第7章 图像分割 7.1 图像分割的定义和分类 7.2 基于边缘的分割 7.3 基于区域的分割 7.4 基于阈值的分割 7.5

合集下载

数字图像处理与摄影技术作业指导书

数字图像处理与摄影技术作业指导书

数字图像处理与摄影技术作业指导书第1章数字图像处理基础 (3)1.1 数字图像处理概述 (3)1.1.1 数字图像定义 (3)1.1.2 数字图像处理的目的与意义 (4)1.1.3 数字图像处理的基本流程 (4)1.2 图像处理基本操作 (4)1.2.1 图像采样与量化 (4)1.2.2 图像变换 (4)1.2.3 图像滤波 (4)1.2.4 图像增强 (4)1.2.5 图像恢复 (4)1.3 图像类型与存储格式 (4)1.3.1 二值图像 (4)1.3.2 灰度图像 (4)1.3.3 彩色图像 (4)1.3.4 图像存储格式 (5)第2章摄影技术基础 (5)2.1 摄影光学原理 (5)2.1.1 镜头 (5)2.1.2 光圈 (5)2.1.3 快门 (5)2.1.4 感光度 (5)2.2 摄影器材与拍摄技巧 (5)2.2.1 相机类型 (5)2.2.2 镜头选择 (5)2.2.3 摄影附件 (6)2.2.4 拍摄技巧 (6)2.3 摄影构图与审美 (6)2.3.1 构图原则 (6)2.3.2 画面元素 (6)2.3.3 视角与角度 (6)2.3.4 色彩运用 (6)第3章图像增强 (6)3.1 灰度变换增强 (6)3.1.1 灰度变换原理 (6)3.1.2 线性灰度变换 (6)3.1.3 对数灰度变换 (7)3.1.4 幂次灰度变换 (7)3.2 直方图增强 (7)3.2.1 直方图均衡化 (7)3.2.2 直方图规定化 (7)3.3.1 频域滤波原理 (7)3.3.2 低通滤波 (7)3.3.3 高通滤波 (7)3.3.4 带通滤波和带阻滤波 (7)第4章图像复原与重建 (8)4.1 图像退化模型 (8)4.1.1 线性退化模型 (8)4.1.2 非线性退化模型 (8)4.2 噪声分析与去除 (8)4.2.1 噪声类型 (8)4.2.2 去噪方法 (8)4.3 图像重建技术 (9)4.3.1 逆滤波 (9)4.3.2 维纳滤波 (9)4.3.3 稀疏表示与重建 (9)4.3.4 深度学习方法 (9)第5章图像分割与边缘检测 (9)5.1 阈值分割 (9)5.1.1 灰度阈值分割 (10)5.1.2 彩色图像阈值分割 (10)5.2 区域生长与合并 (10)5.2.1 区域生长 (10)5.2.2 区域合并 (10)5.3 边缘检测算法 (10)5.3.1 基于梯度的边缘检测算法 (10)5.3.2 基于二阶导数的边缘检测算法 (10)5.3.3 其他边缘检测算法 (11)第6章形态学处理 (11)6.1 形态学基本运算 (11)6.1.1 膨胀 (11)6.1.2 腐蚀 (11)6.1.3 开运算 (11)6.1.4 闭运算 (11)6.2 形态学应用实例 (11)6.2.1 骨架提取 (11)6.2.2 噪声消除 (11)6.2.3 区域填充 (12)6.3 数学形态学在图像处理中的应用 (12)6.3.1 边缘检测 (12)6.3.2 目标分割 (12)6.3.3 特征提取 (12)6.3.4 图像增强 (12)第7章图像特征提取与描述 (12)7.1.1 颜色直方图 (12)7.1.2 颜色矩 (12)7.1.3 颜色聚合向量 (12)7.2 纹理特征提取 (13)7.2.1 灰度共生矩阵 (13)7.2.2 局部二值模式 (13)7.2.3 Gabor滤波器 (13)7.3 形状特征提取 (13)7.3.1 傅里叶描述符 (13)7.3.2 Hu不变矩 (13)7.3.3 Zernike矩 (13)第8章摄影后期处理技术 (13)8.1 色彩调整与校正 (13)8.2 图像合成与特效 (13)8.3 景深与动态范围优化 (14)第9章数字摄影与计算机视觉 (14)9.1 计算机视觉概述 (14)9.2 三维重建与虚拟现实 (14)9.3 摄影测量与遥感 (14)第10章数字图像处理与摄影技术在实际应用中的案例分析 (14)10.1 数字图像处理在医学领域的应用 (14)10.1.1 X射线成像 (15)10.1.2 CT和MRI成像 (15)10.1.3 超声成像 (15)10.2 摄影技术在广告摄影中的应用 (15)10.2.1 光线控制 (15)10.2.2 摄影构图 (15)10.2.3 后期处理 (15)10.3 数字图像处理与摄影技术在人工智能领域的融合与发展趋势 (15)10.3.1 计算机视觉 (15)10.3.2 智能驾驶 (16)10.3.3 无人机航拍 (16)10.3.4 发展趋势 (16)第1章数字图像处理基础1.1 数字图像处理概述1.1.1 数字图像定义数字图像是由像素点组成的二维离散信号,每个像素点的值代表该点的亮度或颜色信息。

图像分割与特征提取_图文_图文

图像分割与特征提取_图文_图文

7.3.2 其它阈值选取方法
3. 迭代式阈值的选取
迭代式阈值选取过程可描述为: ① 选取一个初始阈值T; ② 利用阈值T把给定图像分割成两组图像,记为R1和 R2; ③ 计算R1和R2均值μ1和μ2; ④ 选择新的阈值T,且
⑤ 重复第②至④步,直至R1和R2的均值μ1和μ2不再 变化为止。
7.4 基于跟踪的图像分割
2. 双峰形直方图谷底阈值的获取
通常情况下由于直方图呈锯齿形状,这时,需要利用 某些解析函数对双峰之间的直方图进行拟合,并通过对拟
合函数求微分获得最小值。
设有二次曲线方程:
(7.30)
对应于直方图双峰之间的最小值谷底阈值就为:
(7.31)
7.3.2 基于双峰形直方图的阈值选取
2. 双峰形直方图谷底阈值的获取
该类二值图像灰度分布的百分比时,就可通过试探的 方法选取阈值,直到阈值化后的图像的效果达到最佳 为止。
7.3.2 其它阈值选取方法
3. 迭代式阈值的选取 基本思路是:首先根据图像中物体的灰度分布情
况,选取一个近似阈值作为初始阈值,一个比较好的 方法就是将图像的灰度均值作为初始阈值;然后通过 分割图像和修改阈值的迭代过程来获得任可的最佳阈 值。
基于阈值的图像分割方法是提取物体与背景在灰 度上的差异,把图像分为具有不同灰度级的目标区域 和背景区域的一种图像分割技术。
7.3.1 基于阈值的分割方法
1. 阈值化分割方法
图7.3.1 基于单一阈 值分割的灰度直方图
T
利用阈值T分割后的图像可定义为:
从暗的背景上分 割出亮的物体:
(7.24)
从亮的背景上分 割出暗的物体:
7.2.3 二阶微分边缘检测
图7.3 Laplacian二阶边缘检测算子的边缘检测示例

07-图像分割

07-图像分割
-1 -1
2
-1 -1
-1
2 -1
-1
-1 2
水平模板
45度模板
垂直模板
135度模板
43
例: 图像
1
1
1
1
1
1
1
1
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
用4种模板分别计算 R水平 = -6 + 30 = 24
R45度 = -14 + 14 = 0
R垂直 = -14 + 14 = 0 R135度 = -14 + 14 = 0
相同;

当R的值足够大时,说明该点的值与周围的点非常不
同,是孤立点。通过阈值T来判断: |R| > T 检测到一个孤立点。
42
2. 线的检测
通过比较典型模板的计算值,确定一个点是否在某个 方向的线上:
-1
2 -1
-1
2 -1
-1
2 -1
-1
-1 2
-1
2 -1
2
-1 -1
-1
-1 -1
2
2 2-1128 8 源自 8-1-18
-1
-1
-1
R = (-1 * 8 * 8 + 128 * 8) / 9
= (120 * 8) / 9 = 960 / 9 = 106 设 :阈值:T = 64 R>T
41
算法描述:

设定阈值 T,如T = 32、64、128等,并计算高通滤波值
R;

如果R值等于0,说明当前检测点的灰度值与周围点的

图像分割与特征提取 ppt课件

图像分割与特征提取  ppt课件

ppt课件
5
7.1 图像分割的概念
2. 图像分割的依据和方法
◆图像分割的依据是各区域具有不同的特性,这些 特性可以是灰度、颜色、纹理等。而灰度图像分割的 依据是基于相邻像素灰度值的不连续性和相似性。也 即,子区域内部的像素一般具有灰度相似性,而在区 域之间的边界上一般具有灰度不连续性。
◆灰度图像分割是图像分割研究中最主要的内容,其 本质是按照图像中不同区域的特性,将图像划分成不 同的区域。
7.2.1 图像边缘
图像
剖面
一阶导数
二阶导数
上升阶跃边缘 (a)
下降阶跃边缘 (b)
脉冲状边缘 (c)
屋顶边缘 (d)
图7.1 图像边缘及其导数曲线规律示例
ppt课件
11
7.2 基于边缘检测的图像分割
7.2.1 图像边缘
综上所述,图像中的边缘可以通过对它们求导数 来确定,而导数可利用微分算子来计算。对于数字图 像来说,通常是利用差分来近似微分。
方向:
f (x, y) = arctan(Gx / Gy )
(7.5)
ppt课件
14
7.2.2 梯度边缘检测
(1) Roberts算子
是一个交叉算子,其在点(i,j)的梯度幅值表示为:
G(i, j) = f (i, j) f (i 1, j 1) f (i 1, j) f (i, j 1) (7.6)
ppt课件
2
7.1 图像分割的概念
◆目标或前景 ◆背景 ◆目标一般对应于图像中特定的、具有独特性质的 区域。
ppt课件
3
7.1 图像分割的概念
1. 图像分割
图像分割就是依据图像的灰度、颜色、纹理、边 缘等特征,把图像分成各自满足某种相似性准则或具 有某种同质特征的连通区域的集合的过程。

数字图像处理教学大纲

数字图像处理教学大纲

数字图像处理课程教学大纲(理论课程)◆课程编号:130128◆课程英文名称:Digital Image Processing◆课程类型:☐通识通修☐通识通选☐学科必修√学科选修☐跨学科选修☐专业核心√专业选修(学术研究)☐专业选修(就业创业)◆适用年级专业(学科类):四年级电子信息工程专业、通信工程(专业电气信息类)◆先修课程:信号与系统、数字信号处理、线性代数、概率统计◆总学分:2◆总学时:34一、课程简介与教学目标数字图像处理时模式识别,计算机视觉,图像通信,多媒体技术等学科的基础,是一门涉及多领域的交叉学科。

通过本课程的学习,使学习者系统地了解数字图像的基本概念、数字图像形成的原理,掌握数字图像处理的理论基础和技术方法,了解与各种处理技术相关的应用领域。

为学生今后从事数字图像信息处理工作奠定坚实的理论基础。

二、教学方式与方法教学方式:课堂讲授(以多媒体课件为主导)和课下上机实践相结合;教学方法:采用以BTEC(Business Technology Education Council)模式为主,以TBL(task-based learning)任务型模式为辅的两种教学模式相结合的教学方法。

用任务引导学习,更注重学生个性的发展和个人潜能的开发,考核以平时的课业、表现、出勤、学习态度和最后的考试共同衡量学生的学习水平,达到教学目的。

三、教学重点与难点(一)教学重点重点是第4章图像增强、第6章图像复原、第7章图像分割;(二)教学难点难点是第3章图像变换和第6章图像复原。

四、学时分配计划五、教材与教学参考书(一)教材1.《数字图像处理与分析》,刘直芳、王运琼、朱敏,清华大学出版社,2006;2.《数字图像处理(第二版》,R. C. Gonzalez和R. E. Woods(美国),电子工业出版社,2006;(二)教学参考书1.《图像工程(上册):图像处理》,章毓晋,清华大学出版社,2006;2.《图像工程(中册):图像分析》,章毓晋,清华大学出版社,2005;3.《数字图像处理学》,阮秋琦,电子工业出版社,2003;4.《数字图像处理》,陈天华,清华大学出版社,2007;5.《数字图像处理》,姚敏,机械工业出版社,2006;六、课程考核与成绩评定【考核类型】√考试☐考查【考核方式】☐开卷(Open-Book)√闭卷(Close-Book)☐项目报告/论文☐其它:(填写具体考核方式)【成绩评定】平时成绩占(30-40)%,考试成绩占(70-60)%七、课程内容概述第一章绪论(一)教学要求了解数字图像处理的基本概念和特点,研究的目的和意义,数字图像图像处理的主要研究内容,国内外研究现状与发展趋势,主要应用领域。

医学影像处理中的图像分割技术

医学影像处理中的图像分割技术

医学影像处理中的图像分割技术随着数字化和信息化的发展,各行各业都在积极应用计算机技术进行信息处理和分析,医学领域也不例外。

其中医学影像处理就是医学领域应用计算机技术进行信息处理和分析的重要方向之一。

医学影像处理旨在提高医疗领域的诊断效率、减少诊断误差、改善医疗保健质量。

其中影像分割技术是医学影像处理的重要组成部分。

本文将介绍医学影像处理中的图像分割技术。

一、图像分割技术的概述图像分割是指将数字图像分割成若干个互不重叠的子区域,并使得每个子区域内的像素具有相似的特征,以达到对图像信息的提取、分析或处理等目的。

在医学影像处理中,图像分割技术可以将数字影像中的组织、器官、病变等部位分离开来,从而对医学影像进行定量化分析和诊断。

目前,医学影像分割技术已成为医学领域中应用最广泛的技术之一。

二、图像分割的方法和分类图像分割方法可以分为基于阈值分割、基于聚类分割、基于边缘分割和基于区域分割等四类。

1.基于阈值分割基于阈值分割的方法是最简单、最快速的图像分割方法之一。

它将图像中每个像素的像素值与一个预设的阈值进行比较,将像素值大于或小于阈值的像素划分到不同的子区域中。

基于阈值分割的方法通常适用于图像中只包含两种物体的情况。

2.基于聚类分割基于聚类分割的方法是通过将图像中的像素聚为类别,以区分出不同的物体或背景。

该方法首先将图像中的像素按照其像素值进行聚类,然后根据像素值相似度,判断像素是否属于同一类别。

基于聚类分割的算法通常适用于多物体和多层次的图像分割。

3.基于边缘分割基于边缘分割的方法是通过检测图像中的边缘,将像素划分到边缘不同侧的子区域中。

该方法通常使用边缘检测算法,如Sobel、Canny等进行边缘检测。

4.基于区域分割基于区域分割的方法是通过对区域进行最小化或最大化,以得到对图像的有效划分。

该方法通常使用一些叫做分割匹配算法的方法,如meanshift、K-means等进行区域划分。

三、医学影像分割的应用医学影像分割技术的应用非常广泛,可以用于各种医学检查和诊断,如疾病诊断、手术指导、药物研究等。

数字图像处理第7章

数字图像处理第7章

1 0 1
1
Wh 2
2
2
1
0 0
2
1
1
Wv
1 2
2
0 1
2 1
0 0
2
1
▓图7.2.5给出了上述五种梯度算子的边缘点检测实例。
Digital Image Processing
7.2 边缘点检测
(a)原图像
(b)梯度算子检测
(c) Roberts检测
(d) Prewitt检测
(e) Sobel检测
感。形成的方向梯度模板集就称为方向匹配检测模板,或方向梯
度响应数组。用其中的每一个方向的模板分别与图像卷积,其最
大模值就是边缘点的强度,最大模值对应的模板方向就是边缘点
的方向,这种检测边缘点并确定其方向的方法就称为方向梯度法
或方向匹配模板法。边缘梯度的定义式为:
N 1
G(m,
n)
MAX i0
{
Gi
(m,
Digital Image Processing
7.2 边缘点检测
(2) Sobel算子法(加权平均差分法) ▓Sobel算子就是对当前行或列对应的值加权后,再进行平
均和差分,也称为加权平均差分。水平和垂直梯度模板分别为:
1 0 1
Wh
1 4
2
0
2
1 0 1
1 2 1
Wv
1 4
0
0
0
1 2 1
(f)各向同性Sobel检测
图7.2-5 五种梯度算子的边缘点检测实例
Digital Image Processing
7.2 边缘点检测
◘方向梯度法(方向匹配模板法)
▓若事先并不知道哪个方向有边缘,但需要检测边缘,并确定 边缘的方向时。我们可设计一系列对应不同方向边缘的方向梯度

教学课件第七章图像分割与边缘检测

教学课件第七章图像分割与边缘检测
2. p
p尾法仅适用于事先已知目标所占全图像百分比 的场合。
若一幅图像由亮背景和黑目标组成,已知目标占 图像的(100-p)%面积,则使得至少(100-p)%的像素 阈值化后匹配为目标的最高灰度, 将选作用于二值化 处理的阈值。
第七章 图像分割与边缘检测
7.1.3 区域生长
分割的目的是把一幅图像划分成一些区域,最直接 的方法就是把一幅图像分成满足某种判据的区域,也就 是说, 把点组成区域。
第七章 图像分割与边缘检测
7.2.2 高斯-拉普拉斯(LOG)
噪声点对边缘检测有较大的影响,效果更好的边缘检测器是 高斯-拉普拉斯(LOG)算子。它把高斯平滑滤波器和拉普拉斯锐化 滤波器结合起来,先平滑掉噪声,再进行边缘检测,所以效果更 好。
常用的LOG算子是 5×2 5的 4模板 4: 4 2
第七章 图像分割与边缘检测
本章内容
7.1 图像分割 7.2 边缘检测 7.3 轮廓跟踪与提取 7.4 图像匹配 7.5 投影法与差影法 7.6 应用实例
第七章 图像分割与边缘检测
7.1 图 像 分 割
7.1.1 概述
图像分割是将图像划分成若干个互不相交的小区 域的过程, 小区域是某种意义下具有共同属性的像素 的连通集合。
如不同目标物体所占的图像区域、 前景所占的图 像区域等。
第七章 图像分割与边缘检测
连通是指集合中任意两个点之间都存在着完全属于 该集合的连通路径。对于离散图像而言,连通有4连通 和8连通之分,如图7-1所示。
(a)
(b)
图7-1 4连通和8连通
第七章 图像分割与边缘检测
4连通指的是从区域上一点出发,可通过4个方向, 即上、 下、左、右移动的组合,在不越出区域的前提 下,到达区域内的任意像素;

《MATLAB图像处理实例详解》课件Chapter_7a第7章 图像分割技术

《MATLAB图像处理实例详解》课件Chapter_7a第7章  图像分割技术

7.4.1 区域生长法
区域生长是一种串行区域分割的图像分割方法。区域生长的基本思想是将 具有相似性质的像素集合起来构成区域。区域增长方法根据同一物体区域 内像素的相似性质来聚集象素点的方法,从初始区域(如小邻域或单个象 素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中 从而逐步增长区域,直至没有可以归并的点或其它小区域为止。区域内象 素的相似性度量可以包括平均灰度值、纹理、颜色等信息。
差分来逼近梯度算子,即:
2、Prewitt算子 下面介绍Prewitt算子。 Prewitt算子的大小为3×3,如下所示:
这两个算子分别代表图像的水平梯度和垂直梯度。 3、Sobel算子 Sobel算子的大小和Prewitt算子的大小相同,都是3×3。Soble算子的模板如下所示:
在MATLAB中,函数edge( )可以采用Sobel算子进行边缘检测。
设为图像的位置处的灰度值,灰度级为,则。若灰度级的所有像素个数为, 则第级灰度出现的概率为:
其中
,并且

7.3.3 迭代式阈值分割
迭代阈值法是阈值法图像分割中比较有效的方法,通过迭代的方法来求出 分割的最佳阈值,具有一定的自适应性。迭代法阈值分割的步骤如下:
(1)设定参数,并选择一个初始的估计阈值。 (2)用阈值分割图像。将图像分成两部分:是由灰度值大于的像素组成,
对于图像中的间断点,常用的检测模板为:
对于图像中的线段,常用的检测模板为:
2 1 1
1 2 1
1 1 2
7.4ቤተ መጻሕፍቲ ባይዱ2 微分算子
常用的微分算子有Sobel算子、Prewitt算子和Roberts算子。通过这些算子对图像进 行滤波,就可以得到图像的边缘。下面分别进行介绍。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(7.2.6)
上式中的2h称为高斯—拉普拉斯滤波(Laplacian of
Gaussian,LoG)算子,也称为“墨西哥草帽”。
22 它是一个轴对称函数,各向同性,它的一个轴截面如 图7.2.9所示。
图7.2.9 2h轴截面和对应的传递函数
由图可见,这个函数在r=±s处有过零点,在|r|<s时 为正,在|r|>s时为负;
1
第7章 图像分割
7.1 图像分割的定义和分类 7.2 基于边缘的分割 7.3 基于区域的分割 7.4 基于阈值的分割 7.5 基于运动的分割( 7.6 习题
2
7.1 图像分割的定义和分类
1,图象工程的基本内容: (1)图像处理的重要任务就是对图像中的对象进行分析
和理解。 (2)图像分析主要是对图像中感兴趣的目标进行检测和
h1(x) xh2 (x), h1( y) yh2 ( y)
(7.2.19)
然后两个模板分别与f(x,y)进行卷积,得到
G(x, y)
G(x, y)
Ex x * f , Ey y * f
(7.2.20)
32

A(i, j)
Ex2
E
2 y
, a(i,
j)
arctan
Ey Ex
(i, (i,
g
(
x,
y
)
grad(x,
y)=
f f
x y

f
x (x,
y)
y
梯度的大小代表边缘的强度,梯度方向与边缘走向垂直。
g(x, y) grad(x, y)=
f
x2+f
2=
y
f
(x, x
y)
2+
f
(x, y
y)
2
11 为检测边缘点,选取适当的阈值T,对梯度图像进行 二值化,则有
1 grad(x, y) T g(x, y) 0 其他
2 f
f x2
f y 2
(7.2.2)
据此,对数字图像的每个像素计算关于x和y的二阶偏
导数之和,以差分方式表示,得到
2f(x,y)=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x, y-1)-4f(x,y)
上式中的2就是著名的拉普拉斯算子。
19
图7.2.8 Laplacian算子模板
测量,以获得它们的客观信息,从而建立对图像的 描述。 (3)图像理解的重点是在图像分析的基础上,进一步研 究图像中各目标的性质和它们之间的相互联系,并得 出对原始客观场景的解释,从而指导和规划行动。
3
2,目标(对象)与区域 在对图像处理的研究和应用中,人们往往仅对图像中
的某些部分感兴趣,这些感兴趣的部分常称为目标或对象 ,它们一般对应图像中特定的、具有独特性质的区域。 3,图象分割
基于边缘提取的分割法首先检测边缘像素,再将边缘 像素连接起来构成边界形成分割。
8
9
可用一阶导数的幅度值来检测边缘的存在,幅度峰值 一般对应边缘位置。可用二阶导数的过零点检测边缘位置。
10
7.2.1 梯度算子 对阶跃状边缘,在边缘点处一阶导数有极值,因此可
计算每个像素处的梯度来检测边缘点。
f (x, y)
j) j)
(7.2.21) 则A(i,j)反映边缘强度,a(i,j)为垂直于边缘的方向。
一个像素如果满足下列条件,就认为它是边缘点: (1)像素(i,j)的边缘强度大于沿梯度方向的两个相邻 像素的边缘强度; (2)与该像素梯度方向上相邻两点的方向差小于45°;
33
图7.2.11 采用Canny算子得到的边缘二值图像
条件⑤要求分割结果中同一个区域内的任意两个像素 在该区域内互相连通,或者说分割得到的区域是一个连通 成分。
6
7.1.2 图像分割方法分类 1,基于边界的分割算法:区域间灰度的不连续性 2,基于区域的分割算法:区域内灰度的相似性 3,基于阈值的分割算法 4,基于运动的分割算法
7
7.2 基于边缘的分割
在二维空间,Canny算子的方向性质使得它的边缘检测和 定位优于2h,具有更好的边缘强度估计,能产生梯度方 向和强度两个信息,方便了后续处理。
27
对阶跃边缘,Canny推导出的最优二维算子形状与
Gaussian函数的一阶导数相近。取Gaussian函数为
G(x,
y)
1

2
e
x2 2
y
2
2
(7.2.7)
G(x, y) x
kx
e
x2 2 2
e
y2 2 2
h1(x)h2 ( y)
G(x, y) y
kx
e
y2 2 2
e
x2 2 2
h1( y)h2 (x)
31
h1(x)
k
x
e
x2
2 2
,
h2
(y)ຫໍສະໝຸດ kxex2
2 2
(7.2.17)
h1( y)
k
y
e
x2
2 2
,
h2
(
x)
k
x
e
x2
2 2
(7.2.18)
出来了,而真正的边缘又没被检测出来。
由于在成像时,一个给定像素所对应的场景点,它的
周围点对该点的贡献的光强大小呈正态分布,所以平滑函
数应能反映不同远近的周围点对给定像素具有不同的平滑
作用,因此,平滑函数采用正态分布的高斯函数,即
h(
x,
y)
e
x2 y2
2 2
式中,s是方差。 用h(x,y)对图像f(x,y)的平滑可表示为
图像分割是指根据灰度、彩色、空间纹理、几何形状 等特征把图像划分成若干个互不相交的区域,使得这些特 征在同一区域内表现出一致性或相似性,而在不同区域间 表现出明显的不同,即在一幅图像中把目标从背景中分离 出来,以便于进一步处理。
图像分割就是指把图像分成互不重叠的区域并提取 出感兴趣目标的技术。
4
7.1.1 图像分割的定义 图像分割可借助集合概念用如下方法定义:
23
可以证明这个算子定义域内的平均值为零,因此将它 与图像卷积并不会改变图像的整体动态范围。但由于它相 当光滑,因此将它与图像卷积会模糊图像,并且其模糊程
度是正比于的。
正因为2h的平滑性质能减少噪声的影响,所以当边 缘模糊或噪声较大时,利用2h检测过零点能提供较可靠
的边缘位置。在该算子中,的选择很重要,小时边缘位 置精度高,但边缘细节变化多;大时平滑作用大,但细
的起伏走向。 LoG算子可表示为:
2 4 4 4 2 4 0 8 0 4 4 8 24* 8 4 4 0 8 0 4 2 4 4 4 2
25 采用LoG算子对图7.2.4(a)进行边缘检测的结果如图 7.2.10所示。
图7.2.10 采用LoG算子得到的边缘二值图像
Gn* f (x, y) cos G(x, y) * f (x, y) sin G(x, y) * f (x, y)
x
y
G(x, y) * f (x, y)
(7.2.14)
30
可见,Canny
G(x,y)*f(x,y)基础之上,
得到边缘强度和方向,通过阈值判定来检测边缘。
实际计算时,把二维卷积模板分解为两个一维滤波器:
在某一方向n上,G(x,y)的一阶方向导数为
式中,
Gn (x,
y)
G(x, n
y)
nG(x,
y)
G(x, y)
n
cos
s i n
,
G(x,
y)
x
G(x, y)
y
(7.2.8)
28
将f(x,y)与Gn进行卷积,改变n的方向,使f(x,y)*Gn 取得最大值的方向就是梯度方向(正交于边缘走向),由
5
条件①指出对一幅图像的分割结果中全部区域的总和 (并集)应能包括图像的所有像素(即原图像);
条件②指出分割结果中各个区域是互不重叠的,或者 说在分割结果中一个像素不能同时属于两个区域;
条件③指出属于同一个区域的像素应该具有某些相同 特性;
条件④指出分割结果中属于不同区域的像素应该具有 一些不同的特性;
图7.2.11所示为Canny算子检测出的边缘二值化图像。 对比可知,Canny算子的边缘检测效果优于传统的Sobel和 Marr检测算子。
35
7.2.8 曲面拟合法
基于差分检测图像边缘的算子往往对噪声敏感,因此 对一些噪声比较严重的图像进行边缘检测就难以取得满意 的效果,此时可用平面或高阶曲面来拟合图像中某一小区 域的灰度表面,求这个拟合曲面中心点处的梯度,再进行 边缘检测。
[Gn
*
f
(x,
y)]
cos
G ( x, x
y)
*
f
(x,
y)
sin
G ( x, y
y)
*
f
(x,
y)
0
29
因此,对应于Gn*f(x,y)变化最强的方向导数为
n G(x, y) * f (x, y) G(x, y) * f (x, y)
(7.2.13)
在该方向上Gn*f(x,y)有最大的输出响应:
令集合R代表整个图像区域,对R的分割可看做将R分 成若干个满足以下5个条件的非空的子集(子区域)R1, R2,…,Rn(其中P(Ri)是对所有在集合Ri中元素的逻辑谓 词,Ø是空集):
n
① Ri R; i1
②对所有的i和j,i≠j,有Ri∩Rj= Ø ③对i=1,2,…,n,有P(Ri)=TRUE; ④对i≠j,有P(Ri∪Rj)=FALSE; ⑤对i=1,2,…,n,Ri是连通的区域。
相关文档
最新文档