逻辑运算单元算术逻辑运算单元是计算机中进行算术和逻辑运算的核心部件。
它通常由加法器、减法器、逻辑门等组成。
通过对输入的操作数进行相应的运算操作,产生输出结果。
2、存储单元存储器用于存储程序和数据。
随机存储器(RAM)可以随时读写,但其数据在断电后会丢失;只读存储器(ROM)中的数据在制造时就已确定,只能读取不能修改,且断电后数据不会丢失。
3、控制器控制器是计算机的指挥中心,负责从存储器中取出指令,对指令进行译码,并产生控制信号,控制各个部件的操作。
4、总线结构总线是计算机内部各个部件之间传输信息的公共通道。
数据总线用于传输数据,地址总线用于传输地址信息,控制总线用于传输控制信号。
五、实验步骤(1)按照实验电路图,在面包板上正确连接 74LS 系列芯片,如74LS181 等,构建加法器和逻辑运算电路。
(2)通过改变输入信号的值,使用逻辑分析仪观察输出结果,验证运算的正确性。
2、存储单元实验(1)使用芯片搭建随机存储器(RAM)和只读存储器(ROM)电路。
计算机组成原理实验报告
《计算机组成与系统结构》实验指导书计算机与信息工程系2013年7月目录实验概述 .......................................................... 实验项目一专用寄存器(1)........................................... 实验项目二通用寄存器.............................................. 实验项目三专用寄存器(2)........................................... 实验项目四数据输出/移位门......................................... 实验项目五微程序计数器............................................ 实验项目六运算器.................................................. 实验项目七程序计数器.............................................. 实验项目八存储器读写.............................................. 实验项目九微程序存储器读写........................................ 实验项目十中断.................................................... 实验项目十一模型计算机设计........................................实验概述一、实验目的1.加深对讲授内容的理解,通过实验来掌握计算机系统原理。
熟练地掌握计算机中每个部件的电路设计方法并完成调试和分析结果。
2.熟悉所用的仿真软件。
学会使用仿真软件上机调试电路。
计组实验报告5
本次实验锁存器相当于寄存器,起到缓冲数据的作用。第一组实验中数据开关设置的
是(01H),使数据直接存入锁存器中。将数据开关设置成(02H),数据也直接存入锁存 器中,此时,数据总线和锁存输出显示(02H)。
七、实验总结
本次实验主要掌握了输入/输出的硬件电路,对锁存器的功能有了进一步的体会。实验 步骤简单易懂,实验过程顺利。
设置数据开关,具体操作步骤如下:
数据开关
(00000001)
三态门 CBA=000
CE=0 SW-B=1
寄存器DR2
(00000001)
LDDR1=0 LDDR2=1 按单步建
寄存器DR1
(00000001)
LDDR1=1 LDDR2=0 按单步建
结果分析:
运算单元的 DR1、DR2 与数据总线都显示(01H)。
(1)按单步键后,数据总线显示(00H),内存显示(11H),地址总线显示(00H)。 再按单步键后,数据总线显示(11H)。
(2)按单步键后,数据总线显示(01H),内存显示(12H),地址总线显示(01H)。 再按单步键后,数据总线显示(12H)。
(3)按单步键后,数据总线显示(02H),内存显示(13H),地址总线显示(02H)。
(4)寄存器判零
在保持带进位减法运算所设置的状态下,令AR=1,按【单步】,若零标志灯Z“亮”, 表示当前运算结果为零,反之表示结果不为零。
结果分析:
这个实验结果Z灯亮。因为带进位减法运算的结果是(00H)。所以,当 Z 灯亮时结
果为零。
六、实验总结
(1)通过这个实验,熟悉了判零实验的硬件,基本了解了判零实验的原理,加深了 对寄存器判零的理解。
LDAR 为高电平有效,而 WE 为读/写(W/R)控制信号,当 WE=0 时进行读操作,当 WE=1 时进行写操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海大学计算机学院
《计算机组成原理实验》报告一
姓名:学号:教师:
时间:机位:报告成绩:
实验名称:指令系统实验
一、实验目的:1. 读出系统已有的指令,并理解其含义。
2. 设计并实现一条新指令。
二、实验原理:利用CP226实验仪(用74HC754即8D型上升沿触发器)上的K16…K23
开关为数据总线DBUS设置数据,其他开关作为控制信号,一条指令执行完
毕PC会自动加1,系统顺序执行下一条指令,但系统要进入一个新的指令序
列时,如跳转、转子程序等,必须给PC打入新的起始值——新指令序列的
入口地址。
实验箱实现把数据总线的值(目标地址)打入PC的操作,以更新
PC值。
三、实验内容:1. 考察机器指令64的各微指令信号,验证该指令的功能。
(假设R0=77H,
A=11H, 77地址单元存放56H数据,64指令的下一条指令为E8)
2. 修改机器指令E8,使其完成“输出A+W的结果左移一位后的值到OUT”操作。
四、实验步骤:1. 考察机器指令64的各微指令信号,验证该指令的功能。
(假设R0=77H,
A=11H, 77地址单元存放56H数据,64指令的下一条指令为E8)
①在初始化系统(Reset),进入微程序存储器模式(μEM状态),用NX键观
察64H,65H,66H,67H, 地址中原有的微指令,分析并查表确定其功能。
②在EM状态下,Adr打入A0,DB打入64;按NX键,Adr显示A1,DB
打入E8。
③在μEM状态下,在E8H、E9H、EAH、EBH下分别打入:FFDED8、CBFFFF、
FFFFFF、FFFFFF。
④给μPC状态下,打入μPC(00)、PC(A0)、A(11)、W(00),按3次
NX输入R0(77)。
⑤按下STEP键,观察实验现象。
2. 修改机器指令E8,使其完成“输出A+W的结果左移一位后的值到OUT”
操作。
⑥继续按STEP键,直到进入E8状态下。
⑦在EM状态下,打入Adr为77,DB为56。
⑧按STEP键执行指令,观察实验现象。
五、实验现象:OUT寄存器的值为5A。
六、数据记录、分析与处理:实验结果和预期的一样。
七、实验结论:1、机器指令64对应的各微指令码为:FF77FF、D7BFEF、FFFE92、CBFFFF。
其功能为:将R0寄存器的值打入地址寄存器MAR;存贮器EM将MAR输出地址所对应的值打入W寄存器;ALU直通门输出的值打入A寄存器,A、W中的值进行“与”运算,结果在A输出;PC+1,读出下一条指令并立即执行。
八、建议:暂无。
九、体会:通过这次实验我对CP226实验仪器有了进一步的认识与了解,对于各个信号键
的控制更加熟练。
并且是我理解了如何去观察机器指令的各个微指令信息,去确
定它们的功能。
同时了解指令结构、PC寄存器的功能和指令系统的基本工作原理,
也学会了如何去修改一条微指令,让它能够实现自己所想实现的功能。
十、思考题:在微指令结构的计算机中,一条指令从启动到产生功能经过那些环节?
答:一条指令的启动是从PC开始,PC通过地址总线(ABUS)发送一个指令在程序存储器的地址到EM,EM把ABUS选定的存储单元的值(指令的二进制数形式)
的高6位通过IBUS送μPC,低两位送SA和SB,μPC收到的6位值就是这
条指令的微程序人口地址的高6位,μPC据此生成μEM的地址,并通过μ
PC 总线送到μEM,μEM把μPC值选定单元的24位值送上控制总线CBUS,
从而实现第一条微指令的功能;同时μPC 加1,输出这条指令的第二条微指
令,直到执行一条“取指令”微指令,则PC加1。
开始执行下一条指令。