磁芯资料
K各型磁芯详细资料
Ferrite For Switching Power Supplies TECHNICAL DATAEI Cores (EI12.5 to EI60)EE Cores (EE10/11 to EE62.3/62/6)EER Cores (EER25.5 to EER42/42/20)ETD Cores (ETD19 to ETD49)PQ Cores (PQ20/16 to PQ50/50)LP Cores (LP23/8 to LP32/13)RM Cores (RM4 to RM14)EPC Cores (EPC13 to EPC30)EI Series EI12.5 Cores(JIS FEI 12.5)∗ Coil: ø0.2 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI12.5 gapped core (Typical)PC40EI12.5 core (Typical)EI12.5 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI12.5-Z1200±25% (1kHz, 0.5mA)∗2120 min. (100kHz, 200mT)0.12 max.8.8W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.2 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EI Series EI16 Cores(JIS FEI 16)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI16 gapped core (Typical)PC40EI16 core (Typical)EI16 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI16-Z1100±25% (1kHz, 0.5mA)∗1750 min. (100kHz, 200mT)0.31 max.29W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI19 gapped core (Typical)PC40EI19 core (Typical)EI19 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI19-Z1400±25% (1kHz, 0.5mA)∗1830 min. (100kHz, 200mT)0.42 max.40W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI22 gapped core (Typical)PC40EI22 core (Typical)EI22 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI22-Z2400±25% (1kHz, 0.5mA)∗3360 min. (100kHz, 200mT)0.60 max.33W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EI Series EI22/19/6 Cores(JIS FEI 22)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI22/19/6 gapped core (Typical)PC40EI22/19/6 core (Typical)EI22/19/6 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI22/19/6-Z2000±25% (1kHz, 0.5mA)∗2780 min. (100kHz, 200mT)0.64 max.48W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EI Series EI25 Cores∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI25 gapped core (Typical)PC40EI25 core (Typical)EI25 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI25-Z2140±25% (1kHz, 0.5mA)∗2950 min. (100kHz, 200mT)0.79 max.68W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI28 gapped core (Typical)PC40EI28 core (Typical)EI28 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI28-Z4300±25% (1kHz, 0.5mA)∗6060 min. (100kHz, 200mT)1.65 max.107W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI30 gapped core (Typical)PC40EI30 core (Typical)EI30 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI30-Z4690±25% (1kHz, 0.5mA)∗6490 min. (100kHz, 200mT)3.1 max.155W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EI Series EI33/29/13 Cores∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI33/29/13 gapped core (Typical)PC40EI33/29/13 core (Typical)EI33/29/13 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI33/29/13-Z4400±25% (1kHz, 0.5mA)∗5980 min. (100kHz, 200mT)3.5 max.206W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI35 gapped core (Typical)PC40EI35 core (Typical)EI35 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI35-Z3800±25% (1kHz, 0.5mA)∗5110 min. (100kHz, 200mT)2.85 max.218W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI40 gapped core (Typical)PC40EI40 core (Typical)EI40 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI40-Z4860±25% (1kHz, 0.5mA)∗6520 min. (100kHz, 200mT)4.8 max.348W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI50 gapped core (Typical)PC40EI50 core (Typical)EI50 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI50-Z6110±25% (1kHz, 0.5mA)∗8300 min. (100kHz, 200mT)9.2 max.508W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI60 gapped core (Typical)PC40EI60 core (Typical)EI60 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI60-Z5670±25% (1kHz, 0.5mA)∗7690 min. (100kHz, 200mT)12.5 max.618W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EE Series EE10/11 Cores(JIS FEE 10.2)∗ Coil: ø0.18 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE10/11 gapped core (Typical)PC40EE10/11 core (Typical)EE10/11 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE10/11-Z850±25% (1kHz, 0.5mA)∗1450 min. (100kHz, 200mT)0.14 max.9.4W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.18 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.18 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE13 gapped core (Typical)PC40EE13 core (Typical)EE13 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE13-Z1130±25% (1kHz, 0.5mA)∗1770 min. (100kHz, 200mT)0.235 max.17W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.18 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40SEE16 gapped core (Typical)PC40SEE16 core (Typical)SEE16 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40SEE16-Z1240±25% (1kHz, 0.5mA)∗1850 min. (100kHz, 200mT)0.37 max.32W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EE Series EE20/20/5 Cores(DIN 41295)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE20/20/5 gapped core (Typical)PC40EE20/20/5 core (Typical)EE20/20/5 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE20/20/5-Z1400±25% (1kHz, 0.5mA)∗2270 min. (100kHz, 200mT)0.51 max.41W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EE Series EE25/19 Cores∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE25/19 gapped core (Typical)PC40EE25/19 core (Typical)EE25/19 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE25/19-Z2000±25% (1kHz, 0.5mA)∗2570 min. (100kHz, 200mT)0.86 max.70W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EE Series EE30/30/7 Cores(DIN 41295)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE30/30/7 gapped core (Typical)PC40EE30/30/7 core (Typical)EE30/30/7 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE30/30/7-Z2100±25% (1kHz, 0.5mA)∗3030 min. (100kHz, 200mT)1.51 max.133W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE42/42/15 gapped core (Typical)PC40EE42/42/15 core (Typical)EE42/42/15 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE42/42/15-Z4700±25% (1kHz, 0.5mA)∗7050 min. (100kHz, 200mT)8.0 max.419W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE55/55/21 gapped core (Typical)PC40EE55/55/21 core (Typical)EE55/55/21 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE55/55/21-Z7100±25% (1kHz, 0.5mA)∗10830 min. (100kHz, 200mT)11.0 max.814W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE50.3/51/6 gapped core (Typical)PC40EE50.3/51/6 core (Typical)EE50.3/51/6 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE50.3/51/6-Z2900±25% (1kHz, 0.5mA)∗3950 min. (100kHz, 200mT)5.83 max.213W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE62.3/62/6 gapped core (Typical)PC40EE62.3/62/6 core (Typical)EE62.3/62/6 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE62.3/62/6-Z3100±25% (1kHz, 0.5mA)∗4150 min. (100kHz, 200mT)8.85 max.250W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER25.5 gapped core (Typical)PC40EER25.5 core (Typical)EER25.5 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER25.5-Z1920±25% (1kHz, 0.5mA)∗2910 min. (100kHz, 200mT)0.98 max.87W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER28 gapped core (Typical)PC40EER28 core (Typical)EER28 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER28-Z2870±25% (1kHz, 0.5mA)∗4350 min. (100kHz, 200mT)2.3 max.203W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER28L gapped core (Typical)PC40EER28L core (Typical)EER28L core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER28L-Z2520±25% (1kHz, 0.5mA)∗3660 min. (100kHz, 200mT)2.7 max.228W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)EER Series EER35 Cores(JIS FEER 35A)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER35 gapped core (Typical)PC40EER35 core (Typical)EER35 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER35-Z2770±25% (1kHz, 0.5mA)∗4000 min. (100kHz, 200mT)4.2 max.325W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)EER Series EER40 Cores∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER40 gapped core (Typical)PC40EER40 core (Typical)EER40 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER40-Z3620±25% (1kHz, 0.5mA)∗5160 min. (100kHz, 200mT)6.3 max.421W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)EER Series EER42 Cores(JIS FEER 42)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER42 gapped core (Typical)PC40EER42 core (Typical)EER42 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER42-Z4690±25% (1kHz, 0.5mA)∗6670 min. (100kHz, 200mT)8.6 max.433W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)EER Series EER42/42/20 Cores∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER42/42/20 gapped core (Typical)PC40EER42/42/20 core (Typical)EER42/42/20core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER42/42/20-Z5340±25% (1kHz, 0.5mA)∗8260 min. (100kHz, 200mT)10.7 max.509W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40ETD19 gapped core (Typical)PC40ETD19 core (Typical)ETD19 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40ETD19-Z1720±25% (1kHz, 0.5mA)∗2380 min. (100kHz, 200mT)1.1 max.79W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40ETD24 gapped core (Typical)PC40ETD24 core (Typical)ETD24 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40ETD24-Z2125±25% (1kHz, 0.5mA)∗2860 min. (100kHz, 200mT)1.6 max.115W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40ETD29 gapped core (Typical)PC40ETD29 core (Typical)ETD29 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40ETD29-Z2500±25% (1kHz, 0.5mA)∗3540 min. (100kHz, 200mT)2.4 max.170W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)。
电感磁芯结构
电感磁芯结构
电感磁芯是一种用于增强电感线圈磁导率的材料,它可以极大地提高电感器的感量(L)。
电感磁芯的结构主要有以下几种:
1. 铁氧体磁芯:铁氧体磁芯是以Fe2O3为主成分的亚铁磁性氧化物,有Mn-Zn、Cu-Zn、Ni-Zn 等几类,其中Mn-Zn 最为常用。
铁氧体磁芯具有良好的磁性能和较高的电阻率,广泛应用于高频变压器、小功率的储能电感等。
2. 硅钢片磁芯:硅钢片磁芯是在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金。
硅钢片磁芯具有较高的饱和磁通和较低的电阻率,常用于电力变压器、低频电感、CT等。
3. 铁镍合金磁芯:铁镍合金磁芯又称坡莫合金或MPP,通常指铁镍系合金,镍含量在30~90%范围内。
铁镍合金磁芯具有很高的磁导率和损耗很低,高频性能好,但成本较高。
4. 铁粉芯磁芯:铁粉芯磁芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料,存在分散气隙(效果类似与铁磁材料开气隙)。
常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。
铁粉芯磁芯磁导率随频率的变化较为稳定,随直流电感量较大,适用于功率电感器、变压器、电抗器等。
这些磁芯结构在不同的应用场景中具有各自的优点和特点,可以根据实际需求选择合适的电感磁芯结构。
镍锌铁氧体磁芯
镍锌铁氧体磁芯
镍锌铁氧体磁芯是一种高频软磁铁氧体材料,具有尖晶石结构,相对初始磁导率μ在15~70之间,矫顽力为238.8~557.2A/m,居里点为350~450℃。
它的主要原料包括铁、镍、锌的氧化物或盐类。
镍锌铁氧体磁芯由于具有高频、宽频、高阻抗、低损耗的特点,在近几年越来越受到重视,成为在高频范围(1-100MHz)内应用最广、性能优异的软磁铁氧体材料。
镍锌铁氧体磁芯的磁导率从15-2000不等均有应用,常用的材料磁导率在100-1000之间。
此外,它还具有极高的阻抗率,不到几百的低磁导率等特性。
在电子设备中,镍锌铁氧体磁芯广泛应用于线圈和变压器中,因为它具有高的饱和磁感应强度,机械应力影响小,价格便宜等优点。
请注意,对于任何关于电子设备或材料的详细技术问题,最好咨询相关的专业人员或查阅专门的技术资料,以确保安全和准确性。
Fe3si资料
目前,Fe3Si的研究主要集中在其磁学性质上。
Fe3Si作为软磁材料常被用作发电机和变压器的铁芯,Fe3Si还被制成了音频或者视频磁头、卡片阅读器等,在高频信息领域方面应用广泛。
另外薄膜Fe3Si 也开始用于磁阻存储器中,并且可利用其自旋极化性质制备自旋电子器件。
Fe3Si金属间化合物因其优异的软磁性能,而被广泛应用于音频、视频及卡片阅读器用磁头材料,而且有望代替普通硅钢片,成为新一代能量转换用磁芯材料。
其还具有负的电阻温度系数,是一种有特殊性质的导体,有可能成为新型的电阻材料。
Fe3Si金属间化合物所表现出的优越抗氧化性能是其作为结构材料应用的一大优势,也可将其作为某些高温抗氧化结构部件或材料的抗氧化涂层。
传统钢铁材料表面Si化处理是提高材料自身抗氧化性能的有效方法,处理后的表面生成高Si含量的Fe(Si)固溶体,或Fe—si金属间化合物,以提高材料自身的高温抗氧化性能¨“。
因此,将Fe,si作为抗氧化结构涂层将与之有着同等重要的价值。
Fe 3si基合金具有优异的软磁性能,不仅有希望替代普通硅钢片(尤其在高频信息领域),而且还广泛用作音频和视频磁头材料和卡片阅读器用磁头材料,因而一直是能源和信息处理领域的研究热点.由于硅含量较高,导致B2 和DO3 有序相的出现,合金变得既硬又脆,使机械加工性能急剧恶化因此,制备工艺的发展和成熟,以及能否经济有效的生产是Fe si基合金广泛应用的关键.当今,电子信息设备正向智能化、数字化、小型轻便以及高频甚至超高频(从KHz到MHz ,进而向GHz频段)方向发展,占据很大体积和重量、被广泛使用的传统的磁性器件很明显不能满足电子设备的要求。
薄膜化的材料能够实现传统器件以往无法实现的很多功能。
微磁器件就是一种以磁性材料薄膜化技术为基础的器件,其凭借在高频以及超高频下具有优异的磁性能,使得传统磁性器件(如电感器、变压器等)逐渐向高频化、小型化发展的要求得以实现,也是实现以微磁器件与半导体器件为一体的磁性IC的前提之一。
变压器设计及磁芯相关资料
磁性器件中磁芯的选用及设计开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。
不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。
(一)、高频功率变压器变压器铁芯的大小取决于输出功率和温升等。
变压器的设计公式如下:P=K*f*N*B*S*I×10-6T=hc*Pc+hW*PW其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。
由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。
但B值的增加受到材料的Bs值的限制。
而频率f可以提高几个数量级,从而有可能使体积重量显著减小。
而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。
一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。
单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。
它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。
特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。
线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。
这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。
对于工作在±Bm 之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。
u型高压包变压器磁芯
u型高压包变压器磁芯
U型高压包变压器磁芯是变压器的重要组成部分,它承担着将电能从一个电路传输到另一个电路的重要功能。
以下从多个角度来解释U型高压包变压器磁芯的相关问题。
首先,我们来看U型高压包变压器磁芯的结构和原理。
U型磁芯通常由硅钢片或铁氧体材料制成,它们被精确地堆叠在一起以形成一个U形的磁路。
这种设计有助于减少磁通漏磁,提高变压器的效率。
U型磁芯的设计还可以使得变压器在工作时产生较小的磁损耗,从而减少能量的浪费。
其次,U型高压包变压器磁芯的作用。
磁芯在变压器中起着传导磁通的作用,它能够集中磁场并提高变压器的磁耦合效率。
通过磁芯的设计和材料的选择,可以实现对电能的有效传输和转换,从而满足不同电路之间的电压变换需求。
此外,U型高压包变压器磁芯的材料选择也是至关重要的。
硅钢片是常用的材料,因为它具有较低的磁导率和较高的电阻率,能够有效地抑制涡流损耗。
而铁氧体材料则具有较高的磁导率和较低的磁滞回线,适用于高频变压器和功率变压器。
最后,U型高压包变压器磁芯的制造工艺也需要考虑。
制造过程中需要精确的尺寸控制和优良的表面处理,以确保磁芯的性能稳定性和可靠性。
此外,还需要考虑磁芯的绝缘处理,以防止磁芯在工作时发生局部放电或击穿现象。
总的来说,U型高压包变压器磁芯在变压器中起着至关重要的作用,它的设计、材料选择和制造工艺都对变压器的性能和效率有着重要影响。
希望以上回答能够满足你的需求。
pq6560磁芯参数
pq6560磁芯参数
磁芯是一种用于电子设备中的重要材料,它具有许多不同的参
数和特性。
针对你提到的pq6560磁芯,它通常用于变压器和电感器中。
以下是一些可能涉及到的参数:
1. 尺寸和形状,pq6560磁芯的尺寸和形状对于其在电子设备
中的应用至关重要。
它的尺寸可能会影响到其承载能力和适用范围。
2. 材料特性,磁芯的材料对于其磁性能和耐热性能有着重要影响。
pq6560磁芯通常是由铁氧体材料制成,这种材料具有良好的磁
导率和磁饱和特性。
3. 磁性能,磁芯的磁性能是指其在外加磁场下的磁化特性,包
括饱和磁感应强度、矫顽力、磁导率等参数。
这些参数直接影响到
磁芯在变压器和电感器中的性能表现。
4. 频率特性,对于用于电子设备的磁芯来说,其频率特性也是
一个重要参数。
pq6560磁芯可能会有特定的工作频率范围,超出这
个范围可能会影响到其性能。
5. 温度特性,磁芯在工作过程中会受到一定的热量影响,因此
其温度特性也是需要考虑的参数。
pq6560磁芯可能会有特定的工作
温度范围,超出这个范围可能会影响到其稳定性和可靠性。
总的来说,针对pq6560磁芯的参数,我们需要综合考虑其尺寸、材料特性、磁性能、频率特性和温度特性等多个方面的参数,以确
保其在电子设备中的性能和稳定性。
希望这些信息能够帮助到你。
磁芯详细资料
居里温度 Tc Curie Temperature
单位 Unit -
mT mT A/m ×10-6 ℃
电阻率 ρ Electrical Resistivity
Ω.m
密度 d Density
kg/m3
TH5 5000±
25% ≥410
150 8
TP3
TP4
TP44
P2
P4
P41
B1
B2/F1
F2
CF129
CF138
DMR30 DMR40
DMR44
N41
N67/N87
N97
78
6H10
6H20
6H40
PG232
PG242
TSF-7099 TSF-7060
3C85 3C90/3C94 3C96/3F3
ML24D
ML25D
SB-5S
SB-7C
SB-9C
2H07
2H10
PG152
HS502
HS702
HS103
TSF-5099 TSF-300
HE4
HE44
25G
45G/55G
35G
PM-1
PM-7
PM-11
MB3
MB4
JP3
JP4/JP4A
JP4B
K2006
K2008
MB3
MB4
KP3
KP4
KP4A
F5A/F5C LP2
NC-1M PL-5
TP3 PC30 3100 2E6
B2B4F1 P
F44 LP3 BH2 F827 NC-2H PL-7 32 TP4 PC40 BH2 2E7 F1 MF198 SK-104G
ee1910磁芯规格
ee1910磁芯规格全文共四篇示例,供读者参考第一篇示例:EE1910磁芯是一种常用的磁性物质,具有吸收和储存磁场能量的功能。
它具有许多优良的性能特点,被广泛应用于电子领域。
本文将介绍EE1910磁芯的规格参数及其在电子产品中的应用。
让我们了解一下EE1910磁芯的基本规格参数。
EE1910磁芯通常采用硅钢片或铁氧体材料制成,在不同工艺条件下会有一定的差异。
一般来说,EE1910磁芯的外形尺寸为19mm x 10mm x 6mm,其中19mm代表磁芯的长度,10mm代表磁芯的宽度,6mm代表磁芯的厚度。
这种尺寸大小适中,可满足大多数电子产品的设计需求。
除了尺寸外,EE1910磁芯的磁性能也是其重要的规格参数之一。
磁性能主要包括磁导率、剩磁、矫顽力和矫顽力温度系数等指标。
EE1910磁芯的磁导率一般在5000-10000之间,这个数值反映了磁芯对磁场的响应能力。
剩磁是指在磁场消失后,磁芯保留的磁感应强度,EE1910磁芯的剩磁一般在0.6-1.1 T之间。
矫顽力是指需要加给磁芯的外磁场强度,才能使其完全消磁,EE1910磁芯的矫顽力一般在50-200 A/m之间。
矫顽力温度系数是指矫顽力随温度变化的速率,EE1910磁芯的矫顽力温度系数一般在0.001-0.005/K之间。
这些磁性能参数直接影响着磁芯在电子产品中的应用效果。
EE1910磁芯在电子产品中有着广泛的应用。
它主要用于变压器、电感器、滤波器等电路中,起到传导、隔离、滤波和储能的作用。
在变压器中,EE1910磁芯可以有效提高电感的效率和性能。
在电感器中,EE1910磁芯可以减小电感器的体积和功耗,提高性能稳定性。
在滤波器中,EE1910磁芯可以清除电路中的噪声和干扰,保证信号的纯净和稳定。
EE1910磁芯在电子产品中发挥着重要的作用,受到了广泛关注和应用。
第二篇示例:EE1910磁芯是一种常见的磁性材料,用于制造电子设备和通信设备中的变压器、电感器和变频器等元器件。
磁芯参数
1,磁芯向有效截面积:Ae2,磁芯向有效磁路长度:le3,相对幅值磁导率:μa4,饱和磁通密度:Bs功率铁氧体磁芯常用功率铁氧体材料牌号技术参数EI型磁芯规格及参数PQ型磁芯规格及参数EE型磁芯规格及参数EC、EER型磁芯规格及参数1 磁芯损耗:正弦波与矩形波比较一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。
涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。
对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。
材料中存在高的涡流损耗(如大型叠片式或大型切割磁芯)时,矩形波损耗是正弦波损耗的1/2~2/3。
D.Y.Chen提供的参考资料解释了这种现象。
一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。
但在元件存在铜损的情况下,这是不正确的。
在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。
高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。
举个例子,在20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激励磁芯损耗的两倍。
例如,对于许多开关电源来说,具有矩形波激励磁芯的5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。
2 Q值曲线所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。
这些测试参数通常是用置于磁芯上的最适用的绕组完成的。
对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。
对于钼坡莫合金磁粉芯同样是正确的。
用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。
Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。
由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。
磁芯种类和AP法选磁芯学习资料
磁芯种类和A P法选磁芯磁芯分为铁氧体磁芯和合金类磁芯铁氧体磁芯(常用的):锰锌系列,镍锌系列合金类磁芯:铁粉芯,钼坡莫合金(不常见)铁氧体磁芯锰锌系镍锌系组成71%,MnO 20%,其他为ZnO50%,NiO 24%,其他为ZnO特点电阻率高(10omh-cm)铁芯损耗低居里温度高电阻率高(omh-cm)铁芯损耗较锰锌系高工作频率高居里温度高形状EE,ER,EI,PQ,RM,POT DR,R,环形用途功率变压器,EMI共模滤波器,储能电感常模滤波器,储能电感合金类磁芯硅钢片铁粉芯铁硅铝合金铁镍合金钼坡莫合金组成硅,钢极细的铁粉和有机材料粘合铝6%,硅9%,铁85%组合成镍50%,铁50%组合而成钼2%,铁17%,镍81%组成特点极高的磁导率(μ约60000)很高的饱和磁通密度(0.6T~1.9T)电阻率非常低(取决于硅含量),故使用频率不高成本低廉磁导率在10~75之间低成本铁芯损耗很高磁导率在26~125之间成本中等铁芯损耗低饱和磁通密度高于铁硅铝合金成本高于铁硅铝合金铁芯损耗于铁硅铝合金和铁粉芯之间磁导率在14~550之间饱和磁通密度最高成本最高铁芯损耗最低,稳定性最好型式片状或带状以及加工后的O型,R型等EE,ER,环形等环形环形环形根据变压器用途选磁芯:PQ功率磁芯:功率传输变压器,开关电源变压器,滤波电感器,宽频及脉冲变压器,转换电源变压器主要材质:TP3,TP4EP型高导磁芯:主要用于滤波器波形整理,消除杂波,使视频清晰或音频保真根据工作频率,功率大小,电感量大小,安装空间选择磁芯:根据工作频率选择磁芯适用的工作频率范围TP3材质温度升高,功率呈下降趋势,中心工作频率25KHz—200KHzTP4材质中心工作频率在200KHz—300KHzTH7,TH10,TH12材质中心工作频率小于150KHz根据功率大小选择磁芯小于5W可用磁芯ER9.5,ER11.5,EE8.3,EE10,EE13,EP7,EP10,RM4,UI19.8,URS7 5—10W可用磁芯ER20,EE19,RM5,GU14,EI22,EF16,EP13,UI11.510—20W可用磁芯ER25,EE20,EE25,RM6,GU18,EF2020—50W可用磁芯ER28,EI28,EE28,EE30,EF25,RM8,GU22,PQ20系列,EFD2050—100W可用磁芯ER35,ETD34,EE35,EI35,EF30,RM10,GU30,PQ26系列100—200W可用磁芯ER40,ER42,EI40,RM12,GU36,PQ32系列200—500W可用磁芯ER49,EC53,EE42,EE55,RM14,GU42,PQ35系列,PQ40系列,UU66 500W以上可用磁芯ER70,EE65,EE85,GU59,PQ50系列,UU80,UU93根据滤波器电感量大小:AL=(L/)*1000000()(准确的说法是叫电感系数,他是为了便于开关电源的匝数引入的,(N*N=Lp/Al 其中N为线圈的匝数,Lp为线圈的电感量,Al为电感系数)一般手册上给的是1匝线圈的电感量,有的给出的是1000的电感量.1mH=1000uH1uH=1nH ,nH(纳亨)(不常用)磁芯结构的选择:选择时要尽量降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线方便。
浙江海宁天通公司的磁芯资料
Kw/m3 Kw/m3
120℃
电阻率 Electrical Resistive 居里温度 Curie Temperature 密度 Density
Kw/m3
Ω·m ℃ g/cm3
500
6.5 ≥220 4.8
400
6.5 ≥215 4.8
350
6.5 ≥220 4.8
返回首页
主要特性图: Main characteristics table:
返回首页
基本特性: Typical characteristics:
特性 Characteristics 起始磁导率μi Initial Permeability 振幅磁导率μa Amplitude Permeability 测试条件 Conditions 10KHz 25℃ H<0.4A/m 10KHz 25℃ 200mT 单位 Unit / / TP4B 2500 ±25%
Core loss Pcv(kW/m3)
100kHz
1000
64kHz 32kHz
25kHz
100
100
10
10
1 10 100 Flux Density Bm(mT) 1000
1
10 100 1000
Flux Density Bm(mT)
TP4功率损耗特性 Core loss of TP4
返回首页
返回首页
VER: Apr. 2004
MAJOR MATERIAL-----MnZn FERRITE
TP4 TP4A & TP4S TP4B & TP4C
TP5 & TP5A
TD5A & TD3 TS5 TS7 TS10 &TS10A
磁芯(铁芯)浍层物质安全资料表MSDS
Safety data sheetProduct: HX N1.Identificat2.ion of the substance/product and of the company/undertaking東莞市華星納米科技有限公司2.1Identification of the substance or preparation:Trade name: HX NDescription: White to light-grey crystalline powder .Chemical name: 2,2 ParacyclophaneNumber CAS: 1633-22-3Name CAS: tricyclo [8.2.2.2’4,7]hexadeca-1(12),4,6,10,13,15-haxaeneNumber EC: 216-644-2Number ONU: /Formula: C16H16Molecular weight: 208,31Structure formula:2.2Utilization of substance: fine chemicals.position/information on ingredientsDesignation: tricyclo [8.2.2.2’4,7]hexadeca-1(12),4,6,10,13,15-haxaeneCAS Number: 1633-22-3EC number: 216-644-2Typical composition: ≥99,0%R phrases: R36/37/38 (See point 16).S phrases: S36/37/39 S51 (See point 16).4.Hazards identificationInformation pertaining to particular dangers for man and environment: The melted product adheres to the skin and causes burns.If material is spilled there is a hazard of personnel slipping on the product. Possibility production of electrostatic chargings when used.Classification system: This material is not hazardous according to the wording of the directives EEC 88/379, 67/548 and subsequent amendments.Classification: Bulk for Coating industry.Danger information (for man): Harmful by ingestion. Irritant to respiratory system and skin.Danger information (for environment): N.D,5.First-aid measuresGeneral information: the measures listed below apply to critical situations (fire, incorrect process condition). After inhalation: in case of excessive inhalation of fumes bring the person into fresh air. Call for medical help. Keep person warm, if necessary give mouth-to-mouth resuscitation, or artificial respiration.After skin contact: after contact with the molten product, cool rapidly with water and soap.After eye contact: rinse opened eye for several minutes under running water, Then consult doctor.After swallowing: seek immediate medical advice.6.Fire fighting measuresSuitable extinguishing agents: water haze, Foam, Carbon dioxide, any “ABC” class.For safety reasons unsuitable extinguishing agents: none.Special hazards caused by the material, its products of combustion or resulting gases: can be released in case of fire: water, CO2, and when lacking oxygen CO; the products of the burning are dangerous.For the powdered product, there is a high risk of explosion that is in direct relation to the diameter of the particles and their concentration in the air. Avoid risk of explosions by equipping the work place with a proper aeration system.Protective equipment: wear self-contained breathing apparatus and protective clothing to prevent contact with skin and eyes.7.Accidental release measuresWear self-contained breathing apparatus, rubber boots and heavy rubber gloves. Sweep up, place in a bag and hold for waste disposal. Avoid raising dust. Ventilate area and wash spill site after material pickup is complete.8.Handling and storag8.1Handling: Information for safe handling: when handling dust take all precautionary measures necessary.Avoid inhalation of dust. Avoid breathing fumes and fume during the production process. Provide anappropriate suction-,and ventilation system to the working area. Safety equipment see chapter 8. Takeprecautionary measurements against static electricity.8.2Storage: Requirements to be met by storerooms and containers: Standard packing: drums. Do not smoke.Against static electricity take precautionary measures. Earth equipment electrically. Electric safety equipment.Open flames prohibited.8.3Information about storage in one common storage facility: not required.8.4Further information about storage conditions: store container in a well ventilated position: protect from heatand direct sunlight. Store under dry conditions. Avoid collections of fine particles within storage container, as certain dust concentrations within the air will lead to explosion.9.Exposure controls/personal protection9.1Components with limit values that require monitoring at the workplace: not required.9.2Additional exposure limit values for possible processing dangers: inhalable particulates not otherwiseclassified (PNOC) OEL: 10mg/m3.9.3Personnel protective equipmentGeneral protective and hygienic measures: Do not eat or drink while working. No smoking. Do not inhale dust. Provide work place with a proper deduster, especially when handling with and charging the product.Provide system for collecting the vapours which are created during the working process.Wash contaminated clothing before reuse. Wash thoroughly after handling.Breathing equipment: If no appropriate ventilation is available use face mask when handling the molten product. Use dust mask at room temperature.Protection of hands: PVC gloves. Neoprene gloves. Heat resistant gloves.Eye protection: Safety goggles recommended during refilling.Body protection: Normal overalls. Safety boots or shoes.10.Physical and chemical propertiesForm: crystalline powder. Colour: White to light-grey. Odour: Odourless.Value/Range Unit MethodChange in conditionMelting point/Melting range: 282-288 ℃Sublimation temperature/start: 160 ℃ (@1.05mmHg)Flash point: not applicable (see attachment to guideline 92/69/EEC, A.9)Danger of explosion: Product is not explosive. See points 5, 7.Density: 1.23 g/cm3Solubility in /Miscibility with: Water: Insoluble11.Stability and reactivityIncompatibilities: Strong oxidizing agents, strong acids, strong bases.Hazardous combustion or decomposition products: Carbon monoxide, carbon dioxide.12.Toxicological information12.1Acute toxicity: LD/LC50 values that are relevant for classification: 1633-22-3 tricyclo[8.2.2.2-4,7]hexadeca-1(12),4,6,10,13,15-haxaene. Oral: LD50: > 5000 mg/kg (rat).12.2Primary irritant effect: May cause skin irritation. May cause eye irritation. May be harmful by inhalation,ingestion, ingestion, or skin absorption.13.Ecological informationInformation about elimination (persistence and degradability): The product is not biologically decomposable.14. Disposal considerations14.1Product recommendation: Dissolve or mix the material with a combustible solvent and burn in a chemicalincinerator equipped with an afterburner and scrubber.14.2Uncleaned packaging recommendation: Disposal must be made according to official regulations.15.Transport informationTransport/additional information: The product is according to national and international guidelines, which regulate the road-, rail-, and sea transport, not dangerous.Number CAS: 1633-22-3 Name CAS: tricyclo [8.2.2.2-4,7]hexadeca-1(12),4,6,10,13,15-haxaeneNumber EC: 216-644-2Number ONU: /16.Regulatory informationDesignation according to EC guidelines: The product is classified as not dangerous according to EEC directives 67/548, 88/379 and following adaptations.R phrases: R 36/37/38 Irritant to eyes, respiratory system, skin.S phrases: S 36/37/39 Use proper protective equipment, wear gloves, protect eyes, face.S 51 use only in well-ventilated areas.Further regulations, restrictions and prohibitions: Generally all national regulations regarding this product type apply.Label information: Trade Name: HX N.Danger symbol: Xi. Indication of danger: Irritant.Other legislation:17.Other informationThe information supplied has been based upon the current level of information available, for the purpose of specifying the requirements regarding environment, health and safety in conjunction with the product characteristics. Huaxing take no responsibility for inappropriate use, processing and handling by purchasers and users of the product.The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. Other particular conditions or events requiring additional safety measures should not be excluded and should be considered by the final user. Huaxing should not be held liable for any damage resulting from handling or from contact with the above product.Bibliography:Directive EEC 67/548 and following adaptations. Directive EEC 88/379 and following adaptations. DirectiveEEC91/155 and following adaptations. EINECS/ELINCSRTECS 8registry of toxic effects of chemical substances 1985-1986 editionFrostling, Hof, Jacobson, Pfaffli,, Zitting, ‘Thermal decomposition products from plastics’, 2-polypropylene and poly vinil chloride, 1983“1995-1996 Threshold Liwith Values for Chemical Substances and Physical Agents and Biological Expesure Indices”, ACGIH (American conference of governmental or governmental industrial hygienists)Report No. 701/144 the “Universita degli studi di Milano” (Institute of Pharmacology withen the Faculty of Science).Important: for security and health care of personnel proper training should be provided indicating all instructions about the material.N. A. : Not applicableN.D. : Not disposable。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.磁性材料的磁化曲线
磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数
饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs
矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:
总功率耗散(mW)/表面积(cm2)
3.软磁材料的磁性参数与器件的电气参数之间的转换
在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
二、常用软磁磁芯的特点及应用
(一) 粉芯类
1. 磁粉芯
磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。
主要用于高频电感。
磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
磁芯的有效磁导率μe及电感的计算公式为:μe = DL/4N2S × 109
其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2)。
(1) 铁粉芯
常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。
在粉芯中价格最低。
饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。
铁粉芯初始磁导率随直流磁场强度的变化
铁粉芯初始磁导率随频率的变化
(2). 坡莫合金粉芯
坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。
MPP 是由81%Ni、2%Mo及Fe粉构成。
主要特点是:饱和磁感应强度值在 7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。
主要应用于300kHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格最贵。
高磁通粉芯HF是由50%Ni、50%Fe粉构成。
主要特点是:饱和磁感应强度值在 15000Gs 左右;磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积校主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多。
价格低于MPP。
(3) 铁硅铝粉芯(Kool Mμ Cores)
铁硅铝粉芯由9%Al、5%Si, 85%Fe粉构成。
主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在1.05T 左右;导磁率从26~125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比 MPP有更高的DC偏压能力;具有最佳的性能价格比。
主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。
有时也替代有气隙铁氧体作变压器铁芯使用。
邀请1个网友注册论坛就送1块钱,赶紧参加吧!
2. 软磁铁氧体(Ferrites)
软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。
有Mn- Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1~10 欧姆-米,一般在 100kHZ 以下的频率使用。
Cu-Zn、Ni-Zn铁氧体的电阻率为102~104 欧姆-米,在100kHz~10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器。
磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。
在应用上很方便。
由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。
而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不
变。
随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。
国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况。
分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料。
电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每10年下降3%~4%。
广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。
宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000。
其特性为具有低损耗因子、高磁导率、高阻抗/频率特性。
广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用。
功率铁氧体具有高的饱和磁感应强度,为4000~5000Gs。
另外具有低损耗/频率关系和低损耗/温度关系。
也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。
广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路。
TDK,FDK,天通,东磁,海特,恒力,海特,金川,丰亿,富莱得,信德,东阳光,天通,耕芯,铁研,钜芯,鼎磁,超祥,稳磁
TDK是一个著名的电子工业品牌,一直在电子原材料及元器件上占有领导地位。
TDK的创始人加藤与五郎博士和武井武两博士在东京发明了铁氧体后,于1935年创办了东京电气化学工业株式会社(Tokyo Dengikagaku Kogyo K.K),这个名字的前身是东京工业大学电化学系,加藤与五郎博士和武井武博士,在该大学电化学系授课。
1983年,该名字正式更名为如今的TDK株式会社,取的是原名称Tokyo(东京) Denki(电气) Kagaku(化学)的首字母,开始从事该磁性材料的商业开发和运营。
TDG天通控股股份有限公司TDG是天通控股股份有限公司的商标,天通控股股份有限公司创办于1984年,是拥有多家控股公司和参股公司的国内首家由自然人直接控股的上市公司。
公司重点发展电子材料与部品、专用高端装备和新能源环境技术与应用三大产业,是集科研、制造、销售于一体的国家重点高新技术企业。
风华微硕海特鼎磁。