2020高考理科数学详解(全国一卷)
2020年全国统一高考数学试卷(理科)(新课标I)(有详细解析)
2020年全国统一高考数学试卷(理科)(新课标I)班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共60.0分)1.若z=1+i,则−2z|=()A. 0B. 1C.D. 22.设集合A={−40},B={x|2x+a0},且A B={x|−2x1},则a=()A. −4B. −2C. 2D. 43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B. C. D.4.已知A为抛物线C:=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A. 2B. 3C. 6D. 95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(i=1,2,,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A. y=a+bxB. y=a+C. y=a+D. y=a+b x6.函数f(x)=−的图像在点(1,f(1))处的切线方程为()A. y=−2x−1B. y=−2x+1C. y=2x−3D. y=2x+17.设函数f(x)=(x+)在[−,]的图像大致如下图,则f(x)的最小正周期为()A. B. C. D.8.(x+y2)(x+y)5的展开式中x3y3的系数为()xA. 5B. 10C. 15D. 209.已知(0,),且3cos2α−8cosα=5,则=()A. B. C. D.10.已知A,B,C为球O的球面上的三个点,为ABC的外接圆,若的面积为4,AB=BC=AC=,则球O的表面积为()A. 64B. 48C. 36D. 3211.已知M:+−2x−2y−2=0,直线l:2x+y+2=0,P为l上的动点,过点P作M的切线PA,PB,且切点为A,B,当|PM||AB|最小时,直线AB的方程为()A. 2x−y−1=0B. 2x+y−1=0C. 2x−y+1=0D. 2x+y+1=012.若2a+log2a=4b+2log4b,则()A. a>2bB. a<2bC. a>D. a<二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件则z=x+7y的最大值为__________.14.设,为单位向量,且||=1,则||=__________.15.已知F为双曲线C:−=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点且BF垂直于x轴.若AB的斜率为3,则C的离心率为__________.16.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.三、解答题(本大题共7小题,共80.0分)17.设{}是公比不为1的等比数列,为,的等差中项.(1)求{}的公比;(2)若=1,求数列{}的前n项和.18.如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA平面PBC;(2)求二面角B−PC−E的余弦值.19.甲、乙、丙三位同学进行羽毛球比赛,预定赛制如下:累计负两场者被淘汰;比赛前抽签决定首次比赛的两个人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.21.已知函数f(x)=+−x.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)+1,求a的取值范围.22.[选修4−4:坐标系与参数方程]在直角坐标系xOy中,曲线的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为4−16+3=0.(1)当k=1时,是什么曲线?(2)当k=4时,求与的公共点的直角坐标.23.[选修4−4:坐标系与参数方程]已知函数f(x)=|3x+1|−2|x−1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.答案和解析1. D解:由z =1+i 得z 2=2i ,2z =2+2i ,|z 2−2z |=|2i −(2+2i)|=2.2. B解:由已知可得A ={x|−2⩽x ⩽2},B ={x|x ⩽−a2}, 又因为A ∩B ={x|−2⩽x ⩽1}, 所以−a2=1,从而a =−2,3. C解:如图,设正四棱锥的高为h ,底面边长为a,侧面三角形底边上的高为ℎ′, 则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a )2−2(ℎ′a )−1=0,解得ℎ′a=1±√54.负值舍去可得ℎ′a=1+√544.C解:设点A的坐标为(x,y),由点A到y轴的距离为9,可得x=9,由点A到点C的焦点的距离为12,可得x+p2=12解得p=6.5.D解:用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+bln x.6.B解:先求函数的导函数f′(x)=4x3−6x2,则由函数的几何意义可知在点(1,f(1))的切线斜率为k=f′(1)=−2.又因为f(1)=−1,则切线方程为y−(−1)=−2(x−1),则y=−2x+1.7.C解:由图可知f(−4π9)=cos(−4π9w+π6)=0,所以−4π9w+π6=π2+kπ(k∈Z),化简可得w=−3+9k4(k∈Z),又因为T<2π<2T,即2π|w|<2π<4π|w|,所以1<|ω|<2,当且仅当k=−1时1<|ω|<2,所以w=32,所以最小正周期T=2π|w|=4π3.8.C解:(x+y)5的展开式通项为C5r x5−r y r,r=0,1,2,3,4,5,则(x+y2x )(x+y)5的展开式有xC5r x5−r y r,y2xC5r x5−r y r,取r=3和r=1时可得10x3y3,5x3y3,合并后系数为15,9.A解:∵3cos2α−8cosα=5,∴3(2cos2α−1)−8cosα=5,即3cos2α−4cosα−4=0,(3cosα+2)(cosα−2)=0,α∈(0,π),即cosα=−23,又α∈(0,π),sinα>0,∴sinα=√1−cos2α=√53,10.A解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,=2r=4,得AB=OO1=2√3,由正弦定理:ABsin60∘由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,11.D解:圆M方程化为:(x−1)2+(y−1)2=4,圆心M(1,1),半径r=2,根据切线的性质及圆的对称性可知,则|PM|⋅|AB|=4S△PAM=2|PA|⋅|AM|,要使其值最小,只需|PA|最小,即|PM|最小,此时,=√5,|PA|=√|PM|2−|AM|2=1,∴|PM|=√5(x−1),联立l的方程解得P(−1,0),过点M且垂直于l的方程为y−1=12以P为圆心,|PA|为半径的圆的方程为(x+1)2+y2=1,即x2+y2+2x=0,结合圆M的方程两式相减可得直线AB的方程为2x+y+1=0,12.B解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,13.1解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,14.√3解:|a⃗+b⃗ |2=a⃗2+b⃗ 2+2a⃗⋅b⃗ =2+2a⃗⋅b⃗ =1,a⃗⋅b⃗ =−12,|a⃗−b⃗ |2=a⃗2+b⃗ 2−2a⃗⋅b⃗ =2−2a⃗⋅b⃗ =3,∴|a⃗−b⃗ |=√3.15.2解:由题意可知,B在双曲线C的右支上,且在x轴上方,∵BF垂直于x轴,把x=c代入x2a2−y2b2=1,得y=b2a,∴B点坐标为(c,b2a),又A点坐标为(a,0),∴k AB=b2a−0c−a=3,化简得b2=3ac−3a2=c2−a2,即2a2−3ac+c2=0,解得c=2a或c=a(舍),故e=ca=2.16.−14解:由已知得BD=√2AB=√6,∵D、E、F重合于一点,∴AE=AD=√3,BF=BD=√6,∴△ACE中,由余弦定理得,∴CE=CF=1,BC²=AC²+AB²,BC=2,∴在△BCF中,由余弦定理得.17.解:⑴设等比数列{a n}的公比为q(q≠1),由题意知:2a1=a2+a3,即2a1=a1q+a1q2,所以q2+q−2=0,解得q=−2.(2)若a1=1,则a n=(−2)n−1,所以数列{na n}的前n项和为T n=1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,则−2T n=−2+2×(−2)2+3×(−2)3+⋯+n(−2)n,两式相减得3T n=1+(−2)+(−2)2+(−2)3+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(3n+1)(−2)n3,所以T n=1−(3n+1)(−2)n9.18.(1)证明:不妨设⊙O的半径为1,则AO=OB=OC=1,AE=AD=2,AB=BC=CA=√3,DO=√DA2−OA2=√3,PO=√66DO=√22,PA=PB=PC=√PO2+AO2=√62,在△PAC中,PA2+PC2=AC2,故PA⊥PC,同理可得PA⊥PB,PB∩PC=P,PB,PC⊂平面PBC,∴PA ⊥平面PBC .(2)解:以OE ,OD 所在直线分别为y ,z 轴,圆锥底面内垂直于OE 的直线为x 轴,建立如图所示的空间直角坐标系O −xyz ,则有B (√32,12,0),C (−√32,12,0),P (0,0,√22),E (0,1,0), BC ⃗⃗⃗⃗⃗ =(−√3,0,0),CE ⃗⃗⃗⃗⃗ =(√32,12,0),CP ⃗⃗⃗⃗⃗ =(√32,−12,√22), 设平面PBC 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),则{BC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0CP ⃗⃗⃗⃗⃗ ⋅n ⃗ =0,解得n 1⃗⃗⃗⃗ =(0,√2,1), 同理可得平面PCE 的法向量n 2⃗⃗⃗⃗ =(√2,−√6,−2√3), 由图形可知二面角B −PC −E 为锐角,则cosθ=|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ ||=2√55, 故二面角B −PC −E 的余弦值为2√55.19. 解:(1)甲连胜四场只能是前四场全胜,则P =(12)4=116.(2)设甲输掉一场比赛为事件A ,乙输掉一场比赛为事件B ,丙输掉一场比赛为事件C , 四场比赛能结束为事件N ,则P(N)=P(ABAB)+P(ACAC)+P(BABA)+P(BCBC)=116×4=14所以需要进行第五场比赛的概率为P =1−P(N)=1−14=34(3) 丙获胜的概率为:P =P (ABAB )+P(BABA)+P(ABACB)+P(BABCA)+P(ABCAB)+P(ABCBA) +P(BACAB)+P(BACBA)+P(ACABB)+P(ACBAB)+P(BCABA)+P(BCBAA) =(12)4×2+(12)5×10=716.20. 解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ),则直线PA 的方程为y =m 9(x +3),联立{y =m 9(x +3)x 29+y 2=1⇒(9+m 2)x 2+6m 2x +9m 2−81=0,由韦达定理−3x C =9m 2−819+m 2⇒x C =−3m 2+279+m 2,代入直线PA 的方程y =m 9(x +3)得,y C =6m9+m 2,即C (−3m 2+279+m 2,6m9+m 2),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).21.解:(1)当a=1时,f(x)=e x+x2−x,f′(x)=e x+2x−1,记g(x)=f′(x),因为g′(x)=e x+2>0,所以g(x)=f′(x)=e x+2x−1在R上单调递增,又f′(0)=0,得当x>0时f′(x)>0,即f(x)=e x+x2−x在(0,+∞)上单调递增;当x<0时f′(x)<0,即f(x)=e x+x2−x在(−∞,0)上单调递减.所以f(x)=e x+x2−x在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)①当x=0时,a∈R;②当x>0时,f(x)≥12x3+1即a≥12x3+x+1−e xx2,令ℎ(x)=12x3+x+1−e xx2,ℎ′(x)=(2−x)(e x−12x2−x−1)x3记m(x)=e x−12x2−x−1,m′(x)=e x−x−1令q(x)=e x−x−1,因为x>0,所以q′(x)=e x−1>0,所以m′(x)=q(x)=e x−x−1在(0,+∞)上单调递增,即m′(x)=e x−x−1> m′(0)=0所以m(x)=e x−12x2−x−1在(0,+∞)上单调递增,即m(x)=e x−12x2−x−1>m(0)=0,故当x∈(0,2)时,ℎ′(x)>0,ℎ(x)=12x3+x+1−e xx2在(0,2)上单调递增;当x∈(2,+∞)时,ℎ′(x)<0,ℎ(x)=12x3+x+1−e xx2在(2,+∞)上单调递减;所以[ℎ(x)]max=ℎ(2)=7−e24,所以a≥7−e24,综上可知,实数a的取值范围是[7−e24,+∞).22.解:(1)当k=1时,曲线C1的参数方程为{x=costy=sint,化为直角坐标方程为x2+y2=1,表示以原点为圆心,半径为1的圆.(2)k=4时,曲线C1的参数方程为{x=cos 4ty=sin4t,化为直角坐标方程为√x+√y=1,曲线C2化为直角坐标方程为4x−16y+3=0,联立{√x+√y=14x−16y+3=0,解得{x=14y=14,所以曲线C1与曲线C2的公共点的直角坐标为(14,14 ).23.解:(1)函数f(x)=|3x+1|−2|x−1|=,图像如图所示:(2)函数f(x+1)的图像即为将f(x)的图像向左平移一个单位所得,如图,联立y=−x−3和y=5x+4解得交点横坐标为x=−,原不等式的解集为.。
2020年全国I卷理科数学高考试题及解析
2020年普通高等学校招生全国统一考试理科数学三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题,共60分。
17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若1a =1,求数列{}n na 的前n 项和.解析:(1)由题意可知,,1a 为2a ,3a 的等差中项即1232a a a =+又因{}n a 是公比不为1的等比数列,设公比为q,得21112a a q a q =+即220q q +-=解得q=-2,或q=1(舍去)(2)1111,n n a a a q -== 由第1问计算得q=-2所以通项1(2)n n a -=-令1(2)n n n b na n -==-记{}n na 的前n 项和为Tn,012211(2)2(2)3(2)..(1)(2)(2)n n n T n n --=⨯-+⨯-+⨯-+--+-①23121(2)2(1)3(2)....(1)(2)(2)n nn T n n --=⨯-+⨯-+⨯-++--+-②1-②可得23131(2)(2)(2)...(2)(2)n nn T n -=+-+-+-++---1(2)[1(2)]31(2)1(2)n n n T n ----=+----131(2)99nn n T +=--点评:本题考查等差数列、等比数列的通知公式,数列的求和,其中第2问的数列求和在平时训练中会讲到类似的方法,不算新鲜的题,在计算时要特别小心。
18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE=AD,ABC ∆是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA⊥平面PBC;(2)求二面角B-PC-E 的余弦值.解析:DAE 的截面图和圆锥的底面图如下(1)证明:设OA=OE=1由于AD=AE,所以AD=2因为DO 垂直平面ABC,所以DOA 为直角三角形,由勾股定理,得223DO DA AO =-=6,6PO DO = 所以22PO =再由POD 为直角三角形,故2262PA PO AO =+=同理可得2PB =在三角形ABC 中,由于AO=1,得AB =因为22222⎛⎫⎛+=⎪ ⎪ ⎝⎭⎝⎭,也即222,PA PB AB +=得AP ⊥BP同理,AP ⊥CP,又由于PBC,CP PBC BP BP CP P⊆⊆⋂=平面平面,且AP PBC⊥所以平面(2)以O 为坐标原点,OE 的方向为y 轴正方向,OE 为单位长,建立如图所示的空间直角坐标系O-xyz.由题设可得1(0,1,0),(0,1,0),((0,0,).222E A C P --所以1(,0),(0,1,),222EC EP =--=-设m(x,y.z)是平面PCE 的法向量,则002,01022y z m EP m EC x y ⎧-+=⎪=⎧⎪⎨⎨∙=⎩⎪--=⎪⎩ 即可取(3m =-由(1)可知(0,1,PCB 2AP n AP == 是平面的一个法向量,记cos ,5n m n m n m ∙<>== 则。
2020高考理数全国卷一 试题及答案解析
2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若1z i =+,则22z z -=A .0B .1C 2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514B .512-C .514D .512+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i = 得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x=+6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109πB .76πC .43πD .32π8.25()()y x x y x++的展开式中33x y 的系数为A .5B .10C .15D .209.已知(0,)απ∈,且3cos 28cos 5αα-=,则sin α=A .53B .23C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知22:2220M x y x y +---= ,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a b a b +=+,则A .2a b>B .2a b<C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.14.设,a b 为单位向量,且1+=a b ,则-=a b ________.15.已知F 为双曲线2222:1x y C a b -=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______.16.如图,在三棱锥P ABC -的平面展开图中1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,6PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅= .P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-.(1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.参考答案一、选择题1【答案】D .【解析】∵()()2221212z z i i -=+-+=-,∴2222z z -=-=,故选D .2.【答案】.B 【解析】{}240A x x =-≤{}22x x =-≤≤,{}20B x x a =+≤2a x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a-=,∴ 2.a =-故选.B 3.【答案】.C 【解析】如图,设金字塔对应的正四棱锥的高为h ,金字塔斜面上的高为'h ,金字塔底面边长为a ,则有22221'2'2h a h h h h ⎧=⋅⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩化简得22''4210h h a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,解得'14h a =.故选.C 4.【答案】.C 【解析】设点(),A x y ,由点A y 轴的距离为9得9x =,根据抛物线定义,由A 到C 的焦点的距离为12得122p x +=,即6122p+=,解得 6.p =故选.C 5.【答案】.D 【解析】由题中散点图可知,大致分布在一条递增的对数型函数图象附近,故选.D 6.【答案】.B 【解析】∵()32'46f x x x =-,∴()'12k f ==-,又∵()1121f =-=-,∴由点斜式方程可得所求切线方程为()()121y x --=--,即21y x =--.故选.B 7.【答案】.C 【解析】根据函数图象得409f π⎛⎫-= ⎪⎝⎭,∴4cos 096ππω⎛⎫-+= ⎪⎝⎭,∴()4962k k Z πππωπ-+=+∈,解得()394kk Z ω+=-∈,又∵22T T π<<,∴242πππωω<<,解得12ω<<,∴32ω=,∴最小正周期243T ππω==.故选.C 8.【答案】.C 【解析】∵()5x y +的通项为()5150,1,,5r r r r T C x y r -+== ,h 'h a∴1r =时,2143355y C x y x y x=;3r =时,32333510xC x y x y =.∴33x y 项的系数为51015+=.故选.C 9.【答案】.A 【解析】根据余弦倍角公式,3cos 28cos 5αα-=可化为23cos 4cos 40αα--=,解得cos 2α=(舍)或2cos 3α=-.∵()0,απ∈,∴sin 3α=.故选.A 10.【答案】.A 【解析】不妨设AB a =,1O 的半径为r ,球O 的半径为R ,依题意有24r ππ=,∴2r =,又1r O A ==,∴a =222114R OO O A =+=,∴球O 的表面积为2464R ππ=.故选.A 11.【答案】.D 【解析】M 方程化为标准方程得:()()22114x y -+-=,∵四边形PAMB 的面积112222PAM S PM AB S PA AM ∆⎛⎫=⋅==⨯ ⎪⎝⎭2PA ==∴当且仅当PM 最小时AB PM ⋅最小,此时PM l ⊥,又∵:220l x y ++=,∴11:22PM y x =+,易得PM 与直线l 的交点坐标()1,0P -,∴过()1,0P -作M 的切线所得切点所在直线方程为210x y ++=,故选.D 12.【答案】.B 【解析】22422log 42log 2log a b b a b b +=+=+,∵2222222log 2log 221log b b b b b b +<+=++∴2222log 2log a b a b +<+,构造函数()22log x f x x =+,易知()f x 在()0,+∞单调递增,∴由()()2f a f b <得2a b <,故选.B 二、填空题13.【答案】1.【解析】如图,易知当直线7z x y =+经过直线220x y +-=与10x y --=的交点()1,0时,z 取最大值,max 1701z =+⨯=.14..xy10y +=220x y +-=10x y --=()1,0O【解析】∵()222221+=+=++⋅=a b a b a b a b ,∴12⋅=-a b ,∴()()22243-=-=+-⋅=a b a b a b a b,∴-=a b .15.【答案】2.【解析】由题意得()(),0,,0A a F c ,∵BF 为通径长的一半,∴2,b B c a ⎛⎫⎪⎝⎭,又()2213b b c a a k e c a a c a a+====+=--,∴离心率2e =.16.【答案】1.4-【解析】根据题意得BD ==,,D E F 三点重合,∴AE AD ==BF BD ==在ACE ∆中,由余弦定理得2222cos CE AC AE AC AE ACE=+-⋅⋅∠13211=+-⨯︒=∴1CE CF ==,在BCF ∆中,根据余弦定理得2221cos 24BC CF BF FCB BC CF +-∠==-⋅三、解答题17.解:(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q =+∴220q q +-=,解得1q =(舍去)或2q =-.∴{}n a 的公比为2-.(2)记n S 为{}n na 的前n 项和,由(1)及题设可知()12n n a -=-,∴()()11222n n S n -=+⨯-++⨯- ①()()()2222212nn S n -=-+⨯-++-⨯- ②由①②得()()()()21312222n nn S n -=+-+-++--⨯- ()()1223nnn --=-⨯-∴()()312199nn n S +-=-18.解:(1)设DO a =,由题设可得,,63PO a AO AB a ===,2PA PB PC ===,∴222PA PB AB +=,∴PA PB ⊥,又222PA PC AC +=,∴PA PC ⊥,∴PA ⊥平面PBC(2)以O 为坐标原点,OE方向为y 轴正方向,OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得()()10,1,0,0,1,0,22E A C ⎛⎫--⎪⎝⎭,0,0,2P ⎛ ⎝⎭,∴1,,0,0.1,222EC EP ⎛⎫⎛=--=- ⎪ ⎝⎭⎝⎭。
2020年全国一卷理科数学(解析版)
2绝密★启用前2020 年普通高等学校招生全国统一考试理科数学本试卷共 5 页,23 题(含选考题),全卷满分 150 分。
考试用时 120 分钟。
注意事项: ★祝考试顺利★1.答题前,先将自己的姓名,准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共 12 小题。
每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若 z = 1+ i ,则 |z 2- 2z |=A.0B.1C. D.22.设集合 A = {x | x 2- 4 ≤ 0}, B = {x| 2x + a ≤ 0},且 A ∩B = {x - 2 ≤ x ≤ 1},则 a =A. - 4B. - 2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它们的形状可视为一个正四棱锥。
以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为4.已知 A 为抛物线C : y 2= 2 px (p > 0)上一点,点 A 到C 的焦点的距离为 12,到 y轴的距离为 9,则 p =A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位:℃)的关系,在 20 个不同的温度条件下进行种子发芽实验,由实验数据(x i , y i )(i = 1,2, ····,20)得到下面的散点图:100% 80% 60% 40% 20% 0 010203040温度/℃由此散点图,在 10℃至 40℃之间,下面四个回归方程类型中最适宜作为发芽率 y 和温 度 x 的回归方程类型的是A.y = a + bxB.y = a + bx 2C.y = a + be xD.y = a + b ln x6.函数 f (x ) = x 4- 2x 3的图像在点(1, f (1))处的切线方程为A.y = -2x -1B.y = -2x +1C.y = 2x - 3D.y = 2x +17. 设函数在[-π,π]的图像大致如下图。
2020年高考全国一卷理科数学(word详细解析版)
2020年全国1卷理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.若1i z =+,则2|2|z z -=A.0B.1C.2D.2答案:D解析:因为222(1i)2(1i)2z z -=+-+=-,所以2|2|2z z -= 2.设集合2{|40}A x x =-≤,{|20}B x x a =+≤,且{|21}AB x x =-≤≤,则a =A.-4B. -2C.2D.4答案:B 解析:因为2{|40}{|22}A x x x x =-≤=-≤≤,{|20}|2a B x x a x x ⎧⎫=+≤=≤-⎨⎬⎩⎭,且{|21}A B x x =-≤≤,所以12a -=,即2a =-,故选B 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B. 512- C. 514+ D.512+解析:如图,P ABCD -是正四棱锥,过P 作PO ABCD ⊥平面,O 为垂足,则O 是正方形ABCD 的中心,取BC 的中点E ,则OE BC ⊥,因为PO ABCD ⊥平面,所以BC PO ⊥,又PO OE O =,所以BC POE ⊥平面,因为PE POE ⊂平面,所以PE BC ⊥,设BC a =,PO h =,由勾股定理得PE =1122PBC S BC PE =⋅=由已知得212h =221142PE a aPE -=,解得14PE a +=或14PE a =,故选C E OPA C D4.已知A 为抛物线C:22(0)y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A.2B.3C.6D.9答案:C解析:点A 到抛物线的准线的距离等于点A 到C 的焦点的距离12,所以12932p =-=,故p =6.故选C5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)i i x y (1,2,,20)i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.e x y a b =+D.ln y a b x =+答案:D解析:本题考查回归方程及一次函数、二次函数、指数函数、对数函数的图象,观察散点图可知,散点图用光滑曲线连接起来比较接近对数函数的图象,故选D 。
2020年高考全国一卷理科数学答案及解析
2020年高考全国一卷理科数学答案及解析2020-12-12【关键字】情况、条件、问题、焦点、建设、建立、了解、研究、位置、关系、检验、倾斜、满足、规划、实现参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%, 【考点定位】简单统计4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A 、-12 B 、-10C 、10D 、12 【答案】B【解析】3*(a 1+a 1+d+a 1+2d)=( a 1+a 1+d) (a 1+a 1+d+a 1+2d+a 1+3d),整理得: 2d+3a 1=0 ; d=-3 ∴a 5=2+(5-1)*(-3)=-10 【考点定位】等差数列 求和5、设函数f (x )=x 3+(a-1)x 2+ax ,若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为: A 、y=-2x B 、y=-x C 、y=2x D 、y=x 【答案】D【解析】f (x )为奇函数,有f (x )+f (-x )=0整理得: f (x )+f (-x )=2*(a-1)x 2=0 ∴a=1 f (x )=x 3+x 求导f ‘(x )=3x 2+1 f ‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数 6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、--B 、--C 、-+D 、- 【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
高考理科数学(1卷):答案详细解析(最新)
2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14- B.12 C.14+ D.12+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109πB.76πC.43πD.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A 10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点,1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2020年高考理数全国卷1 试题详解
2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若1z i =+,则22z z -=A .0B .1C 2D .2【答案】D .【解析】∵()()2221212z z i i -=+-+=-,∴2222z z -=-=,故选D .2.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A .4-B .2-C .2D .4【答案】.B 【解析】{}240A x x =-≤{}22x x =-≤≤,{}20B x x a =+≤2a x x ⎧⎫=≤-⎨⎩⎭,∵{}21A B x x =-≤≤ ,∴12a-=,∴ 2.a =-故选.B 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514B .512-C 51+D 51+【答案】.C 【解析】如图,设金字塔对应的正四棱锥的高为h ,金字塔斜面上的高为'h ,金字塔底面边长为a ,则有22221'2'2h a h h h h ⎧=⋅⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩化简得22''4210h h a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,解得'514h a +=.故选.C h'h a4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【答案】.C 【解析】设点(),A x y ,由点A y 轴的距离为9得9x =,根据抛物线定义,由A 到C 的焦点的距离为12得122p x +=,即6122p+=,解得 6.p =故选.C 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i = 得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .xy a be =+D .ln y a b x=+【答案】.D 【解析】由题中散点图可知,大致分布在一条递增的对数型函数图象附近,故选.D 6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】.B 【解析】∵()32'46f x x x =-,∴()'12k f ==-,又∵()1121f =-=-,∴由点斜式方程可得所求切线方程为()()121y x --=--,即21y x =--.故选.B 7.设函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109πB .76πC .43πD .32π【答案】.C 【解析】根据函数图象得409f π⎛⎫-= ⎪⎝⎭,∴4cos 096ππω⎛⎫-+= ⎪⎝⎭,∴()4962k k Z πππωπ-+=+∈,解得()394k k Z ω+=-∈,又∵22T T π<<,∴242πππωω<<,解得12ω<<,∴32ω=,∴最小正周期243T ππω==.故选.C 8.25()y x x y x++的展开式中33x y 的系数为A .5B .10C .15D .20【答案】.C 【解析】∵()5x y +的通项为()5150,1,,5r r r r T C x y r -+== ,∴1r =时,2143355y C x y x y x=;3r =时,32333510xC x y x y =.∴33x y 项的系数为51015+=.故选.C 9.已知(0,)απ∈,且3cos 28cos 5αα-=,则sin α=A .3B .23C .13D .9【答案】.A 【解析】根据余弦倍角公式,3cos 28cos 5αα-=可化为23cos 4cos 40αα--=,解得cos 2α=(舍)或2cos 3α=-.∵()0,απ∈,∴sin 3α=.故选.A 10.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】.A【解析】不妨设AB a =,1O 的半径为r ,球O 的半径为R ,依题意有24r ππ=,∴2r =,又13r O A a ==,∴a =222114R OO O A =+=,∴球O 的表面积为2464R ππ=.故选.A 11.已知22:2220M x y x y +---= ,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】.D 【解析】M 方程化为标准方程得()()22114x y -+-=,∵四边形PAMB 的面积112222PAM S PM AB S PA AM ∆⎛⎫=⋅==⨯ ⎪⎝⎭2PA ==∴当且仅当PM 最小时AB PM ⋅最小,此时PM l ⊥,又∵:220l x y ++=,∴11:22PM y x =+,易得PM 与直线l 的交点坐标()1,0P -,∴过()1,0P -作M 的切线所得切点所在直线方程为210x y ++=,故选.D 12.若242log 42log a b a b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <【答案】.B 【解析】22422log 42log 2log a b b a b b +=+=+,∵2222222log 2log 221log b b b b b b +<+=++∴2222log 2log a b a b +<+,构造函数()22log x f x x =+,易知()f x 在()0,+∞单调递增,∴由()()2f a f b <得2a b <,故选.B 二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.【答案】1.【解析】如图,易知当直线7z x y =+经过直线220x y +-=与10x y --=的交点()1,0时,z 取最大值,max 1701z =+⨯=.14.设,a b 为单位向量,且1+=a b ,则-=a b ________..【解析】∵()222221+=+=++⋅=a b a b a b a b ,∴12⋅=-a b ,∴()()22243-=-=+-⋅=a b a b a b a b ,∴-=a b .15.已知F 为双曲线2222:1x y C a b -=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______.【答案】2.【解析】由题意得()(),0,,0A a F c ,∵BF 为通径长的一半,∴2,b B c a ⎛⎫⎪⎝⎭,又()2213b b c a a k e c a a c a a+====+=--,∴离心率2e =.xy 10y +=220x y +-=10x y --=()1,0O16.如图,在三棱锥P ABC -的平面展开图中1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.【答案】1.4-【解析】根据题意得26BD AB ==,∵,,D E F 三点重合,∴3AE AD ==,6BF BD ==,在ACE ∆中,由余弦定理得2222cos CE AC AE AC AE ACE=+-⋅⋅∠13213cos301=+-⨯⨯︒=∴1CE CF ==,在BCF ∆中,根据余弦定理得2221cos 24BC CF BF FCB BC CF +-∠==-⋅三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.【答案】(1)-2;(2)()()312199nn n S +-=-【解析】(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q=+∴220q q +-=,解得1q =(舍去)或2q =-.∴{}n a 的公比为2-.(2)记n S 为{}n na 的前n 项和,由(1)及题设可知()12n n a -=-,∴()()11222n n S n -=+⨯-++⨯- ①()()()2222212nn S n -=-+⨯-++-⨯- ②由①②得()()()()21312222n nn S n -=+-+-++--⨯- ()()1223nnn --=-⨯-∴()()312199nn n S +-=-18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【答案】(1)见解析(2)5【解析】(1)设DO a =,由题设可得,,63PO a AO AB a ===,2PA PB PC ===,∴222PA PB AB +=,∴PA PB ⊥,又222PA PC AC +=,∴PA PC ⊥,∴PA ⊥平面PBC(2)以O 为坐标原点,OE方向为y 轴正方向,OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得()()310,1,0,0,1,0,,022E A C ⎛⎫-- ⎪⎝⎭,20,0,2P ⎛⎫ ⎪⎝⎭,∴312,,0,0.1,222EC EP ⎛⎫⎛=--=- ⎪ ⎝⎭⎝⎭,设m (),,x y z =是平面PCE 的一个法向量,则m EP m EC ⎧⋅=⎪⎨⋅=⎪⎩即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,取m 3⎛=- ⎝,由(1)知20,1,2AP ⎛= ⎝⎭ 是平面PCB 的一个法向量,记n AP = ,则25cos ,5n m n m n m ⋅==⋅.∴二面角B PC E --的余弦值为5.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【答案】(1)116(2)34(3)716.【解析】(1)记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输,则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,xy z∴需要进行第五场比赛的概率为314P P '=-=;(3)记事件A 为甲输,事件B 为乙输,事件C 为丙输,记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,∴甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪ ⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅= .P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=(2)见解析.【解析】(1)由题设得()()(),0,,0,0,1A a B a G -,∴()(),1,,1AG a GB a ==-由8AG GB ⋅= 得218a -=,即3a =,∴E 的方程为2219x y +=.(2)设()()()1122,,,,6,C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<.由于直线PA 的方程为()39t y x =-,所以()1139ty x =+.直线PB 的方程为()33t y x =-,∴()2233ty x =-.∴()()1221333y x y x -=+.∵222219x y +=,∴()()2222339x x y +-=-,整理得()()12122733y y x x =-++,即()()()()22121227330my ym n y y n ++++++=①将x my n =+代入2219x y +=得()2229290m y mny n +++-=∴12229mny y m +=-+,212299n y y m -=-+,代入①得()()()()()222227923390m n m n mn n m +--++++=解得3n =-(舍去)或32n =∴直线CD 的方程为32x my =+,∴直线CD 过定点3,02⎛⎫ ⎪⎝⎭.若0t =,则直线CD 的方程为0y =,过点3,02⎛⎫ ⎪⎝⎭.综上,直线CD 过定点3,02⎛⎫⎪⎝⎭.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.【答案】(1)()f x 在(),0-∞单调递减,在()0,+∞单调递增.(2)27,4e -⎡⎫+∞⎪⎢⎣⎭.【解析】(1)当1a =时,()2x f x e x x =+-,()'21xf x e x =+-.故当(),0x ∈-∞时,()'0f x <;当()0,x ∈+∞时,()'0f x >.∴()f x 在(),0-∞单调递减,在()0,+∞单调递增.(2)()3112f x x ≥+等价于321112x x ax x e -⎛⎫-++≤ ⎪⎝⎭.设函数()()321102x g x x ax x e x -⎛⎫=-++≥ ⎪⎝⎭,则()32213'12122x g x x ax x x ax e ⎛⎫=--++-+- ⎪⎝⎭()2123422xx x a x a e -=--+++⎡⎤⎣⎦()()12122xx x a x e -=----(ⅰ)若210a +≤,即12a ≤-时,则当()0,2x ∈时()'0g x >,∴()g x 在()0,2单调递增.故当()0,2x ∈时,()1g x >,不合题意.(ⅱ)()00g =若0212a <+<,即1122a -<<,则当()()0,212,x a ∈++∞ 时()'0g x <,当()21,2x a ∈+时()'0g x >.∴()g x 在()0,21a +,()2,+∞单调递减;在()21,2a +单调递增.∵()01g =,∴()1g x ≤当且仅当()()22741g a e -=-≤,即274e a -≥.∴当27142e a -≤<时()1g x ≤.(ⅲ)若212a +≥,即12a ≥时,则()3112xg x x x e -⎛⎫≤++ ⎪⎝⎭,∵2710,42e -⎡⎫∈⎪⎢⎣⎭,故由(ⅱ)可得31112x x x e -⎛⎫++≤ ⎪⎝⎭,∴当12a ≥时,()1g x ≤.综上,a 的取值范围为27,4e -⎡⎫+∞⎪⎢⎣⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【答案】(1)圆心为坐标原点,半径为1的圆.(2)11,44⎛⎫⎪⎝⎭.【解析】(1)当1k =时,1cos :sin x t C y t=⎧⎨=⎩,消去参数t 得221x y +=,∴曲线1C 是圆心为坐标原点,半径为1的圆.(2)当4k =时,414cos :sin x tC y t=⎧⎨=⎩,消去参数t 得1C1+=,2C 的参数方程为41630x y -+=.由141630x y =-+=⎩解得1414x y ⎧=⎪⎪⎨⎪=⎪⎩,故1C 与2C 的公共点的直角坐标为11,44⎛⎫ ⎪⎝⎭.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-.(1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.【答案】(1)见解析(2)7,6⎛⎫-∞- ⎪⎝⎭【解析】(1)由题设知()13,3151,133,1x x f x x x x x ⎧--≤-⎪⎪⎪=--<≤⎨⎪+>⎪⎪⎩由此得,()y f x =的图象如图所示.(2)函数()y f x =的图象向左平移1个单位长度后得到函数()1y f x =+的图象.()y f x =的图象与()1y f x =+的图象交点坐标为711,66⎛⎫-- ⎪⎝⎭.由图像可知当且仅当76x <-时,()y f x =的图象在()1y f x =+的图像上方.∴不等式()()1f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.。
2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
2020年高考理科数学(1卷):答案详细解析(客观题 最新)
2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512 C.514+ D.512+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2020年全国I卷理科数学高考试题及解析
2020年普通高等学校招生全国统一考试理科数学(I 卷)试题及解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若1z i =+,则22z z -= ( )D.2 解析:把Z=1+i ,代入计算222(1)2(1)(1)(12)(1)(1)112z z i i i i i i -=+-+=++-=+-+=--=正解答案为D或者 22222211(1)1(11)12z z z z z i -=-+-=--=+--=这里是凑好了一个完成平方的形式,正好抵消了1点评:这是复数的计算题,掌握复数的运算法则就可以,属于送分题。
2.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =( )A.-4B.-2C.2D.4解析:解不等式,集合{|22}A x x =-≤≤集合{|/2}B x x a =≤-而 {}21A B x x =-≤≤,由此可以看出交集的下限是A 集合的-2,上眼1应该是B 集合的,也集12a -= ,解得a=-2。
正确答案为B3. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 514-B. 512-C. 514+D.512+ 解析:设正四棱锥的顶点为H ,底面正方形为ABCD ,中心为O ,AB 的中点F ,则求x=HF/AB 的值,示意图。
面积关系:21*2HAB OH S AB HF ∆==, 三角形HOF 为直角三形,由勾股定理:22214HF OH AB =+则,2211*24HF AB HF AB =+ 把x=HF/AB 代入式中 24210x x --=解得154x += 点评:不要被金子塔吓着,其实题目和它没什么关系,就是考查正四棱锥的几何关系,不题不算难,但过程还是有点复杂,对四棱锥的结构一定要非常熟悉,思路一定要清晰。
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
22 12 直线 l 与圆相离. 依圆的知识可知,四点 A, P, B, M 四点共圆,且 AB MP ,所以
PM
AB
2S△PAM
2 1 PA 2
AM
2 PA ,而 PA
形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A. 5 1 4
B. 5 1 2
C. 5 1 4
D. 5 1 2
【答案】C
【解析】
【分析】
设 CD a, PE b ,利用 PO2 1 CD PE 得到关于 a, b 的方程,解方程即可得到答案. 2
C. a b2
D. a b2
【答案】B 【解析】
【分析】
设 f (x) 2x log2 x ,利用作差法结合 f (x) 的单调性即可得到答案.
【详解】设 f (x) 2x log2 x ,则 f (x) 为增函数,因为 2a log2 a 4b 2 log4 b 22b log2 b
在
y2 x
Tr 1
C5r x4r yr2 中,令 r
1,可得:
y2 x
T2
C51x3 y3 ,该项中
x3 y3 的系数为 5
所以 x3 y3 的系数为10 5 15
故选:C 【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属 于中档题.
9.已知 (0, π) ,且 3cos2 8cos 5 ,则 sin ( )
,即12
9
p 2
,解得
p
=6
2020年普通高等学校招生全国统一考试 理科数学(全国 I 卷)解析版
2020年普通高等学校招生全国统一考试(全国卷I ) 理科数学一、选择题1.若1z i =+,则2|2|z z -=( )A.0B.1C.2D.2答案:D解析:由1z i =+,可得22z i =,222z i =+,所以2|2||2(22)|2z z i i -=-+=.2.设集合2{|40}A x x =-≤,{|20}B x x a =+≤,且{|21}A B x x =-≤≤,则a =( )A.4-B.2-C.2D.4答案:B解析:由题意知{|22}A x x =-≤≤,{|}2aB x x =≤-,又因为{|21}A B x x =-≤≤,所以12a -=,解得2a =-. 3.埃及胡夫金字塔是古代时间建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )AB. 12C. 14答案:C解答:设四棱锥的底面边长为a ,侧面三角形的高为h ',四棱锥的高为h ,则有212h ah '=,又h =,联立两式可得2221111()()04224h h h a ah a a ''''-=⇒-⋅-=解得14h a '=,又0h a '>,所以14h a '=. 4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A.2B.3C.6D.9答案:C解答:根据抛物线的定义可知,点A 到C 的焦点的距离等于到准线2p x =-的距离, 即1292p =+,解得6p =.5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系, 在20个不同的温度条件下进行种子发芽实验,由实验数据(i x ,i y )(1,2,,20i =)得到下面的散点图:由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x =+答案:D解析:由图象可知ln y a b x =+作为发芽率y 和温度x 的回归方程类型最适宜.6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为( ) A .21y x =--B .21y x =-+C .23y x =-D .21y x =+答案:B解答:由题可得(1)1f =-,32()46f x x x '=-,则(1)2f '=-,∴在点(1,(1))f 处的切线方程为12(1)y x +=--,即21y x =-+.7.设函数()cos()6f x x πω=+在[,]ππ-的图像大致如下图,则()f x 的最小正周期为( )A.109π B.76π C.43π D.32π答案:C解析:∵4cos()096ππω-+=,∴42()962k k Z πππωπ-+=-∈, ∴9322k ω=-+,根据图像可知2413||99ππππω<+=, 2||ππω>,∴18||213ω<<,故取0k =,则32ω=,∴2243||32T πππω===,故选C. 8.25()()y x x y x ++的展开式中33x y 的系数为( )A.5B.10C.15D.20答案:C解析:25()()y x x y x ++的展开式中33x y 项为2323143333335510515y x C x y C x y x y x y x y x ⋅⋅+⋅⋅=+=. 故25()()y x x y x ++的展开式中33x y 的系数为15.9.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=()A.3B .23C .13D答案:A解答:由3cos28cos 5αα-=,得23(2cos 1)8cos 5αα--=,得23cos 4cos 40αα--=,化为(3cos 2)(cos 2)0αα+-=,得2cos 3α=-,那么sin α=. 10.已知A ,B ,C 为球O 的球面上的三个点,圆1O 为ABC ∆的外接圆.若圆1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A.64πB.48πC.36πD.32π答案:A解析:依题意,ABC ∆为等边三角形,故其外心为ABC ∆的中心,由圆1O 的面积为4π,∴12O A =,∴1AB OO ==,∴4OA ==,∴球O 的表面积为2441664R πππ=⨯=,故选A.11.已知22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A.210x y --=B.210x y +-=C.210x y -+=D.210x y ++=答案:D解析:解法一:∵P 为l 上的动点,设(,22)P x x --∵22:2220M x y x y +---=,即22(1)(1)4x y -+-=, ∴M 的圆心(1,1)M ,半径为2.∴||PM =依题意可知在Rt PAM ∆中,||PA =∴1||||||2||PA AM AB PM ⋅==,∴||AB =∴||||PM AB ⋅=1x =-时||||PM AB ⋅取得最小值.此时(1,0)P -过P 作M 的其中一条切线为1x =-,设PA 的方程为1x =-. 则(1,1)A -,又∵12PM k =,∴2AB k =-. ∴直线AB 的方程为12(1)y x -=-+.化简得210x y ++=.解法二:22:(1)(1)4M x y -+-=,因为1||||2||||2||2PAMB PAM S PM AB S PA AM PA ∆=====, 所以||||PM AB ⋅最小,即||PM 最小,此时PM 与直线l 垂直,11:22PM y x =+, 直线PM 与直线l 的交点(1,0)P -,过直线外一点P 作M 的切线所得切点弦所在直线方程为:210x y ++=,所以选D.12.若242log 42log a b a b +=+,则( )A.2a b >B.2a b <C.2a b >D.2a b <答案:B解析:由指数与对数运算可得22422log 42log 2log a b b a b b +=+=+,又因为2222222log 2log 22og ()1l b b b b b b +<+=++,即2222log 2log (2)a b a b +<+,令2()2log x f x x =+,由指对函数单调性可得()f x 在(0,)+∞内单调递增,由()(2)f a f b <,可得2a b <,故选B.二、填空题13.若x ,y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值为 .答案:1解析:如图,作出约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩所表示的可行域.易得A 点的坐标为(1,0)A ,当目标函数经过A 点时,z 取得最大值,可得7z x y =+的最大值为1701+⨯=.14.设a ,b 为单位向量,且||1a b +=,则||a b -=________.答案:3解答:∵a ,b 为单位向量,∴||||1a b ==,∴222||||||21a b a b a b +=++⋅=,∴21a b ⋅=-, ∴222||||||23a b a b a b -=+-⋅=,解得||3a b -=. 15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为 .答案:2 解答:由题可知点B 的坐标为2,)b c a (,所以23AB b a k c a==-,且222b c a =-,代入并化简可得222320320c ac a e e -+=⇒-+=解得2e =或1e =(舍弃).16.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠= .答案:14- 解析:3AB =1AC =,AB AC ⊥,∴2BC =, 同理6DB =3AE DA ==30CAE ∠=︒,1AC =. ∴2222cos EC AE AC AE AC EAC =+-⨯⨯⨯∠33123112=+-⨯=. 在BCF ∆中,2BC =,1FC EC ==,6FB DB ==∴2221461cos 22214FC BC FB FCB FC BC +-+-∠===-⨯⨯⨯⨯. 三、解答题17.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.答案:见解答解答:(1)设等比数列{}n a 的公比为(0)q q ≠,∵1232a a a =+,∴21112a a q a q =+,又∵10a ≠,故220q q +-=,解得2q =-或1q =(舍).(2)由11a =,可得111(2)n n n a a q --==-,设数列{}n na 的前n 项和为n S ,则0111(2)2(2)(2)n n S n -=⨯-+⨯-++⨯-①1221(2)2(2)(2)n n S n -=⨯-+⨯-++⨯-②①-②得:01213(2)(2)(2)(2)(2)n n n S n -=-+-+-++--⨯- (2)111(2)()(2)2133n n n n n --=-⨯-=--⋅-+--, ∴111()(2)399n n S n =--⋅-+. 18.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内接正三角形,P 为DO 上一点,6PO DO =. (1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.答案:见解析;解析:(1)证明:设ABC ∆的边长为6a ,则可知16232sin 60a AO a =⨯=︒,43AE a =.∵AE AD =,∴43AD a =,得222248126DO AD AO a a a =-=-=. ∴66PO DO a ==,则222261232PA PB PC PO AO a a a ===+=+=. ∴222PA PB AB +=,得PA PB ⊥. 同理222PA PC AC +=,得PA PC ⊥.又∵PB ⊂平面PBC ,PC ⊂平面PBC ,PBPC P =,∴PA ⊥平面PBC .(2)如图,以O 为坐标原点平行于CB 方向为x 轴,OE 为y 轴,OD 为z 轴,建立空间直角坐标系.由(1)可设6AB a =,则有6)P a ,(33,0)B a a ,(33,0)C a a -, (0,23,0)E a .∴(33,6)PC a a a =-,(6,0,0)BC a =-,(33,0)CE a a =, 设平面PCB 的一个法向量为1111(,,)n x y z =,则1100n PC n BC ⎧⋅=⎪⎨⋅=⎪⎩得1111336030ax ay az ax ⎧-+-=⎪⎨=⎪⎩,得1(0,6,3)n =. 设平面PCE 的一个法向量为2222(,,)n x y z =, 则2200n PC n CE ⎧⋅=⎪⎨⋅=⎪⎩得222223360330ax ay az ax ay ⎧-+=⎪⎨+=⎪⎩,设2(3,3,32)n =--, 则121212363625cos ,5||||633918n n n n n n ⋅<>===-⋅+⨯++. ∴二面角B PC E --2519.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束. 经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.答案:见解答:解答:各种情况列举如下,其中甲(乙)表示甲胜乙负,其它意思与此相同。
2020年高考理数全国卷1 试题+答案详解
2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟. 注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效. 5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1z i =+,则22z z -=A .0B .1C 2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 51-B 51-C 51+D 51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i =得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为 A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109πB .76π C .43π D .32π 8.25()()y x x y x ++的展开式中33x y 的系数为A .5B .10C .15D .209.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α= A .5B .23 C .13D .5 10.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知22:2220M x y x y +---=,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 12.若242log 42log a b a b +=+,则A .2a b >B .2a b <C .2a b >D .2a b < 二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.14.设,a b 为单位向量,且1+=a b ,则-=a b ________.15.已知F 为双曲线2222:1x y C a b-=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______. 16.如图,在三棱锥P ABC -的平面展开图中1AC =, 3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,6PO DO =. (1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=.P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-. (1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.参考答案一、选择题 1【答案】D .【解析】∵()()2221212z z i i -=+-+=-,∴2222z z -=-=,故选D .2.【答案】.B【解析】{}240A x x =-≤{}22x x =-≤≤,{}20B x x a =+≤2a x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤,∴12a-=,∴ 2.a =-故选.B 3.【答案】.C【解析】如图,设金字塔对应的正四棱锥的高为h ,金字塔斜面上的高为'h ,金字塔底面边长为a ,则有22221'2'2h a h h h h ⎧=⋅⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩化简得22''4210h h a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,解得'14h a =.故选.C 4.【答案】.C【解析】设点(),A x y ,由点A y 轴的距离为9得9x =,根据抛物线定义,由A 到C 的焦点的距离为12得122p x +=,即6122p+=,解得 6.p =故选.C 5.【答案】.D【解析】由题中散点图可知,大致分布在一条递增的对数型函数图象附近,故选.D 6.【答案】.B【解析】∵()32'46f x x x =-,∴()'12k f ==-,又∵()1121f =-=-,∴由点斜式方程可得所求切线方程为()()121y x --=--,即21y x =--.故选.B7.【答案】.C【解析】根据函数图象得409f π⎛⎫-= ⎪⎝⎭,∴4cos 096ππω⎛⎫-+= ⎪⎝⎭,∴()4962k k Z πππωπ-+=+∈,解得()394kk Z ω+=-∈, 又∵22T T π<<,∴242πππωω<<,解得12ω<<, ∴32ω=,∴最小正周期243T ππω==.故选.C 8.【答案】.C【解析】∵()5x y +的通项为()5150,1,,5r r r r T C x y r -+==,h'h a。
2020高考理数试题答案解析(全国一卷)
A. 5 1 4
【答案】D
B. 5 1 2
C. 5 1 4
D. 5 1 2
设 CD a, PE b ,利用 PO2 1 CD PE 得到关于 a, b 的方程,解方程即可得到答案. 2
【解析】如图,设 CD a, PE b ,则 PO PE 2 OE 2 b2 a 2 , 4
由题意 PO2 1 ab ,即 b2 a2 1 ab ,化简得 4( b )2 2 b 1 0 ,
9
【答案】A
用二倍角的余弦公式,将已知方程转化为关于 cos 的一元二次方程,求解得出 cos ,再用同角间的三角
函数关系,即可得出结论.
【解析】 3cos 2 8cos 5 ,得 6cos2 8cos 8 0 ,
故选:B.
7.设函数 f (x) cos( x π ) 在[π,π] 的图像大致如下图,则 f(x)的最小正周期为( ) 6
10π
A.
9 C. 4π
3
7π
B.
6 D. 3π
2
【答案】C
由图可得:函数图象过点
4 9
,
0
,即可得到
cos
4 9
6
0
,结合
4 9
, 0
是函数
f
x
图象
与 x 轴负半轴的第一个交点即可得到 4 ,即可求得 3 ,再利用三角函数周期公式即可
8. (x y2 )(x y)5 的展开式中 x3y3 的系数为( ) x
A. 5
B. 10
C. 15
D. 20
【答案】C
求得 (x
y)5
展开式的通项公式为 Tr1
C5r x5r yr ( r N
且r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷制定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,在选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若1z i =+,则22z z -=A.0B.1C.2D.22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a = A.-4 B.-2 C.2 D.43. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 A.514- B. 512-C.514+ D. 512+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ο)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据i i (,)x y (1,2,...,20)i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+ C .xy a be =+ D .ln y a b x =+6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A.109πB. 76πC. 43πD. 32π8. 25()()y x x y x++的展开式中33x y 的系数为A. 5B. 10C. 15D. 209. 已知(0,)α∈π,且3cos28cos 5αα-=,则sin α= A.53 B. 23 C. 13D. 59 10. 已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为14,AB BC AC OO π===,则球O 的表面积为 A. 64π B. 48π C. 36π D. 32π11. 已知22:2220M x y x y +---=,直线:20,l x y p +=为l 上的动点.过点p作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++= 12.若a 242log 42log b a b +=+,则A.b a 2>B.b a 2<C.2b a > D.2b a < 二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z=x+7y 的最大值为 。
14.设a ,b 为单位向量,且︱a+b ︱=1,则︱a-b ︱= 。
15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为 。
16.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=,则cos FCB ∠= 。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1) 求{}n a 的公比;(2) 若1a =1,求数列{}n na 的前n 项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AD AE =,ABC ∆是底面的内接正三角形,P 为DO 上一点,66PO DO =。
(1)证明:PA ⊥平面PBC ; (2)求二面角E PC B --的余弦值。
19. (12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空. 设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.(12分)已知A ,B 分别为椭圆E :222x 1(1)y a a+=>的左、右顶点,G 为E 上顶点,8AG GB ⋅=.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D 。
(1)求E 的方程;(2)证明:直线CD 过定点。
21.(12分)已知函数()2x f x e ax x =+-.(1) 当1a =时,讨论()f x 的单调性; (2) 当0x ≥时,()31x 12f x ≥+,求a 的取值范围.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22. [选修4-4:坐标系与参数方程] (10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,(sin kkx t t y t⎧=⎪⎨=⎪⎩为参数) ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为 4cos 16sin 30.ρθρθ-+=(1) 当1k =时,1C 是什么曲线?(2) 当4k =时,求1C 与2C 的公共点的直角坐标.23. [选修4—5:不等式选讲](10分) 已知函数f ()312-1x x x =+-. (1) 画出y=f(x)的图像; (2) 求不等式f(x)>f(x+1)的解集.参 考 答 案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若1z i =+,则=-|2|2z zA.0B.1C.2D.2【解析:D 。
2|11||1||)1(2)1(||2|222=--=-=+-+=-i i i z z 。
】2.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a = A.-4 B.-2 C.2 D.4【解析:B 。
{}22|≤≤-=x x A ,⎭⎬⎫⎩⎨⎧-≤=2|a x x B ,∵{}12|≤≤-=x x B A∴12=-a,∴2-=a 。
】 3. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 A.514- B. 512-C.514+ D.512+【解析:C 。
如图,设该正四棱锥侧面三角形底边上的高为 ,底面正方形的边长为 ,则该四棱锥的高为222241)21(b a b a -=-,∵以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,∴ab b a 214122=-b a解得:415+=a 或415+-(不符合题意,舍去),∴415+=a 。
】 4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析:C 。
由题意得:39122=-=p,∴6=p 。
】5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ο)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据i i (,)x y (1,2,...,20)i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+ C .xy a be =+ D .ln y a b x =+ 【解析:D 。
观察散点图的分布,两变量之间应为对数相关。
】6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析:B 。
∵2364)('x x x f -=,∴2)1('-=f ,又∵121)1(-=-=f ,∴图像在(1,(1))f 处的切线方程斜率为-2,且过点)1,1(-,答案只能选B 。
】7.设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A.109πB. 76πC. 43πD.32π【解析:C 。
的最小正周期为 。
】 8. 25()()y x x y x++的展开式中33x y 的系数为A. 5B. 10C. 15D. 20【解析:C 。
5)(y x +展开式中3225y x C 、y x C 445与x 、xy 2相乘后分别含有33y x ,∴33y x 系数为154525=+C C 。
】9. 已知(0,)α∈π,且3cos28cos 5αα-=,则sin α= A.53 B. 23 C. 13D. 59 【解析:A 。
,∴ ,∴或2(舍去),∴ 。
】 10. 已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为14,AB BC AC OO π===,则球O 的表面积为 A. 64π B. 48π C. 36π D. 32π 【解析:A 。
如图,延长1AO 交BC 于点D ,∵1O 的面积为π4,∴ππ421=⋅)(AO , ∴21=AO ,∵ABC ∆是等边三角形, ∴3231==AO AD ,∴3223360sin ==︒=AD AB , ∴321==AB OO ,∴在1AOO Rt ∆中,16)32(22221212=+=+=OO AO AO ,ππ34232=⨯)(x f 35sin =x 32cos -=α53cos 8cos 6cos 8)1cos 2(3cos 82cos 322=--=--=-αααααα04cos 4cos 32=--αα∴球O 的表面积为:πππ6416442=⨯=)(AO 。