CBTC系统
CBTC的名词解释
CBTC的名词解释随着城市轨道交通的高速发展,CBTC(Communication-Based Train Control,基于通信的列车控制)系统成为一种重要的技术手段。
CBTC系统通过高速可靠的通信技术,实现列车位置精确定位、列车间的安全保护以及列车运行的精细控制,为城市轨道交通系统的安全和效率提供了重要支撑。
一、CBTC系统的优势CBTC系统相比传统的列车控制系统拥有许多优势。
首先,CBTC系统通过基于全气候全天候的可见光通信、无线通信等技术,能够实现对列车位置的高精度定位。
这使得列车可以在复杂的城市地下环境中实现精确的位置控制,保证列车的运行安全和稳定性。
其次,CBTC系统具备很高的扩展性。
城市轨道交通系统的运行需求是不断变化的,CBTC系统可以根据运营需求进行模块化的扩展和升级,以满足不同阶段的需求,并为未来城市轨道交通的发展提供技术支持。
此外,CBTC系统还具备强大的自主性和可靠性。
CBTC系统采用红外、无线和光纤等通信技术,能够实现列车与控制中心之间的无线通信,从而降低了系统的依赖性和系统构建的复杂程度。
同时,CBTC系统采用冗余设计和自动切换技术,能够在系统故障或异常情况下快速切换到备用系统,确保列车的安全运行。
二、CBTC系统的关键技术CBTC系统的运行离不开一系列关键技术的支持。
首先是高精度定位技术。
CBTC系统采用全球定位系统(GPS)、惯性导航系统和激光雷达等多种技术,对列车位置进行实时监测和定位,并与地面设备进行通信,以确保列车能够准确地在轨道上行驶。
其次是通信技术。
CBTC系统利用无线通信(如Wi-Fi和LTE)和光纤通信等技术,实现列车与控制中心之间的数据传输和通信。
通过高速、可靠的通信技术,CBTC系统可以实时监控列车的运行状态,并发送指令实施列车控制。
还有车载设备和地面设备的集成技术。
CBTC系统需要将车载设备和地面设备相互连接,以实现数据的传输和列车控制的逻辑。
列车运行控制系统列控地面设备地面设备
列车运行控制系统(CBTC)- 列控地面设备简介列车运行控制系统(CBTC)是一种先进的铁路列车控制系统,用于实现高度自动化和精确的列车运行。
CBTC系统通过地面设备,如无线通信系统、轨道电路和传感器等,与列车上的控制单元相互配合,实现列车位置、速度和通信的实时监控和调度。
本文档将重点介绍CBTC地面设备的功能和应用。
功能CBTC地面设备主要负责与列车进行通信并监控列车位置、速度和运行状态等信息。
下面是CBTC地面设备的主要功能:1. 无线通信系统CBTC地面设备使用无线通信系统与列车进行双向通信。
通过无线通信系统,地面设备可以向列车发送控制指令,如改变速度、停止或启动等。
同时,地面设备还可以接收列车发送的状态和监测数据,以实时监控列车的运行状态。
2. 轨道电路CBTC地面设备还包括轨道电路,用于监测列车的位置和速度。
轨道电路通过电路激活器和传感器来检测列车经过的位置,并将数据发送到地面设备。
地面设备可以根据轨道电路提供的数据计算列车的精确位置,从而实现精确的列车控制和运行管理。
3. 运行管理系统CBTC地面设备通常还配备运行管理系统,用于实时监控和调度列车的运行。
运行管理系统可以通过与地面设备和列车控制单元的通信,获取列车位置、速度和通信状态等信息,综合判断并做出相应的调度决策。
例如,当有多列列车接近同一区段时,运行管理系统可以通过地面设备向列车发送指令,使它们保持安全的间隔和运行速度。
应用场景CBTC地面设备广泛应用于城市轨道交通系统和高速铁路等领域。
以下是CBTC 地面设备的一些典型应用场景:1. 地铁系统CBTC地面设备在地铁系统中发挥着关键作用。
通过与列车的无线通信和轨道电路等设备配合,CBTC地面设备可以实时监控和调度地铁列车的运行。
地面设备可以根据列车位置和速度等数据,调整信号灯的状态,控制列车的运行速度和安全间隔,确保地铁系统的安全和高效运行。
2. 高速铁路系统CBTC地面设备也被广泛应用于高速铁路系统中。
CBTC系统
课程报告课程名称:城市轨道交通列车运行控制系统参考文献:what is communication-based train control文章总结:本文主要描述了什么是CBTC系统以及CBTC系统的由来。
CBTC是一种新型的列车控制系统。
是相对于传统的列车控制系统而言的,一、传统的列控系统1、轨旁信号控制系统:通过轨道电路和轨旁信号设备来实现。
2、轨道电路+机车信号:轨道电路在轨道中传输编码能量来向驾驶员显示连续信号显示信息(和速度信息)。
这种方式使得驾驶人员无需记住信号显示。
只需在确定的时间内(8s)确认信号显示。
若果没有确认,列车将会实施制动。
3、在机车信号的基础上移除轨旁信号设备。
这是因为轨道电路的编码信息被解码为允许速度,从而在联锁中无需具有间隔信号机。
4、数字化轨道电路:轨道电路能传输更多的信息,使得机车设备能够生成目标距离速度曲线。
二、CBTC系统传统的列控系统均属于机械联锁。
CBTC则是通过计算机连锁实现的。
而联锁系统必须提供某些重要的功能,其中包括入口锁定,进路锁定,探测器锁定以及方向(运行)锁定等。
在一个传统的FB系统中,轨道电路(或轴计数器)被用来确定列车的位置和方向。
如今的CBTC系统中提供一个备用列车检测系统来实现CBTC列车和非CBTC列车的混合运行。
在CBTC系统中,列车不是通过轨道电路来进行车-地的通信的,列车的位置,方向,速度等信息均是由列车车辆本身实现的。
车辆是通过转速计,加速计,陀螺仪,全球定位系统(GPS),应答器(或标签)等设备的组合来实现精确地列车定位。
在一个CBTC系统中(以车辆为中心),每个CBTC列车的位置都被传递到一个区域控制器的计算机中。
该CBTC系统保证了入口,进路,运行以及道岔锁闭的功能的实现。
CBTC系统可以实现联锁功能的方式有两种:第一种是通过具有独立设备,即一台设备用于联锁功能(联锁控制器),另一个用于CBTC列车安全距离(区域控制器)。
列车运行自动控制系统—CBTC系统
2. 区域控制器 ZC
ZC接收其控制范围内列车车载设备无线传输的所有列车位置 信息;根据联锁系统报告的信号设备状态信息及所辖区域内轨道 障碍物的位置,为向所辖区域内后续的所有列车计算各自的移动 授权。 ZC同时对线路的临时限速进行管理控制。 ZC还负责对相邻ZC的移动授权请求做出响应,完成列车从一 个区域到另一个区域的交接。
列车定位过程分为两个:列车位置初始化和列车位置信息更新。
➢列车根据检测到第一个无源定位信标作为列车初始位置, 其中检测是通过信标检测列车上的天线位置实现。然后根据 第二个检测的无源定位信标确定列车的行进方向。即列车根 据检测到的两个连续无源定位信标建立列车位置和方向。 ➢列车根据测速测距功能计算出的列车位移,在列车先前建 立的位置基础上持续更新位置。 ➢列车会根据后续检测到的无源定位信标更新校准列车位置。
2. ZC切换原理
当列车正常运行到达当前 受控ZC管辖边界时,如确 认列车满足切换条件,开始 与相邻管辖区的ZC进行信 息交互,当列车越过边界后 将尝试与相邻ZC建立控制 关系,并与运行出清的ZC 解除控制关系。
ZC只能授予列车在其辖 区内活动的权限。当列车 MA延伸到地面ATP边界时, ZC会请求相邻的ZC为该列 车计算MA。
简述cbtc的基本原理及应用
简述CBTC的基本原理及应用1. 什么是CBTC?CBTC(Communications-Based Train Control),即基于通信的列车控制系统,是一种先进的铁路列车控制系统。
与传统的列车控制系统相比,CBTC采用了更先进的通信技术,并能够提供更高的列车运行安全性和运行效率。
2. CBTC的基本原理CBTC的基本原理是通过无线通信技术实现列车之间、列车与基站之间的实时双向通信,从而实现列车的精确定位和安全控制。
CBTC系统主要由以下几个核心组件组成:•车载单元(On-Board Unit,OBU):在每辆列车上安装的CBTC系统的一部分,用于接收和发送控制信息,并实现列车的自动操作。
•车站设备(Station Equipment):包括基站设备和区域控制器,用于与车载单元进行通信,并对列车进行控制和监控。
•通信信道:CBTC系统采用无线通信技术,通过专用的通信信道传输控制信息。
•位置检测系统:通过安装在列车和轨道上的位置检测设备,实现对列车位置的精确定位。
•控制算法:CBTC系统使用先进的控制算法来实时计算列车的运行速度和位置,确保列车安全运行。
CBTC的基本工作流程如下:1.列车通过位置检测设备实时获取位置信息,并将数据传输给车载单元。
2.车载单元根据位置信息和控制算法,计算列车的运行速度和位置,并发送给车站设备。
3.车站设备接收到车载单元发送的数据,根据实时的运行情况,对列车进行控制和监控。
4.列车根据车载单元发送的指令,实现自动操作,包括加速、减速、停车等操作。
3. CBTC的应用CBTC系统在现代铁路运输中得到了广泛的应用,主要包括以下几个方面:3.1. 提高运行效率通过CBTC系统,铁路运输可以实现更高的运行效率。
由于CBTC系统能够实时计算列车的运行速度和位置,列车之间的安全间隔可以大大缩短,从而可以提高铁路线路的运行能力。
同时,CBTC系统还可以实现列车的自动操作,减少了人为因素对列车运行的影响,进一步提高了运行效率。
CBTC系统简介
CBTC系统资料一.移动闭塞系统工作原理和特点上面我们介绍的是以轨道电路为传输信道,以传输“目标速度”为主要内容的ATC系统,这是当前我国列车自动控制系统的主要模式,从闭塞的概念分析,它们都可以归属于“准移动闭塞”的范畴,后续列车与先行列车之间的行车间隔都与闭塞分区的划分有关,也就是说,后续列车与先行列车不可能运行在在同一个闭塞分区,后续列车必须保证在先行列车所占用的闭塞分区的分界点前停车。
如图33所示。
图33. 不同闭塞制式的列车运行间隔示意图图中所示速度码制式的图例,可以对应于音频无绝缘轨道电路的ATC系统;准移动闭塞的图例可以对应于目标速度制式的ATC系统,这些制式下为了缩短行车间隔,必须缩小轨道区段的长度,当然要增加轨道电路的硬件设备;对于不同列车编组的运行线路,更是难以实现。
移动闭塞(Moving block)是缩小行车间隔,提高行车效率的有效途径,其列车运行的安全保证,不再依赖轨道电路的划分,而基于列车与地面的双向通信,如图33所示,使后续列车与先行列车之间始终保持制动距离,加上动态安全保护距离。
移动闭塞系统相比现有的ATC系统主要有以下特点:1、可以缩小列车之间的行车间隔;2、车-地之间的信息交换,不再依赖于轨道电路;3、车辆控制中心掌握在线运行各次列车的精确位置和速度;4、列车与控制中心之间保持不间断地双向通信;5、不同编组(不同长度)的列车,可以以最高的密度,运行于同一线路;6、ATC系统,从一个以硬件为基础的系统,向以软件为基础的系统演变。
基于通信的列车运行控制系统(Communication - Based Train Control—简称CBTC 系统), 便是支持移动闭塞的列车运行控制系统,它不仅适用于新建的各种城市轨道交通,也适用于旧线改造、不同编组运行以及不同线路的跨线运行。
近年来,随着通信技术的发展,尤其是无线通信、计算机网络技术和数字信号处理技术的迅速发展,信号系统的冗余、容错技术完善,在信号这个传统领域为CBTC的发展奠定了基础, CBTC系统已逐渐被信号界所认可,基于感应环线通信的移动闭塞CBTC系统,在我国也已运用于城市轨道交通;而基于无线(Radio)通信虚拟闭塞的CBTC系统,已经在国外多个城市轨道交通中被采纳,我国某些大城市的城市轨道交通也已经决定选用这种制式。
CBTC系统
LOGO
4、CBTC子系统的介绍
(1) ATS子系统 在控制中心显示控制范围内列车运行状态及设备状态信
息是ATS子系统的主要功能。基于这些状态信息和运行时刻表, ATS能够实现自动排列进路,自动调整列车运行,可以通过改 变停站时间和站间运行时间来完成。ATS子系统包含时刻表工 作站、操作员工作站、其他的网络和设备等。
在CBTC应用中的关键技术是双向无线通信系统、列车定 位技术、列车完整性检测等。在双向无线通信系统中,在欧 洲是应用GSM-R系统,但在美洲则用扩频通信等其他种类 无线通信技术。列车定位技术则有多种方式,例如车载设备 的测速-测距系统、全球卫星定位、感应回线等。
LOGO
2、CBTC的特性
CBTC相比传统的铁路信号系统有如下特性: 不须繁杂的电缆,转而以无线通信系统代替,减少电缆铺 设及维护成本。 可以实现车辆与控制中心的双向通信,大幅度提高了列车 区间通过能力。 信息传输流量大、效率高、速度快,容易实现移动自动闭 塞系统。 容易适应各种车型、不同车速、不同运量、不同牵引方式 的列车,兼容性强。 可以将信息分类传输,集中发送和集中处理,提高调度中 心工作效率。
基于无线通信的CBTC是指通过无线通信方式(而不是轨道 电路),来确定列车位置和实现车-地双向实时通信。列车通 过轨道上的应答器,确定列车绝对位置,轨旁CBTC设备,根据 各列车的当前位置、运行方向、速度等要素,向所管辖的列车 发送“移动授权条件”,即向列车传送运行的距离、最高的运 行速度,从而保证列车间的安全间隔距离。
在VOBC子系统中,列车的位置和运行方向信息在保证列 车安全运行中作用重大,列车定位方式采用测速传感器和地 面应答器相结合的方式实现。
LOGO
(5)DCS数据通信系统 数据通信系统采用无线局域网WLAN技术,通过沿线设无
城市轨道交通CBTC系统
子系统和设备的详细描述
数据通信子系统 数据通信子系统是个宽带通信系统,提供三 个主要列车控制子系统-包括自动列车监控子 系统,轨旁(区域控制器、对象控制器、数据 库存储单元)和车载子系统。
列车控制子系统和设备使用UDP/IP协议,可 直接进行互相通信。
数据通信子系统的设计方式,不依赖任何轨 旁设备(如接入点、以太网连接、无线调制解 调器、路由器、交换机等)和/或车载设备, 不会影响性能。
CBTC概述
自动列车监控子系统 包括运行控制中心(OCC)设备、位 于轨旁的自动列车监控子系统设备, 列车运行的自动和人工监控由轨旁和车 载子系统共同完成。 运营控制中心(OCC),有三种基本类 型的ATS工作站。
轨旁设备主要有车站控制器站 等设备。
CBTC概述 轨旁子系统 区域控制器(ZC),属于安全装置,已知 障碍物位置信息的情况下,决定在该区域 内所有列车的运行许可。 对象控制器(OC),安全控制并显示与轨 旁设备的接口,包括转辙机、屏蔽门、防 淹门、信号以及计轴主机设备等。 计轴(辅助列车检测设备)。为未装备 CBTC的列车提供安全的检测功能。在CBTC 故障时,此功能用作后备列车检测系统。
子系统和设备的详细描述
车载子系统主要包括如下设备: ATP/ATO机箱。 外围设备的机笼。 接口板 列车司机显示器
子系统和设备的详细描述
轨旁子系统 区域控制器。 对象控制器 数据库存储单元
子系统和设备的详细描述 自动列车监控(ATS)子系统 ATS的硬件描述 ATS计算机系统硬件概述
车载子系统 车载子系统负责确定列车的位置,监控列车速度, 按照必要情况保证正确的制动,管理列车控制模 式,并且根据ZC的信息控制列车。车载CBTC子 系统的关键部分是车载控制器CC),包括一个安 全的三取二处理器及对象控制器接口模块。 车载子系统的功能包括 安全的确定列车速度和位置;全的超速保护;安 全的紧急制动;安全的列车停靠;安全的方向控 制;安全的车门控制(允许开门);BTC 运行模 式;数据无线通信;安全的防退行和防溜。
CBTC系统功能介绍和技术分析
• cbtc系统概述 • cbtc系统功能介绍 • cbtc系统技术分析 • cbtc系统与其他系统的比较 • cbtc系统的未来发展与挑战 • cbtc系统案例分析
01
cbtc系统概述
cbtc系统的定义和特点
节能环保
CBTC系统能够优化列车运行图,减少无 效制动和加速,降低能源消耗和排放。
数据安全与隐私保护
CBTC系统涉及大量的数据采集、传输和处理,如何保障数据的安全性和用户的隐私是一 个重要挑战。解决方案是制定严格的数据管理和隐私保护政策,加强数据加密和访问控制 ,确保数据不被非法获取和使用。
06
cbtc系统案例分析
北京地铁燕房线cbtc系统案例
总结词:成功应用
详细描述:北京地铁燕房线采用了基于通信的列车控制系统(CBTC),该系统实现 了列车自动控制、精确停车和高效运营等功能,提高了线路的运输能力和乘客出行 效率。
列车定位技术
列车定位技术是cbtc系统中的关键技术之一,用 于确定列车在轨道上的位置。
基于轨道电路的定位是通过轨道电路的信号传输 和接收来实现列车位置的确定,而基于无线通信 的定位则是通过列车与地面设备之间的无线通信 来确定列车位置。
常用的列车定位技术包括基于轨道电路的定位和 基于无线通信的定位。
提升旅客出行体验
CBTC系统能够提供更加准确、 可靠的列车时刻信息,提高旅 客出行满意度。
增强系统可靠性
CBTC系统采用冗余设计和技 术,提高了系统的可靠性和可 用性。
02
cbtc系统功能介绍
列车定位与追踪
列车定位
通过GPS、北斗等卫星定位技术,结合地面应答器、轨道电路等设备,实现列车精确位置的实时追踪 。
CBTC系统介绍
State 状态
Appearance 显示
45
October 2002
ATS 列车表示示例4
Train Emergency Brake Status 列车紧急制动状态 State 状态 Appearance 显示 No Emergency Brakes 无紧急制动 Emergency Brakes Applied 紧急制动启动
台安装两个接近盘。 每个TrVOBC单元安装一个接近传感器,接近传感器用 来检测安装在轨旁的接近盘
在检测到车速为零时,TrVOBC 命令牵引禁止, 并启动机械制动
31
列车位置确定
列车采用应答器来确定列车位置 • 系统使用校准应答器来提供明确的轨道位置标 志,确定已行进距离 • 在两个应答器之间,列车位置由输入的转速计 信号而确定。 • 定位精度高,为厘米级。
22
AP 天线
• 根据线路条件,天线可以采用多种安装方式:墙面安装、顶棚安装、立柱安装 • 天线的位置设置使得相邻AP的信号可以重叠覆盖整个线路。这种重叠提供了轨旁 无线信号的冗余,如果一个AP或者隔一个AP交替发生故障,都能确保连续的无线 覆盖。
23
轨旁计轴设备
• 轨旁计轴设备一般安装在信号机和道岔区段处
– 线路参数 – 障碍物属性 – 车辆属性 – 当前的车辆状态
5
移动授权和安全距离
Limit of Movement Authority 移 动授 权极 限 Braking Distance 制 动距 离 Supervised Maximum Velocity 被监 督 的 最大速 度 Safety Margin 安 全余 量 Supervised Braking Curve 被监 督 的 制 动曲 线
cbtc名词解释
cbtc名词解释
CBTC全称为“Communication-BasedTrainControl”,即基于通信的列车控制系统。
它是一种现代化的列车运行控制技术,采用无线通讯和计算机技术进行列车控制和监测。
CBTC系统可以实现列车的自动化驾驶、车辆位置确定、列车速度控制、列车间隔控制等功能。
CBTC系统通常由以下几个部分组成:
1. 车载设备:包括车载控制器、车载通信设备、车载位置检测设备等。
2. 基站设备:包括地面控制中心、车站控制系统、区间控制站等。
3. 通讯网络:包括无线通讯网络和有线通讯网络。
CBTC系统具有以下几个优点:
1. 提高列车的运行效率和安全性,缩短列车间隔,增加列车运行的容量和密度。
2. 减少人为操作失误和技术故障的发生,提高列车运行的稳定性和可靠性。
3. 可以适应复杂的地形和环境,如弯道、山区、隧道等,提高列车运行的适应性和灵活性。
4. 提高列车运行的舒适性和乘客的满意度,减少列车的运行噪音和振动。
CBTC系统在城市轨道交通、高速铁路等领域有着广泛的应用,
已经成为现代化列车运行控制的主流技术之一。
城市轨道交通列车自动控制系统(CBTC)系统
基于通信的列车自动控制(CBTC)系统
基于通信的列车自动控制(CBTC)系统的原理
CBTC系统的特点是列车的定位基于通信而不依赖于轨道电路,即基于通 信的列车控制系统,CBTC系统能够实现移动闭塞的功能。
CBTC系统的原理是:ATP地面设备周期性地接收本控制范围内所有列车 传来的列车识别号、位置、方向和速度信息。相应地,ATP地面设备根据接 收到的列车信息,确定各列车的移动授权,并向本控制范围内的每列列车周 期性地传送移动授权(ATP防护点)的信息。移动授权由前行列车的位置来 确定,移动授权将随着前行列车的移动而逐渐前移。
基于通信的列车自动控制(CBTC)系统
基于通信的列车自动控制(CBTC)系统
CBTC结构示意图
CBTC结构示意图
Байду номын сангаас
基于通信的列车自动控制(CBTC)系统
基于通信的列车自动控制(CBTC)系统的特性
CBTC相比传统的铁路信号系统有如下特性:
① 不须繁杂的电缆,转而以无线通信系统代替,减少电缆铺设及维护成本。 ② 可以实现车辆与控制中心的双向通信,大幅度提高了列车区间通过能力。 ③ 信息传输流量大、效率高、速度快,容易实现移动自动闭塞系统。 ④ 容易适应各种车型、不同车速、不同运量、不同牵引方式的列车,兼容性强。 ⑤ 可以将信息分类传输,集中发送和集中处理,提高调度中心工作效率。
基于通信的列车自动控制(CBTC)系统
基于通信的列车自动控制(CBTC)系统的原理
ATP车载设备根据接收到的移动授权信息以及列车速度、线路参数、司 机反应时间等,计算出列车的紧急制动触发曲线和紧急制动曲线,以确保列 车不超越现有的移动授权。因此在移动闭塞系统中,ATP防护点不是在轨道 区段的分界点,而是在前行列车车尾后方加上安全距离的位置,它随着列车 的移动而移动。后续列车可最大限度地接近前行列车尾部,与之保持一个安 全距离。在保证安全的前提下,CBTC系统能最大程度地提高区间通过能力。
CBTC系统
CBTC系统目录1. 概述 (2)2. CBTC系统组成 (3)3. CBTC各子系统介绍 (4)3.1. ATS系统 (4)3.1.1. 调度中心系统 (4)3.1.2. 车站系统 (5)3.1.3. 基于CBTC的A TS子系统主要功能特点 (6)3.2. 计算机联锁系统(SICAS) (9)3.3. 列车自动防护系统(ATP) (19)3.3.1. 轨旁子系统 (19)3.3.2. 车载子系统 (20)3.3.3. 子系统功能 (23)4. ATO子系统 (28)4.1. 主要组件 (29)4.1.1. ATO功能 (29)4.1.2. 轨旁设备 (30)4.1.3. 车载设备 (30)4.1.4. 列车运行控制原理 (31)4.1.5. 站停控制 (31)4.1.6. 跳停 (32)4.1.7. 扣车 (32)5. 4. 无线 (32)5.1. 数据通信系统的设计与实现 (33)5.1.1. DCS整体结构 (33)5.1.2. 车地无线通信系统 (34)5.1.3. 车载通信单元 (35)5.1.4. 空间无线通道 (35)6. 系统特点 (36)1.概述概述:CBTC(Communication Based Train Control)系统是一个安全的,具有高可靠性、高稳定性的基于无线的列车自动控制系统,现较广泛的应用于城市轨道交通运输中。
它最大的特点是可以无线通信,由列车-地面间周期传递列车位置信息和地面-列车间传递移动授权来实现功能。
基于通信的列车控制系统(CBTC)包含两种类型一种是基于感应环线的型CBTC,一种是基于无线的CBTC。
基于无线通信的CBTC 系统是指通过无线通信方式(而不是轨道电路),来确定列车位置和实现车-地双向实时通信。
列车通过轨道上的应答器,确定列车绝对位置,轨旁 CBTC 设备,根据各列车的当前位置、运行方向、速度等要素,向所管辖的列车发送“移动授权条件”,即向列车传送运行的距离、最高的运行速度,从而保证列车间的安全间隔距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LOGO
③欧洲ETCS 欧洲列车运行控制系统ETCS主要包含三个级别: 级别1就是以前线路上普遍采用的固定闭塞加信号机实现控 车的方式,对列车的控制信息是通过应答器传送给列车的,轨 道电路不传输信息给列车,只是检查列车完整性和不精确的为 列车定位;级别2通过无线通信系统GSM-R实现列车与地面之间 的通信,连续的控制列车速度,采用应答器定位的方式为列车 定位,并通过地面核心设备无线闭塞中心(Radio BlockCenter, RBC )实现列车完整性的检测;级别3是通过车地之间双向通信 实现移动闭塞方式控车。这一级就属的CBTC系统。
LOGO
ZC接收VOBC发送过来的列车位置、速度和运行方向信息, 同时从联锁设备获得列车进路、道岔状态信息,从ATS接收临 时限速信息,在考虑其他一些障碍物的条件计算MA,并向列 车发送,告诉列车可以走多远、多快,从而保证列车间的安 全行车间隔。 由于CBTC系统能够精确的知道列车的位置,“速度一距离 模式曲线(Distance to go )”是其对列车的控制原则。事实 上,不管是CBTC系统还是传统意义上的由轨道电路完成列车 控制的系统控车原则都很相似,只不过CBTC系统对列车位置 的把握准确度更高,对列车控制的准确度也会更高,基于轨 道电路的系统,移动授权是轨道区段长若干倍,而CBTC系统, 移动授权更精确。正是CBTC系统能够更精确的控车,才有的 缩短了列车追踪间隔,使运行效率大大提高。
LOGO
2、CBTC的特性
CBTC相比传统的铁路信号系统有如下特性: 不须繁杂的电缆,转而以无线通信系统代替,减少电缆铺 设及维护成本。 可以实现车辆与控制中心的双向通信,大幅度提高了列车 区间通过能力。 信息传输流量大、效率高、速度快,容易实现移动自动闭 塞系统。 容易适应各种车型、不同车速、不同运量、不同牵引方式 的列车,兼容性强。 可以将信息分类传输,集中发送和集中处理,提高调度中 心工作效率。
LOGO
6、国外CBTC的发展
基于无线局域网的CBTC系统,在定位精度,车地数据通信 方面有明显的优势,成为国内外城市轨道交通发展的趋势, 国外对基于WLAN的CBTC系统研究的较早,也取得了一定的成 就,形成了美国、日本、欧洲三大体系。 ①美国AATC 基于无线通信的“先进的自动化控制系统(AATC )”是美 国在1992年提出的,系统最大的特点就是列车定位采用扩频 通信方式来实现,实现的方式是沿着铁路线路按规定距离布 设很多个无线电台,这些无线电台作为车一地之间传输信息 的中转站,控制中心从无线电台接收到信号后,处理这些信 号,通过无线电在传输信号时传输的时间来计算出列车的位 置,并根据位置信息计算速度,从而“告诉”列车以多大速 度行驶,何时加速,从而控制列车运行。
LOGO
3、CBTC的结构图
LOGO
从上图可以看出CBTC系统主要包括列车自动监控系统 (Automatic Train Supervision, ATS )、区域控制器(ZC)、 计算机联锁系统(Computer Interlocking, CI )、车载控制器 (Vehicle On Board Controller, VOBC)、数据存储单元(Data Saving Unit, DSU)、轨旁设备(Way side Equipment, WE)和 数据通信系统(Data Communication System, DCS ) 等。
LOGO
5、CBTC工作原理
CBTC系统是指通过WLAN的方式实现列车和地面间连续通信 的列车控制系统。系统的核心部分为轨旁和车载两部分。 列车通过机车上的测速传感器和线路上的应答器来得到列 车的实时位置,应答器在线路的固定位置设置,列车每经过 一个应答器就会在数据库中查找其位置,从而得到列车的精 确位置,列车的实时速度是通过测速传感器获得的,速度对 时间的积分获得列车的相对位移,每经过一个应答器的实际 位置加上相对该应答器的相对位移就可以实时的获得列车的 准确位置。VOBC将列车的准确位置通过WLAN发送给轨旁设备, 实现列车对地面设备的通信。 轨旁的核心设备是区域控制器ZC,它负责管理运行在其管 辖范围内的所有列车。
LOGO
(2) CI子系统 轨道空闲处理、进路控制、道岔控制和信号控制功能是CI 子系统的主要功能。进路控制功能负责整条进路的排列、锁 闭、保持和解锁。道岔控制功能负责道岔的解锁、转换、锁 闭和监督。这些动作是对ATS子系统命令的响应。信号控制功 能负责监督轨道旁信号机的状态,并根据进路、轨道区段、 道岔和其它轨旁信号机的状态来控制信号机。 它根据来自ATS的命令设置信号机何时为停车显示。它也产 生命令输出,ATC系统以此来控制列车从一个进路行驶到另一 进路。
LOGO
2015.11.20
LOGO
Contents
1
2 3
CBTC的概念 CBTC的特性 CBTC的结构图 CBTC的子系统的介绍
4
LOGO
Contents
5
6 7
CBTC的工作原理 国外CBTC的发展 我国CBTC的发展 CBTC的关键技术
8
LOGO
1、CBTC的概念
CBTC(Communication Based Train Control)系统是一个安 全的,具有高可靠性、高稳定性的基于无线通信的列车自动控 制系统,现较广泛的应用于城市轨道交通运输中。它的特点是 用无线通信媒体来实现列车和地面设备的双向通信,用以代替 轨道电路作为媒体来实现列车运行控制。 基于无线通信的CBTC是指通过无线通信方式(而不是轨道 电路),来确定列车位置和实现车-地双向实时通信。列车通 过轨道上的应答器,确定列车绝对位置,轨旁CBTC设备,根据 各列车的当前位置、运行方向、速度等要素,向所管辖的列车 发送“移动授权条件”,即向列车传送运行的距离、最高的运 行速度,从而保证列车间的安全间隔距离。
LOGO
(3)MTC-Ⅰ型CBTC系统 MTC-Ⅰ型CBTC系统是中国铁道科学研究院和广州市地 下铁道总公司联合开发研制。整个系统主要由6个子系统组成: 由中心和车站本地控制设备组成的FZy型ATS子系统; TYJLⅢ型二乘二取二安全冗余结构的计算机联锁子系统,包括计 轴设备和国产欧标应答器设备;基于CPCI工业计算机平台开 发的ATO列车自动运行子系统;包括二乘二取二冗余架构的 车载VOBC和轨旁ZC设备组成的ATP列车控制子系统;基于 SDH同步数字系列骨干通信网和车-地无线通信网构建的DCS 子系统;进行系统设备维修信息收集、管理的TJWX型微机监 测子系统。 作为广州地铁参与研制的一套ATC系统,MTC-Ⅰ型CBTC 系统已在广州地铁进行了全面的现场试验,并且研发同步由 英国劳氏铁路进行了安全认证。
LOGO
4、CBTC子系统的介绍
(1) ATS子系统 在控制中心显示控制范围内列车运行状态及设备状态信 息是ATS子系统的主要功能。基于这些状态信息和运行时刻表, ATS能够实现自动排列进路,自动调整列车运行,可以通过改 变停站时间和站间运行时间来完成。ATS子系统包含时刻表工 作站、操作员工作站、其他的网络和设备等。
LOGO
CBTC的突优点是可以实现车—地之间的双向通信,并 且传输信息量大,传输速度快,很容易实现移动自动闭塞系 统,大量减少区间敷设电缆,减少一次性投资及减少日常维 护工作,可以大幅度提高区间通行能力,灵活组织双向运行 和单向连续发车,容易适应不同车速、不同运量、不同类型 牵引的列车运行控制等。 在CBTC应用中的关键技术是双向无线通信系统、列车定 位技术、列车完整性检测等。在双向无线通信系统中,在欧 洲是应用GSM-R系统,但在美洲则用扩频通信等其他种类 无线通信技术。列车定位技术则有多种方式,例如车载设备 的测速-测距系统、全球卫星定位、感应回线等。
LOGO
根据通号公司发布的信息显示,FZL300型CBTC系统在 2008年开始系统的研制工作,2011年完成软件研发和室内 测试,2011年底准备开展现场试验工作,2012年,该系统 的部分子系统已通过了欧标SIL4级认证,还有一些子系统将 相继通过劳氏安全认证。该系统的各个子系统平台在伊朗地 铁,唐山中低速磁浮试验线,长春轻轨3、4号线等工程中均 有应用。
LOGO
(3)ZC子系统 ZC从VOBC, CI, ATS和DSU接收各种状态信息和数据信息, 并对这些信息进行处理,为辖区内的列车计算移动授权 (Movement Authority, MA ),并通过无线局域网 ( Wireless Local Area Network, WLAN)发送给列车,控制 列车安全运行。 (4)VOBC子系统 在VOBC子系统中,列车的位置和运行方向信息在保证列 车安全运行中作用重大,列车定位方式采用测速传感器和地 面应答器相结合的方式实现。
LOGO
(4)iCBTC系统 iCBTC系统是卡斯柯信号有限公司通过引进国外技术, 经消化吸收再自主创新研发,且日趋成熟的基于车-地双向 无线通信的移动闭塞控制系统。该系统主要由:区域控制器/ 线路中心单元ZC/LC;数据存储单元DSU;联锁CI;中心及 车站ATS;车载控制器CC;LEU等轨旁设备构成。 icbtc系统是当前国产CBTC中的佼佼者。主要特点有:后 车的地址终端(EOA)可以是前车的尾部,不用划分虚拟区 段,真正实现了移动闭塞;只需要2条网线即可实现车载设 备首尾热备,简化了接口与维护成本;其ATS系统在国内地 铁已广泛应用,且与各个厂家进行过接口,拥有更贴近用户 习惯的操作界面;适用空间波和波导等多种方式的车-地通 信方式,并支持这2种方式在同一线路上的混合配置。
LOGO
②日本ATACS 基于双向无线通信的先进列车管理与通信系统(ATACS )是 日立公司在1995年开发研制的。与AATC系统不一样,ATACS 系统是采用将铁路线路划分成很多个控制区,每个控制区作为 一个独立的单元,由一个地面控制器和一个无线电基站组成。 地面控制器通过与无线电基站相连,从无线电基站接收列车的 位置信息,为列车计算前方安全的运行间隔,实现列车安全的 以最小追踪间隔追踪运行。