18年河南中考数学试卷及答案

合集下载

河南省中考数学试题及答案(word版)

河南省中考数学试题及答案(word版)

河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷分试题卷和答题卡两部分。

试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标为)44,2(2ab ac a b --. 一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1. -2的相反数是( ) A . 2 B . 2-- C .21D . 21- 2.下列图形中,既是轴对称图形又是中心对称图形的是()3.方程(x-2)(x +3)=0的解是( )A . x =2B . x =3-C . x 1=2-,x 2=3D . x 1=2,x 2=3-4. 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A . 47B . 48C . 48.5D . 495. 如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )A . 1B . 4C . 5D . 66. 不等式组⎩⎨⎧>+≤122x x 的最小整数解为( )A . 1-B . 0C . 1D . 2第5题3 245 16 A BCD7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与 ⊙O 相切于点D ,则下列结论中不一定正确的是( ) A. AG =BG B. AB //EF C. AD //BC D. ∠ABC =∠ADC8. 在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <-1 D. x >-1 二、填空题 (每小题3分,工21分) 9. 计算:._______43=--10. 将一副直角三角板ABC 和EDF 如图放置(其中∠A =60°,∠F =45°),使点E 落在AC 边上,且 ED //BC ,则∠CEF 的度数为_________. 11. 化简:._________)1(11=-+x x x 12. 已知扇形的半径为4 cm ,圆心角为120°,则此扇形的弧长是_________cm.13. 现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4. 把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数 字之积为负数的概率是_________. 14. 如图,抛物线的顶点为P (-2,2),与y 轴交于点A (0,3). 若平移该抛物线使其顶点 P 沿直线移动到点P ′(2,-2),点A 的对应 点为A ′,则抛物线上P A 段扫过的区域 (阴影部分)的面积为_________. 15. 如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直 角三角形时,BE 的长为_________.三、解答题 (本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x +2)2+(2x +1)(2x -1)-4x (x +1),其中2-=x .E CDBA第15题B ′POA第14题xy A′P ′EO FCD B G A 第7题EFC DBA第10题17.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气. 某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别 观点频数(人数)A 大气气压低,空气不流动 80B 地面灰尘大,空气湿度低m C 汽车尾部排放 n D 工厂造成污染120 E其他60请根据图表中提供的信息解答下列问题;(1)填空:m =________,n =_______,扇形统计图中E 组所占的百分比为_________%. (2)若该市人口约有100万人,请你估计其中持D 组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C 组“观点”的概率是多少?18.(9分)如图,在等边三角形ABC 中,BC =6cm. 射线AG //BC ,点E 从点A 出发沿射线AG以1cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为t (s).(1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ;ED AECDB A 调查结果扇形统计图 20%10%(2)填空:①当t 为_________s 时,四边形ACFE 是菱形;②当t 为_________s 时,以A 、F 、C 、E 为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位. 如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角∠BAE =68°,新坝体的高为DE ,背水坡坡角∠DCE =60°. 求工程完工后背水坡底端水平方向增加的宽度AC (结果精确到0.1米. 参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,3≈1.73).E C D BA图68°60°20.(9分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3).双曲线)0(>=x xky 的图象经过BC 的中点D ,且与AB 交于点E ,连接DE . (1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且△FBC ∽△DEB ,求直线FB 的解析式.EOF C D BA第20题xy21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的价格;(2)学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售. 设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.22.(10分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°. (1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是_________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是_________________. (2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使S △DCF =S △BDE , 请直接写出....相应的BF 的长.A (D )B (E ) C图 1ACB DE图 2 M图3AB C DENECD BA图423.(11分)如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F .(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.(3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.PEOF CDBAxyOCDBA 备用图yx参考答案。

2020年河南省中考数学试卷(附答案)

2020年河南省中考数学试卷(附答案)

河南省中考数学试卷(满分120 分,考试时间100 分钟)一、选择题:1. 下列运算正确的是()A . 3 ﹣ 1 = ﹣ 3B .= ± 3C .( 2 2 ) 3 =64D . 5 6 ÷ 5 ³=252 、已知平面直角坐标系内一点A(2 ,3) ,把点 A 沿x 轴向左平移3 个单位长度,再以O 点为旋转中心旋转180 °,然后以y 轴为对称轴得到点A' ,这A' 点的坐标为()A .(-2 ,-3)B .(-1 ,-3)C .(-3 ,1)D .(-2 ,3)3 、环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5 检测指标,“ PM2.5 ”是指大气中危害健康的直径小于或等于 2.5 微米的颗粒物, 2.5 微米即0.0000025 米.用科学记数法表示0.0000025 为()A . 2.5 × 10 ﹣ 5B . 2.5 × 10 5C 2.5 × 10 ﹣ 6D . 2.5 × 10 64 .如图,把三角板的直角顶点放在直尺的一边上,若∠1=30 °,则∠ 2 的度数为()A .60 °B .50 °C .40 °D .30 °5 、某通讯公司提供了两种移动电话收费方式:方式 1 ,收月基本费20 元,再以每分钟0.1 元的价格按通话时间计费;方式 2 ,收月基本费20 元,送80 分钟通话时间,超过80 分钟的部分,以每分钟0.15 元的价格计费.下列结论:①如图描述的是方式 1 的收费方法;②若月通话时间少于240 分钟,选择方式 2 省钱;③若月通讯费为50 元,则方式 1 比方式 2 的通话时间多;④若方式 1 比方式 2 的通讯费多10 元,则方式 1 比方式 2 的通话时间多100 分钟.其中正确的是()A .只有①②B .只有③④C .只有①②③D .①②③④6 .如图所示的图形是由7 个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A .B .C .D .7 .为了大力宣传节约用电,某小区随机抽查了10 户家庭的月用电量情况,统计如下表.关于这10 户家庭的月用电量说法正确的是()月用电量(度)25 30 40 50 60户数 1 4 2 2 1A .平均数是38.5B .众数是 4C .中位数是40D .极差是 38. 如图,在第 1 个△ A 1 BC 中,∠ B =30 °,A 1B = CB ;在边 A 1 B 上任取一点 D ,延长CA 1 到 A 2 ,使 A 1 A 2 = A1 D ,得到第2 个△ A 1 A 2 D ;在边 A 2 D 上任取一点 E ,延长 A 1 A 2到 A 3 ,使 A 2 A 3 = A 2 E ,得到第 3 个△ A 2 A 3 E ,…按此做法继续下去,则第n 个三角形中以 A n 为顶点的内角度数是()A .()n • 75 °B .()n ﹣ 1 • 65 °C .()n ﹣1 • 75 ° D .()n • 85 °二、填空题:9 .如图,在△ ABC 中,AB = AC ,AD ⊥ BC 于点 D ,若AB =6 ,CD =4 ,则△ ABC 的周长是.10 .已知圆锥的母线长为 6 cm ,底面圆的半径为 3 cm ,则此圆锥侧面展开图的圆心角是。

2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。

17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。

那么等腰三角形的底长为2x = 12。

18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。

第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。

然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。

最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。

20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。

设张三的年龄为x,李四的年龄为y。

那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。

所以10年后张三的年龄是30岁,李四的年龄是40岁。

第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。

证明过程略。

第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。

祝你考试顺利!。

河南省中考数学真题试题(含解析)

河南省中考数学真题试题(含解析)

河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。

2018年河南省郑州市中考数学二模试卷

2018年河南省郑州市中考数学二模试卷

第1页(共19页)2018年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

)1、下列各数中最小的数是……………………()A .2p- B B..2- C C..0 D 0 D..12、2015年河南省参加高考的考生数量为772325人,比2014年增加了4.8万人。

将数据772325精确到千位用科学记数法表示为……………()A .41023.77´B B..51072.7´C C..5107.7´D D..4102.77´3、将一个螺栓按如右下图放置,则螺栓的左视图可能是………………()4、某小组5名同学一周内参加家务劳动的时间如下表所示,关于劳动时间这组数据,下列说法正确的是……………………………………()劳动时间(小时) 1 2 3 4人数 1 1 2 1 A .众数是2,平均数是,平均数是 2.6 2.6 2.6;;B .中位数是3,平均数是2;C .众数和中位数都是3; D D.众数是.众数是2,中位数是3.5、不等式组的解集在数轴上表示正确的是……()6、如图,已知0361=Ð,0362=Ð,01403=Ð,则4Ð的度数等于……()A.040. B.036. C . C..044. D.0100.7、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的非负整数值的个数是……………………………………()(A )5;(B )4;(C )3; (D) 2 (D) 2..8、如图,四边形ABCD 是⊙是⊙O O 的内接四边形,AC 是⊙O 直径直径,,点P 在AC 的延长线上,延长线上,PD PD 是⊙是⊙O O 的切线,延长BC 交PD 于点E .则下列说法不正确的是……………………………………………………()A .PDO ADC Ð=Ð;B B..DAB DCE Ð=Ð;2-2x ≥6,2x -1≤5DCB A NMPQ43211EO PDCBAC .B Ð=Ð1;D D.. PDA PCD Ð=Ð.二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB ∥CD ,直线EG 垂直于AB ,垂足为G ,直线EF 交CD 于点F ,∠1=50°,则∠2=______.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______. 12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A (﹣3,1),设B (x 1,y 1),C (x 2,y 2)是该函数图象上的两点,且x 1<x 2<0,那么y 1与y 2的大小关系是______(填“y 1>y 2”,“y 1=y 2”或“y 1<y 2”). 14.如图,在△ABC 中,∠C=90°,AC=BC ,斜边AB=4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB ,OB=6,OA=11,点P 为BC 边上的动点(点P 不与点B ,C 重合),经过点O 折叠该纸片,得折痕OP 和点B ʹ,经过点P 再次折叠纸片,使点C 落在直线PB ʹ上,得折痕PQ 和点C ʹ,当点C ʹ恰好落在边OA 上时BP 的长为 ______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;)请将该条形统计图补充完整;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;为正方形.(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.有两个不相等的实数根.(1)求k的取值范围;取最大整数值时,用合适的方法求该方程的解.(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).的函数关系式;(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE 交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?;如果不是,请说明理由.如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、三点.点C三点.(1)试求抛物线的解析式;)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△BʹOʹCʹ.在平移过程中,△BʹOʹCʹ与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?之间的函数关系式?2018年河南省郑州市中考数学二模试卷参考答案与试题解析一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

2018河南中考数学试题及答案word

2018河南中考数学试题及答案word

2018河南中考数学试题及答案word2018年河南省中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 1D. -1答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 计算下列哪个算式的结果大于0?A. 2-3B. 3-2C. 0-5D. 5-0答案:D4. 已知一个三角形的两边长分别为3cm和4cm,那么第三边的长度范围是:A. 0到7cmB. 1到7cmC. 3到7cmD. 1到5cm答案:C5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 任意三角形答案:B6. 一个圆的半径为2cm,那么它的面积是多少平方厘米?A. 4πB. 8πC. 6πD. 12π答案:B7. 计算下列哪个算式的结果是偶数?A. 3+5B. 4+6C. 7+9D. 8+10答案:D8. 下列哪个不等式是正确的?A. 2x > 4B. 3x ≤ 9C. 5x < 15D. 6x ≥ 18答案:B9. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个等腰三角形的底角是45°,那么顶角的度数是:A. 90°B. 45°C. 60°D. 30°答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。

答案:±512. 计算2的3次方,结果是______。

答案:813. 一个等腰三角形的底边长为6cm,如果底角是45°,那么腰长是______。

答案:6cm14. 一个数除以-2的结果是3,那么这个数是______。

答案:-615. 一个圆的直径是10cm,那么它的周长是______。

答案:10π cm16. 计算(-2)的平方,结果是______。

答案:417. 一个三角形的内角和是______。

2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a35.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.486.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.10249.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:.12.(3分)不等式组的解集为.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=°,∠CBQ=°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.【分析】直接利用相反数的定义得出即可.【解答】解:的相反数是:.故选:A.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D.【点评】本题考查了正方体相对两个面上的问题,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.【点评】本题主要考查了垂直的定义和平角的性质计算,要注意领会由垂直得直角这一要点.4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.【解答】解:A、,故A不符合题意;B、(a+1)2=a2+2a+1,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、2a2•a=2a3,故D符合题意.故选:D.【点评】本题主要考查二次根式的化简,完全平方公式,幂的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出CD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.∴C菱形ABCD=4CD=4×6=24.故选:C.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出CD=6.6.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【分析】根据根的判别式进行判断即可.【解答】解:在一元二次方程x2+x﹣1=0中,a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,∴原方程有两个不相等的实数根.故选:A.【点评】本题主要考查根的判别式,解答的关键是明确当Δ<0时,原方程没有实数根;当Δ=0时,原方程有两个相等的实数根;当Δ>0时,原方程有两个不相等的实数根.7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【分析】根据众数的定义求解即可.【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.1024【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.【解答】解:1亿=104×104=108,1兆=104×104×108=104+4+8=1016,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)【分析】由正六边形的性质可得A(1,),再根据由360°÷90°=4可知,每4次为一个循环,由2022÷4=505……2,可知点A2022与点A2重合,求出点A2的坐标可得答案.【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=,∴A(1,),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,﹣),∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),故选:B.【点评】本题主要考查了正六边形的性质,旋转的性质,含30°角的直角三角形的性质等知识,根据旋转的性质确定每4次为一个循环是解题的关键.10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态【分析】观察图2可直接判断A、B,由K=10可算出M的值,从而判断C,观察图2可得R1=20时K的值,从而算出M的值,即可判断D.【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意;故选:C.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,能正确识图.二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:答案不唯一,如y=x.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y=x,或y=x+2等,答案不唯一.【点评】此题比较简单,考查的是一次函数y=kx+b(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.12.(3分)不等式组的解集为2<x≤3.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>2,∴该不等式组的解集是2<x≤3,故答案为:2<x≤3.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为+.【分析】如图,设O′A′交于点T,连接OT.首先证明∠OTO′=30°,根据S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)求解即可.【解答】解:如图,设O′A′交于点T,连接OT.∵OT=OB,OO′=O′B′,∴OT=2OO′,∵∠OO′T=90°,∴∠O′TO=30°,∠TOO′=60°,∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)=﹣(﹣×1×)=+.故答案为:+.【点评】本题考查扇形的面积,解直角三角形等知识,解题的关键是学会割补法求阴影部分的面积.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为或.【分析】分两种情况:当点Q在CD上,当点Q在DC的延长线上,利用勾股定理分别进行计算即可解答.【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.【点评】本题考查了勾股定理,旋转的性质,等腰直角三角形,分两种情况进行讨论是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;(2)先通分,把除化为乘,再分解因式约分.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.【点评】本题考查实数运算和分式化简,解题的关键是掌握实数运算、分式运算的相关法则.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x <7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为44%.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;(2)根据中位数的意义求解即可;(3)答案不唯一,合理均可.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为=78.5(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).【点评】本题考查了中位数,频数分布表等知识,掌握中位数的定义及其意义是解决问题的关键.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.【分析】(1)直接把点A的坐标代入求出k即可;(2)利用尺规作出线段AC的垂直平分线m即可;(3)证明∠DCA=∠BAC,可得结论.【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),∴k=2×4=8,∴反比例函数的解析式为y=;(2)解:如图,直线m即为所求.(3)证明:∵AC平分∠OAB,∴∠OAC=∠BAC,∵直线m垂直平分线段AC,∴DA=DC,∴∠OAC=∠DCA,∴∠DCA=∠BAC,∴CD∥AB.【点评】本题考查作图﹣基本作图,反比例函数的性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【分析】延长EF交DC于点H,根据题意可得:∠DHF=90°,EF=AB=15米,CH =BF=AE=1.5米,设FH=x米,在Rt△DFH中,利用锐角三角函数的定义求出FH的长,然后在Rt△DHE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:延长EF交DC于点H,由题意得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,∴EH=EF+FH=(15+x)米,在Rt△DFH中,∠DFH=45°,∴DH=FH•tan45°=x(米),在Rt△DHE中,∠DEH=34°,∴tan34°==≈0.67,∴x≈30.1,经检验:x≈30.1是原方程的根,∴DC=DH+CH=30.1+1.5≈32(米),∴拂云阁DC的高度约为32米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【分析】(1)设菜苗基地每捆A种菜苗的价格是x元,根据用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,根据A种菜苗的捆数不超过B种菜苗的捆数,得m≤50,设本次购买花费w元,有w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,由一次函数性质可得本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∵﹣9<0,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.【点评】本题考查分式方程和一次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得她与爸爸的水平距离为2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.首先证明∠BOC+∠OBF=90°,∠ABE+∠BAD=90°;再根据B是切点得出∠OBA=90°.后面就很简单的证明出结论;方法2:如图2,延长OB交CD于点M.因为AB为⊙O的切线,所以根据切线性质得到,∠OBA=90°,∠ABM=90°.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B作BN ∥AD,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;(2)利用(1)中图1的辅助线即可解答.首先根据条件AB=75,cos∠BAD=,得到AE=45.再利用(1)证明出的,∠OBF=∠BAD,能得到四边形CDEF为矩形,所以DE=CF=5,从而得到AD=AE+ED=50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.【点评】本题重点考查切线的判定和性质,三角函数,解题关键是根据已知和所求问题,合理作出辅助线.是很好的中考题.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:∠EMB或∠CBM或∠ABP或∠CBM(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=15°,∠CBQ=15°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.。

2018年河南省中考数学试卷含答案解析

2018年河南省中考数学试卷含答案解析

2018 年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共30 分)1.( 3 分)﹣的相反数是()A.﹣B.C.﹣D.2.( 3 分)今年一季度,河南省对“一带一路”沿线国家出入口总数达亿元,数据“亿”用科学记数法表示为()A.× 102 B.× 103 C.× 1010D.× 10113.(3 分)某正方体的每个面上都有一个汉字,如图是它的一种睁开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.( 3 分)以下运算正确的选项是)(A.(﹣ x2)3=﹣ x5B. x2+x3=x5C.x3x4=x7D. 2x3﹣ x3=15 .( 3 分)河南省旅行资源丰富,2013 ~ 2017 年旅行收入不停增加,同比增速分别为: %, %, %, %, %.对于这组数据,以下说法正确的选项是()A.中位数是%B.众数是%C.均匀数是 %D.方差是06.( 3 分)《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其粗心是:今有人合伙买羊,若每人出 5 钱,还差45 钱;若每人出7 钱,还差 3 钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 线,依据题意,可列方程组为()A.B.C.D.7.( 3 分)以下一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0 B. x2 =x C. x2+3=2x D.( x﹣ 1)2 +1=08.( 3 分)现有 4 张卡片,此中 3 张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此以外完好同样.把这4张卡片反面向上洗匀,从中随机抽取两张,则这两张卡片正面图案同样的概率是()A.B.C.D.9.( 3 分)如图,已知AOBC 的极点 O( 0, 0),A(﹣ 1, 2),点 B 在 x 轴正半轴上按以下步骤作图:①以点O 为圆心,适合长度为半径作弧,分别交边OA, OB 于点 D, E;②分别以点D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边 AC于点G,则点G 的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.( 2018.河南 .10)如图 1,点 F 从菱形 ABCD的极点 A 出发,沿 A→ D→B以 1cm/s 的速度y(cm2)随时间x( s)变化的关系图象,匀速运动到点B,图2 是点 F 运动时,△ FBC的面积则 a 的值为()A.B. 2C.D.2二、仔细填一填(本大题共 5 小题,每题 3 分,满分15 分,请把答案填在答题卷相应题号的横线上)11.(3 分)计算: | ﹣5| ﹣=.12.(3 分)如图,直线AB, CD订交于点O,EO⊥ AB 于点O,∠ EOD=50°,则∠ BOC的度数为.13.( 3 分)不等式组的最小整数解是.14.( 3 分)如图,在△ ABC中,∠ ACB=90°,AC=BC=2,将△ ABC绕 AC的中点 D 逆时针旋转90°获得△ A'B ′,C'此中点 B 的运动路径为,则图中暗影部分的面积为.15.(3 分)如图,∠△A′BC与△ ABC对于MAN=90°,点 C 在边BC所在直线对称,点AM 上, AC=4,点 B 为边 AN 上一动点,连结BC,D,E 分别为 AC, BC的中点,连结 DE 并延长交A′B所在直线于点F,连结A′E.当△A′EF为直角三角形时,AB 的长为.三、计算题(本大题共8 题,共75 分,请仔细读题)16.( 8 分)先化简,再求值:(﹣ 1)÷,此中x=+1.17.( 9 分)每到春夏交替节气,雌性杨树会以满天飞絮的方式来流传下一代,漫天飞舞的杨絮易引起皮肤病、呼吸道疾病等,给人们造成困扰,为认识市民对治理杨絮方法的赞成情况,某课题小组随机检查了部分市民(问卷检查表如表所示),并依据检查结果绘制了以下尚不完好的统计图.治理杨絮一一您选哪一项(单项选择)A.减少杨树新增面积,控制杨树每年的种植量B.调整树种结构,渐渐改换现有杨树C.选育无絮杨品种,并推行种植D.对雌性杨树注射生物扰乱素,防止产生飞絮E.其余依据以上统计图,解答以下问题:(1)本次接受检查的市民共有人;(2)扇形统计图中,扇形 E 的圆心角度数是;(3)请补全条形统计图;(4)若该市约有 90 万人,请估计赞成“选育无絮杨品种,并推行种植”的人数.18.( 9 分)如图,反比率函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比率函数的分析式;(2)在图顶用直尺和 2B 铅笔划出两个矩形(不写画法),要求每个矩形均需知足以下两个条件:①四个极点均在格点上,且此中两个极点分别是点O,点 P;②矩形的面积等于k 的值.19.( 9 分)如图, AB 是⊙ O 的直径, DO⊥AB 于点 O,连结 DA 交⊙ O 于点 C,过点 C 作⊙O 的切线交 DO 于点 E,连结 BC交 DO 于点 F.(1)求证: CE=EF;(2)连结 AF 并延长,交⊙ O 于点 G.填空:①当∠ D 的度数为②当∠ D 的度数为时,四边形ECFG为菱形;时,四边形ECOG为正方形.20.(9 分)“高低杠”是女子体操独有的一个竞技项目,其竞赛器械由高、低两根平行杠及若干支架构成,运动员可依据自己的身高和习惯在规定范围内调理高、低两杠间的距离.某兴趣小组依据高低杠器械的一种截面图编制了以下数学识题,请你解答.以下图,底座上 A,B 两点间的距离为 90cm.低杠上点 C到直线 AB 的距离 CE的长为 155cm,高杠上点 D 到直线 AB 的距离 DF 的长为 234cm ,已知低杠的支架 AC 与直线 AB 的夹角∠ CAE为°,高杠的支架 BD 与直线 AB 的夹角∠ DBF 为°.求高、低杠间的水平距离 CH的长.(结果精准到 1cm,参照数据°≈,°≈,°≈,°≈,°≈,°≈)21.(10 分)某企业推出一款产品,经市场检查发现,该产品的日销售量y(个)与销售单价x (元)之间知足一次函数关系对于销售单价,日销售量,日销售收益的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售收益w(元)87518751875875(注:日销售收益=日销售量×(销售单价﹣成本单价))(1)求y 对于x 的函数分析式(不要求写出x 的取值范围)及m 的值;(2)依据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售收益w 最大,最大值是元;(3)企业计划睁开科技创新,以降低该产品的成本,估计在此后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售收益不低于3750 元的销售目标,该产品的成本单价应不超出多少元22.( 10 分)( 1)问题发现如图 1,在△ OAB 和△ OCD中, OA=OB, OC=OD,∠ AOB=∠ COD=40°,连结 AC, BD 交于点M.填空:①的值为;②∠ AMB 的度数为.(2)类比研究如图 2,在△ OAB 和△ OCD 中,∠ AOB=∠ COD=90°,∠ OAB=∠ OCD=30°,连结 AC交 BD 的延长线于点M.请判断的值及∠AMB的度数,并说明原因;(3)拓展延长在( 2)的条件下,将△OCD 绕点O 在平面内旋转,AC, BD 所在直线交于点M,若OD=1,OB=,请直接写出当点 C 与点M 重合时AC的长.23.( 11 分)如图,抛物线 y=ax2 +6x+c 交 x 轴于 A, B 两点,交 y 轴于点 C.直线 y=x﹣ 5 经过点 B,C.(1)求抛物线的分析式;(2)过点 A 的直线交直线BC于M.点①当AM⊥ BC 时,过抛物线上一动点P(不与点B, C 重合),作直线AM的平行线交直线BC 于点Q,若以点A, M, P, Q 为极点的四边形是平行四边形,求点P 的横坐标;②连结 AC,当直线AM 与直线 BC的夹角等于∠ACB的 2 倍时,请直接写出点M 的坐标.2018 年河南省中考数学试卷参照答案与试题分析一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.( 2018.河南 .1)﹣的相反数是()A.﹣B.C.﹣D.【剖析】直接利用相反数的定义剖析得出答案.【解答】解:﹣的相反数是:.应选: B.【评论】本题主要考察了相反数,正确掌握相反数的定义是解题重点.2.( 3 分)今年一季度,河南省对“一带一路”沿线国家出入口总数达亿元,数据“亿”用科学记数法表示为()A.× 102 B.× 103 C.× 1010D.× 1011【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤|a| <10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:亿,用科学记数法表示为×1010,应选: C.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a× 10n的形式,此中 1≤|a| <10, n 为整数,表示时重点要正确确立 a 的值以及 n 的值.3.(3 分)某正方体的每个面上都有一个汉字,如图是它的一种睁开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【剖析】正方体的表面睁开图,相对的面之间必定相隔一个正方形,依据这一特色作答.【解答】解:正方体的表面睁开图,相对的面之间必定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.应选: D.【评论】本题主要考察了正方体相对两个面上的文字,注意正方体的空间图形,从相对面下手,剖析及解答问题.4.( 3 分)以下运算正确的选项是)(A.(﹣ x2)3=﹣ x5B. x2+x3=x5C.x3x4=x7D. 2x3﹣ x3=1【剖析】分别依据幂的乘方、同类项观点、同底数幂相乘及归并同类项法例逐个计算即可判断.【解答】解: A、(﹣ x2)3=﹣ x6,此选项错误;B、 x2、 x3不是同类项,不可以归并,此选项错误;C、 x3x4=x7,此选项正确;D、 2x3﹣ x3=x3,此选项错误;应选: C.【评论】本题主要考察整式的运算,解题的重点是掌握幂的乘方、同类项观点、同底数幂相乘及归并同类项法例.5 .( 3 分)河南省旅行资源丰富,2013 ~ 2017 年旅行收入不停增加,同比增速分别为: %, %, %, %, %.对于这组数据,以下说法正确的选项是()A.中位数是 %B.众数是 %C.均匀数是 %D.方差是0【剖析】直接利用方差的意义以及均匀数的求法和中位数、众数的定义分别剖析得出答案.【解答】解: A、按大小次序排序为:%, %, %, %, %,故中位数是: %,故此选项错误;B、众数是 %,正确;C、(%+%+%+%+%)=%,应选项C错误;D、∵ 5 个数据不完好同样,∴方差不行能为零,故此选项错误.应选: B.【评论】本题主要考察了方差的意义以及均匀数的求法和中位数、众数的定义,正确掌握有关定义是解题重点.6.( 3 分)《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其粗心是:今有人合伙买羊,若每人出 5 钱,还差45 钱;若每人出7 钱,还差 3 钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 线,依据题意,可列方程组为()A.B.C.D.【剖析】设设合伙人数为【解答】解:设合伙人数为x 人,羊价为 yx 人,羊价为线,依据羊的价钱不变列出方程组.y 线,依据题意,可列方程组为:.应选: A.【评论】本题考察了由实质问题抽象出二元一次方程组,找准等量关系是解题的重点.7.( 3 分)以下一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0 B. x2 =x C. x2+3=2x D.( x﹣ 1)2 +1=0【剖析】依据一元二次方程根的鉴别式判断即可.【解答】解: A、 x2+6x+9=0△=62﹣ 4× 9=36﹣ 36=0,方程有两个相等实数根;B、 x2=xx2﹣x=0△=(﹣ 1)2﹣ 4×1× 0=1> 0两个不相等实数根;C、 x2+3=2xx2﹣2x+3=0△=(﹣ 2)2﹣ 4×1× 3=﹣8<0,方程无实根;D、( x﹣ 1)2+1=0(x﹣ 1)2=﹣ 1,则方程无实根;应选: B.【评论】本题考察的是一元二次方程根的鉴别式,一元二次方程ax2+bx+c=0( a≠ 0)的根与△=b 2﹣4ac 有以下关系:①当△> 0时,方程有两个不相等的两个实数根;②当△=0 时,方程有两个相等的两个实数根;③当△<0 时,方程无实数根.8.( 3 分)现有 4 张卡片,此中 3 张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此以外完好同样.把这4张卡片反面向上洗匀,从中随机抽取两张,则这两张卡片正面图案同样的概率是()A.B.C.D.【剖析】直接利用树状图法列举出全部可能从而求出概率.【解答】解:令 3 张用 A123,A ,A,表示,用 B表示,可得:,一共有 12 种可能,两张卡片正面图案同样的有 6 种,故从中随机抽取两张,则这两张卡片正面图案同样的概率是:.应选: D.【评论】本题主要考察了树状图法求概率,正确列举出全部的可能是解题重点.9.( 3 分)如图,已知AOBC 的极点 O( 0, 0),A(﹣ 1, 2),点 B 在 x 轴正半轴上按以下步骤作图:①以点O 为圆心,适合长度为半径作弧,分别交边OA, OB 于点 D, E;②分别以点 D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边 AC 于点 G,则点 G 的坐标为()A.(﹣ 1, 2) B.(, 2) C.( 3﹣,2) D.(﹣2, 2)【剖析】依照勾股定理即可获得Rt△ AOH 中, AO=,依照∠ AGO=∠ AOG,即可获得AG=AO=,从而得出 HG=﹣ 1,可得 G(﹣ 1, 2).【解答】解:∵ AOBC的极点 O( 0,0), A(﹣ 1, 2),∴AH=1, HO=2,∴Rt△ AOH 中, AO=,由题可得, OF 均分∠ AOB,∴∠ AOG=∠ EOG,又∵ AG∥ OE,∴∠ AGO=∠ EOG,∴∠ AGO=∠ AOG,∴AG=AO= ,∴HG= ﹣1,∴G(﹣1,2),应选: A.【评论】本题主要考察了角均分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,而后求出有关的线段长,是解决这种问题的基本方法和规律.10.( 3 分)如图 1,点 F 从菱形 ABCD的极点 A 出发,沿 A→ D→B以 1cm/s 的速度匀速运动到点B,图2 是点 F 运动时,△FBC的面积y( cm2)随时间x( s)变化的关系图象,则 a 的值为()A.B. 2C.D. 2【剖析】经过剖析图象,点 F 从点 A 到 D 用 as,此时,△高 DE,再由图象可知,BD=,应用两次勾股定理分别求【解答】解:过点 D 作 DE⊥ BC于点 E FBC的面积为BE 和 a.a,依此可求菱形的由图象可知,点∴AD=a∴∴DE=2当点 F从 D到∴BD=Rt△ DBE 中,F 由点B 时,用A 到点sD 用时为as,△ FBC的面积为acm2.BE=∵ABCD是菱形∴E C=a﹣1, DC=a Rt△ DEC中,a2=22 +( a﹣ 1)2解得 a=应选: C.【评论】本题综合考察了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点地点之间的关系.二、仔细填一填(本大题共号的横线上)11.( 3 分)计算: | ﹣ 5| ﹣5 小题,每题= 2.3 分,满分15 分,请把答案填在答题卷相应题【剖析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式 =5﹣ 3=2.故答案为: 2.【评论】本题主要考察了实数运算,正确化简各数是解题重点.12.(3 分)如图,直线AB, CD订交于点O,EO⊥ AB 于点 O,∠ EOD=50°,则∠ BOC的度数为 140° .【剖析】直接利用垂直的定义联合互余以及互补的定义剖析得出答案.【解答】解:∵直线AB, CD 订交于点O, EO⊥ AB 于点 O,∴∠ EOB=90°,∵∠ EOD=50°,∴∠ BOD=40°,则∠ BOC的度数为: 180°﹣ 40°=140°.故答案为: 140°.【评论】本题主要考察了垂直的定义、互余以及互补的定义,正确掌握有关定义是解题重点.13.( 3 分)不等式组的最小整数解是﹣2.【剖析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣ 3,解不等式②得:x≤1,∴不等式组的解集为﹣3< x≤ 1,∴不等式组的最小整数解是﹣ 2 ,故答案为:﹣ 2.【评论】本题考察认识一元一次不等式组和不等式组的整数解,能依据不等式的解集得出不等式组的解集是解本题的重点.14.( 3 分)如图,在△ ABC中,∠ ACB=90°,AC=BC=2,将△ ABC绕 AC的中点 D 逆时针旋转90°获得△ A'B ′,C'此中点 B 的运动路径为,则图中暗影部分的面积为π .【剖析】利用弧长公式L=,计算即可;【解答】解:△ ABC 绕AC 的中点 D 逆时针旋转90°获得△A'B′,C'此时点A′在斜边AB 上,CA′⊥ AB,∴∠ ACA′=∠ BCA′=45,°∴∠ BCB′=135,°∴S 阴==π.【评论】本题考察旋转变换、弧长公式等知识,解题的重点是灵巧运用所学知识解决问题,属于中考常考题型.15.(3 分)如图,∠MAN=90°,点 C 在边AM上, AC=4,点B 为边AN上一动点,连结BC,△A′BC与△ ABC对于 BC所在直线对称,点 D, E 分别为 AC, BC的中点,连结A′B所在直线于点 F,连结 A′E.当△ A′ EF为直角三角形时, AB 的长为 4 或DE 并延长交4.【剖析】当△ A′EF为直角三角形时,存在两种状况:①当∠ A'EF=90°时,如图1,依据对称的性质和平行线可得:A'C=A'E=4,依据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB 的长;②当∠ A'FE=90°时,如图2,证明△ ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△ A′EF为直角三角形时,存在两种状况:①当∠ A'EF=90°时,如图1,∵△ A′BC与△ ABC 对于 BC 所在直线对称,∴A'C=AC=4,∠ ACB=∠ A'CB,∵点 D, E 分别为 AC, BC的中点,∴D、 E 是△ ABC 的中位线,∴D E∥AB,∴∠ CDE=∠ MAN=90°,∴∠ CDE=∠ A'EF,∴AC∥A'E,∴∠ ACB=∠ A'EC,∴∠ A'CB=∠ A'EC,∴A'C=A'E=4,Rt△ A'CB 中,∵ E 是斜边 BC的中点,∴B C=2A'B=8,由勾股定理得:AB2=BC2﹣ AC2,∴AB==4 ;②当∠ A'FE=90°时,如图2,∵∠ ADF=∠ A=∠ DFB=90°,∴∠ ABF=90°,∵△ A′BC与△ ABC 对于 BC 所在直线对称,∴∠ ABC=∠ CBA'=45°,∴△ ABC是等腰直角三角形,∴A B=AC=4;综上所述, AB 的长为 4或 4;故答案为: 4或4;等腰直角三角形的判【评论】本题考察了三角形的中位线定理、勾股定理、轴对称的性质、定、直角三角形斜边中线的性质,并利用分类议论的思想解决问题.三、计算题(本大题共8 题,共75 分,请仔细读题)16.( 8 分)先化简,再求值:(﹣ 1)÷,此中x=+1.【剖析】依据分式的运算法例即可求出答案,【解答】解:当 x=+1 时,原式 ==1﹣ x=﹣【评论】本题考察分式的运算,解题的重点是娴熟运用分式的运算法例,本题属于基础题型.17.( 9 分)每到春夏交替节气,雌性杨树会以满天飞絮的方式来流传下一代,漫天飞舞的杨絮易引起皮肤病、呼吸道疾病等,给人们造成困扰,为认识市民对治理杨絮方法的赞成情况,某课题小组随机检查了部分市民(问卷检查表如表所示),并依据检查结果绘制了以下尚不完好的统计图.治理杨絮一一您选哪一项(单项选择)A.减少杨树新增面积,控制杨树每年的种植量B.调整树种结构,渐渐改换现有杨树C.选育无絮杨品种,并推行种植D.对雌性杨树注射生物扰乱素,防止产生飞絮E.其余依据以上统计图,解答以下问题:(1)本次接受检查的市民共有2000人;(2)扇形统计图中,扇形 E 的圆心角度数是° ;(3)请补全条形统计图;(4)若该市约有 90 万人,请估计赞成“选育无絮杨品种,并推行种植”的人数.【剖析】(1 )将 A 选项人数除以总人数即可得;(2)用 360°乘以 E 选项人数所占比率可得;(3)用总人数乘以 D 选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中 C 选项人数所占百分比可得.【解答】解:( 1)本次接受检查的市民人数为 300÷15%=2000 人,故答案为: 2000;(2)扇形统计图中,扇形 E 的圆心角度数是360°×=°,故答案为:°;(3) D 选项的人数为 2000 × 25%=500,补全条形图以下:(4)估计赞成“选育无絮杨品种,并推行种植”的人数为70×40%=28(万人).【评论】本题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.18.( 9 分)如图,反比率函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比率函数的分析式;(2)在图顶用直尺和 2B 铅笔划出两个矩形(不写画法),要求每个矩形均需知足以下两个条件:①四个极点均在格点上,且此中两个极点分别是点O,点 P;②矩形的面积等于k 的值.【剖析】(1 )将 P 点坐标代入y=,利用待定系数法即可求出反比率函数的分析式;(2)依据矩形知足的两个条件画出切合要求的两个矩形即可.【解答】解:( 1)∵反比率函数y=(x>0)的图象过格点P( 2, 2),∴k=2× 2=4,∴反比率函数的分析式为 y= ;(2)以下图:矩形 OAPB、矩形 OCDP即为所求作的图形.【评论】本题考察了作图﹣应用与设计作图,反比率函数图象上点的坐标特色,待定系数法求反比率函数分析式,矩形的判断与性质,正确求出反比率函数的分析式是解题的重点.19.( 9 分)如图, AB 是⊙ O 的直径, DO⊥AB 于点 O,连结 DA 交⊙ O 于点 C,过点 C 作⊙O 的切线交 DO 于点 E,连结 BC交 DO 于点 F.(1)求证: CE=EF;(2)连结 AF 并延长,交⊙ O 于点 G.填空:①当∠ D的度数为 30°时,四边形 ECFG为菱形;②当∠ D 的度数为° 时,四边形ECOG为正方形.【剖析】( 1)连结 OC,如图,利用切线的性质得∠1+∠ 4=90°,再利用等腰三角形和互余证明∠ 1=∠ 2,而后依据等腰三角形的判断定理获得结论;( 2)①当∠D=30°时,∠ DAO=60°,证明△CEF 和△ FEG 都为等边三角形,从而获得EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠ D=°时,∠ DAO=°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△ OEC≌△ OEG 获得∠ OEG=∠ OCE=90°,从而证明四边形 ECOG为矩形,而后进一步证明四边形ECOG为正方形.【解答】(1 )证明:连结OC,如图,∵CE 为切线,∴OC⊥ CE,∴∠ OCE=90°,即∠ 1+∠4=90°,∵DO⊥AB,∴∠ 3+∠ B=90°,而∠ 2=∠ 3,∴∠ 2+∠ B=90°,而 OB=OC,∴∠ 4=∠ B,∴∠ 1=∠ 2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而 AB 为直径,∴∠ ACB=90°,∴∠ B=30°,∴∠ 3=∠ 2=60°,而 CE=FE,∴△ CEF为等边三角形,∴C E=CF=EF,同理可得∠ GFE=60°,利用对称得 FG=FC,∵F G=EF,∴△ FEG为等边三角形,∴EG=FG,∴E F=FG=GE=CE,∴四边形 ECFG为菱形;②当∠D=°时,∠DAO=°,而 OA=OC,∴∠ OCA=∠ OAC=°,∴∠ AOC=180°﹣°﹣°=45°,∴∠ AOC=45°,∴∠ COE=45°,利用对称得∠ EOG=45°,∴∠ COG=90°,易得△ OEC≌△ OEG,∴∠ OEG=∠ OCE=90°,∴四边形ECOG为矩形,而 OC=OG,∴四边形ECOG为正方形.故答案为 30°,°.【评论】本题考察了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,结构定理图,得出垂直关系.也考察了菱形和正方形的判断.20.(9 分)“高低杠”是女子体操独有的一个竞技项目,其竞赛器械由高、低两根平行杠及若干支架构成,运动员可依据自己的身高和习惯在规定范围内调理高、低两杠间的距离.某兴趣小组依据高低杠器械的一种截面图编制了以下数学识题,请你解答.以下图,底座上 A,B 两点间的距离为 90cm.低杠上点 C到直线 AB 的距离 CE的长为 155cm,高杠上点 D 到直线 AB 的距离 DF 的长为 234cm ,已知低杠的支架 AC 与直线 AB 的夹角∠ CAE为°,高杠的支架 BD 与直线 AB 的夹角∠ DBF 为°.求高、低杠间的水平距离 CH的长.(结果精准到 1cm,参照数据°≈,°≈,°≈,°≈,°≈,°≈)【剖析】利用锐角三角函数,在 Rt△ ACE和 Rt△ DBF中,分别求出AE、BF 的长.计算出 EF.通过矩形 CEFH获得 CH 的长.【解答】解:在 Rt△ ACE中,∵tan ∠ CAE=,∴AE==≈≈ 21(cm)在 Rt△ DBF 中,∵tan ∠ DBF= ,∴BF==≈=40( cm)∵E F=EA+AB+BF≈ 21+90+40=151( cm)∵C E⊥ EF, CH⊥ DF, DF⊥EF∴四边形CEFH是矩形,∴C H=EF=151cm答:高、低杠间的水平距离CH 的长为 151cm.【评论】本题考察了锐角三角函数解直角三角形.题目难度不大,注意精准度.21.(10 分)某企业推出一款产品,经市场检查发现,该产品的日销售量y(个)与销售单价x (元)之间知足一次函数关系对于销售单价,日销售量,日销售收益的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售收益w(元)87518751875875(注:日销售收益=日销售量×(销售单价﹣成本单价))(1)求 y 对于 x 的函数分析式(不要求写出x 的取值范围)及m 的值;(2)依据以上信息,填空:该产品的成本单价是80元,当销售单价x= 100元时,日销售收益w 最大,最大值是2000元;(3)企业计划睁开科技创新,以降低该产品的成本,估计在此后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售收益不低于3750 元的销售目标,该产品的成本单价应不超出多少元【剖析】(1 )依据题意和表格中的数据能够求得y 对于 x 的函数分析式;(2)依据题意能够列出相应的方程,从而能够求得生产成本和w 的最大值;(3)依据题意能够列出相应的不等式,从而能够获得科技创新后的成本.【解答】解;( 1)设 y 对于 x 的函数分析式为y=kx+b,,得,即 y 对于 x 的函数分析式是 y=﹣ 5x+600,当 x=115 时, y=﹣ 5× 115+600=25 ,即 m 的值是 25;(2)设成本为 a 元/ 个,当 x=85 时, 875=175×( 85﹣ a),得 a=80,w=(﹣ 5x+600)(x﹣ 80) =﹣5x2+1000x﹣ 48000=﹣5( x﹣ 100)2+2000,∴当 x=100时, w 获得最大值,此时w=2000 ,故答案为:80, 100, 2000 ;(3)设科技创新后成本为 b 元,当x=90 时,(﹣ 5× 90+600 )( 90﹣ b)≥ 3750,解得, b≤ 65,答:该产品的成本单价应不超出65 元.【评论】本题考察二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的重点是明确题意,找出所求问题需要的条件,利用函数和数形联合的思想解答.22.( 10 分)( 1)问题发现如图 1,在△ OAB 和△ OCD中, OA=OB, OC=OD,∠ AOB=∠ COD=40°,连结 AC, BD 交于点M.填空:①的值为1;②∠ AMB 的度数为40° .(2)类比研究如图 2,在△ OAB 和△ OCD 中,∠ AOB=∠ COD=90°,∠ OAB=∠ OCD=30°,连结 AC交 BD 的延长线于点M.请判断的值及∠ AMB的度数,并说明原因;(3)拓展延长在( 2)的条件下,将△OCD 绕点 O 在平面内旋转,AC, BD 所在直线交于点M,若 OD=1,OB=,请直接写出当点 C 与点 M 重合时 AC的长.【剖析】(1 )①证明△ COA≌△ DOB( SAS),得 AC=BD,比值为1;②由△ COA≌△ DOB,得∠ CAO=∠ DBO,依据三角形的内角和定理得:∠AMB=180° ﹣(∠DBO+∠ OAB+∠ABD) =180 °﹣ 140 °=40 °;(2)依据两边的比相等且夹角相等可得△AOC∽△ BOD,则性质得∠ AMB 的度数;(3)正确绘图形,当点 C 与点 M 重合时,有两种状况:如图△BOD,则∠ AMB=90°,,可得AC的长.3 和=,由全等三角形的4,同理可得:△AOC∽【解答】解:( 1)问题发现①如图 1,∵∠ AOB=∠ COD=40°,∴∠ COA=∠DOB,∵OC=OD, OA=OB,∴△ COA≌△ DOB( SAS),∴AC=BD,∴=1,②∵△ COA≌△ DOB,∴∠ CAO=∠ DBO,∵∠ AOB=40°,∴∠ OAB+∠ ABO=140°,在△ AMB 中,∠AMB=180° ﹣(∠ CAO+∠ OAB+∠ ABD)=180°﹣(∠ DBO+∠ OAB+∠ ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比研究如图2,=,∠ AMB=90°,原因是:Rt△ COD 中,∠ DCO=30°,∠ DOC=90°,∴,同理得:,∴,∵∠ AOB=∠ COD=90°,∴∠ AOC=∠ BOD,∴△ AOC∽△ BOD,∴=,∠ CAO=∠ DBO,OAB+∠ ABM+∠ DBO) =90°;在△ AMB 中,∠ AMB=180° ﹣(∠ MAB+∠ ABM) =180°﹣(∠(3)拓展延长①点 C 与点 M 重合时,如图3,同理得:△ AOC∽△ BOD,∴∠ AMB=90°,,设 BD=x,则 AC= x,Rt△ COD 中,∠ OCD=30°, OD=1,∴C D=2, BC=x﹣2,Rt△ AOB 中,∠ OAB=30°, OB=,∴A B=2OB=2 ,在 Rt△ AMB 中,由勾股定理得: AC2+BC2=AB2,,x2﹣x﹣ 6=0,(x﹣ 3)( x+2) =0,x1=3,x2=﹣ 2,∴A C=3 ;②点 C 与点 M 重合时,如图4,同理得:∠ AMB=90°,,设 BD=x,则 AC= x,在 Rt△ AMB 中,由勾股定理得:AC2+BC2=AB2,+( x+2) 2=x2+x﹣ 6=0,(x+3)( x﹣ 2) =0,x1=﹣3, x2=2,∴A C=2 ;综上所述, AC 的长为 3或 2 .【评论】本题是三角形的综合题,主要考察了三角形全等和相像的性质和判断,几何变换问题,解题的重点是能得出:△ AOC∽△ BOD,依据相像三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.( 11 分)如图,抛物线y=ax2 +6x+c 交 x 轴于 A, B 两点,交y 轴于点 C.直线 y=x﹣ 5 经过点 B,C.(1)求抛物线的分析式;(2)过点 A 的直线交直线 BC于点 M.①当AM⊥ BC 时,过抛物线上一动点P(不与点B, C 重合),作直线AM的平行线交直线BC 于点Q,若以点A, M, P, Q 为极点的四边形是平行四边形,求点P 的横坐标;②连结 AC,当直线AM 与直线 BC的夹角等于∠ACB的 2 倍时,请直接写出点M 的坐标.【剖析】(1 )利用一次函数分析式确立C( 0,﹣ 5), B( 5, 0),而后利用待定系数法求抛物线分析式;(2)①先解方程﹣x2+6x﹣ 5=0 得 A( 1, 0),再判断△ OCB 为等腰直角三角形获得∠OBC=∠OCB=45°,则△ AMB 为等腰直角三角形,因此AM=2,接着依据平行四边形的性质获得PQ=AM=2 ,PQ⊥ BC,作 PD⊥ x 轴交直线 BC于 D,如图 1,利用∠ PDQ=45°获得 PD= PQ=4,设P( m,﹣ m2 +6m﹣ 5),则 D( m,m﹣ 5),议论:当 P 点在直线 BC 上方时, PD=﹣ m2+6m﹣5﹣( m﹣ 5) =4;当 P 点在直线 BC 下方时, PD=m﹣ 5﹣(﹣ m2+6m﹣5 ),而后分别解方程即可获得 P 点的横坐标;②作 AN⊥BC 于 N, NH⊥x 轴于 H,作 AC 的垂直均分线交 BC 于 M 1,交 AC 于 E,如图 2,利用等腰三角形的性质和三角形外角性质获得∠AM1B=2∠ ACB,再确立 N(3,﹣ 2),AC 的分析式为y=5x﹣ 5, E 点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的分析式为 y=﹣x+b,把 E(,﹣)代入求出 b 获得直线 EM1的分析式为 y=﹣x﹣,则解方程组得 M 1点的坐标;作直线BC上作点 M1对于 N 点的对称点M2,如图 2,利用对称性获得∠AM2C=∠ AM 1B=2∠ ACB,设 M2( x,x﹣5 ),依据中点坐标公式获得3=,而后求出x 即可获得M2的坐标,从而获得知足条件的点M 的坐标.【解答】解:( 1)当 x=0 时, y=x﹣5=﹣ 5,则 C( 0,﹣ 5),当 y=0 时, x﹣5=0,解得 x=5,则 B( 5, 0),。

2018年中考数学试卷及答案

2018年中考数学试卷及答案

2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。

2024年河南省中考真题数学试卷含答案解析

2024年河南省中考真题数学试卷含答案解析

2024年河南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点P表示的数是()A.1-B.0C.1D.2【答案】A【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P表示的数为1-,从而求解.【详解】解:根据题意可知点P表示的数为1-,故选:A.2.据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为()A.8⨯D.12⨯0.5784105.78410⨯C.11⨯B.105784105.784103.如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A .60︒B .50︒C .40︒D .30︒【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A .B .C .D .【答案】A【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5.下列不等式中,与1x ->组成的不等式组无解的是( )A .2x >B .0x <C .<2x -D .3x >-【答案】A 【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x ->,可得1x <-,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <-,不符合题意;C 、此不等式组解集为<2x -,不符合题意;D 、此不等式组解集为31x -<<-,不符合题意;故选:A6.如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A .12B .1C .43D .2故选:B .7.计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭ 个的结果是( )A .5a B .6a C .3a a +D .3aa 【答案】D 【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A .19B .16C .15D .13【答案】D【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,9.如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A .8π3B .4πC .16π3D .16π∵O 是边长为43∴43B C =,A ∠=∴120BDC ∠=︒,∵点D 是 BC的中点,10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A .当440W P =时,2A I =B .Q 随I 的增大而增大C .I 每增加1A ,Q 的增加量相同D .P 越大,插线板电源线产生的热量Q 越多【答案】C 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题11.请写出2m 的一个同类项: .【答案】m (答案不唯一)【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为 分.【答案】9【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案为:9.13.若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为 .14.如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=︒,∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20-,,点F 的坐标为()06,,∴2AO =,6FO =,∴2BO AB AO a =-=-,在Rt BOF △中,222BO FO BF +=,∴()22226a a -+=,解得10a =,∴4FG OG OF =-=,8GE CD DG CE CE =--=-,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE -+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15.如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .则CD AE ⊥,∴90ADE CDE ∠=∠=︒,∴222231AD AC CD =-=-∵ AC AC =,∴45CED ABC ==︒∠∠,∵90CDE ∠=︒,则CD AE ⊥,∴90CDE ∠=︒,∴222231AD AC CD =-=-=∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =︒-=︒∠∠,∴18045CED CEA =︒-=︒∠∠,∵90CDE ∠=︒,三、解答题16.(1(01;(2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭.【答案】(1)9(2)2a +【分析】本题考查了实数的运算,分式的运算,解题的关键是:17.为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.18.如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为________.(3)解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=,解得32x =,∴平移距离为39622-=.故答案为:9.19.如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析(2)见解析【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是:(2)证明:∵ECM A ∠=∠∴CM AB ∥,∵∥B E DC ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边20.如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈).则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.(2)解:在Rt AHP 中,APH ∠∵tan AH APH PH∠=,答:塑像AB的高约为6.9m.21.为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?【答案】(1)选用A种食品4包,B种食品2包(2)选用A种食品3包,B种食品4包【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A种食品x包,B种食品y包,根据“从这两种食品中摄入4600kJ热量和70g蛋白质”列方程组求解即可;(2)设选用A种食品a包,则选用B种食品()7-a包,根据“每份午餐中的蛋白质含量不低于90g”列不等式求解即可.【详解】(1)解:设选用A种食品x包,B种食品y包,根据题意,得7009004600, 101570.x yx y+=⎧⎨+=⎩解方程组,得4,2. xy=⎧⎨=⎩答:选用A种食品4包,B种食品2包.(2)解:设选用A种食品a包,则选用B种食品()7-a包,根据题意,得()1015790a a +-≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∵2000-<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a -=-=.答:选用A 种食品3包,B 种食品4包.22.从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.23.综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B Ð=°,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=︒,∵180ABC ABE ∠+∠=︒,∴ABE D ∠=∠,∵AE AC =,∴()()1112222m n CF CE BC BE BC DC +==+=+=,∵2BCD θ∠=,∴ACD ACB θ∠=∠=,∴22218AM AB BM =+=,在Rt AMN 中22MN AM AN =-在Rt CMN 中22MN CM CN =-∴()()22218435AN AN -=---∵AM AM =,∵90MNC ABC ∠=∠=︒,C ∠∴CMN CAB ∽△△,∴CN MN BC AB=,即543CN CN -=解得20CN =,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;。

河南中考数学试题及答案解析[版]

河南中考数学试题及答案解析[版]

2016年河南省普通高中招生考试试卷数学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.题号一二三总分1~8 9~15 16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.的相反数是()(A)(B)(C)-3 (D)32.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-83. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()4.下列计算正确的是()(A)=(B)(-3)2=6(C)3a4-2a3 = a2(D)(-a3)2=a55. 如图,过反比例函数y=(x> 0)的图象上一点A,作AB⊥x轴于点B,S△AOB=2,则k的值为()(A)2 (B)3 (C)4 (D)56. 如图,在ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为()(A)6 (B)5 (C)4 (D)37、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()(A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2)二、填空题(每小题3分,共21分)9.计算:(-2)0-= .10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是 .11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围= .12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 .13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是 .14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C.若OA=2,则阴影部分的面积为______.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上的一个动点,连接AE,将△ABE沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD、BC于点M、N,当点B'为线段MN的三等份点时,BE的长为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中x的值从不等式组的整数解中选取。

河南南阳中考数学试卷及答案

河南南阳中考数学试卷及答案

河南南阳中考数学试卷及答案注意事项:1、本试卷共8页,三大题,满分120分,考题时间100分钟。

请用钢笔或圆珠笔答在试卷指定位置上。

2、答卷前请在指定的位置填好自己的座号,并将密封线内的项目填写清楚。

题号 一 二 三 总分 16 17 18 19 20 21 22 23 得分一、 选择题(本题满分18分,共有6道小题,每小题3分)下列每小题都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的。

请将各小题所选答案的代号填写在下面的表格内相应题号下面。

选择题答题位置 题号 1 2 3 4 5 6 答案1.-7的相反数是( ) A. 7 B. -7 C.71 D.17- 2.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A.43 B. 34 C. 53 D. 543.如图,是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则A B C D E ∠+∠+∠+∠+∠等于( )A. ︒360B. ︒180C. ︒150D. ︒1204.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( ) A. 9,10,11 B.10,11,9 C.9,11,10 D.10,9,115.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-且0k ≠ 6.如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( )得分 评卷人二、填空题(本题满分27分,共有9道小题,每小题3分)7.16的平方根是8.如图,直线a,b 被直线c 所截,若a ∥b ,︒=∠501,则=∠2 9.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是10.如图所示,AB 为⊙0的直径,AC 为弦,OD ∥BC 交AC 于点D ,若AB=20cm,︒=∠30A ,则AD= cm11.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm12.如图,矩形ABCD 的两条线段交于点O ,过点O 作AC 的垂线EF,分别交AD 、BC 于点E 、F ,连接CE,已知CDE ∆的周长为24cm ,则矩形ABCD 的周长是 cm13、在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为 14、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标 是15、如图,直线2-==kx y (k >0)与双曲线ky =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交得分 评卷人三、解答题(本题满分75分,共8道小题) 16、(本小题满分8分)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来。

2023年河南省中考数学试卷+参考答案解析

2023年河南省中考数学试卷+参考答案解析

2023年河南省普通高中招生考试试卷数学一、单选题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.下列各数中,最小的数是()A.-lB.0C.1D.32.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。

如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源。

数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×1094.如图,直线AB ,CD 相交于点O ,若∠1=80°,∠2=30°,则∠AOE 的度数为()A.30°B.50°C.60°D.80°5.化简a -1a +1a的结果是()A.0B.1C.aD.a -26.如图,点A ,B ,C 在⊙O 上,若∠C =55°,则∠AOB 的度数为()A.95°B.100°C.105°D.110°7.关于x 的一元二次方程x 2+mx -8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.199.二次函数y =ax 2+bx 的图象如图所示,则一次函数y =x +b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B 。

历年河南省中考数学试卷(含答案)

历年河南省中考数学试卷(含答案)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A (m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A 逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分) 11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A 船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E 分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y 轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2022年河南省中考数学试题(含答案解析)

2022年河南省中考数学试题(含答案解析)

2022年河南省普通高中招生考试试卷数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。

2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的. 1.12-的相反数是A .12B .2C .2-D .12-2.2022年冬奥会的奖牌“同心”表达了“天地合⋅人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的 一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字 是 A .合B .同C .心D .人3.如图,直线AB ,CD 相交于点O ,EO CD ⊥,垂足为O .若154∠=︒,则2∠的度数为A .26︒B .36︒C .44︒D .54︒4.下列运算正确的是A .2332-=B .22(1)1a a +=+C .235()a a =D .2322a a a ⋅=5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD的中点.若3OE =,则菱形ABCD 的周长为 A .6 B .12 C .24D .486.一元二次方程210x x +-=的根的情况是A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为A.5分B.4分C.3分D.45%8.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿1=万1⨯万,1兆1=万1⨯万1⨯亿.则1兆等于()A.810B.1210C.1610D.24109.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,//AB x轴,交y轴于点P.将OAP∆绕点O顺时针旋转,每次旋转90︒,则第2022次旋转结束时,点A的、坐标为A.(3,1)-B.(1,3)--C.(3-,1)-D.(1,3)10.呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1)R,1R的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是A.呼气酒精浓度K越大,1R的阻值越小B.当0K=时,1R的阻值为100C.当10K=时,该驾驶员为非酒驾状态D.当120R=时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.请写出一个y 随x 的增大而增大的一次函数的表达式 .12.不等式组30,12x x -⎧⎪⎨>⎪⎩的解集为 .13.为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 . 14.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形AO B '''.若90O ∠=︒,2OA =,则阴影部分的面积为 .15.如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC ==,点D 为AB 的中点,点P 在AC 上,且1CP =,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ . 当90ADQ ∠=︒时,AQ 的长为 .三、解答题(本大题共8个小题,共75分)16.(1)(5011()23-+;(2)(5分)化简:211(1)x x x -÷-.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课, 被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况, 随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:ab .成绩在7080x <这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79 根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为 .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由. (3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数(0)ky x x=>的图象经过点(2,4)A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证://CD AB .19.(9分)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁 顶端D 的仰角为34︒,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为 45︒.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上, 求拂云阁DC 的高度(结果精确到1m .参考数据:sin340.56︒≈,cos340.83︒≈,tan340.67)︒≈.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园, 需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆. (1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动, 对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立 如图所示的平面直角坐标系,并设抛物线的表达式为2()y a x h k =-+,其中()x m 是水柱距 喷水头的水平距离,()y m 是水柱距地面的高度. (1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m .身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚 铁环时,铁环O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为BAD ∠,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:90BOC BAD ∠+∠=︒.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得3cos 5BAD ∠=.已知铁环O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30︒的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,MBQ∠=︒;∠=︒,CBQ②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断MBQ∠的∠与CBQ 数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当1=时,直接写出AP的FQ cm长.2022年河南省普通高中招生考试试卷数学试题参考答案与试题解析一、 选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ADBDCABCBC二、 填空题(每小题3分,共15分)题号 1112131415答案y x =, (答案不唯一)23x <16332π+ 5或13三、解答题(本大题共8个小题,共75分) 16.(10分) 解:(1)原式1312=-+52=; (2)原式(1)(1)1x x x x x +--=÷(1)(1)1x x xx x +-=⋅- 1x =+.17.(9分)解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为787978.52+=(分), 成绩不低于80分的人数占测试人数的百分比为166100%44%50+⨯=, (2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).18.(9分)(1)解:反比例函数(0)ky x x=>的图象经过点(2,4)A ,248k ∴=⨯=,∴反比例函数的解析式为8y x=; (2)解:如图,直线m 即为所求.(3)证明:AC 平分OAB ∠,OAC BAC ∴∠=∠,直线m 垂直平分线段AC ,DA DC ∴=,OAC DCA ∴∠=∠, DCA BAC ∴∠=∠, //CD AB ∴.19.(9分)解:延长EF 交DC 于点H ,由题意得:90DHF ∠=︒,15EF AB ==米, 1.5CH BF AE ===米,设FH x =米,(15)EH EF FH x ∴=+=+米,在Rt DFH ∆中,45DFH ∠=︒,tan45DH FH x ∴=⋅︒=(米),在Rt DHE ∆中,34DEH ∠=︒,tan340.6715DH xEH x ∴︒==≈+, 30.1x ∴≈,经检验:30.1x ≈是原方程的根,30.1 1.532DC DH CH ∴=+=+≈(米),∴拂云阁DC 的高度约为32米.20.(9分)解:(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据题意得:300300354x x =+, 解得20x =,经检验,20x =是原方程的解,答:菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100)m -捆,A 种菜苗的捆数不超过B 种菜苗的捆数,100m m ∴-,解得50m ,设本次购买花费w 元,200.9300.9(100)92700w m m m ∴=⨯+⨯-=-+, 90-<,w ∴随m 的增大而减小,50m ∴=时,w 取最小值,最小值为95027002250-⨯+=(元),答:本次购买最少花费2250元. 21.(9分)解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为2(5) 3.2y a x =-+,将(0,0.7)代入得:0.725 3.2a =+,解得110a =-, 22117(5) 3.2101010y x x x ∴=--+=-++, 答:抛物线的表达式为2171010y x x =-++; (2)当 1.6y =时,2171.61010x x -++=, 解得1x =或9x =,∴她与爸爸的水平距离为312()m -=或936()m -=,答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m 或6m . 22.(10分)(1)证明:如图1,过点B 作//EF CD ,分别交AD 于点E ,交OC 于点F .CD 与O 相切于点C , 90OCD ∴∠=︒. AD CD ⊥, 90ADC ∴∠=︒. //EF CD ,90OFB AEB ∴∠=∠=︒,90BOC OBF ∴∠+∠=︒,90ABE BAD ∠+∠=︒,AB 为O 的切线,90OBA ∴∠=︒. 90OBF ABE ∴∠+∠=︒,90OBF ∴∠=︒. 90OBF ABE ∴∠+∠=︒,OBF BAD ∴∠=∠, 90BOC BAD ∴∠+∠=︒;(2)解:如图1,在Rt ABE ∆中,75AB =,3cos 5BAD ∠=,45AE ∴=.由(1)知,OBF BAD ∠=∠,3cos 5OBF ∴∠=, 在Rt OBF ∆中,25OB =, 15BF ∴=, 20OF ∴=.25OC =, 5CF ∴=.90OCD ADC CFE ∠=∠=∠=︒,∴四边形CDEF 为矩形,5DE CF ∴==, 50AD AE ED cm ∴=+=.23.(10分)解:(1)对折矩形纸片ABCD ,12AE BE AB ∴==,90AEF BEF ∠=∠=︒, 沿BP 折叠,使点A 落在矩形内部点M 处,AB BM ∴=,ABP PBM ∠=∠,1sin 2BE BME BM ∠==, 30EMB ∴∠=︒,60ABM ∴∠=︒,30CBM ABP CBM ∴∠=∠=∠=︒,故答案为:EMB ∠或CBM ∠或ABP ∠或CBM ∠(任写一个即可);数学试卷 第11页(共11页) (2)①由(1)可知30CBM ∠=︒,四边形ABCD 是正方形, AB BC ∴=,90BAD C ∠=∠=︒, 由折叠可得:AB BM =,90BAD BMP ∠=∠=︒, BM BC ∴∠=,90BMQ C ∠=∠=︒, 又BQ BQ =,Rt BCQ Rt BMQ(HL)∴∆≅∆, 15CBQ MBQ ∴∠=∠=︒,故答案为:15,15; ②MBQ CBQ ∠=∠,理由如下: 四边形ABCD 是正方形, AB BC ∴=,90BAD C ∠=∠=︒, 由折叠可得:AB BM =,90BAD BMP ∠=∠=︒, BM BC ∴∠=,90BMQ C ∠=∠=︒, 又BQ BQ =,Rt BCQ Rt BMQ(HL)∴∆≅∆, CBQ MBQ ∴∠=∠;(3)由折叠的性质可得4DF CF cm ==,AP PQ =,Rt BCQ Rt BMQ ∆≅∆, CQ MQ ∴=,当点Q 在线段CF 上时,1FQ cm =, 3MQ CQ cm ∴==,5DQ cm =, 222PQ PD DQ =+, 22(3)(8)25AP AP ∴+=-+, 4011AP ∴=, 当点Q 在线段DF 上时,1FQ cm =, 5MQ CQ cm ∴==,3DQ cm =, 222PQ PD DQ =+, 22(5)(8)9AP AP ∴+=-+, 2413AP ∴=,综上所述:AP 的长为4011cm 或2413cm .。

2020年河南中考数学试卷(附答案)

2020年河南中考数学试卷(附答案)

2020年河南省普通高中招生考试数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 2的相反数是()A.12- B.12C. 2D. 2-【答案】D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.2.如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】【分析】分别确定每个几何体的主视图和左视图即可作出判断.【详解】A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,故选:D.【点睛】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.3.要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第--课》 的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A 、中央电视台《开学第--课》 的收视率适合采用抽样调查方式,故不符合题意;B 、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C 、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D 、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A. 100︒B. 110︒C. 120︒D. 130︒【答案】B【解析】【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.5.电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( )A. 302BB. 308BC. 10810B ⨯D. 30210B ⨯ 【答案】A【解析】【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.6.若点()()()1231,,2,,3,A y B y C y -在反比例函数6y x =-的图像上,则123,,y y y 的大小关系为( ) A. 123y y y >>B. 231y y y >>C. 132y y y >>D. 321y y y >> 【答案】C【解析】【分析】根据点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,可以求得123,,y y y 的值,从而可以比较出123,,y y y 的大小关系.【详解】解:∵点()()()1131,,2,,3,A y B y C y -在反比例函数6y x =-的图象上, ∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<,∴132y y y >>,故选:C .【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.7.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根【答案】A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.【详解】解:根据定义得:2110,x x x =--=☆ 1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A【点睛】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.8.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A. ()5000127500x +=B. ()5000217500x ⨯+=C. ()2500017500x +=D. ()()2500050001500017500x x ++++= 【答案】C【解析】【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程.【详解】设我国2017年至2019年快递业务收入的年平均增长率为x ,∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元即2019年我国快递业务收入为7500亿元, ∴可列方程:()2500017500x +=, 故选C .【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程. 9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为( )A. 3,22⎛⎫ ⎪⎝⎭B. ()2,2C. 11,24⎛⎫ ⎪⎝⎭D. ()4,2【答案】B【解析】【分析】 先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.【详解】解:由题意知:()2,0,C -四边形COED 为正方形,,CO CD OE ∴== 90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B -6,9,AC BC ∴== 由tan ,AC EO ABC BC O B'∠==' 62,9O B∴=' 3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B【点睛】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.如图,在ABC ∆中,3,30AB BC BAC ==∠=︒ ,分别以点,A C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接,,DA DC 则四边形ABCD 的面积为( )A. 63B. 9C. 6D. 33【答案】D【解析】【分析】 连接BD 交AC 于O ,由已知得△ACD 为等边三角形且BD 是AC 的垂直平分线,然后解直角三角形解得AC 、BO 、BD 的值,进而代入三角形面积公式即可求解.【详解】连接BD 交AC 于O ,由作图过程知,AD=AC=CD ,∴△ACD 为等边三角形,∴∠DAC=60º,∵AB=BC,AD=CD ,∴BD 垂直平分AC 即:BD ⊥AC ,AO=OC ,在Rt △AOB 中,3,30AB BAC =∠=︒ ∴BO=AB ·sin30º=3, AO=AB ·cos30º=32,AC=2AO=3, 在Rt △AOD 中,AD=AC=3,∠DAC=60º,∴DO=AD ·sin60º=33, ∴ABC ADC ABCD S S S ∆∆=+四边形=131********⨯⨯+⨯⨯=, 故选:D .【点睛】本题考查了作图-基本作图、等边三角形的判定与性质、垂直平分线、解直角三角形、三角形的面积等知识,解题的关键是灵活运用所学知道解决问题,属于中考常考题型.二、填空题:(每题3分,共15分)11.请写出一个大于1且小于2的无理数: .2.【解析】【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】大于1且小于2的无理数可以是2,?3,?2π-等,故答案为:2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.已知关于x 的不等式组x a x b >⎧⎨>⎩,其中,a b 在数轴上的对应点如图所示,则这个不等式组的解集为__________.【答案】x >a .【解析】【分析】先根据数轴确定a ,b 的大小,再根据确定不等式组的解集原则:大大取大,小小取小,大小小大中间找,小小大大找不了(无解)确定解集即可. 【详解】∵由数轴可知,a >b ,∴关于x 的不等式组x a x b>⎧⎨>⎩的解集为x >a , 故答案为:x >a . 【点睛】本题考查的是由数轴确定不等式组的解集,根据“大大取大,小小取小,大小小大中间找,小小大大找不了(无解)”得出不等式组的解集是解答此题的关键.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.【答案】14 【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次颜色相同的情况数,再利用概率公式求解即可求得答案.【详解】画树状图得:∵共有16种等可能的结果,两次颜色相同的有4种情况, ∴两个数字都是正数的概率是41164=, 故答案为:14. 【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.14.如图,在边长为22的正方形ABCD 中,点,E F 分别是边,AB BC 的中点,连接,,EC FD 点,G H 分别是,EC FD 的中点,连接GH ,则GH 的长度为__________.【答案】1【解析】【分析】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,HR 与GQ 相交于I ,分别求出HI 和GI 的长,利用勾股定理即可求解.【详解】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,垂足分别P ,R ,R ,HR 与GQ相交于I ,如图,∵四边形ABCD 是正方形, ∴22AB AD DC BC ==== 90A ADC ∴∠=∠=︒,∴四边形AEPD 是矩形, ∴22EP AD ==,∵点E ,F 分别是AB ,BC 边的中点, ∴122PC DC ==122FC BC == EP DC ⊥,GQ DC ⊥,GQ EP ∴//∵点G 是EC 的中点,GQ ∴是EPC ∆的中位线, 122GQ EP ∴== 同理可求:2HR =,由作图可知四边形HIQP 是矩形, 又HP=12FC ,HI=12HR=12PC , 而FC=PC ,∴ HI HP =,∴四边形HIQP 是正方形, ∴22IQ HP ==, ∴22222GI GQ IQ HI =-===HIG ∴∆是等腰直角三角形, 21GH HI ∴== 故答案为:1.【点睛】此题主要考查了正方形的判定与性质,三角形的中位线与勾股定理等知识,正确作出辅助线是解答此题的关键.15.如图,在扇形BOC 中,60,BOC OD ∠=︒平分BOC ∠交狐BC 于点D .点E 为半径OB 上一动点若2OB =,则阴影部分周长的最小值为__________.【答案】2.3π【解析】【分析】 如图,先作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,再分别求解,AD CD 的长即可得到答案.【详解】解:C 阴影=,CE DE CD ++∴ C 阴影最短,则CE DE +最短,如图,作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,则,CE AE =,CE DE AE DE AD ∴+=+= 此时E 点满足CE DE +最短,60,COB AOB OD ∠=∠=︒平分,CB30,90,DOB DOA ∴∠=︒∠=︒2,OB OA OD ===222222,AD ∴=+=而CD 的长为:302,1803ππ⨯= ∴ C 阴影最短为22.3π+故答案为:22.3π+【点睛】本题考查的是利用轴对称求最短周长,同时考查了圆的基本性质,扇形弧长的计算,勾股定理的应用,掌握以上知识是解题的关键.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中51a = 【答案】1a -5【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 值代入计算即可.【详解】原式=(1)(1)1a a a a a+-+=1a -, 当51a =时,原式5115-=【点睛】本题考查的是分式的化简求值,解答的关键是熟练掌握分式的混合运算顺序和运算法则,注意运算结果要化成最简分式或整式.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下:甲: 501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量()x g 的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:()1表格中的a = b =()2综合上表中统计量,判断工厂应选购哪一台分装机,并说明理由. 【答案】(1)501a =,=15%b .(2)选择乙分装机,理由见解析;【解析】【分析】 (1)把乙的数据从小到大进行排序,选出10、11两项,求出他们的平均数即为乙组数据的中位数;由题可得合格产品的范围是490510x ≤≤,根据这个范围,选出不合格的产品,除以样本总量就可得到结果;(2)根据方差的意义判断即可;【详解】(1)把乙组数据从下到大排序为:487 490 491 493 498 499 499 499 499 501 501 501 502 502 502 503 505 505 506 512,可得中位数=501+501=5012; 根据已知条件可得出产品合格的范围是490510x ≤≤,甲生产的产品有3袋不合格,故不合格率为3100%=15%20⨯. 故501a =,=15%b .(2)选择乙分装机;根据平均数相同,中位数乙跟接近标准适质量,方差的意义可知:方差越小,数据越稳定,由于22甲乙=42.01>=31.81S S ,并且乙的不合格率要低于甲,综上则应选取乙分装机.【点睛】本题主要考查了根据图标数据进行中位数的求解,准确理解表中各项数据是解题的关键. 18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水 平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22︒,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45︒.测角仪的高度为1.6m ,()1求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:220.37,220.93,222 1.41sin cos tan ︒≈︒≈︒≈≈);()2“景点简介”显示,观星台的高度为12.6m ,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【答案】(1)12.3m ;(2)0.3m ,多次测量,求平均值【解析】【分析】(1)过点A 作AE ⊥MN 交MN 的延长线于点E ,交BC 的延长线于点D ,根据条件证出四边形BMNC 为矩形、四边形CNED 为矩形、三角形ACD 与三角形ABD 均为直角三角形,设AD 的长为xm ,则CD=AD=xm ,BD=BC+CD=(16+x )m ,在Rt △ABD 中,解直角三角形求得AD 的长度,再加上DE 的长度即可; (2)根据(1)中算的数据和实际高度计算误差,建议是多次测量求平均值.【详解】解:(1)如图,过点A 作AE ⊥MN 交MN 的延长线于点E ,交BC 的延长线于点D ,设AD 的长为xm ,∵AE ⊥ME ,BC ∥MN ,∴AD ⊥BD ,∠ADC=90°,∵∠ACD=45°,∴CD=AD=xm ,BD=BC+CD=(16+x )m ,由题易得,四边形BMNC 为矩形,∵AE ⊥ME ,∴四边形CNED 为矩形,∴DE=CN=BM=1.6m ,在Rt △ABD 中,tan ABD=0.4016AD x BD x==+∠, 解得:10.7x ≈,即AD=10.7m ,AE=AD+DE=10.7+1.6=12.3m ,答:观星台最高点A 距离地面的高度为12.3m .(2)本次测量结果的误差为:12.6-12.3=0.3m ,减小误差的合理化建议:多次测量,求平均值.【点睛】本题考查解直角三角形的实际应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x (次),按照方案一所需费用为1y ,(元),且11y k x b =+;按照方案二所需费用为2y (元) ,且22.y k x =其函数图象如图所示. ()1求1k 和b 的值,并说明它们的实际意义;()2求打折前的每次健身费用和2k 的值;()3八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【答案】(1)k 1=15,b=30;k 1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;(2)打折前的每次健身费用为25元,k 2=20;(3)方案一所需费用更少,理由见解析.【解析】【分析】(1)用待定系数法代入(0,30)和(10,180)两点计算即可求得1k 和b 的值,再根据函数表示的实际意义说明即可;(2)设打折前的每次健身费用为a 元,根据(1)中算出的1k 为打六折之后的费用可算得打折前的每次健身费用,再算出打八折之后的费用,即可得到2k 的值;(3)写出两个函数关系式,分别代入x=8计算,并比较大小即可求解.【详解】解:(1)由图象可得:11y k x b =+经过(0,30)和(10,180)两点,代入函数关系式可得:13018010b k b =⎧⎨=+⎩, 解得:13015b k =⎧⎨=⎩, 即k 1=15,b=30,k 1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元; (2)设打折前的每次健身费用为a 元,由题意得:0.6a=15,解得:a=25,即打折前的每次健身费用为25元,k 2表示每次健身按八折优惠的费用,故k 2=25×0.8=20;(3)由(1)(2)得:11530y x =+,220y x =,当小华健身8次即x=8时,115830150y =⨯+=,2208160y =⨯=,∵150<160,∴方案一所需费用更少,答:方案一所需费用更少.【点睛】本题考查一次函数的实际应用,用待定系数法求解函数关系式并结合题意计算出原价是解题的关键.20.我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的,人们根据实际需要,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线 上,且AB 的长度与半圆的半径相等;DB 与AC 重直F 点 ,B DB 足够长.使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则,EB EO 就把MEN ∠三等分了. 为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B ,求证:【答案】E 在BD 上,ME 过点A ,,AB OB OC == EN 为半圆O 的切线,切点为F ;EB ,EO 为∠MEN 的三等分线.证明见解析.【解析】【分析】如图,连接OF .则∠OFE=90°,只要证明EAB EOB ≌,OBE OFE ≌,即可解决问题;【详解】已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B , E 在BD 上,ME 过点A ,,AB OB OC ==EN 为半圆O 的切线,切点为F .求证: EB ,EO 为∠MEN 的三等分线..证明:如图,连接OF .则∠OFE=90°,∵EB ⊥AC ,EB 与半圆相切于点B ,∴∠ABE=∠OBE=90°,∵BA=BO .EB=EB ,EAB EOB ∴≌∴∠AEB=∠BEO ,∵EO=EO .OB=OF ,∠OBE=∠OFE 90=︒,∴OBE OFE ≌,∴∠OEB=∠OEF ,∴∠AEB=∠BEO=∠OEF ,∴EB ,EO 为∠MEN 的三等分线.故答案为:E 在BD 上,ME 过点A ,,AB OB OC ==EN 为半圆O 的切线,切点为F .EB ,EO 为∠MEN 的三等分线.【点睛】本题考查的是全等三角形的判定和性质、切线的性质等知识,解题的关键学会添加常用辅助线,构造全等三角形解决问题.21.如图,抛物线22y x x c =-++与x 轴正半轴,y 轴正半轴分别交于点,A B ,且,OA OB =点G 为抛物线的顶点.()1求抛物线的解析式及点G 的坐标;()2点,M N 为抛物线上两点(点M 在点N 的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点,M N 之间(含点,M N )的一个动点,求点Q 的纵坐标Q y 的取值范围.【答案】(1)2y x 2x 3=-++,G (1,4);(2)﹣21≤Q y ≤4.【解析】【分析】 (1)根据,OA OB =用c 表示出点A 的坐标,把A 的坐标代入函数解析式,得到一个关于c 的一元二次方程,解出c 的值,从而求出函数解析式,求出顶点G 的坐标. (2)根据函数解析式求出函数图像对称轴,根据点M,N 到对称轴的距离,判断出M,N 的横坐标,进一步得出M,N 的纵坐标,求出M,N 点的坐标后可确定Q y 的取值范围. 【详解】解:(1)∵抛物线22y xx c =-++与y 轴正半轴分别交于点B , ∴B 点坐标为(c ,0),∵抛物线22y x x c =-++经过点A ,∴﹣c 2+2c+c=0,解得c 1=0(舍去),c 2=3,∴抛物线的解析式为2y x 2x 3=-++∵2y x 2x 3=-++=﹣(x -1)2+4,∴抛物线顶点G 坐标为(1,4).(2)抛物线2y x 2x 3=-++的对称轴为直线x=1,∵点M,N 到对称轴的距离分别为3个单位长度和5个单位长度 ,∴点M 的横坐标为﹣2或4,点N 的横坐标为﹣4或6,点M 的纵坐标为﹣5,点N 的纵坐标为﹣21,又∵点M 在点N 的左侧,∴当M 坐标为(﹣2,﹣5)时,点N 的坐标为(6,﹣21),则﹣21≤Q y ≤4当当M 坐标为(4,﹣5)时,点N 的坐标为(6,﹣21),则﹣21≤Q y ≤﹣5,∴Q y 的取值范围为﹣21≤Q y ≤4.【点睛】本题考查的是二次函数的基本的图像与性质,涉及到的知识点有二次函数与坐标轴交点问题,待定系数法求函数解析式,对称轴性质等,解题关键在于利用数形结合思想正确分析题意,进行计算. 22.小亮在学习中遇到这样一个问题: 如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y 的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.23.将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ' ,记旋转角为α.连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接,DB CE ',()1如图1,当60α=︒时,DEB '∆的形状为 ,连接BD ,可求出BB CE'的值为 ;()2当0360α︒<<︒且90α≠︒时,①()1中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由; ②当以点,,,B E C D '为顶点的四边形是平行四边形时,请直接写出'BE B E的值.【答案】(12(2)①结论不变,理由见解析;②3或1.【解析】【分析】(1)根据题意,证明ABB '是等边三角形,得60AB B '∠=,计算出45DB E ︒'∠=,根据DE BB '⊥,可得DEB '∆为等腰直角三角形;证明BDB CDE '△△,可得BB CE'的值; (2)①连接BD ,通过正方形性质及旋转,表示出45EB D AB D AB B ︒'''∠=∠-∠=,结合DE BB '⊥,可得DEB '∆为等腰直角三角形;证明B DB EDC '△△,可得BB CE'的值; ②分为以CD 为边和CD 为对角线两种情况进行讨论即可. 【详解】(1)由题知60BAB '∠=°,90BAD ∠=°,AB AD AB '==∴30B AD '∠=°,且ABB '为等边三角形∴60AB B '∠=°,1(18030)752AB D ︒︒︒'∠=-= ∴180607545DB E ︒︒︒︒'∠=--=∵DE BB '⊥∴90DEB '∠=°∴45B DE '∠=°∴DEB '△为等腰直角三角形连接BD ,如图所示∵45BDC B DE '∠=∠=°∴BDC B DC B DE B DC '''∠-∠=∠-∠即BDB CDE '∠=∠∵22CD DE BD DB =='∴BDB CDE '△△∴=22BB BD CE CD '=2(2)①两个结论仍然成立连接BD ,如图所示:∵AB AB '=,BAB α'∠= ∴902ABB α︒'∠=-∵90,B AD AD AB α︒''∠=-= ∴1352AB D α︒'∠=-∴45EB D AB D AB B ︒'''∠=∠-∠=∵DE BB '⊥∴45EDB EB D ︒''∠=∠=∴DEB '△是等腰直角三角形 ∴2DB DE'=∵四边形ABCD 为正方形 ∴2,45BD BDC CD︒=∠= ∴BD DB CD DE '= ∵EDB BDC '∠=∠∴B DB EDC '∠=∠∴B DB EDC '△△ ∴2BB BD CE CD'==∴结论不变,依然成立②若以点,,,B E C D '为顶点的四边形是平行四边形时,分两种情况讨论第一种:以CD 为边时,则//CD B E ',此时点B '在线段BA 的延长线上,如图所示:此时点E 与点A 重合,∴BE CE B E '==,得1BE B E='; ②当以CD 为对角线时,如图所示:此时点F 为CD 中点,∵DE BB '⊥∴CB BB ''⊥∵90BCD ︒∠=∴BCF CB F BB C ''△△△∴2BC CB BB CF B F CB ''===''∴4BB B F ''=∴6,2BE B F B E B F '''==∴3BE B E=' 综上:BE B E '的值为3或1. 【点睛】本题考查了正方形与旋转综合性问题,能准确的确定相似三角形,是解决本题的关键.考试小提示:同学们,天道酬勤,十年寒窗十年苦,大巧若拙勤为路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3.00分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3.00分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s 的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3.00分)计算:|﹣5|﹣=.12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3.00分)不等式组的最小整数解是.14.(3.00分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3.00分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC 的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10.00分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11.00分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣的相反数是()A.﹣ B.C.﹣ D.【解答】解:﹣的相反数是:.故选:B.2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.4.(3.00分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.5.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.8.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.9.(3.00分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s 的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3.00分)计算:|﹣5|﹣=2.【解答】解:原式=5﹣3=2.故答案为:2.12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.13.(3.00分)不等式组的最小整数解是﹣2.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.14.(3.00分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,==π.∴S阴15.(3.00分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC 的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;三、计算题(本大题共8题,共75分,请认真读题)16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.【解答】解:当x=+1时,原式=•=1﹣x=﹣17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.19.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.22.(10.00分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.23.(11.00分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).。

相关文档
最新文档