初中数学应用题归纳
数学应用题公式大全
数学应用题公式大全一、和差倍数问题1、和差问题(求两数之和与差)大数=和+差÷2小数=和-大数=差+大数2、和倍问题(已知两个数的和,又知其中的一个数是另一个数的几倍,求另一个数)和÷(倍数+1)=小数小数×倍数=大数或者和-小数=大数)3、差倍问题(已知两个数的差,又知其中的一个数是另一个数的几倍,求另一个数)小数=差÷(倍数-1)小数+差=大数或者小数×倍数=大数二、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间三、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间四、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 五、鸡兔同笼问题鸡数=(兔头数×4-总头数)÷2兔数=(总头数-鸡头数)÷2六、植树问题与方阵问题1、植树问题的模型: (1)分清棵树与间隔的关系 (2)画图分析 (3)标出已知数据与未知数据 (4)列方程求解。
5若在封闭图形上栽树则棵树等于间隔数。
6若在环行图形上栽树则棵树与间隔数相等。
7若在方形图形上栽树则四个角上各栽一棵并且棵树等于行数列数之和。
8若在三角形图形上栽树则棵树等于行数列数之积。
9若在长方形图形上栽树则棵树等于行数的平方列数的积。
10若在等腰梯形图形上栽树则棵树等于(上底+下底)×高÷2。
11若在五角星形图形上栽树则棵树等于顶点数×2-1。
12若在正六边形图形上栽树则棵树等于边数。
13若在正n边形图形上栽树则棵树等于顶点数×(n-2)。
14若在求各种形状的周长与面积时也可栽培树。
方法是在第一象限内顺次连接图形各点两点之间划断两点之间栽一棵树。
初中数学常见应用题归纳
初中数学常见应用题归纳【文章】初中数学常见应用题归纳数学是一门应用广泛、内容丰富的学科,而在初中阶段,我们学习的数学知识也逐渐增多,其中包括了很多常见的应用题。
在这篇文章中,我将对初中数学常见应用题进行一个归纳,以帮助我们更好地理解和应对这些题型。
一、图形的面积和周长1. 矩形的面积和周长矩形是最常见的图形之一,其面积计算公式为:面积=长×宽,周长计算公式为:周长=2×长+2×宽。
我们需要注意将题目中给出的长度、宽度代入公式进行计算。
2. 三角形的面积三角形的面积计算公式为:面积=底×高÷2。
其中,底和高指的是三角形的底边和垂直于底边的高。
在计算时,需注意正确地选取底和高,并将其代入公式进行计算。
3. 圆的面积和周长圆的面积计算公式为:面积=πr²,其中π≈3.14,r为圆的半径。
圆的周长计算公式为:周长=2πr。
当题目中给出了半径或直径时,我们可直接代入公式计算;若未给出,则需根据已知信息推算出半径或直径,再进行计算。
二、比例和百分数1. 比例的计算比例是一种表示两个或多个物体或量之间关系的方式。
计算比例时,需将题目中给出的各个物体或量代入比例式中,再进行计算。
例如,确定两个长度的比例,可用公式:比例=较大的长度÷较小的长度。
2. 百分数的计算百分数是一种表示数值相对大小的方式,以百分号“%”表示,相当于除以100。
计算百分数时,需将题目中给出的部分或整体数量代入百分比公式中,再进行计算。
如计算某数占总数的百分比,可用公式:百分数=某数÷总数×100%。
三、速度、时间和距离1. 速度的计算速度是表示物体在单位时间内移动的距离,计量单位通常为米/秒(m/s)。
计算速度时,需将题目中给出的距离和时间代入速度公式中,再进行计算。
公式为:速度=距离÷时间。
2. 时间和距离的计算时间和距离之间有着紧密的关系。
七年级数学应用题大全
七年级数学应用题(60题)1、运送吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为吨的货车运。
还要运几次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为分;六(2)班有42人,平均成绩是多少分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。
男生分成5组去踢足球,平均每组多少人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。
平均每行梨树有多少棵10、一块三角形地的面积是840平方米,底是140米,高是多少米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。
每件大人衣服用米,每件儿童衣服用布多少米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵元,苹果和梨每千克各多少元15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。
甲几小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。
如果甲从A地,乙从B 地同时出发,同向而行,那么4小时后甲追上乙。
已知甲速度是15千米/时,求乙的速度。
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。
初中数学应用题精选
初中数学应用题精选1. 题目:已知某班级共有40名学生,其中有20名男生和20名女生。
如果班级举行了一次数学测验,其中男生的平均分是78分,女生的平均分是85分。
请计算这次测验的班级平均分。
2. 题目:一个长方形的长是10厘米,宽是5厘米。
如果将这个长方形的周长减少10厘米,那么它的面积会增加多少平方厘米?3. 题目:一辆汽车以每小时60公里的速度行驶,行驶了4小时后,汽车行驶了多少公里?4. 题目:一个班级有50名学生,其中有30名女生和20名男生。
如果这个班级的学生参加了一次数学竞赛,其中女生平均分是80分,男生平均分是70分。
请计算这次竞赛的班级平均分。
5. 题目:一个圆的半径是5厘米,求这个圆的周长和面积。
6. 题目:一个长方体的长是8厘米,宽是4厘米,高是3厘米。
求这个长方体的体积和表面积。
7. 题目:一个班级有40名学生,其中有20名男生和20名女生。
如果这个班级的学生参加了一次数学竞赛,其中男生平均分是75分,女生平均分是85分。
请计算这次竞赛的班级平均分。
8. 题目:一个三角形的两边分别是6厘米和8厘米,第三边的长度是5厘米。
请判断这个三角形是直角三角形还是锐角三角形。
9. 题目:一个班级有30名学生,其中有15名男生和15名女生。
如果这个班级的学生参加了一次数学竞赛,其中男生平均分是80分,女生平均分是75分。
请计算这次竞赛的班级平均分。
10. 题目:一个正方形的边长是4厘米,求这个正方形的周长和面积。
11. 题目:一个长方形的长是12厘米,宽是4厘米。
如果将这个长方形的周长减少8厘米,那么它的面积会增加多少平方厘米?12. 题目:一辆汽车以每小时80公里的速度行驶,行驶了2小时后,汽车行驶了多少公里?13. 题目:一个班级有50名学生,其中有30名女生和20名男生。
如果这个班级的学生参加了一次数学竞赛,其中女生平均分是85分,男生平均分是75分。
请计算这次竞赛的班级平均分。
14. 题目:一个圆的半径是10厘米,求这个圆的周长和面积。
初一数学上册一元一次方程的应用12种经典题型汇总
初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
初中数学应用题知识点总结及练习
如,“小时”“分钟”的换算“分钟”的换算;s ;s ;s、、v 、t 单位的一致等。
单位的一致等。
内容内容类型类型题中涉及的数量及公式题中涉及的数量及公式 等量关系等量关系 注意事项注意事项和、差问题和、差问题由题可知由题可知弄清“倍数”及“多、少”等数量关系少”等数量关系 行程问题问题相遇问题相遇问题 路程路程==速度×时间速度×时间 时间时间==路程÷速度路程÷速度 速度速度==路程÷时间路程÷时间 快者快者++慢者慢者==原来的距离原来的距离 注意始发时间和地点追及问题追及问题快者快者--慢者慢者==原来的距离原来的距离 调配问题调配问题 调配后的数量关系调配后的数量关系流动的方向和数量流动的方向和数量 比例分配问题比例分配问题全部数量全部数量==各种成分的数量之和把一份设为X 工程问题工程问题工作量工作量==工作效率×工作时间工作效率×工作时间 工作时间工作时间==工作量÷工作效率工作量÷工作效率 工作效率工作效率==工作量÷工作时间工作量÷工作时间 每个工作量的和每个工作量的和==工作总量工作总量工作总量没有的情况下,可设为1利润问题利润问题 利润率利润率==利润÷进价×利润÷进价×100% 100% 利润利润==(售价(售价--进价)×量进价)×量 利用公式或利润率与利润的关系关系 打几折就是百分之几十出售几十出售 行船问题行船问题顺水速度顺水速度==静水速度静水速度++水速水速 逆水速度逆水速度==静水速度静水速度--水速水速A C A B C 甲→甲→ 乙→乙→ (相遇处)乙→乙→A B 甲)→ (相遇处)1、某酒店客房部有三人间,双人间客房,收费数据如下表:、某酒店客房部有三人间,双人间客房,收费数据如下表:普通(元普通(元//间/天)天) 豪华(元(元//间/天) 三人间三人间 150 300 双人间双人间140400为吸引游客,团体入住五折优惠措施,团体入住五折优惠措施,一个一个50人的旅游团优惠期间到该酒店入住,人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间住了一些三人普通间和双人普通间客房.若每间客房正好住满,客房.若每间客房正好住满,••且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?元,则旅游团住了三人普通间和双人普通间客房各多少间? 2、(20042004、湟中,、湟中,、湟中,33分)正在修建的西塔(西宁~塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,天;若甲、乙两队合作,1212天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为意,可列方程为_____________________________________________。
七年级数学应用题的知识点
七年级数学应用题的知识点数学是一门非常重要的学科,在学习数学的过程中,应用题是不可或缺的一部分。
那么,在初中阶段,七年级的数学应用题有哪些知识点呢?本文将从以下几个方面探讨。
一、比例的应用比例是数学中一个非常重要的知识点,也是七年级数学应用题的常见内容。
在实际生活中,比例的应用是非常广泛的,比如购物时的打折情况、制作食品时各种材料的比例以及制作图画时的缩放比例等等。
掌握比例的应用,可以让我们更好地面对这些实际问题。
二、图形的面积和周长图形的面积和周长也是七年级数学应用题的常见内容之一。
在实际生活中,我们经常需要计算各种图形的面积和周长,比如房子的面积和周长、花坛的面积和周长等等。
因此,学习和掌握图形的面积和周长的知识是非常必要的。
三、数字的运算数字的运算在数学中是必不可少的,而在七年级的数学应用题中,数字的运算也是非常常见的内容。
比如,经济学家需要计算商品的价格和利润,数学老师需要计算学生作业的得分等等。
因此,掌握数字的基本运算法则是非常重要的。
四、代数与方程代数与方程是数学中比较难的一个知识点,但在七年级的数学应用题中,也是非常重要的内容之一。
比如,某家电公司需要在销售一定数量的电视机后进行打折销售,这就需要我们运用代数和方程来计算价格。
因此,学习代数和方程是非常必要的。
五、概率和统计概率和统计,在我们日常生活中也是非常应用的知识点。
比如,我们需要计算一件商品的优惠券使用率、一位学生的平均成绩等等。
因此,学习概率和统计的基础知识,对于这些实际问题的解决非常有帮助。
六、几何几何是数学中的一个非常重要的知识点,而在七年级的数学应用题中,几何也是非常重要的内容之一。
比如,我们需要计算一根木材的长度、一件物品的体积等等。
因此,学习几何的基本知识对于实际问题的解决非常有帮助。
七年级数学应用题的知识点包括比例的应用、图形的面积和周长、数字的运算、代数与方程、概率和统计以及几何。
掌握这些知识点,可以帮助我们更好地面对实际生活中的数学应用问题。
初中数学常见应用题分类总结
初中数学常见应用题分类总结数学作为一门重要的学科,是我们日常生活中必不可少的一部分。
在初中阶段,学生们学习了许多数学知识,包括各种应用题。
应用题是将数学知识应用到实际问题中的题目,它们在学生的日常生活中起着重要的作用。
在本文中,我们将对初中数学常见应用题进行分类总结,并提供相应的解题思路和方法。
一、比例与比较1. 比例问题比例问题是初中数学中最常见的应用题之一。
它们涉及到两个或多个变量之间的比例关系。
在解决比例问题时,我们需要确定已知条件,建立比例关系并解方程,再根据所求条件求解。
常见的比例问题包括物品的价格比例,速度的比例等。
2. 比较问题比较问题要求我们根据已知条件对不同情况进行比较。
例如,如果给出两个商品的价格、重量等信息,我们需要确定哪一个商品更具性价比。
解决比较问题时,我们需要将已知条件转化为可比较的形式,并利用数学方法进行分析和比较。
这种类型的应用题在生活中非常常见。
二、百分比与利率1. 百分比问题百分比问题要求我们求解某个数值相对于另一个数值的百分比。
例如,求解一个商品的打折率,或者计算考试成绩的百分比。
当解决这类问题时,我们需要将百分数转化为小数,并根据已知条件进行计算。
2. 利率问题利率问题涉及到利息的计算和相关问题。
例如,计算存款利息、贷款利率等。
在解决利率问题时,我们需要了解利率的概念和计算方法,并应用相关的公式进行计算。
三、平均数与中位数1. 平均数问题平均数问题要求我们计算一组数据的平均值。
例如,求解一组考试成绩的平均分。
在解决这类问题时,我们需要将数据相加,并除以数据的个数,得到平均值。
平均数在生活中应用广泛,有助于我们对数据进行整体把握。
2. 中位数问题中位数问题要求我们找到一组数据的中间值。
例如,找到一组数中位于中间位置的值。
在解决中位数问题时,我们需要将数据按照大小进行排列,并找到中间位置的数。
中位数在统计和排序等领域有重要的应用。
四、图表与统计1. 图表问题图表问题要求我们根据给定的图表信息进行分析和计算。
初中数学应用题例题总结
初中数学应用题例题总结在初中数学学习过程中,应用题是不可或缺的一部分。
通过解决应用题,学生不仅可以将所学的数学知识应用于实际问题中,还可以培养解决问题的能力。
本文将总结几个常见的初中数学应用题例题,帮助同学们更好地理解和掌握解题方法。
一、含义类应用题1. “个旗子排成一列,若每个旗子上都涂上一个不同的数字,使得左右两边的数字之和相等。
”请问,若共有5个旗子,应涂写哪几个数字?解答:根据题目要求,我们可以列出方程式:第一个数字 + 第五个数字 = 第二个数字 + 第四个数字。
由于共有5个旗子,我们可以设第一个数字为1,第五个数字为n(n为正整数)。
将方程代入数字后,可得出以下结果:1 + n = 2 + (n-1),整理方程后得 n=3。
因此,应涂写的数字为1、2、3、2、1。
2. “甲、乙两人年龄之和为30岁,甲比乙大5岁。
请问他们的年龄是多少?”解答:设甲的年龄为x岁,那么乙的年龄就是x-5岁。
根据题目给出的条件,我们可以列出方程式:x + (x-5) = 30。
整理方程后,得到2x - 5 = 30。
继续整理,得到2x = 35,最后得到x = 17.5。
因为年龄是整数,所以17.5岁不符合实际生活情况。
因此,我们应该找到符合实际情况的整数解。
结合题目条件,我们可以得到甲的年龄为22岁,乙的年龄为27岁。
二、几何类应用题1. “一个矩形的长是宽的4倍,矩形的长和宽的和为40。
请问这个矩形的长和宽分别是多少?”解答:设矩形的宽为x,则矩形的长为4x。
根据题目给出的条件,我们可以列出方程式:x + 4x = 40。
整理方程后,得到5x = 40。
解方程可以得到x = 8。
因此,这个矩形的宽为8,长为32。
2. “小明想在一块正方形的花坛周围种植玫瑰花,已知花坛的周长为40米。
请问小明最多能种植多少株玫瑰花?”解答:设正方形的边长为x,则花坛的周长为4x。
根据题目给出的条件,我们可以列出方程式:4x = 40。
初中数学应用题
初中数学应用题应用题一:小明乘公交车上学小明每天乘坐公交车上学,公交车每隔20分钟一班,小明家离学校有7公里,他每小时步行4公里的速度。
如果他下午5点放学,问他能否赶上5点40分的公交车?解答:小明步行4公里每小时,那么他步行7公里需要多长时间?7公里 ÷ 4公里/小时 = 1.75小时小明放学后5点,他需要1.75小时才能到达公交车站。
而公交车每隔20分钟一班,5点40分就是40分钟后,共有40 ÷ 20 = 2班公交车经过。
由此可知,小明可以赶上5点40分的公交车。
应用题二:图书馆还书小华上图书馆借了一本书,借期为21天。
他决定在借期结束前的最后一天还书。
假设小华从借期的第2天开始每天读书8小时,那么借期结束前他一共读了多少小时?解答:借期为21天,借期的第一天小华没有读书。
所以小华从借期的第2天开始读书,可以读21 - 1 = 20天。
每天读书8小时,那么小华一共读了 20天 × 8小时/天 = 160小时。
借期结束前,小华一共读了160小时。
应用题三:水果比例在一个篮子里有3个苹果、5个梨和2个桃子。
如果从篮子中任意取出一个水果,求取到的是桃子的概率。
解答:篮子中共有10个水果(3个苹果 + 5个梨 + 2个桃子)。
取到桃子的可能性为取到桃子数(2个桃子)除以篮子中总水果数(10个水果)。
所以取到桃子的概率为2/10 = 1/5。
因此,取到的是桃子的概率为1/5。
应用题四:汽车行程小明驾驶一辆汽车从A市到B市,全程320公里,中间经过了2个加油站。
第一个加油站离出发地A市80公里,第二个加油站离出发地160公里。
小明的汽车油箱容量为40升。
假设汽车每升油可行驶8公里,问小明是否需要在第一个加油站加油?解答:全程320公里,小明的汽车油箱容量为40升,每升油可行驶8公里。
那么汽车一次加满油最多可行驶 40升 × 8公里/升 = 320公里。
第一个加油站离出发地80公里,小明到达第一个加油站时,已经行驶了80公里,剩下的行程为 320公里 - 80公里 = 240公里。
初中数学一元一次方程解应用题的10大题型
初中数学一元一次方程解应用题的10大题型增长率问题增长量=原有量×增长率;现在量=原有量+增长量=原有量×(1+增长率)例题1:某学校食堂这个月的大米购进量比上个月减少了5%,由于受疫情影响米价上涨,这个月购进大米的费用反而比上个月增加了14%,求这个月大米价格相对上个月的增长率.数字问题数字问题需要清除数字的表示方法,一个两位数字,个位上是a,十位上是b,那么该数为10b+a;一个三位数,百位上是a,十位上是b,个位上是c,那么该数为100a+10b+c。
偶数常表示为2n,奇数常表示为2n-1或2n+1。
例题2:一个两位数,个位的数字比十位上的数字大1,交换两位数位置得到新的两位数与原两位数之和等于33,求这个两位数.例题3:一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.日历问题在日历中,横向相邻的两个数相差1,相邻的三个数可设为n-1,n,n+1;纵向相邻的两个数相差7,相邻的三个数可设为n-7,n,n+7.例题4:在一张日历表中,用正方形圈出4个数,这4个数的和可以是78吗?请简要计算说明你的理由.例题5:爷爷快八十大寿,小明想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说,“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.求小明爷爷的生日.行程问题行程问题种类较多,常见的有追及问题、相遇问题、环形跑道问题、顺流逆流问题、火车过桥问题等等,行程问题中有三个基本量及其关系:路程=速度×时间,速度=路程÷时间,时间=路程÷速度。
例题6:一艘船从甲码头到乙码头顺流而行,用了2h,又从乙码头返回甲码头逆流而行,用了2.5h,船在静水中的平均速度为27km/h,求水流的速度.例题7:从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米,平均车速增加了30千米/时,需要4.5小时即可达到,求长途汽车原来行驶的速度.工程问题工程问题与行程问题一样,是比较经典的类型之一,工程问题中三个量及其关系:工作总量=工作时间×工作效率,工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间。
初中数学一元一次方程常考的13种应用题,掌握考高分二
初中数学一元一次方程常考的13种应用题,掌握考高分二四、调配问题【典型例题】例1 某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?解析:如果设从一车间调出的人数为x,那么有如下数量关系设需从第一车间调x人到第二车间,根据题意得:2(64-x)=56+x,解得x=24;答:需从第一车间调24人到第二车间.五、连比条件巧设x【典型例题】例1. 一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.解析:设三边长分别为2x,3x,4x,根据周长为36cm,可得出方程,解出即可.设三边长分别为2x,3x,4x,由题意得,2x+3x+4x=36,解得:x=4.故三边长为:8cm,12cm,16cm.【方法突破】比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
六、配套问题【典型例题】包装厂有42名工人,每个工人平均每小时能生产120块圆形铁皮或80块矩形铁皮。
两个圆形铁片和一个矩形铁片可以配成一个密封的桶。
怎样才能安排工人每天生产圆形和长方形的铁片来合理搭配铁片?解法1:可设安排x人生产长方形铁片,则生产圆形铁片的人数为(42-x)人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.设安排x人生产长方形铁片,则生产圆形铁片的人数为(42-x)人,由题意得:120(42-x)=2×80x,去括号,得5040-120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42-18=24(人);答:安排24人生产圆形铁片,18人生产长方形铁片能合理地将铁片配套.解法2:若安排x人生产长方形铁片,y人生产圆形铁片,根据共有42名工人,可知x+y=42.再根据两张圆形铁片与一张长方形铁片可配套可知2×80x=120y,列出二元一次方程组求解。
初中数学易错应用题
初中数学易错应用题
以下是一些初中数学中常见的易错应用题:
1. 小明用每小时8千米的速度行走,他走了3小时后,速度提升到每小时10千米,再走3小时,速度又提升到每小时12千米。
问他总共走了多少千米?
2. 一辆汽车从A城开往B城,全程需要行驶10小时。
在行驶了3小时后发现速度比原来慢了20公里/小时,结果多用了1小时才到达目的地。
问原来设定的速度是多少?
3. 一列火车通过一座长2700米的桥需要35秒,用同样的速度通过一条长3500米的隧道要45秒,求这列火车的速度和车长?
4. 一本书的页码是连续的自然数:1,2,3,4,\ldots,当将这些页码加起来的时候,某个页码加了两次,得到不正确的结果2009,则正确的结果应该是多少?
5. 一辆汽车从甲地开往乙地,如果把车速提高20%,则可提前到达;如果以原速行驶100千米后,再将速度提高30%,恰巧也可以提前同样的时间到达。
甲、乙两地相距多少千米?
希望同学们在解决这类问题时能更加细心、深入理解问题本质,以避免不必要的错误。
应用题带答案初中数学
应用题带答案初中数学1. 某工厂生产两种产品,产品A的利润为每件20元,产品B的利润为每件30元。
如果工厂一天生产了100件产品,其中产品A的生产数量是产品B的两倍,那么工厂一天的总利润是多少元?答案:设产品B的生产数量为x件,则产品A的生产数量为2x件。
根据题意,我们有:x + 2x = 1003x = 100x = 100 / 3由于生产数量必须是整数,我们可以取x=33,那么产品A的生产数量为2x=66。
工厂一天的总利润为:产品A利润 + 产品B利润 = 66 * 20 + 33 * 30 = 1320 + 990 = 2310元。
2. 一个长方形的长是宽的两倍,如果长增加10米,宽增加5米,那么面积增加150平方米。
求原来的长方形的长和宽。
答案:设长方形的宽为x米,那么长为2x米。
根据题意,我们有:(2x + 10) * (x + 5) - 2x * x = 150展开并整理得:2x^2 + 10x + 5x + 50 - 2x^2 = 15015x + 50 = 15015x = 100x = 100 / 15x = 20 / 3所以原来的长方形的宽为20/3米,长为2 * (20/3) = 40/3米。
3. 一个班级有40名学生,其中男生人数是女生人数的两倍。
如果转来5名男生,那么男生人数是女生人数的三倍。
求原来班级中男生和女生各有多少人?答案:设原来班级中女生人数为x人,则男生人数为2x人。
根据题意,我们有:2x + 5 = 3 * (x - 5)整理得:2x + 5 = 3x - 15x = 20所以原来班级中女生有20人,男生有2 * 20 = 40人。
4. 一个水池装满水需要3小时,放空水需要2小时。
如果同时打开进水管和出水管,那么水池需要多长时间才能被放空?答案:设水池的容量为C立方米。
进水管的流量为C/3立方米/小时,出水管的流量为C/2立方米/小时。
同时打开进水管和出水管时,水池的净流量为:(C/3) - (C/2) = -C/6水池放空所需的时间为:C / (C/6) = 6小时。
初中数学一元一次方程常见应用题
初中数学一元一次方程常见应用题
1. 题目:小明去购物,他买了3本数学书和5本英语书,共花费了45元。
如果数学书的单价比英语书贵5元,求数学书和英语书的单价分别是多少?
解题思路:
设数学书的单价为x元,英语书的单价为(x-5)元。
根据题目信息,我们可以列出一元一次方程:
3x + 5(x-5) = 45
解方程:
3x + 5x - 25 = 45
8x = 70
x = 8.75
答案:
数学书的单价为8.75元,英语书的单价为3.75元。
2. 题目:小明买了一些苹果和橙子,共20个水果,花费了27元。
已知每个苹果的价格是1.5元,每个橙子的价格是2元,求小明买了几个苹果和几个橙子?
解题思路:
假设小明买了x个苹果和y个橙子。
根据题目信息,我们可以列出一元一次方程:
1.5x + 2y = 27
还知道小明共买了20个水果,所以又可以列出一个方程:
x + y = 20
解方程:
1.5x + 2y = 27 (式子1)
x + y = 20 (式子2)
利用式子2,可得到x = 20 - y。
将x = 20 - y 代入式子1:
1.5(20 - y) + 2y = 27
30 - 1.5y + 2y = 27
0.5y = -3
y = -6
代入式子2:
x + (-6) = 20
x = 26
答案:
小明买了26个苹果和-6个橙子,但由于橙子的数量不能是负数,所以此题无解。
初中数学应用题归纳整理
初中数学应用题归纳整理相信同学们在学习初中数学的时候最担心的就是解应用题了吧,不用担心,以下是店铺分享给大家的初中数学应用题归纳以及解题技巧,希望可以帮到你!初中数学应用题归纳1 方程应用题方程应用题是通过列代数方程来解决实际问题的一类题型,它几乎贯穿于初中代数的全部。
初中代数的方程应用题包括列一元一次方程、一次方程组、一元二次方程、分式方程来解的应用题。
方程应用题的解题步骤可用六个字概括,即审(审题)、设(设未知数)、列(列方程)、解(解方程)、检(检验)、答。
考试内容多结合当前一些热点话题,如储蓄问题、人均收入问题、环保问题、商品打折问题等。
例1、为了鼓励节约用水,某地按以下规定收取每月水费:如果每月每户用水不超过25 吨,那么每吨水费按1.25 元收费;如果每月每户用水超过25 吨,那么超过部分每吨水费按1.65 元收费。
若某用户五月份的水费平均每吨1.40 元,问该用户五月份应交水费多少元?例2、国家规定个人发表文章或出书获得稿费的纳税计算方法是:①稿费不高于800 元的不纳税;②稿费高于800 元又不高于4000 元的应交超过800 元那一部分稿费的14%的税;③稿费高于4000 元的应交全部稿费的11%的税。
一人曾获得一笔稿费,并交个人所得税280元,算一算此人获得这笔稿费是多少元?2 不等式应用题列不等式或不等式组解决实际问题,是近年来中考命题的新热点,我们把这类试题称为不等式应用题。
这个问题中通常带有“不少于”、“不多于”、“不超过”、“最多”、“至少”等关键词,还常常用到求不等式整数解问题。
例:某市为了改善投资环境和居民生活环境,对旧城区进行改造。
现需要A、B 两种花砖共50 万块,全部由某砖瓦厂完成。
该厂现有甲种原料180 万千克,乙种原料145 万千克,已知生产1 万块A 砖,用甲种原料4.5 万千克,乙种原料1.5 万千克,造价1.2 万元;生产1 万块B砖,用甲种原料2 万千克,乙种原料5 万千克,造价1.8 万元。
初中数学应用题集锦一
初中数学应用题集锦一一、应用题1、甲乙两个工程队合修一条公路,甲工程队比乙工程队每天多修50米,甲工程队修900米所用时间和乙工程队修600米所用时间相等,问甲乙两个工程队每天分别修多少米?2、甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?3、某农场原计划在若干天内播种2000亩小麦,但是在实际播种时,每天播种面积比原计划多30亩,从而在规定时间内不但完成了任务,还多播种了240亩小麦. 问原计划每天播种多少亩小麦?原计划播种多少天?4、甲、乙两人分别从相距36千米的A、B两地同时相向而行.甲从A地出发到1千米时发现有一物品遗忘在A地,立即返回,取过物品后又立即从A地向B地行进,这样两人恰好在A、B两地和中点处相遇,又知甲比乙每小时多走0.5千米,求甲、乙两人的速度.5、列车中途受阻,停车10min,再启动后速度提高到原来的1.5倍,这样行驶了50km,正好将耽误的时间补上,则列车原来的速度是多少?6、某公司在统计第一季度的营业额时,发现二月份比一月份增加90万元,三月份比二月份又增加135万元. 这样,该公司第一季度的营业额中,二、三月份的平均增长率相同. 求一月份的营业额是多少?平均增长率又是多少?7、2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难,八方支援”.某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶账篷?8、为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.9、在“5·12”汶川大地震的“抗震救灾”中,某部队接受了抢修映秀到汶川的“213”国道的任务.需要抢修的路段长为4800m,为了加快抢修进度,获得抢救伤员的时间,该部队实际工作效率比原计划提高了20%,结果提前2小时完成任务,求原计划每小时抢修的路线长度.10、华联商厦采购员在苏州发现一种应季衬衫,预测能畅销市场,就用80000元购进所有衬衫,还急需以上2倍数量的这种衬衫,经人介绍又在上海用176000元购进所需衬衫,只是单价比苏州贵4元,商厦按每件58元销售,销路很好,最后剩下的150件按八折销售,很快售完.问商厦这笔生意赢利多少元?11、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?12、AB两地相距18km,甲步行从A到B,同时乙以甲两倍的速度骑自行车从B到A,求两人相遇处离A 地多少千米?参考答案1)、解:设乙工程队每天修x米,则甲工程队每天修(x+50)米.根据题意得.解得x=100.经检验x=100是原方程的解,x+100=150.答:乙工程队每天修100米,则甲工程队每天修150米.2)、设甲每天加工x个玩具,那么乙每天加工(35-x)个玩具,由题意得.解得x=15.经检验:x=15是原方程的根.则35-x=20.答:甲每天加工15个玩具,乙每天加工20个玩具.3)、【解答】解:设原计划每天播种x亩小麦,则实际每天播种(x+30)亩小麦.根据题意,得`(2000)/(x)=(2000+240)/(x+30).解这个方程,得x=250.经检验:x=250是所列方程的解.`(2000)/(x)=8.答:原计划每天播种250亩小麦,播种8天. 4)、设甲的速度为每小时x千米,乙的速度为每小时(x-0.5)千米.因为两人在中点处相遇,可知乙走了18千米,而甲由于在1千米处有一个往返,所以甲共走了18+2=20千米.则可列出方程为.20x-10=18x.解得x=5.经检验,x=5是符合条件的解.所以x-0.5=4.5. 答:甲每小时走5千米,而乙每小时走4.5千米.5)、设列车原来的速度是xkm/h,根据题意,得,解之,得x=100经检验可知,x=100既适合方程,又满足题意. 答:列车原来的速度是100km/h.6)、【解答】解:设该公司一月份的营业额为x万元,则二月份的营业额为(x+90)万元,三月份营业额为(x+90+135)万元.根据题意,得`(90)/(x)=(135)/(x+90).解这个方程,得x=180.经检验,x=180是所列方程的解且符合实际意义. `(90)/(x)·100%=50%.答:一月份的营业额是180万元,所求平均增长率为50%.7)、解:设该厂原来每天生产x顶帐篷,据题意得:,解这个方程得x=100.经检验,x=100是原分式方程的解.答:该厂原来每天生产100顶帐篷.8)、解:设第二次捐款人数为x人,则第一次捐款人数为(x-50)人.根据题意,得.解这个方程,得x=200.经检验,x=200是所列方程的解,也符合题意.答:该校第二次捐款人数为200人.9)、解:设原计划每小时抢修的路线长为xm,根据题意,得解之,得x=400.检验:x=400是原方程的解,且符合题的实际意义.答:原计划每小时抢修的路线长为400m.10)、设从苏州购进x件衬衫,∴x=2000,符合条件.这笔生意可赢利58×(2000+2×2000-150)+58×150×0.8-176000-80000= 90260.答:这笔生意赢利90260元.11)、【解答】(1)解:设今年三月份甲种电脑每台售价x元,,解得x=4000,经检验x=4000是原方程的根所以甲种电脑今年每台售价4000元.(2)设购进甲种电脑x台,48000≤3500x+3000(15-x)≤50000,解得6≤x≤10 因为x的正整数解为6,7,8,9,10,所以共有5种进货方案.(3)设总获利为W元,W=(4000-3500)x+(3800-3000-a)(15-x)=(a-300)x+12000-15a.当a=300时,(2)中所有方案获利相同此时,购买甲种电脑6台,乙种电脑9台时对公司更有利12)、【解答】1、设两人相遇处离Askm,甲的速度为xkm/h,则离B(18-s)km,乙的速度为2xkm/h,根据题意得:,即2s=18-s,所以s=6km. 将s=6代入原方程满足题意,所以相遇处离A地6km.。
初中数学应用题集锦-工程问题及答案
初中应用题类型集锦—工程问题★1、某单位分三期完成一项工程,第一期用了全部工程时间的40%,第二期用了全部工程时36%,第三期工程用了24天,完成全部工程共用了多少天?2、有一项工作,甲完成需要60小时,如果乙完成需要30小时;(1)甲每小时可以完成工作量的几分之几?(2)那么乙每小时完成工作量的几分之几?(3)如果两人合作,每小时可以完成工作量的几分之几?(4)完成这项工作,两人合作需要几小时;?(5)如果甲先工作了10小时,则他完成了工作量的几分之几?(6)在(5)的情况下,乙又工作了x小时,则剩余的工作占工作量的几分之几?3、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需125?天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的64、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?5、完成某项工程,甲单独做要8天,乙单独做需要12天,乙单独做5天后,两队合作,问合作几天后可以完成全部工程?6、甲、乙两人合作一项工作,24天可以完成,若乙队独做需要36天,问甲对独做需要几天?7、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;a)如果单独打开进水管,每小时可以注入的水占水池的几分之几?b)如果单独打开出水管,每小时可以放出的水占水池的几分之几?c)如果将两管同时打开,每小时的效果如何?如何列式?d)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?8、水池中一根进水管、一根出水管同时打开可以将满池的水在60分钟放完,如果单独打开进水管,需要90分钟将水池注满,问单独打开出水管多少时间,可以将满池的水放完?9、自来水公司的一个蓄水池,打开甲管,8小时可以将满池水排空,打开丙管,12小时可以将满池水排空。
如果打开甲乙管,4小时可将水排空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学应用题
〖知识点〗
列方程(组)解应用题的一般步骤、列方程(组)解应用题的核心、应用问题的主要类型〖大纲要求〗能够列方程(组)解应用题
内容分析
列出方程(组)解应用题的一般步骤是:
1审题:弄清题意和题目中的已知数、未知数;
2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;
3设未知数:据找出的相等关系选择直接或间接设置未知数
4列方程(组):根据确立的等量关系列出方程
5解方程(或方程组),求出未知数的值;
6检验:针对结果进行必要的检验;
7作答:包括单位名称在内进行完整的答语。
一,行程问题
行程问题要点解析
基本概念:行程问题是研究物体运动的,它
研究的是物体速度、时间、行程三者之间的
关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)
÷2 水速=(顺水速度-逆水速度)÷2 流水问题:关键是确定物体所运动的速度,
参照以上公式。
过桥问题:关键是确定物体所运动的路程,
参照以上公式。
基本题型:已知路程(相遇问题、追击问题)、时间(相遇时间、追击时间)、速度(速度和、速度差)中任意两个量,求出第三个量。
A B
C
D E
F
二、利润问题
每件商品的利润=售价-进货价
毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:利息=本
金×存期×利率
利率的换算:
年利率、月利率、日利率三者的换算关系是:
年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则
它们的数量关系可表示为:a(1+x)n =b或a(1-x) =bn
初中阶段几个主要的运用问题及其数量关系
1、行程问题
·基本量及关系:路程=速度×时间
·相遇问题中的相等关系:
一个的行程+另一个的行程=两者之间的距离·追及问题中的相等关系:
追及者的行程-被追者的行程=相距的路程·顺(逆)风(水)行驶问题
顺速=V静+风(水)速
逆速=V静-风(水)速
2、销售问题
·基本量:成本(进价)、售价(实售价)、
利润(亏损额)、利润率(亏损率)
·基本关系:
利润=售价-成本、亏损额=成本-售价、
利润=成本×利润率亏损额=成本×亏损率 3、工程问题
·基本量及关系:
工作总量=工作效率×工作时间
4、分配型问题
此问题中一般存在不变量,而不变量
正是列方程必不可少的一种相等关系。