2020年高二数学上期中试题(含答案)
2020-2021学年江苏省南通中学高二(上)期中数学试卷

2020-2021学年江苏省南通中学高二(上)期中数学试卷试题数:22,总分:1501.(单选题,5分)一个等比数列的首项为2,公比为3,则该数列的第3项为()A.8B.16C.18D.272.(单选题,5分)设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(单选题,5分)不等式x+12x−1≤0的解集为()A.[-1,12)B.[-1,12]C.(-∞,-1]∪(12,+∞)D.(-∞,-1]∪[ 12,+∞)4.(单选题,5分)已知椭圆的准线方程为x=±4,离心率为12,则椭圆的标准方程为()A. x22+y2=1B.x2+ y22=1C. x24+y23=1D. x23+y24=15.(单选题,5分)数列{a n}中,a1=2,a n+1=2a n-1,则a10=()A.511B.513C.1025D.10246.(单选题,5分)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小一份为()A. 53B. 103C. 56D. 1167.(单选题,5分)椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,P为椭圆C上的动点,若a= √2 b,满足∠F1PF2=90°的点P有()个A.2个B.4个C.0个D.1个8.(单选题,5分)正数a,b满足9a+b=ab,若不等式a+b≥-x2+2x+18-m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)9.(多选题,5分)若实数a>0,b>0,a•b=1,若下列选项的不等式中,正确的是()A.a+b≥2B. √a+√b≥2C.a2+b2≥2D. 1a +1b≤210.(多选题,5分)对任意实数a,b,c,下列命题为真命题的是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件11.(多选题,5分)设椭圆x29+y23=1的右焦点为F,直线y=m(0<m<√3)与椭圆交于A,B两点,则下述结论正确的是()A.AF+BF为定值B.△ABF的周长的取值范围是[6,12]C.当m= √2时,△ABF 为直角三角形D.当m=1时,△ABF 的面积为√612.(多选题,5分)已知数列{a n},{b n}均为递增数列,{a n}的前n项和为S n,{b n}的前n项和为T n.且满足a n+a n+1=2n,b n•b n+1=2n(n∈N*),则下列说法正确的有()A.0<a1<1B.1<b1<√2C.S2n<T2nD.S2n≥T2n13.(填空题,5分)命题“∀x∈R,ax+b≤0”的否定是___ .14.(填空题,5分)不等式x2-kx+1>0对任意实数x都成立,则实数k的取值范围是___ .15.(填空题,5分)椭圆x25+y2m=1的离心率为√105,则实数m的值为___ .16.(填空题,5分)对于数列{a n},定义A n= a1+2a2+⋯+2n−1a nn为数列{a n}的“好数”,已知某数列{a n}的“好数”A n=2n+1,记数列{a n-kn}的前n项和为S n,若S n≤S7对任意的n∈N*恒成立,则实数k的取值范围是___ .17.(问答题,10分)求适合下列条件的椭圆标准方程:(1)与椭圆x 22 +y2=1有相同的焦点,且经过点(1,32);(2)经过A(2,- √22),B(- √2,- √32)两点.18.(问答题,12分)已知等比数列{a n}中,a1=1,且a2是a1和a3-1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=2n+a n(n∈N*),求数列{b n}的前n项和S n.19.(问答题,12分)已知函数f(x)=ax2+bx-a+2.(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.20.(问答题,12分)某工厂年初用98万元购买一台新设备,第一年设备维修及燃料、动力消耗(称为设备的低劣化)的总费用12万元,以后每年都增加4万元,新设备每年可给工厂收益50万元.(Ⅰ)工厂第几年开始获利?(Ⅱ)若干年后,该工厂有两种处理该设备的方案:① 年平均获利最大时,以26万元出售该设备;② 总纯收入获利最大时,以8万元出售该设备,问哪种方案对工厂合算?21.(问答题,12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且短轴的两个端点与右焦点是一个等边三角形的三个顶点,O为坐标原点.(1)求椭圆C的方程;(2)过椭圆的右焦点F作直线l,与椭圆相交于A,B两点,求△OAB面积的最大值,并求此时直线l的方程.22.(问答题,12分)已知各项均为正数的两个数列{a n},{b n}满足a n+12-1=a n2+2a n,2a n=log2b n+log2b n+1+1,且a1=b1=1.(1)求证:数列{a n}为等差数列;(2)求数列{b n}的通项公式;(3)设数列{a n},{b n}的前n项和分别为S n,T n,求使得等式2S m+a m-36=T i成立的有序数对(m,i)(m,i∈N*).2020-2021学年江苏省南通中学高二(上)期中数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)一个等比数列的首项为2,公比为3,则该数列的第3项为()A.8B.16C.18D.27【正确答案】:C【解析】:由已知利用等比数列的通项公式即可求解.【解答】:解:若等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1•q n-1,由已知可得:a1=2,q=3,则它的通项a3=a1•q2=2×32=18.故选:C.【点评】:本题主要考查了等比数列的通项公式的应用,若等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1•q n-1,属于基础题.2.(单选题,5分)设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【正确答案】:A【解析】:解得a的范围,即可判断出结论.【解答】:解:由a2>a,解得a<0或a>1,故a>1”是“a2>a”的充分不必要条件,故选:A.【点评】:本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.(单选题,5分)不等式x+12x−1≤0的解集为()A.[-1,12)B.[-1,12]C.(-∞,-1]∪(12,+∞)D.(-∞,-1]∪[ 12,+∞)【正确答案】:A【解析】:根据题意,分析可得原不等式等价于(x+1)(2x-1)≤0且(2x-1)≠0,解可得x的取值范围,即可得答案.【解答】:解:根据题意,原不等式等价于(x+1)(2x-1)≤0且(2x-1)≠0,解可得:-1≤x<12,及原不等式的解集为[-1,12);故选:A.【点评】:本题考查分式不等式的解法,关键是将分式不等式变形为整式不等式.4.(单选题,5分)已知椭圆的准线方程为x=±4,离心率为12,则椭圆的标准方程为()A. x22+y2=1B.x2+ y22=1C. x24+y23=1D. x23+y24=1【正确答案】:C【解析】:由椭圆的准线方程可知椭圆的焦点在x轴上,再由已知列关于a,b,c的方程组,求得a2与b2的值,则椭圆标准方程可求.【解答】:解:由椭圆的准线方程为x=±4,可知椭圆的焦点在x轴上,设椭圆方程为x 2a2+y2b2=1(a>b>0),由 { a 2c =4c a =12a 2=b 2+c 2 ,解得a 2=4,b 2=3,c 2=1.∴椭圆的标准方程为 x 24+y 23 =1. 故选:C .【点评】:本题考查椭圆的几何性质,考查椭圆标准方程的求法,是基础题.5.(单选题,5分)数列{a n }中,a 1=2,a n+1=2a n -1,则a 10=( )A.511B.513C.1025D.1024【正确答案】:B【解析】:直接利用构造法的应用,整理出数列{a n -1}是等比数列,进一步求出数列的通项公式,最后求出结果.【解答】:解:数列{a n }中,a 1=2,a n+1=2a n -1,所以a n+1-1=2(a n -1),所以 a n+1−1a n −1=2 (常数),所以数列{a n -1}是以a 1-1=1为首项,2为公比的等比数列.所以 a n −1=2n−1 ,所以 a n =2n−1+1 .所以 a 10=29+1=513 .故选:B .【点评】:本题考查的知识要点:数列的递推关系式,构造法,主要考查学生的运算能力和转换能力及思维能力,属于基础题.6.(单选题,5分)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的 17 是较小的两份之和,问最小一份为( )A. 53B. 103C. 56D. 116【正确答案】:A【解析】:设五个人所分得的面包为a-2d ,a-d ,a ,a+d ,a+2d ,(d >0);则由五个人的面包和为100,得a 的值;由较大的三份之和的 17 是较小的两份之和,得d 的值;从而得最小的一份a-2d 的值.【解答】:解:设五个人所分得的面包为a-2d ,a-d ,a ,a+d ,a+2d ,(其中d >0); 则,(a-2d )+(a-d )+a+(a+d )+(a+2d )=5a=100,∴a=20;由 17 (a+a+d+a+2d )=a-2d+a-d ,得3a+3d=7(2a-3d );∴24d=11a ,∴d=55/6; 所以,最小的1分为a-2d=20-1106 = 53 . 故选:A .【点评】:本题考查了等差数列模型的实际应用,解题时应巧设数列的中间项,从而容易得出结果.7.(单选题,5分)椭圆C : x 2a 2+y 2b 2 =1(a >b >0)的左、右焦点分别为F 1和F 2,P 为椭圆C 上的动点,若a= √2 b ,满足∠F 1PF 2=90°的点P 有( )个A.2个B.4个C.0个D.1个【正确答案】:A【解析】:由题意画出图形,由a= √2 b ,结合隐含条件可得b=c ,再由∠F 1PF 2=90°,可得P 为短轴的两个端点,则答案可求.【解答】:解:设椭圆的半焦距为c ,当a= √2 b 时,则 c =√a 2−b 2=√b 2=b ,如图,连接PO ,若∠F 1PF 2=90°,则|PO|=|OF 1|=b ,此时P 点在短轴的上下端点,即符合条件的P 有2个.故选:A .【点评】:本题考查椭圆的几何性质,考查数形结合的解题思想方法,是中档题.8.(单选题,5分)正数a,b满足9a+b=ab,若不等式a+b≥-x2+2x+18-m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)【正确答案】:A【解析】:求出a+b=(a+b)(1a + 9b)=10+ ba+ 9ab≥10+6=16(当且仅当b=3a时取等号),问题转化为m≥-x2+2x+2对任意实数x恒成立,运用二次函数的最值求法和恒成立思想,即可求出实数m的取值范围.【解答】:解:∵正数a,b满足1a + 9b=1,∴a+b=(a+b)(1a + 9b)=10+ ba+ 9ab≥10+2 √ba•9ab=10+6=16(当且仅当b=3a时取等号).由不等式a+b≥-x2+2x+18-m对任意实数x恒成立,可得-x2+2x+18-m≤16对任意实数x恒成立,即m≥-x2+2x+2对任意实数x恒成立,即m≥-(x-1)2+3对任意实数x恒成立,∵-(x-1)2+3的最大值为3,∴m≥3,故选:A.【点评】:本题考查不等式恒成立问题解法,注意运用基本不等式和二次函数的最值求法,考查化简运算能力,属于中档题.9.(多选题,5分)若实数a>0,b>0,a•b=1,若下列选项的不等式中,正确的是()A.a+b≥2B. √a+√b≥2C.a2+b2≥2D. 1a +1b≤2【正确答案】:ABC【解析】:直接利用不等式的性质和均值不等式的应用判定A、B、C、D的结论.【解答】:解:实数a>0,b>0,a•b=1,则对于A:a+b≥2√ab=2,成立,故A正确;对于B:√a+√b≥2√√a•√b=2成立,故B正确;对于C:a2+b2≥2ab=2成立,故C正确;对于D:1a +1b≥2√1ab=2成立,故D不正确.故选:ABC.【点评】:本题考查的知识要点:不等式的性质和均值不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10.(多选题,5分)对任意实数a,b,c,下列命题为真命题的是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件【正确答案】:CD【解析】:由题意逐一考查所给的命题是否成立即可.【解答】:解:逐一考查所给的选项:取a=2,b=3,c=0,满足ac=bc,但是不满足a=b,选项A错误,取a=2,b=-3,满足a>b,但是不满足a2>b2,选项B错误,“a<5”是“a<3”的必要条件,选项C正确,“a+5是无理数”,则“a是无理数”,选项D正确,故选:CD.【点评】:本题主要考查不等式的性质,等式的性质,命题真假的判定等知识,属于中等题.11.(多选题,5分)设椭圆x29+y23=1的右焦点为F,直线y=m(0<m<√3)与椭圆交于A,B两点,则下述结论正确的是()A.AF+BF为定值B.△ABF的周长的取值范围是[6,12]C.当m= √2时,△ABF 为直角三角形D.当m=1时,△ABF 的面积为√6【正确答案】:AD【解析】:利用椭圆的性质以及定义,直线与椭圆的位置关系,三角形的面积公式,逐一分析四个选项得答案.【解答】:解:设椭圆的左焦点为F',则AF'=BF,可得AF+BF=AF+AF'为定值6,故A正确;△ABF的周长为AB+AF+BF,∵|AF+BF为定值6,可知AB的范围是(0,6),∴△ABF的周长的范围是(6,12),故B错误;将y= √2与椭圆方程联立,可解得A(−√3,√2),B(√3,√2),又知F(√6,0),如图,由图可知∠ABF为钝角,则△ABF为钝角三角形,故C错误;将y=1与椭圆方程联立,解得A(−√6,1),B(√6,1),∴ S△ABF=12×2√6×1=√6,故D正确.故选:AD.【点评】:本题考查椭圆的性质,椭圆与直线的位置关系.考查分析问题解决问题的能力,是中档题.12.(多选题,5分)已知数列{a n},{b n}均为递增数列,{a n}的前n项和为S n,{b n}的前n项和为T n.且满足a n+a n+1=2n,b n•b n+1=2n(n∈N*),则下列说法正确的有()A.0<a1<1B.1<b1<√2C.S2n<T2nD.S 2n ≥T 2n【正确答案】:ABC【解析】:利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,在求出其前2n 项和的表达式即可判断大小;【解答】:解:∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n +a n+1=2n ,∴ {a 1+a 2=2a 2+a 3=4; ∴ {a 1+a 2>2a 1a 2+a 3>2a 2=4−4a 1∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n-1+a 2n )=2+6+10+…+2(2n-1)=2n 2;∵数列{b n }为递增数列;∴b 1<b 2<b 3;∵b n •b n+1=2n∴ {b 1b 2=2b 2b 3=4; ∴ {b 2>b 1b 3>b 2; ∴1<b 1< √2 ,故B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n-1)+(b 2+b 4+…+b 2n )= b 1•(1−2n )2+b 2(1−2n )2=(b 1+b 2)(2n −1)≥2√b 1b 2(2n −1)=2√2(2n −1) ;∴对于任意的n∈N*,S 2n <T 2n ;故C 正确,D 错误.故选:ABC .【点评】:本题考查了数列的综合运用,考查学生的分析能力与计算能力.属于中档题.13.(填空题,5分)命题“∀x∈R ,ax+b≤0”的否定是___ .【正确答案】:[1]∃x 0∈R ,ax 0+b >0【解析】:根据含有量词的命题的否定即可得到结论.【解答】:解:命题为全称命题,则命题“∀x∈R ,ax+b≤0”的否定是∃x 0∈R ,ax 0+b >0, 故答案为:∃x 0∈R ,ax 0+b >0.【点评】:本题主要考查含有量词的命题的否定,比较基础.14.(填空题,5分)不等式x 2-kx+1>0对任意实数x 都成立,则实数k 的取值范围是___ .【正确答案】:[1](-2,2)【解析】:设y=x 2-kx+1,将不等式恒成立的问题转化为函数y=x 2-kx+1图象始终在x 轴上方,进而根据判别式处理即可.【解答】:解:依题意,设y=x 2-kx+1,因为不等式x 2-kx+1>0对任意实数x 都成立,所以△=k 2-4<0,解得k∈(-2,2),故答案为:(-2,2).【点评】:本题考查了二次函数的性质,二次函数与二次不等式的关系,考查分析解决问题的能力,属于基础题.15.(填空题,5分)椭圆 x 25+y 2m =1 的离心率为 √105 ,则实数m 的值为___ . 【正确答案】:[1] 253或3【解析】:分当m >5和m <5时两种情况,根据e= c a 求得m .【解答】:解:当m >5时,√m−5√m = √105 ,解得m= 253 , 当m <5√5−m √5 = √105 解得m=3符合题意, 故答案为: 253或3【点评】:本题主要考查了椭圆的简单性质.要利用好椭圆标准方程中a ,b ,c 的关系.16.(填空题,5分)对于数列{a n },定义A n = a 1+2a 2+⋯+2n−1a n n为数列{a n }的“好数”,已知某数列{a n }的“好数”A n =2n+1,记数列{a n -kn}的前n 项和为S n ,若S n ≤S 7对任意的n∈N *恒成立,则实数k 的取值范围是___ .【正确答案】:[1] [94,167] 【解析】:先根据数列的递推式求出a n =2n+2,所以a n -kn=(2-k )n+2,显然{a n -kn}是等差数列,所以{S n }中S 7最大,则数列{a n -kn}的第7项大于等于0,第八项小于等于0,列出不等式组,即可解得实数k 的取值范围.【解答】:解:由题意可知, a 1+2a 2+⋯…+2n−1a n =n •2n+1 ,则n≥2时, a 1+2a 2+⋯…+2n−2a n−1=(n −1)•2n ,两式相减得: 2n−1a n =n •2n+1−(n −1)•2n ,∴a n =2n+2,又∵A 1= a 11 =4,∴a 1=4,满足a n =2n+2,故a n =2n+2,∴a n -kn=(2-k )n+2,显然{a n -kn}是等差数列,∵S n ≤S 7对任意的n∈N *恒成立,∴{S n }中S 7最大,则 {a 7−7k =7(2−k )+2≥0a 8−8k =8(2−k )+2≤0,解得: 94≤k ≤167 , 故实数k 的取值范围是:[ 94 , 167 ].【点评】:本题主要考查了数列的递推式,以及等差数列的性质,是中档题.17.(问答题,10分)求适合下列条件的椭圆标准方程:(1)与椭圆 x 22 +y 2=1有相同的焦点,且经过点(1, 32 );(2)经过A (2,- √22 ),B (- √2 ,- √32 )两点.【正确答案】:【解析】:(1)先求出已知椭圆的焦点坐标(±1,0),则可设出所求椭圆方程,代入已知点即可求解,(2)待定系数法设出椭圆方程,代入已知点即可求解.【解答】:解:(1)由已知椭圆方程可得焦点坐标为(±1,0),则可设所求的椭圆方程为: x 2m +y 2m−1=1(m >1) ,代入点(1, 32 ),解得m=4或 14 (舍),所以所求椭圆方程为: x 24+y 23=1 ,(2)设所求的椭圆方程为: x 2m +y 2n =1(m >0,n >0,m ≠n) ,代入已知两点可得:{4m +12n=12 m +34n=1,解得m=8,n=1,故所求的椭圆方程为:x 28+y2=1.【点评】:本题考查了椭圆的标准方程以及焦点相同和不确定的问题的椭圆方程的设法,属于基础题.18.(问答题,12分)已知等比数列{a n}中,a1=1,且a2是a1和a3-1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=2n+a n(n∈N*),求数列{b n}的前n项和S n.【正确答案】:【解析】:(1)根据等差中项可得q=2,即可求出通项公式;(2)利用分组求和即可求出.【解答】:解:(1)设等比数列{a n}公比为q,则q≠0,∵a1=1,且a2是a1和a3-1的等差中项,∴2a2=a1+a3-1,即2q=1+q2-1,解得q=2,∴a n=2n-1;(2)b n=2n+a n=2n+2n-1;∴S n=2(1+2+3+…+n)+(20+21+22+…+2n-1)=n(n+1)+2n-1=n2+n+2n-1.【点评】:本题考查等比数列的通项公式和等差数列的性质,以及等差数列和等比数列的求和公式,考查了运算求解能力,属于基础题.19.(问答题,12分)已知函数f(x)=ax2+bx-a+2.(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.【正确答案】:【解析】:(1)根据题意并结合一元二次不等式与一元二方程的关系,可得方程ax2+bx-a+2=0的两根分别为-1和3,由此建立关于a、b的方程组并解之,即可得到实数a、b的值;(2)不等式可化成(x+1)(ax-a+2)>0,由此讨论-1与a−2a的大小关系,分3种情形加以讨论,即可得到所求不等式的解集.【解答】:解:(1)∵不等式f(x)>0的解集是(-1,3)∴-1,3是方程ax2+bx-a+2=0的两根,∴可得{a−b−a+2=09a+3b−a+2=0,解之得{a=−1b=2------------(5分)(2)当b=2时,f(x)=ax2+2x-a+2=(x+1)(ax-a+2),∵a>0,∴ (x+1)(ax−a+2)>0⇔(x+1)(x−a−2a)>0① 若−1=a−2a,即a=1,解集为{x|x≠-1}.② 若−1>a−2a ,即0<a<1,解集为{x|x<a−2a或x>−1}.③ 若−1<a−2a ,即a>1,解集为{x|x<−1或x>a−2a}.------------(14分)【点评】:本题给出二次函数,讨论不等式不等式f(x)>0的解集并求参数的值,着重考查了一元二次不等式的应用、一元二次不等式与一元二方程的关系等知识国,属于中档题.20.(问答题,12分)某工厂年初用98万元购买一台新设备,第一年设备维修及燃料、动力消耗(称为设备的低劣化)的总费用12万元,以后每年都增加4万元,新设备每年可给工厂收益50万元.(Ⅰ)工厂第几年开始获利?(Ⅱ)若干年后,该工厂有两种处理该设备的方案:① 年平均获利最大时,以26万元出售该设备;② 总纯收入获利最大时,以8万元出售该设备,问哪种方案对工厂合算?【正确答案】:【解析】:(Ⅰ)每年费用是以12为首项,4为公差的等差数列,第n年时累计的纯收入f (n)=50n-[12+16+…+(4n+8)]-98,获利为f(n)>0,解得n的值,可得第几年开始获利;(Ⅱ)计算方案① 年平均获利最大时及总收益;方案② 总纯收入获利最大时及总收益;比较两种方案,总收益相等,第一种方案需7年,第二种方案需10年,应选择第一种方案.【解答】:解:(Ⅰ)由题设每年费用是以12为首项,4为公差的等差数列,设第n年时累计的纯收入为f(n),则f(n)=50n-[12+16+…+(4n+8)]-98=40n-2n2-98,获利为:f(n)>0,∴4n-2n2-98>0,即n2-20n+49<0,∴10- √51<n<10+ √51;又n∈N,∴n=3,4,5, (17)∴当n=3时,即第3年开始获利.(Ⅱ)① 年平均收入为:f(n)n =40−2(n+49n)≤40−4√n•49n=12(万元)即年平均收益最大时,总收益为:12×7+26=110(万元),此时n=7;② f(n)=-2(n-10)2+102,∴当n=10时,f(n)max=102;总收益为110万元,此时n=10;比较两种方案,总收益均为110万元,但第一种方案需7年,第二种方案需10年,故选择第一种方案.【点评】:本题考查了数列与函数的综合应用问题,也是方案设计的问题;解题时应细心分析,认真解答,以免出错.21.(问答题,12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且短轴的两个端点与右焦点是一个等边三角形的三个顶点,O为坐标原点.(1)求椭圆C的方程;(2)过椭圆的右焦点F作直线l,与椭圆相交于A,B两点,求△OAB面积的最大值,并求此时直线l的方程.【正确答案】:【解析】:(1)由长轴长即等边三角形可得a ,b 的值,进而求出椭圆的方程;(2)设直线l 的方程,与椭圆联立求出两根之和及两根之积,代入面积公式,由均值不等式的性质可得面积的最大值,及直线l 的方程.【解答】:解:(1)由题意可得2a=4,2b= √b 2+c 2 =a ,所以a=2,b=1,所以椭圆的方程为: x 24 +y 2=1;(2)由(1)可得右焦点F 2( √3 ,0),显然直线l 的斜率不为0,设直线l 的方程为x=my+ √3 ,A (x 1,y 1),B (x 2,y 2),联立直线l 与椭圆的方程 {x =my +√3x 24+y 2=1 ,整理可得:(4+m 2)y 2+2 √3 my-1=0, 可得y 1+y 2= −2√3m 4+m 2 ,y 1y 2= −14+m 2 ,所以S △AOB = 12 |OF 2||y 1-y 2|= 12×√3 × √(y 1+y 2)2−4y 1y 2= √32 •√12m 2(4+m 2)2+44+m 2= √32 •4√1+m 24+m 2=2 √3 •√1+m 24+m 2 =2 √3 •√1+m 2+3√2 √3 • 2√1+m 2•3√2 =1, 当且仅当 √1+m 2 = √1+m 2 m= ±√2 ,时三角形的面积最大为1,所以面积的最大值为1,这时直线l 的方程为x= ±√2 y+ √3 .【点评】:本题考查求椭圆的方程及直线与椭圆的综合,属于中档题.22.(问答题,12分)已知各项均为正数的两个数列{a n },{b n }满足a n+12-1=a n 2+2a n ,2a n =log 2b n +log 2b n+1+1,且a 1=b 1=1.(1)求证:数列{a n }为等差数列;(2)求数列{b n }的通项公式;(3)设数列{a n },{b n }的前n 项和分别为S n ,T n ,求使得等式2S m +a m -36=T i 成立的有序数对(m ,i )(m ,i∈N*).【正确答案】:【解析】:(1)根据递推关系可得a n+12=(a n+1)2,从而得到数列{a n}为等差数列;(2)根据2a n=log2b n+log2b n+1+1,可知数列{b n}的奇数项和偶数项,进而整合即可得{b n}的通项公式.(3)分别求S n,T n,带入2S m+a m-36=T i成立,则存在s,t∈N*,使得2s=m+7,即2t=m-5,从而2s-2t=12,在证明s≥5不成立,从而得到s=4,m=9,i=6.【解答】:证明(1):由a n+12-1=a n2+2a n,可得a n+12=a n2+2a n+1即a n+12=(a n+1)2,∵各项均为正数的两个数列{a n},{b n},可得a n+1=a n+1,即数列{a n}是首项为1,公差d=1的等差数列.解(2):由(1)可得a n=n,∵2a n=log2b n+log2b n+1+1,可得b n b n+1=22n-1…… ①∴b n+1b n+2=22n+1…… ②将②①可得:b n+2b n=4.所以{b n}是奇数项和偶数项都成公比q=4的等比数列,由b1=1,b2=2,可得b2k-1=4k-1,b2k=2×4k-1,k∈N*,∴b n=2n-1.故得数列{b n}的通项公式为b n=2n-1.(3)由(1)和(2)可得S n= n(n+1)2,T n=2n-1;由2S m+a m-36=m(m+1)+m-36=2i-1,即(m-5)(m+7)=2i.则存在s,t∈N*,使得2s=m+7,即2t=m-5,从而2s-2t=12,若s≥5,则2s-2t-12≥20,∴t≥5,又∵s>t,那么2s-2t≥2t+1-2t=2t≥32,可知与2s-2t=12相矛盾,可得s≤4,根据2s-2t=12,s,t∈N*,可得s=4,t=2,此时可得m=9,i=6.【点评】:本题考查了等差、等比数列的通项公式与前n项和公式的综合应用,考查了推理能力与计算能力,属于压轴题.。
2020-2021学年山东省青岛胶州市高二上学期期中考试数学试题

青岛胶州市2020-2021学年高二上学期期中考试数学本试卷4页,22小题,满分150分.考试用时120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号和座号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置;2.作答选择题时:选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上;非选择题必须用黑色字迹的专用签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效;3.考生必须保证答题卡的整洁,考试结束后,请将答题卡上交.一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线2021x =的倾斜角为()A .90︒B .0︒C .180︒D .45︒2.已知向量(1,2,),(,1,2)a t b t ==,且a b ⊥,则实数t =()A .1B .1-C .23-D .233.若直线1:10l ax y ++=与直线2:210l x ay a ++-=平行,则实数a =()A .1B .1-C .0D .1±4.已知三棱柱111ABC A B C -,点P 为线段11B C 的中点,则AP =()A .11122AB AC AA ++ B .11122AB AC AA ++ C .11122AB AC AA +- D .11122AB AC AA ++ 5.已知二面角βα--l 的大小为60︒,B A ,为棱l 上不同两点,D C ,分别在半平面, αβ内,,AC BD 均垂直于棱l ,22AC BD AB ===,则异面直线CD 与AB 所成角的余弦值为()A .15B C .13D .126.若过原点的直线l 与圆22430x x y -++=有两个交点,则l 的倾斜角的取值范围为()A .(,)33ππ-B .(,)66ππ-C .5[0,)(,)66πππD .2[0,)(,)33πππ7.已知椭圆22:14x C y +=上两点B A ,,若AB 的中点为D ,直线OD 的斜率等于1,则直线AB 的斜率等于()A .1-B .1C .12-D .14-8.已知圆222:(0)O x y r r +=>1+=交于, A B 两点,且AB =,则圆O 与函数()ln(1)f x x =-的图象交点个数为()个A .2B .1C .0D .3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.已知直线:10l x my m -+-=,则下述正确的是()A .直线l 的斜率可以等于0B .直线l 的斜率有可能不存在C .直线l 可能过点(2,1)D .若直线l 的横纵截距相等,则1m =±10.已知椭圆C :221625400x y +=,关于椭圆C 下述正确的是()A .椭圆C 的长轴长为10B .椭圆C 的两个焦点分别为(0,3)-和(0,3) C .椭圆C 的离心率等于35D .若过椭圆C 的焦点且与长轴垂直的直线l 与椭圆C 交于,P Q ,则32||5PQ =11.已知点12(1,0),(1,0)F F -,动点P 到直线2x =的距离为d ,2PF d =,则()A .点P 的轨迹是椭圆B .点P 的轨迹曲线的离心率等于12C .点P 的轨迹方程为2212x y += D .12PF F ∆的周长为定值12.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是()A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCDC .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 三、填空题:本题共4个小题,每小题5分,共20分.13.圆221:40C x y x ++=与圆222:(2)(1)9C x y -+-=的位置关系为 .14.已知椭圆2219x y m +=的离心率等于31,则实数m = . 15.已知正方体1111ABCD A B C D -的棱长为1,点P 为线段1AC 上一点,||1PA =,则点P 到平面ABCD 的距离为 .16.在平面直角坐标系中,(1,2),(2,1)A D ,点,B C 分别在x 轴、y 轴上,则(1)||||AB BD +的最小值是 ;(2)||||||AC CB BD ++的最小值是 . (第一空2分,第二空3分)四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)已知O 为坐标原点,直线:10l ax y a +--=(R a ∈),圆22:1O x y +=. (1)若l 的倾斜角为120︒,求a ;(2)若l 与直线0:20l x y -=的倾斜角互补,求直线l 上的点到圆O 上的点的最小距离; (3)求点O 到l 的最大距离及此时a 的值. 18.(12分)在平面直角坐标系中,圆C 过点(1,0)E 和点(0,1)F ,圆心C 到直线0x y +=. (1)求圆C 的标准方程;(2)若圆心C 在第一象限,M 为圆C 外一点,过点M 做圆C 的两条切线,切点分别为,A B ,四边形MACBM 的轨迹方程. 19.(12分)在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PD ⊥平面ABCD ,M 为PC 中点. (1)如果4PD =,求证:PC ⊥平面MAD ; (2)当BP 与平面MBD 所成角的正弦值最大时,求三棱锥D MBC -的体积V .20.(12分)在平面直角坐标系中,1(0,C ,圆22:(C x y +2C 相切. (1)求动点P 的轨迹C 的标准方程;(2)若直线l 过点(0,1),且与曲线C 交于,A B ,已知,A B 4l 的方程. 21.(12分)如图,在几何体ABCDEF 中,四边形ABCD 为菱形,BCF ∆为等边三角形,60ABC ∠=︒,2,//AB EF CD =,平面⊥BCF 平面ABCD .(1)证明:在线段BC 上存在点O ,使得平面ABCD ⊥平面AOF ; (2)求二面角B AF C --的余弦值; (3)若//ED 平面AOF ,求线段EF 的长度. 22.(12分)已知O 为坐标原点,椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,12||2F F =,P 为椭圆的上顶点,以P 为圆心且过12,F F 的圆与直线2x =-相切.(1)求椭圆C的标准方程;(2)已知直线l 交椭圆C 于,M N 两点.(ⅰ)若直线l 的斜率等于1,求OMN ∆面积的最大值;(ⅱ)若1OM ON ⋅=-,点D 在l 上,OD l ⊥.证明:存在定点W ,使得||DW 为定值.2020-2021学年度第一学期期中检测 高二数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分。
吉林省延边朝鲜族自治州延吉市第二中学2019-2020学年高二数学上学期期中试题理(含解析)

吉林省延边朝鲜族自治州延吉市第二中学2019-2020学年高二数学上学期期中试题 理(含解析)一、选择题(共12小题,每小题4分,共48分,每题只有一个选项正确) 1.命题“,sin 10x R x ∀∈+≥”的否定是( ) A. 00,sin 10x R x ∃∈+< B. ,sin 10x R x ∀∈+< C. 00,sin 10x R x ∃∈+≥ D. ,sin 10x R x ∀∈+≤【答案】A 【解析】 【分析】利用全称命题的否定方法求解,改变量词,否定结论.【详解】因为,sin 10x R x ∀∈+≥的否定为00,sin 10x R x ∃∈+<, 所以选A.【点睛】本题主要考查含有量词的命题的否定,一般处理策略是:先改变量词,然后否定结论.2.下列有关命题的说法正确的是( )A. 命题“若21x =,则1x =”的否命题为:“若21x =则1x ≠”B. p q ∧为假命题,则,p q 均为假命题C. 命题“若,,a b c 成等比数列,则2b ac =”的逆命题为真命题D. 命题“若x y =,则sin sin x y =”的逆否命题为真命题 【答案】D 【解析】 【分析】根据命题之间的关系逐个判断即可.【详解】对A, 命题“若21x =,则1x =”的否命题为:“若21x ≠则1x ≠”,故A 错误 对B, p q ∧为假命题,则,p q 至少有一个假命题,故B 错误.对C,命题“若,,a b c 成等比数列,则2b ac =”的逆命题为“若2b ac =,则,,a b c 成等比数列”,若,,a b c 均为0则,,a b c 不成等比数列,故C 错误.对D, 命题“若x y =,则sin sin x y =”为真命题,所以它的逆否命题也为真,故D 正确. 故选:D.【点睛】本题主要考查四个命题之间的关系与真假命题的判断,属于基础题型. 3.等差数列{}n a 中,若12332a a a ++=,111213118a a a ++=,则410a a +等于( )A. 45B. 75C. 50D. 60【答案】C 【解析】 分析:详解:根据等差数列中等差中项的性质1232332a a a a ++==111213123118a a a a ++==因为21232118503a a ++== 所以4107212250a a a a a +==+= 所以选C点睛:本题考查了等差数列中等差中项性质的应用,是简单题。
浙江省宁波市慈溪市2022-2022学年高二数学上学期期中试题(含解析)

考点:二元一次不等式(组)与平面区域.
5.已知点M(-2,1,3)关于坐标平面xOz的对称点为A,点A关于y轴的对称点为B,则|AB|=( )
A. 2B.
C. D. 5
【答案】B
【解析】
【分析】
先根据对称逐个求出点 的坐标,结合空间中两点间的距离公式可求.
【详解】因为点M(-2,1,3)关于坐标平面xOz的对称点为A,
【答案】 (1). (2,-1) (2). (x-1)2+y2=2
【解析】
【分析】
先整理直线的方程为 ,由 可得定点;由于直线过定点 ,所以点(1,0)为圆心且与l相切的所有圆中,最大半径就是两点间的距离.
【详解(xiánɡ jiě)】因为 ,由 可得 ,所以(suǒyǐ)直线 经过(jīngguò)定点 ;
【答案】
【解析】
如图,连接(liánjiē) 交 于点 ,连接(liánjiē) .因为(yīn wèi) 是正方体,所以(suǒyǐ) 面 ,从而(cóng ér)可得 ,所以 面 ,从而有 ,所以 是二面角 的平面角.设正方体的边长为1,则 ,所以在 中有
16.设m,n是两条不同的直线, , , 是三个不同的平面,给出如下命题:
二、填空题(本大题共7小题,单空题每小题4分,多空题每小题6分,共36分)
11.已知直线 ,直线 .若直线 的倾斜角为 ,则 =_________;若 ,则 , 之间的距离为_____.
【答案】 (1). 1 (2).
【解析】
【分析】
利用直线 的倾斜角和斜率的关系可求 ;根据两条直线平行可得 ,再结合平行直线间的距离公式可求.
【详解】由圆的一般式方程可得圆心坐标 ,半径 ;
设 关于直线 的对称点为 ,则 ,解得 ,
吉林省2020学年高二数学上学期期中试题理(含解析)

高二数学上学期期中试题 理(含解析)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教版选修2-1,选修2-2第三章.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(13)(1)z i i =-+-在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】A 【解析】分析:先化简复数z,再看复数z 在复平面内对应的点所在的象限.详解:由题得13324z i i i =-+++=+,所以复数z 在复平面内对应的点为(2,4),故答案为A.点睛:(1)本题主要考查复数的运算和复数的几何意义,意在考查学生对这些知识的掌握水平.(2) 复数(,)z a bi a b R =+∈对应的点是(a,b ),点(a,b )所在的象限就是复数z a bi =+(),a b ∈R 对应的点所在的象限.复数(,)z a bi a b R =+∈和点(a,b )是一一对应的关系.2.焦点坐标为(1,0)的抛物线的标准方程是( ) A. y 2=-4x B. y 2=4xC. x 2=-4yD. x 2=4y【答案】B 【解析】 【分析】由题意设抛物线方程为y 2=2px (p >0),结合焦点坐标求得p ,则答案可求. 【详解】由题意可设抛物线方程为y 2=2px (p >0),由焦点坐标为(1,0),得P12=,即p=2. ∴抛物的标准方程是y 2=4x . 故选B .【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,其中解答中熟记抛物线的几何性质是解答的关键,着重考查了推理与运算能力,属于基础题. 3.关于命题,下列判断正确的是( ) A. 命题“每个正方形都是矩形”是特称命题 B. 命题“有一个素数不是奇数”是全称命题C. 命题“x ∀∈R ,4x ∈R ”的否定为“0x ∃∈R ,40x ∉R ”D. 命题“每个整数都是有理数”的否定为“每个整数都不是有理数” 【答案】C 【解析】 【分析】根据特称命题,与全称命题的概念,可判断AB ;根据全称命题的否定,可判断C ,D. 【详解】A 选项,命题“每个正方形都是矩形”含有全称量词“每个”,是全称命题,故A 错; B 选项,命题“有一个素数不是奇数”含有存在量词“有一个”,是特称命题,故B 错;C 选项,命题“x ∀∈R ,4x ∈R ”的否定为“0x ∃∈R ,40x ∉R ”,故C 正确;D 选项,命题“每个整数都是有理数”的否定为“每个整数不都是有理数”,故D 错; 故选:C【点睛】本题主要考查命题真假的判定,熟记全称命题与特称命题的概念,以及含有一个量词的命题的否定即可,属于基础题型. 4.椭圆223530x y +=的离心率为( )A.25B.35【答案】C 【解析】 【分析】先将椭圆方程化为标准形式,得到210a =,26b =,再由离心率的定义,即可得出结果.【详解】因为椭圆方程:223530x y +=可化为221106x y +=,所以210a =,26b =,因此离心率:5c e a ====. 故选:C【点睛】本题主要考查求椭圆的离心率,熟记椭圆的简单性质即可,属于基础题型. 5.“213k =”是“直线y kx =与圆22(2)1x y ++=相切”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】C 【解析】 【分析】直接利用圆心到直线的距离等于半径求得充要条件即可判断.【详解】当直线y kx =与圆22(2)1x y ++=1=,则213k =,故选:C.【点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用,主要考查充分必要条件的判断,属于基础题型.6.点()00,P x y 是抛物线2:8C x y =上一点,则P 到C 的焦点的距离为( ) A. 02x - B. 02y - C. 02x + D. 02y +【答案】D 【解析】 【分析】先由抛物线方程得到准线方程,再由抛物线的定义,即可得出结果.【详解】因为抛物线2:8C x y =的准线方程为2y =-,点()00,P x y 是抛物线2:8C x y =上一点,由抛物线的定义可得:0||2PF y =+. 故选:D【点睛】本题主要考查求抛物线上的点到到焦点的距离,熟记抛物线的定义即可,属于基础7.当复数2(32)()z x x x i x =-+-∈R 的实部与虚部的差最小时,1zi =-( ) A. 33i -+ B. 33i + C. 13i -D. 13i --【答案】C 【解析】 【分析】实部与虚部的差为242x x -+。
海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试化学试题(本试卷总分150分,总时量120分钟)一、单项选择题:本题共8小题,每小题5分,共40分. 1. 椭圆22:416C x y +=的焦点坐标为( )A .(±B .(±C .(0,±D .(0,±2. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )A .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==3. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )A .顶点B .焦点C .离心率D .长轴和短轴4. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( ) A .1-或3B .1或3-C .3-D .15. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )A .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<6. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A B . C .12 D .7. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( ) A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=8. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )A .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( ) A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=10. 已知直线:10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过2)与直线l 40y --=11. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( ) A .1y x =+B .2y =C .430x y -=D .210x y -+=12. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )A .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当m =时,ABF 为直角三角形D .当1m =时,ABF三、填空题:本题共4小题,每小题5分,共20分.13. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .14. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .15. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .16. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程.18. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)点(,)P x y 在轨迹C 上,求2yx -的最小值.19. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小.20. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值.21. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD⊥平面ABCD.(2)在下列①②③三个条件中任选一个,补充在下面问题处,若问题中的四棱锥存在,求AB的长度;若问题中的四棱锥不存在,说明理由.①CF与平面PCD所成角的正弦值等于15;②DA与平面PDF所成角的正弦值等于34;③P A与平面PDF所成角的正弦值等于3.问题:若点F是AB的中点,是否存在这样的四棱锥,满足?(注:如果选择多个条件分别解答,按第一个解答计分.)22.(12分)已知椭圆2222:1(0)x yM a ba b+=>>的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+42.(1)求椭圆M的方程;(2)设直线:l x ky m=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.参考答案一、单项选择题:本题共8小题,每小题5分,共40分. 23. 椭圆22:416C x y +=的焦点坐标为( )CA .(±B .(±C .(0,±D .(0,±24. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )DA .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==25. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )CA .顶点B .焦点C .离心率D .长轴和短轴26. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( )B A .1-或3B .1或3-C .3-D .127. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )DA .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<28. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )AA B . C .12 D .29. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=30. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )BA .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 31. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( )ABD A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=32. 已知直线:10l y -+=,则下列结论正确的是( )CDA .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过点2)且与直线l 40y --=33. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( )BC A .1y x =+B .2y =C .430x y -=D .210x y -+=34. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )ACDA .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当2m =时,ABF 为直角三角形D .当1m =时,ABF【解析】设椭圆的左焦点为F ',则||||AF BF '=,所以||||||||AF BF AF AF '+=+为定值6,A 正确;ABF ∆的周长为||||||AB AF BF ++,因为||||AF BF +为定值6,易知||AB 的范围是(0,6),所以ABF ∆的周长的范围是(6,12),B 错误;将y 与椭圆方程联立,可解得(A ,B ,又易知F ,所以2(60AF BF =+=,所以ABF ∆为直角三角形,C 正确;将1y =与椭圆方程联立,解得(A ,B ,所以112ABF S ∆=⨯=D 正确.三、填空题:本题共4小题,每小题5分,共20分.35. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .336. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .21537. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .34(,0,)55--38. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .【解析】直线()()21340m x m y m +-+--=化为 (3)240m x y x y --+--=,令30{ 240x y x y --=--=,解得1{2x y -=.=∴直线()()21340m x m y m +-+--=过定点12Q -(,). ∴点M 在以PQ 为直径的圆上,圆心为线段PQ 的中点11C --(,)线段MN 长度的最大值5CN r =+==线段MN 长度的最大值5CN r =-==故答案为5⎡+⎣.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 39. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 解:(1)设线段BC 的中点为D . 因为B(6,−7),C(0,−3), 所以BC 的中点D(3,−5),所以BC 边上的中线所在直线的方程为y−0−5−0=x−43−4, 即5x −y −20=0.(2)因为B(6,−7),C(0,−3), 所以BC 边所在直线的斜率k BC =−3−(−7)0−6=−23,所以BC 边上的高所在直线的斜率为32,所以BC 边上的高所在直线的方程为y =32(x −4), 即3x −2y −12=0.40. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 解:(1)设动点M(x,y), 根据题意得,√(x+1)2+y 2√(x−2)2+y 2=12,化简得,(x +2)2+y 2=4,所以动点M 的轨迹方程为(x +2)2+y 2=4. (2)设过点(2,0)的直线方程为y =k(x −2), 圆心到直线的距离d =√k 2+1≤2,解得−√33≤k ≤√33, 所以yx−2的最小值为−√33.41. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小. (1)证明:∵F,G 分别为PB,EB 中点,∴FG PE ∥,,FG PED PE PED ⊄⊂平面平面,FG PED ∴平面∥. (2)解:EA ABCD EA PD ⊥平面,∥,PD ABCD ∴⊥平面. 又ABCD 四边形为矩形,,,DA DC DP ∴两两垂直.故以D 为坐标原点,DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,、则1(0,0,2),(2,2,0),(0,2,0),(2,0,1),(1,1,1),(2,1,),(0,1,1)2P B C E F G H ,(0,2,2),(2,0,0)PC CB =-=设平面PBC 的法向量为(,,)n x y z =,则0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x -=⎧⎨=⎩,所以可取(0,1,1)n =,同理可取平面FGH 的法向量为(0,1,0)m =,设平面FGH 与平面PBC 的夹角为θ, 则||2cos ||||m n m n θ⋅==⋅,又[0,]2πθ∈,∴平面FGH 与平面PBC 夹角为4π.42. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且||MN =,求m 的值. 解:(1)把圆x 2+y 2−8x −12y +36=0, 化为标准方程得(x −4)2+(y −6)2=16, 所以圆心坐标为(4,6),半径为R =4,则两圆心间的距离d =√(42+(6−2)2=5, 因为两圆的位置关系是外切,所以d =R +r ,即4+√5−m =5,解得m =4, 故m 的值为4;(2)因为圆心C 的坐标为(1,2), 所以圆心C 到直线l 的距离d =√5=√55, 所以(√5−m)2=(12|MN|)2+d 2=(2√55)2+(√55)2,即5−m =1,解得m =4, 故m 的值为4.43. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD ⊥平面ABCD .(2)在下列①②③三个条件中任选一个,补充在下面问题 处,若问题中的四棱锥存在,求AB 的长度;若问题中的四棱锥不存在,说明理由.①CF 与平面PCD 所成角的正弦值等于15; ②DA 与平面PDF 所成角的正弦值等于34; ③P A 与平面PDF 所成角的正弦值等于3. 问题:若点F 是AB 的中点,是否存在这样的四棱锥,满足 ? (注:如果选择多个条件分别解答,按第一个解答计分.) (1)证明:=90PAB ∠,AB PA ∴⊥, ∵底面ABCD 为矩形,∴AB AD ⊥, 又,PA AD PAD ⊂平面,且PAAD A =,AB PAD ∴⊥平面,又AB ABCD ⊂平面,故平面PAD ⊥平面ABCD.(2)解:取AD 中点为O ,∵4PA PD AD ===,∴OA ⊥OP ,以O 为原点,OA,OP 所在直线分别为x,z 轴建立空间直角坐标系,设2(0)AB a a =>, 则(1,0,0),(1,0,0),(0,0,3),(1,2,0),(1,2,0),(1,,0)A D P B a C a F a --, 选①:(2,,0),(0,2,0),(1,0,3)CF a DC a DP =-==,设平面PCD 的法向量为(,,)n x y z =,则00n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩,即2030ay x z =⎧⎪⎨+=⎪⎩,∴可取(3,0,1)n =-,设CF 与平面PCD 所成角为θ,则2||315sin 5||||4CF n CF n aθ⋅===⋅+,解得1a =, ∴符合题意的四棱锥存在,此时22AB a ==. 选②:(2,0,0),(1,0,3)(2,,0)DA DP DF a ===,,设平面PDF 的法向量为(,,)n x y z =,则00n DP n DF ⎧⋅=⎪⎨⋅=⎪⎩,即3020x z x ay ⎧+=⎪⎨+=⎪⎩,∴可取(3,)n a a =--,设DA 与平面PDF 所成角为θ, 则||3sin 4||||2DA n DA n θ⋅===⋅,解得3a =, ∴符合题意的四棱锥存在,此时26AB a ==. 选③:易知P A 与平面PDF 所成角小于APD ∠,设P A 与平面PDF 所成角为θ,则sin sin sin32APD πθ<∠==,故不存在符合题意的四棱锥.44. (12分)已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为(1)求椭圆M 的方程;(2)设直线:l x ky m =+与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的 右顶点C ,求m 的值.解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+4√2, 所以2a +2c =6+4√2,又椭圆的离心率为2√23, 即c a =2√23, 所以c =2√23a , 所以a =3,c =2√2.所以b =1, 椭圆M 的方程为x 29+y 2=1;(Ⅱ)由{x =ky +m x 29+y 2=1消去x 得(k 2+9)y 2+2kmy +m 2−9=0,设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=−2km k +9,y 1y 2=m 2−9k +9.①因为以AB 为直径的圆过点C ,所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.由CA ⃗⃗⃗⃗⃗ =(x 1−3,y 1),CB ⃗⃗⃗⃗⃗ =(x 2−3,y 2), 得(x 1−3)(x 2−3)+y 1y 2=0. 将x 1=ky 1+m ,x 2=ky 2+m 代入上式, 得(k 2+1)y 1y 2+k(m −3)(y 1+y 2)+(m −3)2=0. 将①代入上式,解得m =125或m =3.。
上海市宝山区行知中学2020-2021高二上学期期中考试数学(含答案)

上海市行知中学2020学年第一学期期中高二年级数学学科试卷11.12考试时间:120分钟 满分:150分一、填空题(本题满分54分,1-6每题4分,7-12每题5分) 1. 1和3的等比中项等于_________.2.行列式123456789中,6的代数余子式的值是_________.3.已知向量(1,0)AB =,(0,2)BC =,则与向量AC 相等的位置向量的坐标为_________.4.过点(4,3)A -,且与向量(1,2)n =垂直的直线方程是_________.(用一般式表示)5.关于x 、y 的二元线性方程组2532x my nx y +=⎧⎨-=⎩的增广矩阵经过变换,最后得到的矩阵为103011⎛⎫⎪⎝⎭,则m n +=_________. 6.已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为_________.7.已知直线:l y =,过点(0,3)A 的直线m 与直线l 夹角为6π,则直线m 的直线方程是_________.8.不等式2x y +≤表示的平面区域面积是_________.9.已知点(2,3)A -,点(3,1)B ,直线:10ax y ++=与线段AB 有一个公共点,则实数a 的取值范围是_________.10.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.11.如图,等边ABC ∆是半径为2的圆O 的内接三角形,M 是边BC 的中点,P 是圆外一点,且4OP =,当ABC ∆绕圆心O 旋转时,则OB PM ⋅的取值范围为_________. 12.设数列{}n a 的前n 项和为n S ,11a =,2a a =(1a >),211n n n n a a a a d+++-=-+(0d >,*n ∈N ).且{}2n a 、{}21n a -均为等差数列,则2n S =_________.二、选择题(本题满分20分,共4小题,每小题5分) 13.用数学归纳法证明:*111113(2,)12324n n N n n n n n ++++>≥∈++++的过程,从“k 到1k +”左端需增加的代数式为………………………( ) A.121k + B. 122k + C. 112122k k +++ D. 112122k k -++14.已知3,4,()(3)33a b a b a b ==+⋅+=,则a 与b 的夹角为( )A.6π B. 3πC. 23πD. 56π15.已知n S 是实数等比数列{}n a 前n 项和,则在数列{}n S 中( )A. 必有一项为零B. 可能有无穷多项为零C. 至多一项为零D. 任何一项均不为零 16. 如图,四边形ABCD 是正方形,延长CD 至E ,使得DE CD =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,其中A P A B A E λμ=+,下列判断正确..的是……………………………………………( ) (A )满足λμ+2=的点P 必为BC 的中点. (B )满足1λμ+=的点P 有且只有一个. (C )λμ+的最大值为3. (D )λμ+的最小值不存在.三、解答题(本大题满分76分,共有5题,解答下列各题必须在答题纸相应的编号的规定区域内写出必要的步骤.)17. (本题满分14分,第(1)小题6分,第(2)小题8分)已知(2,1)a =,(1,1)b =-,(5,6)c =,且满足()//a kb c +. (1)求实数k 的值;P (第16题图)(2)求与a垂直的单位向量的坐标.18. (本题满分14分,第(1)小题6分,第(2)小题8分)已知直线2l a a x ay-+--=.:(24)30A,试写出直线l的一个方向向量;(1)若直线l过点(1,0)a≠,求直线的倾斜角α的取值范围.(2)若实数019. (本题满分14分,第(1)小题6分,第(2)小题8分)2019年某公司投资8千万元启动休闲旅游项目.规划从2020年起,在今后的若千年内,每年继续投资2千万元用于此项目.2019 年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均在上一年的基础上增长50%,记2019年为第1年,a为第1年至n此后第n(n N*∈)年的累计利润(注:含第n年,累计利润=累计净收入-累计投入,单位:千万元),且当a为正值时,认为该项目赢利.n(1)试求a;n(2)根据预测,该项目将从哪年开始并持续赢利?请说明理由,20. (本题满分16分,第(1)小题4分,第(2)小题6分,第(3)小题6分)数列{}n a ,*111,21,n n a a a n N +==+∈,数列{}n b 前n 项和为. n S ,9n b n =-.(1)求数列{}n a 的通项公式;(2)若n bn t a =(a 为非零实数),求121lim2nn n t t t t →∞+++++;(3)若对任意的n N *∈,都存在m N *∈,使得32nn m a S t -+-≥成立,求实数t 的最大值.21. (本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)设q 为不等于1的正常数,{}n a 各项均为正,首项为1,且{}n a 前n 项和为n S ,已知对任意的正整数,n m ,当时n m >,mn m n m S S q S --=恒成立.(1)求数列{}n a 的通项公式;(2)若数列{}n t 是首项为1,公差为3的等差数列,存在一列数12,,,,n k k k :恰好使得1212,,,,n k k k n t a t a t a ===且121,2k k ==,求数列{}n k 的通项公式;(3)当3q =时,设n nnb a =,问数列{}n b 中是否存在不同的三项恰好成等差数列?若存在,求出所有这样的三项,若不存在,请说明理由上海市行知中学2020学年第一学期期中高二年级数学学科试卷11.12考试时间:120分钟 满分:150分一、填空题(本题满分54分,1-6每题4分,7-12每题5分) 1. 1和3的等比中项等于_________.【答案】2.行列式123456789中,6的代数余子式的值是_________. 【解析】6的代数余子式为23(1)(1827)6+-⨯-⨯=.3.已知向量(1,0)AB =,(0,2)BC =,则与向量AC 相等的位置向量的坐标为_________. 【答案】(1,2)4.过点(4,3)A -,且与向量(1,2)n =垂直的直线方程是_________.(用一般式表示) 【解析】所求直线方程为(1)2(3)0x y -++=,即250x y ++=.5.关于x 、y 的二元线性方程组2532x my nx y +=⎧⎨-=⎩的增广矩阵经过变换,最后得到的矩阵为103011⎛⎫⎪⎝⎭,则m n +=_________. 【答案】236.已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+_________.【解析】作出可行域,如图,最优解为(1,2)A -, max 1223z =-+⨯=.7.已知直线:l y =,过点(0,3)A 的直线m 与直线l 夹角为6π,则直线m 的直线方程是_________.【答案】0x =或3y =+. 8.不等式2x y +≤表示的平面区域面积是_________.【解析】不等式||||2x y +≤表示的平面区域为图中的菱形区域, 14482S =⨯⨯=.9.已知点(2,3)A -,点(3,1)B ,直线:10ax y ++=与线段AB 有一个公共点,则实数a 的取值范围是_________.【解析】(2,1),(3,1)A B -代入得(231(311)0a a -++⋅++≤)即23a ≤-或2a ≥ 10.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.【解析】作点(3,1)A -关于x 轴的对称点(3,1)A '--, 则||||||||AM MN A M MN '+=+,最小值即为(3,1)A '--到直线250x y +-=的距离,d ==,所以||||AM MN +的最小值为5.11.如图,等边ABC ∆是半径为2的圆O 的内接三角形,M 是边BC 的中点,P 是圆外一点,且4OP =,当ABC ∆绕圆心O 旋转时,则OB PM ⋅的取值范围为_________.【解析】法一:不妨以O 为原点,OA 方向为y 轴正方形建系, 因为2OA OB OC ===,所以(0,1),1)M B --, 因为4OP =,设(4cos ,4sin )P θθ,所以•(3,1)(4cos ,14sin )OB PM θθ=----[]8s 4i si n(n )17,931πθθθ=-+∈-=-+.法二:向量分解,观察到60,1BOM OM ∠==,()1OB PM OB OM OP OB OM OB OP OB OP ⋅=⋅-=⋅+⋅=+⋅,又因为[]8,8OB OP ⋅∈-,所以[]7,9.OB PM ⋅∈-12.设数列{}n a 的前n 项和为n S ,11a =,2a a =(1a >),211n n n n a a a a d+++-=-+(0d >,*n ∈N ).且{}2n a 、{}21n a -均为等差数列,则2n S =_________.【解析】因为211n n n n a a a a d +++-=-+,2111a a a a -=-=-,所以11(1)n n a a a n d +-=-+-①,因为{}{}221,n n a a -分别构成等差数列, 所以221[1(22)](2)n n a a a n d n --=±-+-≥①, 212[1(21)](1)n n a a a n d n +-=±-+-≥①, 2221[12](1)n n a a a nd n ++-=±-+≥①,由①+①,得2121[1(21)][1(22)]n n a a a n d a n d +--=±-+-±-+-, 而{}21n a -是等差数列,所以2121n n a a +--必为常数,所以2121[1(21)][1(22)](2)n n a a a n d a n d d n +--=-+---+-=≥, 或2121[1(21)][1(22)](2)n n a a a n d a n d d n +--=--+-+-+-=-≥, 由①得321a a a d -=-+,即32(1)a a a d -=±-+, 因为2a a =,所以3(1)a a d a =±-++, 因为11a =,所以311(1)a a a a d -=-±-+, 即31a a d -=-或312(1)a a a d-=-+(舍去),PC所以2121n n a a d +--=-,所以211(1)n a n d -=--,同理,由①+①得,222[12][1(21)](1)n n a a a nd a n d n +-=±-+±-+-≥, 所以222n n a a d +-=或222n n a a d +-=-,因为321a a a d -=-+-,而43(12)a a a d -=±-+, 所以421(12)a a a d a d -=-+-±-+, 即42a a d -=或42223a a a d -=-+-(舍去),所以222n n a a d +-=,所以2(1)n a a n d =+-,所以21221221k k k k a a a a a -+++=+=+,所以2122(1)(1)(1)n n S a a a a a n a =+++=++++=+.二、选择题(本题满分20分,共4小题,每小题5分) 13.用数学归纳法证明:*111113(2,)12324n n N n n n n n ++++>≥∈++++的过程,从“k 到1k +”左端需增加的代数式为………………………( D ) A.121k + B. 122k + C. 112122k k +++ D. 112122k k -++【解析】增加的代数式是11111212212122k k k k k +-=-+++++,故选D. 14.已知3,4,()(3)33a b a b a b ==+⋅+=,则a 与b 的夹角为( C )A.6π B. 3πC. 23πD. 56π【答案】C15.已知n S 是实数等比数列{}n a 前n 项和,则在数列{}n S 中( B )A. 必有一项为零B. 可能有无穷多项为零C. 至多一项为零D. 任何一项均不为零 【解析】当公比1q =-时,20n S =,即存在无穷多项为0,故选B.16. 如图,四边形ABCD 是正方形,延长CD 至E ,使得DE CD =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,其中A P A B A E λμ=+,下列判断正确..的是……………………………………………( C ) (A )满足λμ+2=的点P 必为BC 的中点. (B )满足1λμ+=的点P 有且只有一个. (C )λμ+的最大值为3. (D )λμ+的最小值不存在.【解析】如图建系,设正方形的边长为1,则(1,0),(1,1),(1,0),(1,1)B E AB AE -==-, 所以(,)AP λAB μAE λμμ=+=-,当1λμ==时,(0,1)AP =,此时点P 和D 重合,不是BC 的中点,故A 错误; 当1,0λμ==时,(1,0)AP =,此时点P 和B 重合,满足1λμ+=, 当11,22λμ==时,10,2AP ⎛⎫= ⎪⎝⎭,此时点P 为AD 中点,满足1λμ+=,故点P 不 唯一,故B 错误;当P AB ∈时,01,0λμμ≤-≤=,所以01λμ≤+≤, 当P BC ∈时,1,01λμμ-=≤≤,所以13λμ≤+≤, 当P CD ∈时,01,1λμμ≤-≤=,所以23λμ≤+≤, 当P AD ∈时,0,01λμμ-=≤≤,所以02λμ≤+≤, 综上,03λμ≤+≤,故C 正确,D 错误,故选C.三、解答题(本大题满分76分,共有5题,解答下列各题必须在答题纸相应的编号的规定区域内写出必要的步骤.)17. (本题满分14分,第(1)小题6分,第(2)小题8分)已知(2,1)a =,(1,1)b =-,(5,6)c =,且满足()//a kb c +. (1)求实数k 的值;(2)求与a 垂直的单位向量的坐标. 【解析】(1)(2,1)a kb k k +=-+,(5,6)c =,因为()a kbc +∥,所以6(2)5(1)k k -=+,解得711k =; (2)与a 垂直的向量为(1,2)-和(1,2)-,故所求单位向量为55⎛-⎝⎭和55⎛ ⎝⎭. 18. (本题满分14分,第(1)小题6分,第(2)小题8分)已知直线2:(24)30l a a x ay -+--=.(1)若直线l 过点(1,0)A ,试写出直线l 的一个方向向量; (2)若实数0a ≠,求直线的倾斜角α的取值范围.【解析】(1)把(1,0)A 代入直线l 的方程,得2210a a -+=,解得1a =, 此时直线l 的方程为330x y --=, 故直线l 的一个方向向量为(1,3);(2)因为0a ≠,所以直线l 的斜率22442(,6][ 2,)a a a k a a-+=+--=∈-∞+∞所以倾斜角arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪⎢⎥⎣⎭⎝⎦. 19. (本题满分14分,第(1)小题6分,第(2)小题8分)2019年某公司投资8千万元启动休闲旅游项目.规划从2020年起,在今后的若千年内,每年继续投资2千万元用于此项目.2019 年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均在上一年的基础上增长50%,记2019年为第1年,n a 为第1年至此后第n (n N *∈)年的累计利润(注:含第n 年,累计利润=累计净收入-累计投入,单位:千万元),且当n a 为正值时,认为该项目赢利. (1)试求n a ;(2)根据预测,该项目将从哪年开始并持续赢利?请说明理由,【解析】(1)由题意得第1年至此后第n 年的累计投入为82(1)26n n +-=+(千万元),第1年至此后第n 年的累计净收入为2111313133122222222n n-⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯++⨯=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(千万元), 所以331(26)2722nnn a n n ⎛⎫⎛⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭(千万元);(2)令113()422nn n f n a a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当*3,n n ≤∈N 时,()0f n <,所以4n ≤时,n a 单调递减, 当*4,n n ≥∈N 时,()0g n >,所以4n ≥时,n a 单调递增,又7817815330,210,230222a a a ⎛⎫⎛⎫=-<=-<=-> ⎪ ⎪⎝⎭⎝⎭,所以该项目从第8年起开始并持续盈利.20. (本题满分16分,第(1)小题4分,第(2)小题6分,第(3)小题6分)数列{}n a ,*111,21,n n a a a n N +==+∈,数列{}n b 前n 项和为. n S ,9n b n =-.(1)求数列{}n a 的通项公式;(2)若n bn t a =(a 为非零实数),求121lim2nn n t t t t →∞+++++;(3)若对任意的n N *∈,都存在m N *∈,使得32nn m a S t -+-≥成立,求实数t 的最大值.【解析】(1)因为121n n a a +=+,所以12(1)1n n a a +=++,又112a +=,所以{}1n a +是首项为2,公比为2的等比数列,所以12nn a +=,所以21n n a =-;(2)9n n b n t a a -==,记1212nn n t t t T t ++++=+,当1a =时,3n nT =,此时lim n n T →∞不存在,当1a ≠时,()()88888112(1)2n n n n n a a a a a T a a a --------==+-+, 当(1,0)(0,1)a ∈-时,82(1)lim n n a T a -→∞=-,当(,1)(1,)a ∈-∞-+∞时,888111211(1)1lim lim n n n n n a a a a a a T ---→∞→∞--==--⎛⎫-+ ⎪⎝⎭=, 当1a =-时,lim n n T →∞不存在;(3)由题意得3221nn m t S -+--≥对*m N ∈有解,因为9n b n =-,所以当9n ≤时,0n b ≤,当9n ≥时,0n b ≥, 所以()89min (80)9362m S S S -+⨯====-, 所以322613n n t -+---≥对*n N ∈恒成立, 即25832n n t ≤++对*n N ∈恒成立, 因为*n N ∈,所以min2628n n ⎛⎫+= ⎪⎝⎭,所以63541t ≤+=, 所以实数t 的最大值是41.21. (本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)设q 为不等于1的正常数,{}n a 各项均为正,首项为1,且{}n a 前n 项和为n S ,已知对任意的正整数,n m ,当时n m >,mn m n m S S q S --=恒成立.(1)求数列{}n a 的通项公式;(2)若数列{}n t 是首项为1,公差为3的等差数列,存在一列数12,,,,n k k k :恰好使得1212,,,,n k k k n t a t a t a ===且121,2k k ==,求数列{}n k 的通项公式;(3)当3q =时,设n nnb a =,问数列{}n b 中是否存在不同的三项恰好成等差数列?若存在,求出所有这样的三项,若不存在,请说明理由【解析】(1)因为当n m >时,mn m n m S S q S --=⋅恒成立,所以当2n ≥时,令1m n =-, 得1111n n n n S S q S q ----==,即1n n a q -=, 又11a =,适合,所以1n n a q -=;(2)因为数列{}n t 是首项为1,公差为3的等差数列,所以13(1)32n t n n =+-=-,所以132n n k n t k q-=⋅-=,所以123n n q k -+=,因为22k =,所以223q +=,解得4q =,所以1423n n k -+=;(3)当3q =时,13n n n n n b a -==,因为11203n n n nb b +--=<, 所以数列{}n b 是递减数列,假设数列{}n b 中存在三项,,p q r b b b 成等差数列,其中p q r <<, 则2p r p b b b +=,即1112333p q r p r q---+=⋅, 当2n ≥时,132(1)333n n n n n n -+=≥, 若2p ≥,则112(1)2333pp q p p q--+≥≥(数列{}n b 是递减数列),矛盾, 所以1p =,所以112133r q r q --+=, 因为数列{}n b 是递减数列,232111,3232b b ==><,而1121133q r q r--=+>, 故只能1233q q -=,解得2q =,此时3r =,故存在123,,b b b 成等差数列. 【注】填空12选自2020届闵行一模21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知数列{}n a 满足11a =,2a a =(1a >),211n n n n a a a a d +++-=-+(0d >)*n ∈N .(1)当2d a ==时,写出4a 所有可能的值;(2)当1d =时,若221n n a a ->且221n n a a +>对任意*n ∈N 恒成立,求数列{}n a 的通项公式;(3)记数列{}n a 的前n 项和为n S ,若{}2n a 、{}21n a -分别构成等差数列,求2n S .【解析】(1)当2d a ==时,2112n n n n a a a a +++-=-+,即{}1n n a a +-是以1为首项、2为公差的等差数列, 所以1=21n n a a n +--……2分可得:32=3a a -±,43=5a a -±,所以3=5,1a -,43=5a a ±,所以410a =或40a =或4=4a 或4=6a -. ……………………………4分 (2)当1d =时,2111n n n n a a a a +++-=-+,即{}1n n a a +-是首项为1a -、公差为1的等差数列. 所以1||=112n n a a a n a n +--+-=-+,所以212||22n n a a a n +-=-+,221||32n n a a a n --=-+, 因为221n n a a ->且221n n a a +>,所以22122n n a a a n +-=-+,22132n n a a a n --=-+ …………………6分 所以21211n n a a +--=-,所以212n a n -=-,22132+1n n a a n a a n -=-+=-+………8分所以3,2=1,2n nn a n a n -⎧⎪⎪⎨⎪+-⎪⎩为奇数为偶数. ………10分 (3)由已知得1||=1(1)n n a a a n d +--+-()*n ∈N…………………………………①若{}2n a 、{}21n a -分别构成等差数列, 则[]221=1(22)n n a a a n d--±-+-()2n ≥…①[]212=1(21)n n a a a n d +-±-+-()1n ≥, ……………………………①2221=(12)n n a a a nd ++-±-+()1n ≥, ……………………………①由①+①得:[][]2121=1(21)1(22)n n a a a n d a n d +--±-+-±-+-()2n ≥因为{}21n a -是等差数列,2121n n a a +--必为定值所以[][]2121=1(21)1(22)n n a a a n d a n d +---+---+-或[][]2121=1(21)+1(22)n n a a a n d a n d +----+--+-即2121n n a a d +--=()2n ≥或2121n n a a d +--=-()2n ≥ ………………12分 而由①知321a a a d -=-+,即()321a a a d -=±-+,所以()3111a a a a d -=-±-+,即31a a d -=-或()3121a a a d -=-+(舍) 故2121()n n a a d n *+--=-∈N …………………………………………14分⎪⎪⎭⎫ ⎝⎛⎩⎨⎧=-+-=-=k n a k k n k a n 2,112,2或写成所以()*211(1)n a n d n -=--∈N . 同理,由①+①得:[][]222=121(21)n n a a a nd a n d +-±-+±-+-()1n ≥,所以222=n n a a d +-或222n n a a d +-=-,由上面的分析知321a a a d -=-+-, 而()4312a a a d -=±-+,故()42112a a a d a d -=-+-±-+, 即42a a d -=或42222a a a d -=-+-(舍) 所以222=n n a a d +- ………………16分所以2(1)n a a n d =+-, 从而21221221k k k k a a a a a -+++=+=+(*k ∈N )所以21221(1)(1)(1)(1)n n n aS a a a a a a n a +=+++=++++⋅⋅⋅++=+个…18分。
北京市昌平区第一中学2020_2021学年高二数学上学期期中试题含解析

【分析】
把直线方程化成斜截式,根据斜率等于倾斜角的正切求解.
【详解】直线 化成斜截式为 ,
因为 ,所以 .
故选B.
【点睛】本题考查直线的斜截式方程和基本性质,属于基础题.
3.已知 , ,则 的值为()
A. 4B. C. 5D.
【答案】B
【解析】
【分析】
先求得 ,再利用空间向量模的公式计算.
【详解】∵ , , , ,
【答案】(1)见解析;(2) ;(3)见解析.
【解析】
【分析】
(1)建立如图所示的空间直角坐标系,求出 以及平面 的法向量后可证明 平面 .
(2)求出平面 的法向量后可求二面角 的余弦值.
(3)可证明 始终不为零,从而可证 与 都不垂直.
【详解】因为 底面 ,而 底面 , 底面 ,
故 , ,
又底面 是矩形,故 .
依题意满足条件的最小正方形是各边以 为中点,边长为2的正方形,故不存在一个以原点为中心、边长为 的正方形,使得曲线 在此正方形区域内(含边界),故③不正确.
故答案为:①②
【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.
三、解答题共5题,共70分.解答应写出文字说明,演算步骤或证明过程.
A. B. C. D.
【答案】D
【解析】
【分析】
根据圆心到直线的距离等于半径求解.
【详解】解:直线 的一般方程为 ,
圆 的圆心为 ,半径为 .
直线与圆相切, , .
故选:D.
6.圆 和圆 的位置关系是()
A.相交B.内切C.外切D.相离
【答案】C
【解析】
【分析】
分别求出两圆的圆心和半径,求得圆心距与半径和或差的关系,即可判断位置关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高二数学上期中试题(含答案)一、选择题1.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 2.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .493.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 56 繁殖个数y (千个)2.5344.5由最小二乘法得y 与x 的线性回归方程为ˆˆ0.7yx a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95D .6.154.某程序框图如图所示,若输出的S=57,则判断框内为A.k>4? B.k>5?C.k>6? D.k>7?5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为A.7 B.15 C.25 D.356.执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.117.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A.45B.35C.25D.158.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为()A.13B.14C.15D.169.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.100,20B.200,20C.100,10D.200,1010.A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为30%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生09之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:402978191925273842812479569683 231357394027506588730113537779则这三天中至少有两天有强浓雾的概率近似为()A.14B.25C.710D.1511.若框图所给的程序运行结果为,那么判断框中应填入的关于k的条件是A.?B.?C.?D.?12.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为1 50;④中部地区学生小张被选中的概率为1 5000A.①④B.①③C.②④D.②③二、填空题13.运行如图所示的流程图,则输出的结果S为_______.14.从标有1,2,3,4,5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为________;15.某高中校高一、高二、高三三个年级人数分别为300,300,400通过分层抽样从中抽取40人进行问卷调查,高三抽取的人数是______.16.从正五边形的对角线中任意取出两条,则取出的两条对角线为图中同一个等腰三角形的两腰的概率为________.17.为了了解某地区高三学生的身体发育情况,抽查了该地区400名年年龄为17岁~18岁的男生体重()kg,得到频率分布直方图如图5所示:根据图2可得这200名学生中体重在[64.5,76.5]的学生人数是__________. 18.程序框图如图所示,若输出的y =0,那么输入的x 为________.19.为了调查某班学生做数学题的基本能力,随机抽查部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为[)45,55,[)55,65,[)65,75,[)75,85,[)85,95,由此得到频率分布直方图如下图,则这些学生的平均分为__________.20.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是_______.三、解答题21.中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占13,他们在本学期期末考试中的物理成绩如下面的频率分布直方图:(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值). (2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量, ①补充下面的22⨯列联表:物理成绩优秀 物理成绩不优秀 合计对此事关注 对此事不关注 合计②是否有95%以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x (单位:亿元)与该地区粮食产量y (单位:万亿吨)之间存在着线性相关关系,统计数据如下表: 年份 2014 2015 2016 2017 2018 补贴额x /亿元 9 10 12 11 8 粮食产量y /万亿2526313721(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 23.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题: (1)79.589.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)和平均数?24.某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费x 与旅游收入y (单位:万元)之间有如下表对应数据:x2 4 5 6 8 y 3040605070(1)求旅游收入y 对广告支出费x 的线性回归方程y bx a =+,若广告支出费12万元,预测旅游收入;(2)在已有的五组数据中任意抽取两组,根据(1)中的线性回归方程,求至少有一组数据,其预测值与实际值之差的绝对值不超过5的概率.(参考公式:1221ni ii nii x y nxyb xnx==-=-∑∑,a y bx =-,其中,x y 为样本平均值,参考数据:521145i i x ==∑,52113500i i y ==∑,511380i ii x y==∑)25.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),...,[80,90),[90,100](1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率. 26.某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照[)[)[]50,60,60,70,,90,100⋅⋅⋅分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中x 的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)用样本估计总体,若该校共有2000名学生,试估计该校这次测试成绩不低于70分的人数;(3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人,试求成绩在[]80,100的学生至少有1人被抽到的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B. 点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A .2.C解析:C 【解析】 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==,故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .3.B解析:B 【解析】 【分析】根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a =,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7yx a =+,即79ˆ0.722a=⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+, 当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B .【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.4.A解析:A 【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.5.B解析:B 【解析】试题分析:抽样比是,所以样本容量是.考点:分层抽样6.C解析:C 【解析】 【分析】根据程序框图列出算法循环的每一步,结合判断条件得出输出的n 的值. 【详解】执行如图所示的程序框图如下:409S =≥不成立,11S 133==⨯,123n =+=; 1439S =≥不成立,1123355S =+=⨯,325n =+=; 2459S =≥不成立,2135577S =+=⨯,527n =+=; 3479S =≥不成立,3147799S =+=⨯,729n =+=. 4499S =≥成立,跳出循环体,输出n 的值为9,故选C. 【点睛】本题考查利用程序框图计算输出结果,对于这类问题,通常利用框图列出算法的每一步,考查计算能力,属于中等题.7.C解析:C【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.8.C解析:C 【解析】 【分析】 【详解】由题意得等差数列{}n a 中258715,28a a a S ++== 求15a25855153155a a a a a ++=⇒=⇒=1774428772845412a a S a a d +=⇒⨯==⇒=∴=-= 154(154)1415415a a ∴=+-⨯=+-=,选C.9.B解析:B 【解析】 【分析】 【详解】试题分析:由题意知,样本容量为()3500450020002%200++⨯=,其中高中生人数为20002%40⨯=,高中生的近视人数为4050%20⨯=,故选B. 【考点定位】本题考查分层抽样与统计图,属于中等题.10.D解析:D 【解析】 【分析】由题意知模拟这三天中至少有两天有强浓雾的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天有强浓雾的有可以通过列举得到共4组随机数,根据概率公式,得到结果. 【详解】由题意知模拟这三天中至少有两天有强浓雾的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天有强浓雾的有,可以通过列举得到共5组随机数:978,479、588、779,共4组随机数,所求概率为41 205=,故选D.【点睛】本题考查模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用.11.A解析:A【解析】【分析】根据所给的程序运行结果为,执行循环语句,当计算结果S为20时,不满足判断框的条件,退出循环,从而到结论.【详解】由题意可知输出结果为,第1次循环,,,第2次循环,,,此时S满足输出结果,退出循环,所以判断框中的条件为.故选:A.【点睛】本题主要考查了循环结构,是当型循环,当满足条件,执行循环,同时考查了推理能力,属于基础题.12.B解析:B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生2400100240016001000⨯=++48人、中部地区学生1600100240016001000⨯=++32人、西部地区学生1000100240016001000⨯=++20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为1001 24001600100050=++,题中的说法正确;④中部地区学生小张被选中的概率为100124001600100050=++,题中的说法错误;综上可得,正确的说法是①③. 本题选择B 选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【解析】【分析】【详解】由题设中提供的算法流程图中的算法程序可知当则执行运算;继续运行:;继续运行:;当时;应填答案 解析:12【解析】 【分析】 【详解】由题设中提供的算法流程图中的算法程序可知当2,135S i ==<,则执行运算132,222S i =-==;继续运行: 325,3236S i =-==;继续运行: -----;当35i =时;12S =,应填答案12.14.【解析】【分析】设事件A 表示第一张抽到奇数事件B 表示第二张抽取偶数则P (A )P (AB )利用条件概率计算公式能求出在第一次抽到奇数的情况下第二次抽到偶数的概率【详解】解:从标有12345的五张卡片中依 解析:12【解析】 【分析】设事件A 表示“第一张抽到奇数”,事件B 表示“第二张抽取偶数”,则P (A )35=,P (AB )3235410=⨯=,利用条件概率计算公式能求出在第一次抽到奇数的情况下,第二次抽到偶数的概率. 【详解】解:从标有1、2、3、4、5的五张卡片中,依次抽出2张,设事件A 表示“第一张抽到奇数”,事件B 表示“第二张抽取偶数”, 则P (A )35=,P (AB )3235410=⨯=, 则在第一次抽到奇数的情况下,第二次抽到偶数的概率为:P (A|B )()()3P AB 1103P A 25===. 【点睛】本题考查概率的求法,考查条件概率等基础知识,考查运算求解能力.15.16【解析】高一高二高三抽取的人数比例为所以高三抽取的人数是解析:16 【解析】高一、高二、高三抽取的人数比例为300300400=334::::, 所以高三抽取的人数是440=16.3+3+4⨯ 16.【解析】【分析】先求出所有的基本事件再求出满足条件的基本事件根据概率公式计算即可【详解】从5条对角线中任意取出2条共有10个基本事件其中取出的两条对角线为某一个等腰三角形的两腰有5个所以取出的两条对 解析:12【解析】 【分析】先求出所有的基本事件,,再求出满足条件的基本事件,根据概率公式计算即可. 【详解】从5条对角线中任意取出2条,共有10个基本事件,其中取出的两条对角线为某一个等腰三角形的两腰有5个,所以取出的两条对角线为图中同一个等腰三角形的两腰的概率为51102=. 即答案为12. 【点睛】本题考查概率的求法,涉及到直线、组合、概率等知识,属于中档题.17.232【解析】由图可知:段的频率为则频数为人解析:232 【解析】由图可知:64.576.5~段的频率为1(0.010.030.050.050.07)20.58-++++⨯=, 则频数为4000.58232⨯=人.18.-3或0【解析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算分段函数的函数值当x <0时y=x+3=0∴x=-3满足要求当x=0时y=0∴x=0满足要求当x >0时y=x+解析:-3或0【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数3,00,05,0x xy xx x+<⎧⎪==⎨⎪+>⎩的函数值,当x<0时,y=x+3=0,∴x=-3满足要求,当x=0时,y=0,∴x=0满足要求,当x>0时,y=x+5,∴x=-5,不满足要求,故输入的x的值为:-3或0.19.64【解析】结合频率分布直方图可得平均分为:即这些学生的平均分为64分点睛:利用频率分布直方图求众数中位数和平均数时应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形解析:64【解析】结合频率分布直方图可得,平均分为:()()()()() 500.02010600.04010700.02510800.01010900.0051064⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,即这些学生的平均分为64分.点睛:利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.【解析】因为公共汽车每5分钟发车一次当乘客在上一辆车开走后两分钟内达到则他候车时间会超过3分钟所以候车乘客候车时间超过3分钟的概率为解析:3 5【解析】因为公共汽车每5分钟发车一次,当乘客在上一辆车开走后两分钟内达到,则他候车时间会超过3分钟,所以候车乘客候车时间超过3分钟的概率为5-23=55P=。