海洋可再生能源的发展现状与趋势1

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海洋可再生能源发展现状与趋势

摘要:在参阅大量文献的基础上,分析当前发展海洋可再生能源的必要性,简要介绍海洋能的主要内容;论述我国海洋能的发展现状及当前我国海洋能发展中存在问题,总结了海洋能的未来发展趋势,指出促进海洋能产业化的发展战略。

关键词:海洋可再生能源;现状;发展趋势;产业化;发展战略

Summary: a large number of documents in see, on the basis of an analysis of the current development of the marine, renewable energy of necessity, briefly describe the main contents of ocean energy; discusses ocean energy's development situation and current ocean energy problem, summarizes the ocean energy future trends, pointed out that promoting ocean energy industry development strategies.

Key words: status of marine renewable energy;; development; industrial development;

1.海洋可再生能源的研究背景

随着世界经济的发展,人口的增加,社会生活水平的不断提高,各国对能源的需求迅速增长,可以说没有能源就没有人类的文明。在当前的世界能源结构中,人类所利用的能源主要是石油、天然气、煤炭等化石燃料,这些燃料是不可再生的。正是化石能源的大量利用使其日渐枯竭,也带来了严重的环境问题,已引起世界各国的高度重视[1]。随着全球范围内能源危机的冲击和环境保护及经济持续发展的要求,从能源长远发展战略来看,人类必须寻求一条发展洁净能源的道路。开发利用新能源和可再生能源成为大多发达国家和部分发展中国家21世纪能源发展战略的基本选择。

我国能源更是倚重化石燃料,尤其是煤炭资源,因而引起的环境污染更为严重。随着我国经济快速发展,能源供需紧张状况日益严重,并已持续多年。21世纪,我国在能源开发利用方面面临资源和环境两大压力,因此,必须改变我国当前能源的开发、利用方式,着重开发新能源和可再生能源,走适合我国国情,有利于社会、经济、环境的可持续发展之路[2]。

包括太阳能、海洋能、生物质能、地热能、风能和氢能在内的新能源和可再生能源被人们普遍认为是无污染的能源资源[3]。因此,大力开发和利用新能源和可再生能源成为减少污染,减排温室气体,保护环境,实现可持续发展的一条重要途径。

2. 海洋能的主要内容

海洋能通常是指海洋本身所蕴藏的能量,它包括潮汐能、波浪能、温差能、盐差能、海流能和化学能,不包括海底或海底下储存的煤、石油、天然气等化石能源和“可燃冰”,也不含溶解于海水中的铀、锂等化学能源[4]。

海洋是一个巨大的能源转换场,据研究,海洋中再生能源可供利用的能量约为70多亿kW,是目前全世界发电能力的十几倍。据初步统计,各类海洋能全球总储量和我国可开发的能量如下表1所示。

表1 各类海洋能全球总储量及我国可开发的能量

海洋能有如下特点:(1)可再生性,由于海水潮汐、海流和波浪等运动周而复始,永不休止,所以,海洋能是可再生能源;(2)属于一种洁净能源;(3)能量多变,具有不稳定性,运用起来比较困难;

(4)总量巨大,但分布分散、不均,能流密度低,利用效率不高,经济性差。

3.研究现状

目前,只有潮汐能发电技术比较成熟,其他形式海洋能的应用大都还停留在探索阶段。

3.1 潮汐能

潮汐能是海水受到月球、太阳等天体引力作用而产生的一种周期性海水自然涨落现象,是人类认识和利用最早的一种海洋能。潮汐能发电与水力发电的原理、组成基本上是一样的,也是利用水的能量使水轮发电机发电。问题是如何利用海潮所形成的水头和潮流量,去推动水轮发电机运转。海水的垂直涨落运动称为潮汐,海水水平运动叫潮流。人们通常把潮汐和潮流中所包含的机械能统称为潮汐能。潮汐能利用一般分两种形式:一是利用潮汐的动能,直接利用潮流前进的力量来推动水车、水泵或水轮发电机;一是利用潮汐的位能,在电站上下游有落差时引水发电。由于利用潮汐的动能比较困难,效率又低,所以潮汐发电多采用后一种形式,潮汐电站就是利用海洋潮位涨、落与库水位形成落差进行涨落潮发电。利用潮汐能发电可以采用单库单向、单库双向或双库单向等三种形式[5,6]。

我国大陆海岸线长1.8万KM,曲折的海岸线,众多的潮汐河流,蕴藏着丰富的潮汐能源。潮汐能利用的近代发展,起始于20世纪50年代后期。从1958年起,我国陆续在广东顺德、东湾、山东乳山、上海崇明等地建立了几十座潮汐能发电站,其中浙江省温岭市西南角乐清湾江厦潮汐试验电站装机容量最大,功率为3 200KW,仅次于法国的郎斯潮汐发电站和加拿大安纳波利斯潮汐发电站,是亚洲最大的潮汐电站。目前,国内外已建的主要潮汐电站如表2所示

表2 国内外已建主要潮汐电站

3.2 波浪能

波浪能发电是继潮汐发电之后发展最快的一种海洋能源利用措施。波浪能是由大气层和海洋在相互影响的过程中,由于在风和海水重力作用下形成永不停息、周期性上下波动的波浪,这种波浪具有一定的动能和势能。波浪能的大小与波高的平方和波动水域面积成正比。目前,日本、英国、美国、德国、加拿大、中国等都在研究波浪能发电,以日本、英国、挪威等国开发利用的水平较高。

我国波浪能资源丰富,估计约有5亿KW以上。但我国波浪能发电的研究起步较晚,1990年才在大万山岛建成第一座20KW级的试验性波浪发电站。

3.3 温差能

目前,全世界已建有8座温差能发电站。预计到2010年全球将有1030座海洋温差能发电站问世。美、日等国是研究温差能发电的先进国家。美国在夏威夷建有一座闭路循环温差发电站,输出功率50KW,还将建一座发电能力达16万KW的温差能发电站。日本于20世纪80年代分别在南太平洋的瑙鲁岛和鹿儿岛建成100KW和MW级两座温差能电站。我国海域辽阔,东海、黄海、南海的平均水温都比较高,特别是南海夏季平均可达36℃以上,且大部分地区水深在1000M以上,自表层向下500~1000M 即可得到5℃的冷水,具有利用海水温差发电的有利条件和广阔前景。中国科学院广州能源研究所于20世纪80年代中期曾在实验室进行过开放式温差能装置的模拟研究。

3.4 盐差能

海水属于咸水,它含有大量的矿物盐,河水属于淡水。因此,当陆地河水流入大海的交界区域,咸淡水相混时就会形成盐度差和较高的渗透压力,淡水会向咸水方向渗透,直至两者盐度平衡,在两种水体的接触面上新生一种物理化学能,利用这种能量发电就是海洋盐差能发电。

盐差能发电是美国人在1939年首先提出来的。目前,世界上只有以色列建了一座150kW的盐差能发电的实验装置,实用性盐差能发电站还未问世,看来人类要大规模地利用盐差能发电还有一个相当长的过程。

3.5 海流能

海流亦称洋流,是海洋中的海水朝一个方向不断流动,尤如河流具有固定流动路线一样,会产生一种不易觉察的海流动力。海流主要分布在大西洋的西部边界,那里有强大的黑潮海流、墨西哥海流,此外,世界上还有日本海流、北太平洋海流、南极环海流等。

相关文档
最新文档