示波器原理及使用
示波器的原理及使用方法
示波器示波器 (1)一、示波器的工作原理 (2)(一)示波器的组成 (2)1.显示电路 (2)2.垂直(Y轴)放大电路 (3)3.水平(X轴)放大电路 (3)4.扫描与同步电路 (3)5.电源供给电路 (3)(二)波形显示的基本原理 (4)(三)双线、双踪示波的显示原理 (5)1.双线(或多线)示波 (5)二、示波器的使用方法 (8)(一)面板装置 (8)3.X轴插件部分 (10)(二)使用前的检查、调整和校准 (11)(三)使用步骤 (12)1.选择Y轴耦合方式 (12)2.选择Y轴灵敏度 (12)3.选择触发(或同步)信号来源与极性 (12)4.选择扫描速度 (12)5.输入被测信号 (12)三、垂直方向无展示 (13)四、波形不稳定。
(13)(四)使用不当造成的异常现象 (15)三、示波器的测试应用 (15)(一)电压的测量 (15)(1)交流电压的测量 (16)(2)直流电压的测量 (16)2.比较测量法 (16)(二)时间的测量 (17)(三)相位的测量 (17)(四)频率的测量 (18)示波器使用注意事项 (19)示波器是一种用途十分广泛的电子测量仪器。
它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。
示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。
在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。
利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。
一、示波器的工作原理(一)示波器的组成普通示波器有五个基本组成部分:显示电路、垂直(Y轴)放大电路、水平(X轴)放大电路、扫描与同步电路、电源供给电路。
1.显示电路显示电路包括示波管及其控制电路两个部分。
示波管是一种特殊的电子管,是示波器一个重要组成部分。
示波管由电子枪、偏转系统和荧光屏3个部分组成。
示波器的原理及使用方法
示波器示波器 (1)一、示波器的工作原理 (2)(一)示波器的组成 (2)1.显示电路 (2)2.垂直(Y轴)放大电路 (3)3.水平(X轴)放大电路 (3)4.扫描与同步电路 (3)5.电源供给电路 (3)(二)波形显示的基本原理 (4)(三)双线、双踪示波的显示原理 (5)1.双线(或多线)示波 (5)二、示波器的使用方法 (8)(一)面板装置 (8)3.X轴插件部分 (10)(二)使用前的检查、调整和校准 (11)(三)使用步骤 (12)1.选择Y轴耦合方式 (12)2.选择Y轴灵敏度 (12)3.选择触发(或同步)信号来源与极性 (12)4.选择扫描速度 (12)5.输入被测信号 (12)三、垂直方向无展示 (13)四、波形不稳定。
(13)(四)使用不当造成的异常现象 (15)三、示波器的测试应用 (15)(一)电压的测量 (15)(1)交流电压的测量 (16)(2)直流电压的测量 (16)2.比较测量法 (16)(二)时间的测量 (17)(三)相位的测量 (17)(四)频率的测量 (18)示波器使用注意事项 (19)示波器是一种用途十分广泛的电子测量仪器。
它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。
示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。
在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。
利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。
一、示波器的工作原理(一)示波器的组成普通示波器有五个基本组成部分:显示电路、垂直(Y轴)放大电路、水平(X轴)放大电路、扫描与同步电路、电源供给电路。
1.显示电路显示电路包括示波管及其控制电路两个部分。
示波管是一种特殊的电子管,是示波器一个重要组成部分。
示波管由电子枪、偏转系统和荧光屏3个部分组成。
示波器的使用原理及应用
示波器的使用原理及应用一、示波器简介示波器是一种常用的电子测量仪器,主要用于观测和分析电信号的变化过程。
它可以将电信号的波形图显示在屏幕上,帮助工程师分析信号的频率、幅度和相位等特性。
示波器广泛应用于电子、通信、计算机等领域。
二、示波器原理示波器的基本原理是将被测电信号通过垂直放大器进行放大,然后通过水平放大器和时间基准电路进行时间扩展,最后通过电子束扫描屏幕上的荧光物质,形成波形图。
示波器的主要组成部分包括: 1. 前置放大器:负责对电信号进行放大,以便能够更好地显示在屏幕上。
2. 时间基准电路:用于控制电子束的扫描速度,确定波形图的时间轴。
3. 垂直放大器:负责调整波形图的垂直尺度,以显示电信号的幅度信息。
4. 水平放大器:控制波形图的水平尺度,即控制波形图在屏幕上的宽度。
5. 视象管:位于示波器的屏幕上,负责显示波形图。
三、示波器的应用示波器在电子领域有着广泛的应用,下面列举了几个示波器的主要应用场景:1. 电路调试和故障排除示波器在电路调试和故障排除中扮演着重要的角色。
通过观察电路中各个节点的波形图,工程师可以判断电路是否正常工作、是否存在故障。
例如,当一个电路出现问题时,可以通过示波器观察信号的幅度、频率等变化,从而定位故障点。
2. 信号分析与研究示波器可以帮助工程师对信号进行频率分析、相位分析等。
通过观察信号的频谱图,可以了解信号的频率成分和幅度分布,帮助优化系统性能。
此外,示波器还可以用于研究信号的时域特性和相位关系,从而推导出信号的数学模型。
3. 通信信号测试在通信领域,示波器被广泛用于测试和分析各种通信信号。
例如,对于数字通信系统,示波器可以用来观察数据信号的传输质量,如误码率和信号失真情况。
而对于模拟通信系统,示波器可以用来观察信号的带宽、调制深度等参数。
4. 波形发生器控制示波器通常具备波形发生器控制功能,可以通过示波器控制波形发生器产生各种特定的波形信号。
这在测试和教学中非常实用,可以生成各种标准的波形信号,如正弦波、方波、脉冲波等。
示波器的工作原理和使用方法
示波器的工作原理和使用方法
示波器是一种用于观察和测量电信号波形的专用仪器。
它可以测量电压、电流、频率和相位等信号特征,常用于电子、通信、医疗和科学等领域。
下面将介绍示波器的工作原理和使用方法。
1. 工作原理
示波器的工作原理基于两个技术原理:扫描和采样。
扫描指的是示波器屏幕上的电子枪扫描电子束的水平速度,即水平扫描速率。
采样指的是示波器对信号进行采样的速度,即垂直扫描速率。
通过这两个速率的不同,示波器可以将电信号完整地显示在屏幕上。
2. 使用方法
使用示波器时需要注意以下几点:
(1)接线。
正确地连接信号源和示波器。
一般情况下,示波器的输入电阻为1MΩ或10MΩ,应根据信号源而定。
(2)校准。
打开示波器,进行校准,调整时基、触发电平、垂直灵敏度等参数,确保信号的准确显示。
需要注意的是,示波器的校准需要经过一定的时间稳定后才能进行。
(3)触发。
选择合适的触发方式,设置触发电平,确保示波器可以捕捉到所需的信号。
(4)测量。
根据需要选择合适的测量方式,包括电压、电流、频率和相位等。
示波器还可以进行自动测量,可以方便地获取信号的各种特征参数。
(5)保存。
示波器可以将测量结果保存到内存或者USB设备上,方便之后的查阅和分析。
总之,示波器是一种十分有用的仪器,对于电子、通信和科学等领域的工作者来说,必不可少。
正确地掌握示波器的工作原理和使用方法,能够更好地帮助工作者开展工作。
示波器的原理和使用实验小结
一、引言示波器是一种广泛应用于电子、通信、计算机等领域的仪器设备,其主要功能是用来观测和分析电信号的波形、频率和幅度等特性。
在实际工作中,示波器已经成为了电子工程师必备的工具之一,因此深入了解示波器的原理和使用方法对于电子工程师来说是非常重要的。
二、示波器的原理示波器的主要原理是利用电子束在荧光屏上的轨迹来显示电信号的波形。
简单来说,示波器将电信号输入到垂直和水平两个方向的偏转板上,通过控制偏转板的电场来控制电子束的运动轨迹,从而在荧光屏上显示出电信号的波形。
具体来说,示波器的工作原理可以分为以下几个步骤:1. 信号输入:将待测信号通过探头输入到示波器的输入端口。
2. 前置放大:示波器将输入信号进行前置放大,以增强信号的幅度,提高信号的分辨率。
3. 水平扫描:示波器通过水平扫描电路控制水平偏转板的电场,使电子束在荧光屏上水平扫描,形成水平基准线。
4. 垂直偏转:示波器通过垂直偏转电路控制垂直偏转板的电场,使电子束在荧光屏上垂直偏转,形成电信号的波形。
5. 视觉显示:荧光屏上的荧光物质会发光,显示出电信号的波形。
示波器通过调节荧光屏的亮度、对比度等参数,使波形更加清晰明亮。
三、示波器的使用实验小结为了更加深入了解示波器的原理和使用方法,我们进行了一系列的实验,以下是实验小结:1. 实验一:基本操作首先我们需要了解示波器的基本操作,包括信号输入、调节水平、垂直偏转、调节亮度、对比度等参数。
通过实验,我们成功地显示出了正弦波、方波、三角波等信号的波形,并且调节了波形的幅度、频率等参数。
2. 实验二:频率测量示波器可以用来测量信号的频率,我们通过输入不同频率的正弦波信号,成功地测量出了信号的频率,并且验证了示波器的频率测量准确性。
3. 实验三:相位测量示波器还可以用来测量信号的相位差,我们通过输入两个正弦波信号,成功地测量出了信号的相位差,并且验证了示波器的相位测量准确性。
4. 实验四:示波器的X-Y模式示波器还具有X-Y模式,可以用来显示两个信号之间的相互作用关系。
示波器的原理和使用、声速测量实验报告.doc
示波器的原理和使用、声速测量实验报告.doc 示波器原理和使用示波器又称示波仪,是一种用于观察和测量电信号波形的仪器。
它可以通过探针将待测电信号输入示波器,然后在示波器屏幕上显示出该电信号的波形图。
示波器的工作原理是利用显像管来显示被测电压波形。
当待测电压信号被输入后,示波器中的电子束会受到电信号的控制而在显像管屏幕上形成一条波形曲线,从而达到观察和测量电信号的目的。
示波器的使用方法如下:1.将待测电信号输入示波器。
2.调节示波器的水平和垂直放大系数,以便能够清晰地观察到波形。
3.根据需要调整示波器的触发模式,使波形图显示正常。
4.观察和分析波形,进行相应的测量和分析。
声速测量实验报告一、实验目的1.了解并掌握测量声速的原理和方法。
2.掌握测量仪器的使用方法。
3.了解如何利用实验和数据处理方法准确地测量声速。
二、实验器材1.示波器2.声源3.接收器4.测量仪器5.计算机三、实验步骤1.将声源和接收器分别放置于固定距离的两个位置,并打开实验仪器测量声波传播的时间差。
2.将测量得到的时间差带入公式中,计算出声速的实际值。
3.将实验数据输入计算机进行处理和分析。
四、实验结果与误差分析1.经过多次实验和计算,得到的声速实际值为345m/s,与标准值相差不大,误差范围在正负3%以内。
2.实验过程中受到的误差主要来自于仪器误差和实验操作误差。
在实际测量中需要尽可能减小这些误差。
五、结论本次实验采用了简单的测量方法和仪器,准确地测量了声速的实际值。
实验结果与标准值相差不大,证明了实验方法的有效性和可靠性。
六、参考文献无。
示波器的使用方法和原理
1 示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。
它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。
示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
1.1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。
它将电信号转换为光信号。
电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。
在荧光膜上常又增加一层蒸发铝膜。
高速电子穿过铝膜,撞击荧光粉而发光形成亮点。
铝膜具有内反射作用,有利于提高亮点的辉度。
铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。
亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。
余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。
一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。
一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。
它的作用是发射电子并形成很细的高速电子束。
灯丝通电加热阴极,阴极受热发射电子。
栅极是一个顶部有小孔的金属园筒,套在阴极外面。
由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。
初速度小的电子仍返回阴极。
如果栅极电位过低,则全部电子返回阴极,即管子截止。
调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。
示波器的原理及使用
示波器的原理及使用
示波器是一种用来测量电压、电流和其他电信号的仪器。
它具有一个触发电路,可用来稳定地显示波形信号。
以下是示波器的原理和使用。
原理:
1. 示波器的基本原理是通过控制电子束在屏幕上的运动来显示输入信号的波形。
电子束通过垂直和水平偏转系统控制,然后在屏幕上显示出相应的波形。
2. 示波器将输入信号分为若干离散的时间间隔,并将每个间隔的电压值转换为电子束的垂直位置。
水平控制系统则将这些离散的时间间隔在水平方向上显示出来,形成一个波形图像。
使用:
1. 连接电路:首先,将待测的电路连接到示波器的输入端。
可以使用探头将电路与示波器连接,以避免对待测电路造成干扰。
2. 调整控制:通过触发电路和示波器面板上的控制旋钮,可以调整示波器的各种参数,如时间和电压刻度、扫描速率等,以获得所需的波形显示。
3. 观察波形:一旦示波器设置正确,波形将在示波器屏幕上显示出来。
可以观察波形的振幅、频率、相位等特性,进而分析电路的性能和问题。
4. 测量:示波器还可以进行一些测量,如测量波形的峰峰值、平均值、频率等。
它还可以进行波形的比较和数学运算,如求积分、微分等。
总结:
示波器通过控制电子束在屏幕上的运动来显示输入信号的波形。
使用示波器可以连接待测电路、调整控制参数、观察和测量波形等,以便分析电路的性能和问题。
简述示波器的工作原理和使用方法
简述示波器的工作原理和使用方法示波器是一种常见的电子测试仪器,用于检测和显示电信号的波形。
它在电子工程、通信、医学等领域中发挥着重要作用。
本文将简要介绍示波器的工作原理和使用方法。
一、工作原理示波器通过接收和处理电信号,并将其转换为可视化的波形图形。
它主要由以下几个部分组成:1. 输入电路:示波器的输入电路用于接收被测信号,常见的输入方式有电压探头、电流探头等。
输入电路通常具有不同的带宽范围和灵敏度,可以适应不同频率和振幅的信号。
2. 触发电路:触发电路确定了示波器何时开始采集和显示波形。
触发通常基于信号的特定条件,如信号达到或超过某个阈值等。
触发电路的设置对于正确显示信号的波形非常重要。
3. 垂直放大器:垂直放大器用于放大输入信号的电压。
示波器通常具有多个垂直放大器,允许对不同幅度的信号进行测量和显示。
垂直放大器通常具有可调的放大倍数和直流耦合/交流耦合模式。
4. 水平放大器和扫描发生器:水平放大器和扫描发生器控制示波器屏幕上波形的时间轴。
水平放大器决定了横向显示的时间范围,而扫描发生器则控制屏幕上波形的扫描速率。
5. 显示屏:示波器的显示屏用于显示波形。
现代示波器通常采用液晶显示屏,具有高分辨率和清晰度。
二、使用方法使用示波器需要以下几个步骤:1. 连接信号:使用正确的电压探头或电流探头将被测信号连接到示波器的输入端口。
确保连接正确,并选择合适的探头放大倍数。
2. 设置触发条件:根据被测信号的特点,设置合适的触发条件。
可以选择边沿触发或脉冲触发,设置触发电平等。
3. 调整垂直和水平放大器:根据被测信号的振幅和频率调整垂直和水平放大器。
确保波形在显示屏上具有适当的大小和清晰度。
4. 调整扫描速率:根据被测信号的周期和需要显示的波形数量,调整扫描速率。
较高的扫描速率可以显示更多的细节,但可能导致波形在屏幕上移动得很快,不易观察。
5. 观察和分析波形:开始采集和显示波形后,观察并分析波形特征。
可以测量波形的振幅、频率、周期等参数,并进行进一步的信号分析。
示波器的工作原理和使用方法
示波器的工作原理和使用方法示波器是一种用于观察电信号波形的仪器,它可以将电信号转换成可视化的波形图形,以便工程师和技术人员对电路的性能进行分析和调试。
本文将介绍示波器的工作原理和使用方法。
一、示波器的工作原理示波器的工作原理基于电信号的振荡和放大。
当电信号进入示波器时,它会被放大并转换成可视化的波形图形。
示波器的核心部件是电子枪和荧光屏。
电子枪会发射一束电子束,这束电子束会被加速并聚焦成一束细线,然后通过一个偏转系统,将电子束偏转成水平和垂直方向。
当电子束击中荧光屏时,它会激发荧光屏上的荧光物质,从而形成一个波形图形。
二、示波器的使用方法1. 连接电路:首先需要将示波器与待测电路连接起来。
通常情况下,示波器会有两个探头,一个用于连接待测电路的信号源,另一个用于连接地线。
2. 调整示波器:在连接电路之后,需要对示波器进行调整。
首先需要调整示波器的触发模式,以便触发电路的波形。
然后需要调整示波器的时间基准,以便调整波形的时间轴。
最后需要调整示波器的垂直增益,以便调整波形的幅度。
3. 观察波形:在调整示波器之后,可以开始观察波形了。
通常情况下,示波器会显示出电信号的波形图形,包括波形的幅度、频率、周期等信息。
通过观察波形,可以分析电路的性能,找出电路中的问题。
4. 调试电路:如果发现电路中存在问题,可以通过示波器来进行调试。
例如,可以通过调整电路的参数,来改变波形的形状和幅度。
通过不断地调试,可以找出电路中的问题,并进行修复。
示波器是一种非常重要的电子测试仪器,它可以帮助工程师和技术人员对电路进行分析和调试。
通过了解示波器的工作原理和使用方法,可以更好地使用示波器,提高工作效率。
示波器的原理和应用的实验原理
示波器的原理和应用的实验原理
示波器的原理是利用了信号的振幅、频率、相位等信息来显示波形。
示波器原理分为两大类:模拟示波器和数字示波器。
模拟示波器工作原理:
1. 采样:示波器通过垂直放大器将输入信号放大到合适的幅度,并使用水平放大器将信号在时间上进行放大。
2. 水平扫描:示波器会发出一定的扫描电子束,在水平方向上扫描CRT屏幕,形成水平方向上的光点。
3. 垂直放大:扫描电子束经过垂直放大器,根据输入信号的电压变化控制电子束在银幕上的垂直位置,形成波形。
数字示波器工作原理:
1. 采样:输入信号经过模数转换器(ADC)进行采样,将模
拟信号转换为数字信号。
2. 数字处理:数字示波器将采样的数字信号进行数学处理,例如存储、平均、滤波等。
3. 显示:通过数字信号将处理后的数据转换为模拟信号,再通过模拟示波器的原理进行显示。
示波器的应用实验原理:
示波器常用于观察、测量电子设备的信号波形,例如:
1. 波形分析:通过观察信号的形状和特征,判断电路是否正常工作,诊断故障。
2. 信号测量:示波器可以测量电压、频率、相位、占空比等信号参数。
3. 信号发生器:示波器可以通过外部输入产生信号,用于测试
其他电子设备的响应性能。
4. 存储和比较:示波器通过存储信号波形,可以与其他波形进行比较,分析电路的变化和干扰情况。
5示波器的原理和使用讲解
示波器的原理和使用【实验简介】示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。
从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。
在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。
若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。
正确使用示波器是进行电子测量的前提。
第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。
发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。
【实验目的】1、了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。
2、学习用示波器观察电信号的波形和测量电压、周期及频率值。
3、通过观察李萨如图形,学会一种测量正弦波信号频率的方法。
【实验仪器】VD4322B型双踪示波器、EM1643型信号发生器、连接线等图1 VD4322型双踪示波器面板○1:电源开关○2:电源指示灯○3:聚焦旋钮○4:辉度旋钮○5:Y1(X)信号输入端口○6:Y2(Y)信号输入端口○7、○8:输入耦合选择开关(AC-GND-DC)○9、○10:垂直偏转因数选择开关(V/格)○11:Y1垂直位移旋钮○12:Y2垂直位移旋钮○13:工作方式选择开关(Y1、Y2、交替、断续和Y1+Y2)○14:扫描速度(时间/格)选择开关○15:扫描微调旋钮○16:水平位移旋钮○17:电平调节旋钮○18:外触发源输入端口○19:内触发选择开关○20:触发方式选择开关【实验原理】示波器显示随时间变化的电压,将它加在电极板上,极板间形成相应的变化电场,使进入这个变化电场的电子运动情况随时间作相应地变化,从而通过电子在荧光屏上运动的轨迹反映出随时间变化的电压。
示波器的工作原理与使用
示波器用处广泛,它的最大特点是能把看不见的电信号变换成能直接观察的电压波形,并能测定电压信号的幅度、周期和频率等参数。
双踪示波器还可测量两个信号之间的位相差,是工程技术中常用的电子仪器。
1.了解示波器的主要结构和基本工作原理。
2.学会使用示波器和信号发生器。
3.学会用示波器观察信号波形。
4 .学会用示波器观察李萨如图形并测量市电的频率。
示波器、函数信号发生器、小变压器等。
示波器的规格和型号不少,但不管哪种示波器都由图 4-6-1 所示的几个基本组成部份:示波管、竖直放大器(Y 轴放大器)、水平放大器(X 轴放大器)、扫描发生器、触发同步和直流电源等部份。
图 4-6-1 示波器结构框图一、示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。
如图 4-6-2 所示。
图4-6-2 示波管1.电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部份组成,阴极是一个表面涂有氧化层的金属圆筒,灯丝通电加热后发射电子。
控制栅极是一个顶端有小孔的圆筒,套在阴极外面,它的电位比阴极稍低,对阴极发射出来的电子起控制作用,惟独初速度较大的电子才干穿过栅极顶端的小孔,然后在阳极加速下奔向荧光屏。
示波器面板上的“亮度”调整旋钮,就是通过调节栅极电位以控制射向荧光屏的电子流密度,从而改变屏上光斑的亮度。
阳极电位比阴极电位高不少,电子被它们之间的电场加速形成射线。
当控制栅极、第一阳极与第二阳极之间电位调节合适时,电子枪内的电场对电子射线有聚焦作用,所以第一阳极也称聚焦阳极,第二阳极电位更高,又称加速阳极。
面板上的“聚焦”调节旋钮,就是调节第一阳极电位,使荧光屏上的光斑成为璀璨、清晰的小圆点。
有的示波器还有“辅助聚焦”,实际是调节第二阳极电位。
2.偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,称为Y 偏转板;一对水平偏转板,称为 X 偏转板。
在偏转板上加之适当电压,当电子束通过时运动方向将发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。
示波器的原理及使用
垂直方式选ADD, 通道2极性选NORM, 扫描速率调到合 适值, 调可调标准信号源信号频率, 使屏上出现稳定的“拍”波 形, 观察 “拍”现象。
5.利用双踪示波器测量相位差
方法一: 将一个待测信号输 入示波器的CH1轴,另一个 待测信号输入示波器的CH2 轴, 则两个待测信号间相 位差就转化为CH1与CH2间相 位差 Ф
Tx=nTy , fy=nfx
紊乱的波形
触发同步电路, 它从垂直放大电路中取出部分待 测信号, 输入到扫描发生器, 迫使锯齿波与待测信号 同步, 此称为“内同步”.操作时使用“电平” (LEVEL)旋钮 。
3.示波器面板控制件的作用简介
校准信号 电源开荧关光屏 电源指示灯
亮度: 轨迹 亮度调节
聚焦: 轨迹清 晰度调节
的轨迹是封闭的稳定几何图形, 称为李萨如图。
将不同信号源信号分别输入CH1和CH2通道, 扫描速率旋钮置X-Y(逆 时针到底)状态, 调节信号幅度或改变通道偏转因数, 使图形不超出荧光 屏视场, 调节CH1和CH2频率比观察李萨如图 。
测量信号频率
测量原理
fx
ny nx
fy
调出 f y : fx nx : ny =1:1、1:2、2:3、3:4的李萨如图形,
触发极性选择: 选择上升或下降 沿触发扫描
选择触发信号 耦合方式: AC/DC TV
接地
外触发输入
30: CH1输出 31: 电源插座 32: 电源设置 33: 保险丝座
4.函数信号发生器简介
本实验所用函数信号发生器可以输出频率在0.2Hz-2MHz
的正弦波、三角波、方波信号。 面板主要控制件的作用:
电压衰减及扫描速率
示波器工作原理和使用方法
示波器工作原理和使用方法示波器是一种广泛应用于电子工程和通信领域的测量仪器,用于观察和测量电信号的波形和参数。
它工作原理简单,使用方法也相对容易掌握。
一、示波器的工作原理示波器的工作原理基于电子束在电场作用下的运动规律。
它主要由示波管、水平和垂直扫描系统以及触发和放大系统组成。
1. 示波管:示波管是示波器的核心部件,它采用了阴极射线管的原理。
在示波管内部,通过加热阴极产生电子,然后经过加速电极加速,进入一个带有偏转电极的空间。
在偏转电极的作用下,电子束可以在屏幕上形成可见的亮点。
2. 水平和垂直扫描系统:示波器的水平和垂直扫描系统用于控制电子束的移动。
水平扫描系统控制电子束在水平方向上的移动速度,垂直扫描系统控制电子束在垂直方向上的移动速度。
通过控制水平和垂直扫描系统,可以在示波管屏幕上显示出精确的波形。
3. 触发和放大系统:触发系统用于控制示波器何时开始扫描信号,以确保波形显示的稳定性。
放大系统则用于放大输入信号,使其能够在示波管屏幕上可见。
二、示波器的使用方法示波器的使用方法主要包括信号连接、参数设置、触发调整、波形观察和测量等步骤。
1. 信号连接:首先,需要将被测信号通过信号线连接到示波器的输入端口。
确保信号线的连接正确、稳固,并注意接地的正确性。
2. 参数设置:在使用示波器前,需要设置适当的参数,以适应被测信号的特点。
参数包括扫描速度、垂直灵敏度、触发级别等。
根据被测信号的频率和幅度调整参数,使波形在示波管屏幕上能够清晰可见。
3. 触发调整:触发是示波器显示波形的关键。
通过调整触发电平和触发模式,可以确保示波器在稳定状态下工作。
触发电平是指触发系统开始扫描信号的电平,触发模式可以选择自动触发或外部触发,根据实际需要进行调整。
4. 波形观察:设置好参数和触发后,可以开始观察波形。
示波器的屏幕上会显示出被测信号的波形,可以通过调整垂直灵敏度和水平扫描速度等参数,以获得清晰的波形图像。
5. 测量:示波器不仅可以观察波形,还可以进行波形的测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示波器的原理和使用示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。
用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。
在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。
【目的】1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。
2.学会使用示波器观测电信号波形和电压幅值以及频率。
3.学会使用示波器观察李萨如图并测频率。
图7-1 示波器结构图【原理】不论何种型号和规格的示波器都包括了如图7-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X 放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。
1.示波管的基本结构示波管的基本结构如图7-2所示。
主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。
(1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。
灯丝通电后加热阴极。
阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。
控制栅极是一个顶端有小孔的圆筒,套在阴极外面。
它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。
示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。
阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。
当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以,H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板图7-2 示波管结构图第一阳极也称聚集阳极。
第二阳极电位更高,又称加速阳极。
面板上的“聚集”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。
有的示波器还有“辅助聚集”,实际是调节第二阳极电位。
(2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。
在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。
(3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。
不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。
荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。
在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。
2.波形显示原理(1)仅在垂直偏转板(Y偏转板)加一正弦交变电压:如果仅在Y偏转板加一正弦交图7-3 在垂直偏转板加一正弦交变电压图7-4在水平偏转板加一扫描(锯齿)电压变电压,则电子束所产生的亮点随电压的变化在y方向来回运动,如果电压频率较高,由于人眼的视觉暂留现象,则看到的是一条坚直亮线,其长度与正弦信号电压的峰-峰值成正比,如图7-3所示。
(1)仅在水平偏转板加一扫描(锯齿)电压:为了能使y方向所加的随时间t变化的信号电压u y(t)在空间展开,需在水平方向形成一时间轴。
这一t轴可通过在水平偏转板加一如图7-4所示的锯齿电压u x(t),由于该电压在0—1时间内电压随时间成线性关系达到最大值,使电子束在屏上产生的亮点随时间线性水平移动最后到达屏的最右端。
在1—2时间内(最理想情况是该时间为零)u x突然回到起点(即亮点回到屏的最左端)。
如此重复变化,若频率足够高的话,则在屏上形成了一条如图7-4所示的水平亮线,即t轴。
(2)常规显示波形:如果在Y偏转板加一正弦电压(实际上任何所想观察的波形均可)同时在X偏转板加一锯齿电压,电子束受竖直、水平两个方向的力的作用下,电子的运动是两相互垂直运动的合成。
当两电压周期具有合适的关系时,在荧光屏上将能显示出所加正弦电压完整周期的波形图。
如图7-5所示。
3.同步原理(1)同步的概念:为了显示如图7-5所示的稳定图形,只有保证正弦图7-5 波形显示原理图波到I y 点时,锯齿波正好到I x 点,从而亮点扫完了一个周期的正弦曲线。
由于锯齿波这时马上复原,所以亮点又回到A 点,再次重复这一过程,光点所画的轨迹和第一周期的完全重合,所以在屏上显示出一个稳定的波形,这就是所谓的同步。
由此可知同步的一般条件为:T x = n T y ,n = 1,2,3···其中T x 为锯齿波周期,T y 为正弦周期。
若n = 3,则能在屏上显示出三个完整周期的波形。
如果正弦波和锯齿波电压的周期 稍微不同,屏上出现的是一移动着的不稳定图形。
这情形可用图7-6说 明。
设锯齿波形电压的周期T x 比正弦波电压周期T y 稍小,比方说T x = nT y ,n =7/8。
在第一扫描周期内,屏上显示正弦信号0~4点之间的曲线段;在第二周期内,显示4~8点之间的曲线段,起点在4处;第三周期内,显示8~11点之间曲线段,起点在8处。
这样,屏上显示的波形每次都不重叠,好象波形在向右移动。
同理,如果T x 比T y 稍大,则好象在向左移动。
以上描述的情况在示波器使用过程中经常会出现。
其原因是扫描电压的周期与被测信号的周期不相等或不成整数倍,以致每次扫描开始时波型曲线上的起点均不一样所造成的。
(2)手动同步的调节:为了获得一定数量的稳定波形,示波器设有“扫描周期”、“扫 描微调”旋钮,用来调节锯齿波电压的周期T x (或频率f x ),使之与被测信号的周期T Y (或频率f Y )成整数倍关系,从而,在示波器屏上得到所需数目的完整被测波形。
(3)自动触发同步调节:输入Y 轴的被测信号与示波器内部的锯齿波电压是相互独立的。
由于环境或其他因素的影响,它们的周期(或频率)可能发生微小的改变。
这时虽通过调节扫描旋钮使它们之间的周期满足整数倍关系,但过了一会可能又会变,使波形无法稳定下来。
这在观察高频信号进尤其明显。
为此,示波器内设有触发同步电路,它从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。
操作时,首先使示波器水平扫描处于待触发状态,然后使用“电平”(LEVEL )旋钮,改变触发电压大小,当待测信号电压上升到触发电平时,扫描发生器才开始扫描。
若同步信号是从仪器外部输入时,则称“外同步”。
4.李萨如图形的原理如果示波器的X 和 Y 输入是频率相同或成简单整数比的两个正弦电压,则屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图。
图7-7所示的为f Y ∶f x = 2∶1的李萨如图形。
频率比不同的将形成不同的李萨如图形。
图7-8所示的是频率比成简单整数比值的几组李U萨如图形。
从中可总结出如下规律:如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上切点数n x与竖边上的切点数n y之比恰好等于Y和X输入的两正弦信号的频率之比,即f y∶f x= n x∶n y。
但若出现图(b)或(f)所示的图形,有端点与假想边框相接时,应把一个端点计为1/2个切点。
所以利用李萨如图形能方便地比较两正弦信号的频率。
若已知其中一个信号的频率,数出图上的切点数n x和n y,便可算同另一待测信号的频率。
图7-7 fy : fx=2 : 1的李萨如图形图7-8 fy : fx=n X : n y的几种李萨如图形【实验仪器】1.YB4320G双踪示波器(面板分布图及功能请参见附录A)。
2.YB1634功率函数信号发生器(面板分布图及功能请参见附录B)。
【实验内容】1.校准示波器(1)示波器面板控制件的预置水平位移和光迹旋钮将扫线调到居中并与水平中心刻度平行。
(3)将探极连线接分别连接CH1输入端和2V P-P校准信号端,调节CH1垂直位移和水平位移到适中位置,使显示的方波波形对准刻度线,最后读出电压幅度V P-P和周期(T)。
计算V P-P和周期V P-P=A×V/divT= B×time/div式中A为波形在屏上所占垂直格数,B为一个波形周期在屏上所占水平格数。
在读A和B时,注意还要估读小格,VOL TS/DIV和A TIME/DIV旋钮每一级对应一大格,每一大格分为5小格。
2.观测信号波形并测量峰-峰电压值和频率(1)信号发生器的调节器的CH1输入端,示波器的面板控制件位置同上。
(3)选择不同波形、不同频率、不同幅度的信号进行观察和测量,测量方法同上。
注意,为了提高测量精度,测量时应调节示波器的VOL TS/DIV和A TIME/DIV旋钮,使波形上下、左右达到最大,但不能超出屏幕显示范围,并至少要显示一个完整的波形。
3.观绘李萨如图形(1)用两根信号线分别从两台信号发生器的电压输出端口(VOL TAGE OUT)连接到示波器的CH1(X)输入端和CH2(Y)输入端,信号发生器的波形开关(W A VEFORM)置于“∽”正弦波。
(2)示波器的垂直方式开关置于“CH2”,触发源开关置于“CH1”。
(3)按下示波器的X-Y(11)键,分别观察f y∶f x=1∶1、1∶2、2∶3的李萨如图形,描绘f y∶f x =4∶1的李萨如图形。
【附录】A.YB4320G双踪示波器面板分布图及功能图7-9 YB4320G双踪示波器面板分布图1.主机电源(9)电源开关(POWER)将电源开关按键弹出即为“关”位置,将电源接入,按电源开关,以接通电源。
(8)电源指示灯电源接通时指示灯亮。
(2)辉度旋钮(INTENSITY)顺时针方向旋转旋钮,亮度增强。
接通电源之前将该旋钮逆时针方向旋转到底。
(4)聚焦旋钮(FOCUS)用亮度控制钮将亮度调节至合适的标准,然后调节聚集控制钮直至轨迹达到最清晰的程度,虽然调节亮度时聚集可自动调节,但聚集有时也会轻微变化。
如果出现这种情况,需重新调节聚集。
(5)光迹旋转旋钮(TRACE ROTA TION)由于磁场的作用,当光迹在水平方向轻微倾斜时,该旋钮用于调节光迹与水平刻度线平行。
(45)显示屏仪器的测量显示终端。
数据(1)校准信号输出端子(CAL)提供1kHz±2%,2 V P-P±2%方波作本机Y轴、X轴校准用。
2.垂直方向部分(13)通道1输入端[CH1 INPUT(X)]该输入端用于垂直方向的输入。
在X-Y方式时输入端的信号成为X轴信号。
(17)通道2输入端[CH2 INPUT(Y)]和通道1一样,但在X-Y方式时输入端的信号仍为Y轴信号。
(11)、(12)、(16)、(18)交流—直流—接地耦合选择开关(AC—DC—GND)选择输入信号与垂直放大器的耦合方式交流(AC):垂直输入端由电容器来耦合。