滤波器高度和介电常数换算表

合集下载

滤波器计算公式

滤波器计算公式

滤波器计算公式
滤波器的计算公式可以根据具体应用和设计要求而有所不同。

常见的滤波器计算公式包括低通滤波器的计算公式和带通滤波器的计算公式等。

1、低通滤波器的计算公式:
f=1/(2πRC)
其中,f为截止频率,R为电阻值,C为电容值。

这个公式可以帮助您计算低通滤波器的截止频率。

2、带通滤波器的计算公式:
f=(f_{c1}+f_{c2})/2
其中,f_{c1}和f_{c2}分别为上下限频率。

这个公式可以帮助您计算带通滤波器的中心频率。

另外,根据具体应用和设计要求,还可以采用其他类型的滤波器计算公式,如高通滤波器、陷波器等。

这些计算公式可以根据具体的应用和设计要求进行选择和使用。

滤波器主要参数与特性指标-滤波器的主要性能参数之欧阳地创编

滤波器主要参数与特性指标-滤波器的主要性能参数之欧阳地创编

滤波器的主要参数(Definitions):中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。

通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。

插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。

带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。

1dB带宽内的带内波动是1dB。

带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1:1,失配时VSWR<1。

对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

通用滤波器 公式

通用滤波器 公式

通用滤波器公式
滤波器是用于在信号中提取特定频率范围的设备。

不同类型的滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器,具有不同的公式来描述其频率响应。

1. 低通滤波器截止频率的计算公式:f_c=1/(2πRC),其中f_c为截止频率,R为电阻值,C为电容值。

2. 高通滤波器截止频率的计算公式:f_c=1/(2πRC),其中f_c为截止频率,R为电阻值,C为电容值。

3. 带通滤波器中心频率的计算公式:f_c=(f_{c1}+f_{c2})/2,其中f_{c1}和
f_{c2}分别为上下限频率。

4. 带通滤波器带宽的计算公式:B=f_{c2}-f_{c1}。

5. 带阻滤波器中心频率的计算公式:f_c=(f_{c1}+f_{c2})/2,其中f_{c1}和
f_{c2}分别为上下限频率。

6. 带阻滤波器带宽的计算公式:B=f_{c2}-f_{c1}。

以上信息仅供参考,如需更专业的信息,建议咨询电子工程专家或查阅相关文献资料。

滤波器主要参数与特性指标-滤波器的主要性能参数

滤波器主要参数与特性指标-滤波器的主要性能参数

滤波器的主要参数(Definitions):之五兆芳芳创作中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点.窄带滤波器常以插损最小点为中心频率计较通带带宽.截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点.通常以1dB或3dB相对损耗点来尺度定义.相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准.通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1).f1、f2为以中心频率f0处拔出损耗为基准,下降X(dB)处对应的左、右边频点.通经常使用X=3、1、0.5即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数.分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也经常使用来表征滤波器通带带宽.拔出损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调.纹波(Ripple):指1dB或3dB带宽(截止频率)规模内,插损随频率在损耗均值曲线根本上动摇的峰-峰值.带内动摇(Passband Riplpe):通带内拔出损耗随频率的变更量.1dB带宽内的带内动摇是1dB.带内驻波比(VSWR):权衡滤波器通带内信号是否良好匹配传输的一项重要指标.理想匹配VSWR=1:1,失配时VSWR<1.对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节.其它各点的振幅值则介于波腹与波节之间.这种分解波称为行驻波.驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin之比.回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数.输入功率被端口全部吸收时回波损耗为无穷大.回波损耗,又称为反射损耗.是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射.从数学角度看,回波损耗为-10 lg [(反射功率)/(入射功率)].回波损耗愈大愈好,以削减反射光对光源和系统的影响.阻带抑制度:权衡滤波器选择性能黑白的重要指标.该指标越高说明对带外搅扰信号抑制的越好.通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计较办法为fs处衰减量As-IL;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标——矩形系数(KxdB<1),KxdB=BWxdB/BW3dB,(X可为40dB、30dB、20dB等).滤波器阶数越多矩形度越高——即K越接近理想值1,制作难度当然也就越大.延迟(Td):指信号通过滤波器所需要的时间,数值上为传输相位函数对角频率的导数,即Td=df/dv.带内相位线性度:该指标表征滤波器对通带内传输信号引入的相位失真大小.按线性相位响应函数设计的滤波器具有良好的相位线性度.特性指标1、特征频率:1)通带截频fp=wp/(2p)为通带与过渡带鸿沟点的频率,在该点信号增益下降到一团体为规则的下限;2)阻带截频fr=wr/(2p)为阻带与过渡带鸿沟点的频率,在该点信号衰耗下降到一人为规则的下限;3)转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在良多情况下,常以fc作为通带或阻带截频;4)固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,庞杂电路往往有多个固有频率.2、增益与衰耗滤波器在通带内的增益并不是常数.1)对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益;2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数;3)通带增益变更量△Kp指通带内各点增益的最大变更量,如果△Kp以dB为单位,则指增益dB值的变更量.3、阻尼系数与品质因数阻尼系数是表征滤波器对角频率为w0信号的作用,是滤波器中暗示能量衰耗的一项指标.阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w.式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在良多情况下中心频率与固有频率相等.品质因数电学和磁学的量.暗示一个储能器件(如电感线圈、电容等)、谐振电路中所储能量同每周期损耗能量之比的一种质量指标;串联谐振回路中电抗元件的Q值等于它的电抗与其等效串联电阻的比值;元件的Q值愈大,用该元件组成的电路或网络的选择性愈佳.在串联电路中,电路的品质因数Q有两种丈量办法,一是按照公式 Q=UL/U0=Uc/U0测定,Uc与UL辨别为谐振时电容器C与电感线圈L上的电压;另一种办法是通过丈量谐振曲线的通频带宽度△f=f2-f1,再按照Q=f0/(f2-f1)求出Q 值.式中f0为谐振频率,f2与f1是失谐时,亦即输出电压的幅度下降到最大值的1/√2(=0.707)倍时的上、下频率点.Q 值越大,曲线越锋利,通频带越窄,电路的选择性越好. 4、灵敏度滤波电路由许多元件组成,每个元件参数值的变更都会影响滤波器的性能.滤波器某一性能指标y对某一元件参数x 变更的灵敏度记作Sxy,定义为:Sxy=(dy/y)/(dx/x).该灵敏度与丈量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标记取电路容错能力越强,稳定性也越高. 5、群时延函数当滤波器幅频特性满足设计要求时,为包管输出信号失真度不超出允许规模,对其相频特性∮(w)也应提出一定要求.在滤波器设计中,经常使用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度.群时延函数d∮(w)/dw越接近常数.。

滤波器主要参数与特性指标(优.选)

滤波器主要参数与特性指标(优.选)

滤波器的主要参数(Definitions):中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。

通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。

插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。

带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。

1dB带宽内的带内波动是1dB。

带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1:1,失配时VSWR<1。

对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv> 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

滤波器主要参数与特性指标-滤波器的主要性能参数

滤波器主要参数与特性指标-滤波器的主要性能参数

滤波器的主要参数(Definitions):之答禄夫天创作中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来尺度定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处拔出损耗为基准,下降X(dB)处对应的左、右边频点。

通经常使用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也经常使用来表征滤波器通带带宽。

拔出损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上动摇的峰-峰值。

带内动摇(Passband Riplpe):通带内拔出损耗随频率的变更量。

1dB带宽内的带内动摇是1dB。

带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1:1,失配时VSWR<1。

对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

滤波器主要参数与特性指标-滤波器的主要性能参数之欧阳育创编

滤波器主要参数与特性指标-滤波器的主要性能参数之欧阳育创编

滤波器的主要参数(Definitions):中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。

通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。

插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。

带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。

1dB带宽内的带内波动是1dB。

带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1:1,失配时VSWR<1。

对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

滤波器主要参数与特性指标-滤波器的主要性能参数

滤波器主要参数与特性指标-滤波器的主要性能参数

滤波器的主要参数(Definitions):之袁州冬雪创作中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点.窄带滤波器常以插损最小点为中心频率计算通带带宽.截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点.通常以1dB或3dB相对损耗点来尺度定义.相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准.通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1).f1、f2为以中心频率f0处拔出损耗为基准,下降X(dB)处对应的左、右边频点.通常常使用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数.分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常常使用来表征滤波器通带带宽.拔出损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调.纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上动摇的峰-峰值.带内动摇(Passband Riplpe):通带内拔出损耗随频率的变更量.1dB带宽内的带内动摇是1dB.带内驻波比(VSWR):衡量滤波器通带内信号是否杰出匹配传输的一项重要指标.抱负匹配VSWR=1:1,失配时VSWR<1.对于一个实际的滤波器而言,知足VSWR<1 BWdBBWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节.其它各点的振幅值则介于波腹与波节之间.这种合成波称为行驻波.驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin之比.回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数.输入功率被端口全部吸收时回波损耗为无穷大.回波损耗,又称为反射损耗.是电缆链路由于阻抗不匹配所发生的反射,是一对线自身的反射.从数学角度看,回波损耗为-10 lg [(反射功率)/(入射功率)].回波损耗愈大愈好,以减少反射光对光源和系统的影响.阻带抑制度:衡量滤波器选择性能好坏的重要指标.该指标越高说明对带外干扰信号抑制的越好.通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量As-IL;另外一种为提出表征滤波器幅频响应与抱负矩形接远程度的指标——矩形系数(KxdB<1),KxdB=BWxdB/BW3dB,(X可为40dB、30dB、20dB等).滤波器阶数越多矩形度越高——即K越接近抱负值1,制作难度当然也就越大.延迟(Td):指信号通过滤波器所需要的时间,数值上为传输相位函数对角频率的导数,即Td=df/dv.带内相位线性度:该指标表征滤波器对通带内传输信号引入的相位失真大小.按线性相位响应函数设计的滤波器具有杰出的相位线性度.特性指标1、特征频率:1)通带截频fp=wp/(2p)为通带与过渡带鸿沟点的频率,在该点信号增益下降到一个人为规定的下限;2)阻带截频fr=wr/(2p)为阻带与过渡带鸿沟点的频率,在该点信号衰耗下降到一人为规定的下限;3)转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频;4)固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率.2、增益与衰耗滤波器在通带内的增益并不是常数.1)对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益;2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数;3)通带增益变更量△Kp指通带内各点增益的最大变更量,如果△Kp以dB为单位,则指增益dB值的变更量.3、阻尼系数与品质因数阻尼系数是表征滤波器对角频率为w0信号的作用,是滤波器中暗示能量衰耗的一项指标.阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w.式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在很多情况下中心频率与固有频率相等.品质因数电学和磁学的量.暗示一个储能器件(如电感线圈、电容等)、谐振电路中所储能量同每周期损耗能量之比的一种质量指标;串联谐振回路中电抗元件的Q值等于它的电抗与其等效串联电阻的比值;元件的Q值愈大,用该元件组成的电路或网络的选择性愈佳.在串联电路中,电路的品质因数Q有两种丈量方法,一是根据公式 Q=UL/U0=Uc/U0测定,Uc与UL分别为谐振时电容器C与电感线圈L上的电压;另外一种方法是通过丈量谐振曲线的通频带宽度△f=f2-f1,再根据Q=f0/(f2-f1)求出Q值.式中f0为谐振频率,f2与f1是失谐时,亦即输出电压的幅度下降到最大值的1/√2(=0.707)倍时的上、下频率点.Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好.4、活络度滤波电路由许多元件构成,每一个元件参数值的变更都会影响滤波器的性能.滤波器某一性能指标y对某一元件参数x变更的活络度记作Sxy,定义为:Sxy=(dy/y)/(dx/x).该活络度与丈量仪器或电路系统活络度不是一个概念,该活络度越小,标记着电路容错才能越强,稳定性也越高.5、群时延函数当滤波器幅频特性知足设计要求时,为包管输出信号失真度不超出允许范围,对其相频特性∮(w)也应提出一定要求.在滤波器设计中,常常使用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度.群时延函数d∮(w)/dw越接近常数.。

滤波器频率计算

滤波器频率计算

一、滤波器影象参数法的设计滤波器是一种典型的选频电路,在给定的频段内,理论上它能让信号无衰减地通过电路,这一段称为通带外的其他信号将受到很大的衰减,具有很大衰减的频段称为阻带,通带与阻带的交界频率称为截止频率,对滤波器的基本要求是:(1)通带内信号的衰减要小,阻带内信号的衰减要大,由通带过渡到阻带的衰减特性陡直上升;(2)通带内的特性阻抗要恒为常数,以便于阻抗匹配。

滤波器的分类如下:滤波器:1、无源滤波器2、有源滤波器,无源滤波器又分为:RC滤波器和LC滤波器,RC滤波器又分为:1 低通RC滤波器 2 高通RC滤波器 3 带通RC滤波器LC滤波器又分为:1 低通LC滤波器2 高通LC滤波器3 带阻LC滤波器4 带通LC滤波器有源滤波器又分为:1 有源高通滤波器 2 有源低通滤波器 3 有源带通滤波器 4 有源带阻滤波器目前滤波器的分析和设计方法有两种:一是影像参数分析法,二是工作参数分析法(又称综合法)。

前者设计简单,易于掌握,但这种滤波器的实测滤波特性与理论上的预定特性差别较大,在通带内又不能取得良好阻抗匹配,很难满足对滤波特性精度高的要求;后者是以网络综合理论为基础的分析方法,它选区找出与理想滤波特性相近似的网络函数,然后根据综合方法实现该网络函数,由这种方法设计出来的滤波器,实测的滤波特性与理论预定特性十分接近,所以适合于高精度的滤波器设计要求。

1.RC滤波器[见表一]1010=1/6.28×10101010×10=240pFC2≈1/6.28×15×10×(10+5)10≈680pF2.LC滤波器LC滤波器适用于高频信号的滤波,它由电感L和电容C所组成,由于感抗随频率增加而增加,而容抗随频率增加而减小,因此LC低通滤波器的串臂接电感,并臂接电容,高通滤波器的L、C位置,则与它相反,通常,LC滤波器有两类,一是定K式LC滤波器,二是m推演式LC 滤波器。

射频滤波器

射频滤波器
七、实验总结
在本次试验中,充分的利用到了学过的知识,进一步复习了低通滤波器的设计及由集总参数电路如何转换为分布参数电路。
通过本次实验,学会了滤波器的基本原理以及基本的设计方法(如巴特沃斯设计方法),并利用其方法及相应的变换规则成功地设计出微带线低通滤波器。
在设计过程中,利用了ADS电路仿真软件,根据实验参数设计出的电路拓扑结构与理论计算结果基本一致,并满足实验要求。根据仿真结果手工制作成实际的电路板,达到实验要求。本次实验理论计算,软件仿真设计,实际手工实践有效地结合在一起,这是一次非常有价值意义的设计实验。
滤波器的设计方法有如下两种:经典方法:即低通原型综合法,先由衰减特性综合出低通原型,再进行频率变换,最后用微波结构实现电路元件。软件方法:先由软件商依各种滤波器的微波结构拓扑做成软件,使用者再依指标挑选拓扑、仿真参数、调整优化。
本次实验要求使用巴特沃斯设计最平坦响应变换过程。(电路采用对称结构)
四、[变换过程]:
五、[电路设计仿真]
利用ADS仿真软件对电路进行集总参数和分布参数设计。在设计向导中输入设计要求参数,向导会自动生成集总参数形势的电路拓扑结构,连接形成仿真电路,进行仿真。观察符合要求后,再次利用向导将集总参数电路转换成分布参数的电路结构,并可以形成集总参数的电路结构模型。
连接成仿真电路,设置频率的起始为100MHz,结束点为4GHz和步长为1MHz。
图4电路结构
利用向导,根据参数设置将电路转化为分布参数的低通滤波器:
图5底层集总电路
对形成的集总参数进行电路仿真,得到的仿真图如下:
图6集总电路S参数曲线
利用相应的变换规则将电路转换成分布参数的电路形式:
图7分布电路
对形成的分布参数进行电路仿真,得到的仿真图如下:

(完整word版)ads设计的滤波器要点

(完整word版)ads设计的滤波器要点

1 课题背景随着信息化浪潮的推进,现代社会产生了巨大的信息要求,通信技术正在向高速、多频段、大容量方向发展。

目前移动通信中所使用的主要频率为0.8-1.0GHz,全球GSM频段分为4段,即850/900/1800/1900MHz。

在宽带移动化方面,IEEE802工作组先后制定了WLAN和WiMAX等技术规范,希望能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,常用的WLAN通信频段标准为IEEE802.1b/g(2.4-2.5GHz)和IEEE802.11a(5.2-5.8GHz)。

为了在移动环境下实现宽带数据传输,IEEE802.16WiMAX成了宽带移动的主要里程碑,促进了移动宽带的演进和发展,2.3-2.4GHz和3.4-3.6GHz频段均被划分为WiMAX的全球性统一无线电频段。

这正是S波段的应用,因此如何研究出高性能,小型化的滤波器是目前电路设计的的关键之一。

当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。

平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。

平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,它是一种常用的分布参数带通滤波器。

当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。

每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。

如果将多个单元级联,级联后的网络可以具有良好的滤波特性。

滤波器主要参数与特性指标

滤波器主要参数与特性指标

滤波器的主要参数(Definitions):中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。

通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。

插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。

带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。

1dB带宽内的带内波动是1dB。

带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1:1,失配时VSWR<1。

对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv> 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

滤波器频率计算

滤波器频率计算

一、滤波器影象参数法的设计滤波器是一种典型的选频电路,在给定的频段内,理论上它能让信号无衰减地通过电路,这一段称为通带外的其他信号将受到很大的衰减,具有很大衰减的频段称为阻带,通带与阻带的交界频率称为截止频率,对滤波器的基本要求是:(1)通带内信号的衰减要小,阻带内信号的衰减要大,由通带过渡到阻带的衰减特性陡直上升;(2)通带内的特性阻抗要恒为常数,以便于阻抗匹配。

滤波器的分类如下:滤波器:1、无源滤波器2、有源滤波器,无源滤波器又分为:RC滤波器和LC滤波器,RC滤波器又分为:1 低通RC滤波器 2 高通RC滤波器 3 带通RC滤波器LC滤波器又分为:1 低通LC滤波器2 高通LC滤波器3 带阻LC滤波器4 带通LC滤波器有源滤波器又分为:1 有源高通滤波器 2 有源低通滤波器 3 有源带通滤波器 4 有源带阻滤波器目前滤波器的分析和设计方法有两种:一是影像参数分析法,二是工作参数分析法(又称综合法)。

前者设计简单,易于掌握,但这种滤波器的实测滤波特性与理论上的预定特性差别较大,在通带内又不能取得良好阻抗匹配,很难满足对滤波特性精度高的要求;后者是以网络综合理论为基础的分析方法,它选区找出与理想滤波特性相近似的网络函数,然后根据综合方法实现该网络函数,由这种方法设计出来的滤波器,实测的滤波特性与理论预定特性十分接近,所以适合于高精度的滤波器设计要求。

1.RC滤波器[见表一]1010=1/6.28×10101010×10=240pFC2≈1/6.28×15×10×(10+5)10≈680pF2.LC滤波器LC滤波器适用于高频信号的滤波,它由电感L和电容C所组成,由于感抗随频率增加而增加,而容抗随频率增加而减小,因此LC低通滤波器的串臂接电感,并臂接电容,高通滤波器的L、C位置,则与它相反,通常,LC滤波器有两类,一是定K式LC滤波器,二是m推演式LC 滤波器。

滤波器主要参数与特性指标

滤波器主要参数与特性指标

滤波器的主要参数(Definitions):中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。

通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。

插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。

带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。

1dB带宽内的带内波动是1dB。

带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1:1,失配时VSWR<1。

对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv> 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

滤波器主要参数与特性指标-滤波器的主要性能参数之欧阳术创编

滤波器主要参数与特性指标-滤波器的主要性能参数之欧阳术创编

滤波器的主要参数(Definitions):中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处插入损耗为基准,下降X (dB)处对应的左、右边频点。

通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。

插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。

带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。

1dB带宽内的带内波动是1dB。

带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1:1,失配时VSWR<1。

对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

LCL滤波器

LCL滤波器

开关频率:fs=4.8K开关周期:Ts=1/4.8K= 2.0833e-004s P=100KW ,U_gird=380V 升压变压器变比为:277/480网侧额定电流有效值:I_grid=100000/3/(380/1.732)=151.9A 逆变侧额定电流有效值:I_inv=100000/3/(380/1.732)*400/277=219.4A 取电感电流纹波10%计算电感量: 母线电压UdTsI_inv *10%L dt di LUd ==I_inv*10%*4Ts*Ud L =Ud 最大取800V100KW LCL 计算线电压为380V ,总功率为100kW ,开关频率为9.6kHz ,根据这些原始条件来设计。

这样可以得到2380 1.444100000b Z ==Ω 112200100 1.444b n b C F Z μωπ===⨯(1)选择2.7%的阻抗基值作为变换器侧电感的感抗,这样可以获得10%的电流波动。

LC 部分的作用是将这10%的电流波动衰减为2%。

1.444*2.7%*2.7%124100*bnZ L uHpiω===L=计算得到124uH 的电感值,这里取128uH 。

(2)最大的电容值为2200*5%=110F μ,选100F μ的电容,也可以先取一半50uF(3) 通过选择电流的衰减比和谐振频率来选择两个电感之间的比例。

谐振频率与开关频率无关,但谐振频率要高于控制系统的带宽文献上一般采用是开关频率1/4~1/2左右。

定选在2.4k~4.8k 之间,可以取为4K 。

2-62-6-62*L 128e =*-1128e 100e *(2**4000)-1res g f res gg f res LL C L L L LC pi ωωω==+==res ω==500KW 电感计算: 开关频率:fs=2.4K开关周期:Ts=1/2.4K= 4.1667e-004s P=500KW ,UL=277V网侧额定电流有效值:I_grid=500000/3/(277/1.732)*1.414=1.4736e+003A以电感电流纹波为峰值电流10%计算,母线电压取500V 50%占空比工作时电感纹波最大:Ts 500*4.17e-4L Ud*=3544*10%*I_inv 4*10%*1.474e3uH ==等效阻抗:Z 100**354e 60.1112L pi ω==-=100K 电感计算: 开关频率:fs=4.8K开关周期:Ts=1/4.8K= 2.0833e-004s P=100K ,UL=277V网侧额定电流有效值:I_grid=100000/3/(277/1.732)*1.414=294.7A以电感电流纹波为峰值电流10%计算,母线电压取500V 50%占空比工作时电感纹波最大:Ts 500*2.0833e-4L Ud*=8844*10%*I_inv 4*10%*294.7uH ==LCL 参数:L=423uH Lg=127uH C=30uF100KW LCL 电感计算 开关频率:sw f =4.8K开关周期:Ts=1/4.8K= 2.0833e-004s P=100KW ,UL=277V22770.7673100000b Z ==Ω mp E =277/1.732*1.414=226Vmp I =100000/3/(277/1.732)*1.414=294.7Adc U 范围为420V —800V1、 计算总的电感感量采用SVPWM调制时,逆变器最大相电压为dc U ,向电网发电是必须满足:mpL ≤,其中mp E ,mp I 为电网侧相电压峰值,相电流峰值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档