初一数学上册月考试卷带答案

合集下载

七年级数学上册月考试卷【含答案】

七年级数学上册月考试卷【含答案】

七年级数学上册月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 23厘米C. 17厘米D. 7厘米2. 下列哪个数是质数?A. 21B. 37C. 39D. 273. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少立方厘米?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个角是锐角?A. 120°B. 45°C. 180°D. 90°5. 如果一个数的平方是64,那么这个数可能是多少?A. 8B. -8C. 7D. 9二、判断题(每题1分,共5分)1. 任何两个偶数相加的和都是偶数。

()2. 一个正方形的对角线长度等于它的边长的平方根。

()3. 在三角形中,最大的角对应最长的边。

()4. 任何两个奇数相乘的积都是奇数。

()5. 1是质数。

()三、填空题(每题1分,共5分)1. 如果一个四边形的对边平行且相等,那么这个四边形是______。

2. 一个数的立方根是指这个数乘以自己两次后得到的结果,记作______。

3. 如果一个数既是4的倍数又是6的倍数,那么这个数至少是______。

4. 在平面直角坐标系中,点(3, 4)的横坐标是______,纵坐标是______。

5. 一个圆的半径是5厘米,那么这个圆的直径是______厘米。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 什么是因数分解?请给出一个例子。

3. 请解释什么是算术平均数。

4. 请说明如何计算一个三角形的面积。

5. 请解释什么是比例尺。

五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。

2. 如果一个数加上50后等于它的3倍,求这个数。

3. 一个圆锥的底面半径是4厘米,高是6厘米,求这个圆锥的体积。

七年级上册数学第一册月考试卷(含答案)

七年级上册数学第一册月考试卷(含答案)

一、选择题(本大题共10小题,共30.0分)1.若x与3互为相反数,则等于()A. 0B. 1C. 2D. 32.已知a<0、b>0且|a|>|b|,则a、b、−a、−b的大小关系是()A. b>−a>a>−bB. −b>a>−a>bC. a>−b>−a>bD. −a>b>−b>a3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A. 1.496×107B. 14.96×108C. 0.1496×108D. 1.496×1084.一种巧克力的质量标识为“100±0.25克”,则下列合格的是()A. 99.80克B. 100.30克C. 100.51克D. 100.70克5.下列各对数中,互为相反数的是()A. −(−2)3与|−2|3B. (−2)3与−23C. −22与+(−2)2D. −(−2)与|−2|6.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22017+22018的末位数字是()A. 2B. 4C. 8D. 67.按一定规律排列的单项式:a,−a2,a3,−a4,a5,−a6,……,第n个单项式是()A. a nB. −a nC. (−1)n+1a nD. (−1)n a n8.下列说法正确的是()A. 1和−0.125不互为相反数 B. −m不可能等于08C. 正数和负数互为相反数D. 任何一个数都有相反数9.如图,数轴上有A、B、C、D四个整数点(即各点均表示整数),且3AB=BC=2CD。

若A、D两点所表示的数分别是−6和5,则线段AC的中点所表示的数是()A. −3B. −2C. −1D. +110.若有理数a,b,c满足abc=2003,a+b+c=0,则a,b,c中负数的个数是()A. 3B. 2C. 1D. 0二、填空题(本大题共3小题,共9.0分)11.−21和它的相反数之间的整数有______个.212.如图,数轴上A、B两点所表示的数分别为a、b,下列各式中:①(a−1)(b−1)>0;②(a−1)(b+1)>0;③(a+1)(b+1)>0.其中,正确式子的序号是____.13.一个两位数,个位数字是x,十位数字比个位数字大3,则这个两位数是______.三、计算题(本大题共2小题,共12.0分)14.先在数轴上表示下列各数,再把它们按从小到大的顺序用“<”连接起来.|−3|,−|−2|,0,−1.5,−(−4),112.15.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)第一次第二次第三次第四次x−12x x−52(9−x)(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置.(3)这辆出租车一共行驶了多少路程?四、解答题(本大题共7小题,共56.0分)16.已知数轴上三点M、O、N对应的数分别为−1、0、3.点P为数轴上任意一点,且表示的数为x.(1)则MN的长为______个单位长度;(2)如果点P到点M、点N的距离相等,那么x的值是______;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值:若不存在,请说明理由.17.观察下列各式:……(1)猜想________.(2)根据上面的规律,计算18.小欢和小樱都十分喜欢唱歌,她们两个一起参加社区的文艺会演,在会演前,主持人让她们自己确定出场顺序,可她们俩都争着先出场,最后主持人出了一个主意(如图所示):19.如图,将边长为a的小正方形和边长为b的大正方形放在同一水平面上(b>a>0)(1)用a,b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.已知a,b互为相反数,c,d互为倒数,m−3的相反数是−4,求a+b+m的值.cd21.观察下面三行数:−2、4、−8、16、−32、64、……①0、6、−6、18、−30、66、……②5、−1、11、−13、35、−61、……③(1)第①行数的第7个数是__________;(2)设第②行数中有一个数为a,第③行数中对应位置的数为b,则a和b之间等量关系为__________;设第①行数的第n个数为x,取每行的第n个数,这三个数的和是__________;(3)根据(2)中的结论,若取每行的第9个数,计算这三个数的和22.动脑筋、找规律.邱老师给小明出了下面的一道题,如图所示,请根据数字排列的规律,探索下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2020个数是正数还是负数?排在对应于A,B,C,D中的什么位置?【解析】【分析】本题考查的是绝对值,相反数,熟知0的绝对值是0是解答此题的关键.先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=−3,∴|x+3|=|−3+3|=0.故选A.2.【答案】D【解析】解:依题意在数轴上表示出a、b、、得根据它们在数轴上的位置可得:故选D3.【答案】D【解析】【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】【分析】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围,计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即:从99.75到100.25之间,然后逐项判断即可.【解答】解:100−0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是在99.75到100.25之间,只有99.80克在巧克力的质量标识范围,故A正确.故选:A.5.【答案】C【解析】【分析】本题主要考查的是相反数、绝对值、有理数的乘方的运算,先化简各数,然后根据相反数的定义判断即可.【解答】解:A.−(−2)3=−(−8)=8,|−2|3=23=8,不符合题意;B.(−2)3=−8;−23=−8,不符合题意;C.−22=−4;(−2)2=4,符合题意;D.−(−2)=2,|−2|=2,不符合题意.故选C.6.【答案】D【解析】【试题解析】【分析】本题考查了尾数特征的应用,关键是能根据题意得出规律,利用规律解决问题,因为21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,观察发现:2n 的个位数字是2,4,8,6四个一循环,所以根据2017÷4=504…1,2018÷4=504…2,得出22017的个位数字与21的个位数字相同是2,22018的个位数字与22的个位数字相同是4,进一步求解即可. 【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. 2017÷4=504…1, 2018÷4=504…2,∴22017的个位数字与21的个位数字相同是2, 22018的个位数字与22的个位数字相同是4, 2+4=6.故22017+22018的末位数字是6. 故选:D .7.【答案】C【解析】 【分析】本题考查了单项式,数字的变化类,注意字母a 的指数为奇数时,符号为正;系数字母a 的指数为偶数时,符号为负.观察字母a 的系数、次数的规律即可写出第n 个单项式. 【解答】解:a ,−a 2,a 3,−a 4,a 5,−a 6,……,(−1)n+1⋅a n . 故选C .8.【答案】D【解析】−0.125=−18,与18只有符号不同,它们互为相反数,故A 不正确; 因为m 是字母,可能等于0,所以−m 可能等于0,故B 不正确;正数和负数除符号不同外,其他也可能不同,如−2和3,所以正数和负数不一定互为相反数,故C 不正确,故选D .9.【答案】B【解析】解:∵A、D两点所表示的数分别是−6和5,∴AD=11,∵3AB=BC=2CD,∴112AB=11,∴AB=2,∴BC=6,CD=3,∴AC=8,∴C点表示的数是2,∴AC的中点表示的数是−2。

七年级上册数学月考试卷【含答案】

七年级上册数学月考试卷【含答案】

七年级上册数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 26厘米D. 30厘米二、判断题(每题1分,共5分)1. 任何一个偶数都不是质数。

()2. 一个等边三角形的三个角都是60度。

()3. 一个长方体的六个面都是长方形。

()4. 0.3333是一个无限循环小数。

()5. 任何一个正方体的体积都可以用底面积乘以高来计算。

()三、填空题(每题1分,共5分)1. 2的平方根是______。

2. 一个等腰三角形的底角是45度,那么顶角的度数是______。

3. 如果一个正方形的边长是6厘米,那么它的面积是______平方厘米。

4. 3/8可以化成小数______。

5. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是______立方分米。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请解释等边三角形的性质。

3. 请描述正方体的特征。

4. 请解释最简分数的概念。

5. 请简述长方体体积的计算方法。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,求它的体积。

2. 一个等腰三角形的底边长是12厘米,腰长是15厘米,求这个三角形的周长。

3. 一个正方形的边长是8厘米,求它的面积。

七年级上册数学第一次月考试卷及答案

七年级上册数学第一次月考试卷及答案

七年级数学试题(时间 90分,满分120分)一.选择题(每题3分,共30分)1.-–4的绝对值是( )A 、4B 、–4C 、41 D 、41- 2. 在–2,+3.8,0,32-,–0.6,12中.负分数有( )A 、l 个 B 、2个 C 、3个 D 、4个 3. 下列说法中正确的是( )A 、正数和负数互为相反数B 、任何一个数的相反数都与它本身不相同C 、任何一个数都有它的相反数D 、数轴上原点两旁的两个点表示的数互为相反数4. -a 一定是( ) A 、正数 B 、负数 C 、正数或负数 D 、正数或零或负数5.一个数和它的倒数相等,则这个数是( ) A 、1 B 、1- C 、±1 D 、±1和06. 如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a7. 小华今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出12.5元,取出2元,这时银行现款增加了( )A 、12.25元B 、-12.25元C 、10元D 、-12元8. 绝对值不大于10.3的整数有( )A 、10个B 、11个C 、20个D 、21个9.设a 是最小的自然数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A 、-1B 、0C 、1D 、210. l00米长的小棒,第1次截去一半,第2次截去剩下的31,第三次截去剩下的41,如此下去,直到截去剩下的1001,则剩下的小棒长为( )米 。

A 、 20 B 、15 C 、 1 D 、50二、境空题(每题4分,共40分)11.若︱a-1︱=2,则a=___________________。

12如果a 、b 互为倒数,c 、d 互为相反数,且m=1,则代数式2ab-(c+d )+m 2=13.31-的倒数是____;322的相反数是____;0.2的倒数的绝对值是___________。

七年级上学期第一次月考(数学)试卷含答案

七年级上学期第一次月考(数学)试卷含答案

七年级上学期第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计11小题,总分44分)1.(4分)1.点 P (0,3)在( ).A .x 轴的正半轴上B .x 的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上2.(4分)2.9的算术平方根是 ( )A .±3B .3C .3±D .3.(4分)3.2的立方根是( )A B .C D .4.(4分)4.下列各式中,错误的是A .416±=B . 4=±C 4=D .3273-=-5.(4分)5.己知正方体表面积为24dm 2,则这个正方体的棱长为( )A .dmB dmC . 2 dmD . 4 dm6.(4分)7.如图,直线AB 与CD 相交于点O ,∠COE =2∠BOE . 若∠AOC =120°,则∠BOE 等于( )A .15°B .20°C .25°D .30°7.(4分)8.点 P 的坐标为(3a-2,8-2a ),若点 P 到两坐标轴的距离相等,则 a 的值是( ).A 、32或4B 、-2或6C 、32或-4 D 、2或-6 8.(4分)9.如图,能判定AD ∥BC 的条件是( )A .∠3=∠2B .∠1=∠2C .∠B =∠D D .∠B =∠19.(4分)10.下列命题是真命题的是( )A .若x >y ,则x 2>y 2B .若|a|=|b|,则a=bC .若a >|b|,则a 2>b 2D .若a <1,则a >1a10.(4分)11.将长方形纸片ABCD 折叠,使D 与B 重合,点C 落在C '处,折痕为EF ,若∠AEB =70°,则∠EFC '的度数是 ( )A.125°B.120°C.115°D.110°11.(4分)12.如图,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF ∥BC ,以下四个结论:①AH ⊥EF ,②∠ABF=∠EFB ,③AC ∥BE ,④∠E=∠ABE .正确的是( )A .①②③④B .①②C .①③④D .①②④二、 填空题 (本题共计7小题,总分28分)12.(4分)6n 的最大值为( )A .12B .11C .8D .313.(4分)13.计算:2(=___; 3278-=____.C /A B CDEF14.(4分)14最接近的整数是 .15.(4分)15.一个正数的两个平方根分别为a+3和2a+3,则a= .16.(4分)16.如图,DE ∥BC ,点A 在直线DE 上,则∠BAC= 度.17.(4分)17.如图,AB ∥CD ,ED ∥BC .∠A=20°,∠C=120°,则∠AED 的度数是 .18.(4分)18. 如果两个角的两条边分别平行,其中一个角比另一个角的4倍少30°,则这两个角的度数分别为 .三、 解答题 (本题共计8小题,总分78分)19.(10分)19.(10分)(1)计算:22)(-+25+364-; ⑵求下式中x 的值: 4(x-1)2-81=020.(10分)20.(10分)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.21.(10分)21.(10分)(1)若a+7的算术平方根是3,2b+2的立方根是﹣2,求a b 的值.(2)已知:x ﹣2的平方根是±2,2x+y+7的立方根是3,求)(22y x +的算术平方根.22.(10分)22.(10分)完成下列推理过程:如图,已知∠A =∠EDF ,∠C =∠F ,求证:BC ∥EF证明:∵∠A =∠EDF ( )∴________∥________( )∴∠C =________( )又∵∠C =∠F (已知)∴_______=∠F (等量代换)∴________∥________( )23.(10分)23.(10分)如图,已知∠A=∠AGE, ∠D=∠DGC.(1)求证:AB//CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,24.(10分)24.(10分)如图所示,已知ABC 的三个顶点的坐标分别为(2,3)A -、(5,0)B -、V (1,0)C -((1)将ABC 向右平移6个单位长度,写出111A B C 各顶点的坐标;((2)求出四边形11ABB A 的面积;((3)在x 轴上是否存在一点P ,连接PA 、PB ,使PAB S ∆=1211A ABB S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.25.(10分)25.(10分)已知AM ∥CN ,点B 为平面内一点,AB BC ⊥于点B .(1)如图1,直接写出∠A 和∠C 之间的数量关系是______________;(2)如图2,过点B 作BD AM ⊥于点D ,求证:ABD C ∠=∠.26.(8分)26.(8分)如图1,已知,点A,B 分别在MN,PQ 上,且,射线AM 绕点A 顺时针旋转至AN 便立即逆时针回转(速度是秒),射线BP 绕点B 顺时针旋转至BQ 便立即逆时针回转(速度是秒).且a 、b 满足 ()0132=-+-b a (1)如图2,两条射线同时旋转,设旋转时间为t 秒(t <60),两条旋转射线交于点C ,过C 作交PQ 于点D ,求出与的数量关系;(2)若射线BP 先旋转20秒,射线AM 才开始旋转,设射线AM 旋转时间为t 秒(t <160),若旋转中AM//BP ,求t 的值.答案一、 单选题 (本题共计11小题,总分44分)1.(4分)C2.(4分)B3.(4分)C4.(4分)A5.(4分)C6.(4分)B7.(4分)D8.(4分)D9.(4分)C10.(4分)A11.(4分)D二、 填空题 (本题共计7小题,总分28分)12.(4分)B13.(4分)13.3 、2314.(4分)14. 715.(4分)15. -216.(4分)16. 4617.(4分)17. 80°18.(4分)18. 10°,10°或42°, 138°三、 解答题 (本题共计8小题,总分78分)19.(10分)19.(1)解:原式25(4)=++- ………(3分) 3= ………(5分)(2) 解: 4(x-1)2-81=04(x-1)2=81 (6分)(x-1)2=481(8分) x-1=29或x-1=-29(9分) X=211或x=-27(10分)20.(10分)20.解:∵∠1+∠2=180°,∴a∥b,…………(3分)∴∠3+∠5=180°,…………(6分)∵∠3=108°,∴∠5=180°﹣108°=72°,∴∠4=72°,…………(10分)21.(10分)21.(1)解:由题意得:a+7=9,2b+2=﹣8,…………(2分)∴a=2,b=-5,∴b a=(﹣5)2=25.…………(5分)(2)解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27 …………(8分)把x的值代入解得:y=8,∴x2+y2=100,100的算术平方根为10.…………(10分)22.(10分)22.证明:∵∠A=∠EDF(已知)∴___AC_____∥__DF______(同位角相等,两直线平行)∴∠C=__∠CGF ______(两直线平行,内错角相等)又∵∠C=∠F(已知)∴∠CGF=∠F(等量代换)∴____CB____∥___FE_____(内错角相等,两直线平行)(有其他合理答案也可)(每空1分,共10分)23.(10分)23.证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC…………(1分)∴∠A=∠D…………(2分)∴AB∥CD…………(4分)(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD =∠1∴CE ∥FB …………(5分)∴∠C =∠BFD ,∠CEB +∠B =180°…………(6分) 又∵∠BEC =2∠B +30°∴2∠B +30°+∠B =180°∴∠B =50°…………(8分)又∵AB ∥CD∴∠B =∠BFD∴∠C =∠BFD =∠B =50°…………(10分)24.24.(10分)解:(1)A 1(4,3) B 1(1,0) C 1(5,0)(3分)(2) S 四边形ABB1A1=18(6分)(3) P (-11,0)或(1,0)(10分)25.(10分)25.(1)------3分 (2)如图2,,090D ∴∠=------4分 过点B 作,0180D DBG ∴∠+∠=090DBG ∴∠= 即, ------7分 又,,,------8分,, ∴BG ∥CN ------9分,.-----10分26.(8分)26.解:(1)由()0132=-+-b a 易得a=3,b=1(1分),, ------2分又,可证BCA CBD CAN ∠=∠+∠(需要证明过程),------3分而,,::2,即.------4分(2)当0<t<45时,,解得;------5分当75<t<115时,,解得;------6分当115<t<160时,,解得不合题意------7分综上所述,当或85时,.------8分。

七年级上册数学第一次月考试卷带答案

七年级上册数学第一次月考试卷带答案

七年级上册数学第一次月考试题一、单选题1.下列说法正确的是( )A .一个数的绝对值等于它本身,这个数一定是正数B .一个数的绝对值等于它的相反数,这个数一定是负数C .绝对值越大,这个数越大D .两个负数,绝对值大的那个数反而小2.计算(−5)+(−7)的值是( )A .-12B .−2C .2D .123.按照有理数加法则,计算()()18020-++的正确过程是A .()18020--B .()18020++C .()18020+-D .()18020-+ 4.计算(﹣3)×(﹣4)的结果等于( )A .12B .﹣12C .-7D .﹣45.如图所示,m 和n 的大小关系是( )A .m =nB .m =1.5nC .m >nD .m <n6.已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-37.2019年3月21日,春分,雪至.哈尔滨市的最低气温是﹣8℃,最高气温是1℃,则这一天哈尔滨市的最高气温与最低气温的差是( )A .﹣9℃B .9℃C .7℃D .﹣7℃ 8.若−12的倒数与m +4互为相反数,则m 的值是( )A .1B .−1C .2D .−29.4.8除以2.3加上1.8乘0.5的积,商是( )A .1.7B .44.88C .3.2D .1.510.某机构对40万人的调查显示,沉迷手机上网的初中生大约占7%,则这部分沉迷于手机上网的初中生人数,可用科学记数法表示为( )A.2.8×105B.28×103C.0.28×105D.2.8×10411.下列各数:﹣12,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有()个.A.1 B.2 C.3 D.412.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为()A.3 B.2 C.1 D.013.﹣7的相反数是()A.﹣7 B.﹣17C.7 D.114.下列四个数中,最大的数是()A.﹣6 B.﹣2 C.﹣4 D.015.下列正确的是()A.若|a|=|b|,则a=bB.若a2=b2,则a=bC.若a3=b3,则a=bD.若|a|=a,则a>016.已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于()A.2 B.﹣2 C.0 D.﹣617.下列计算结果等于4的是()A.|(﹣9)+(+5)| B.|(+9)﹣(﹣5)| C.|﹣9|+|+5| D.|+9|+|﹣5| 18.125+67+75=67+(125+75)应用了()A.加法交换律B.加法结合律C.加法交换律和加法结合律19.下列计算正确的是()A.2﹣3=﹣1 B.(﹣3)2=﹣9 C.﹣32=﹣6 D.﹣3﹣(﹣2)=﹣5二、解答题20.如果把向东走3km记作+3km,那么﹣2km表示的实际意义是()A.向东走2km B.向西走2km C.向南走2km D.向北走2km 21.计算下列各题:(1)6.4﹣(5.71+0.08)(2)3.7×0.6+6.3×0.6(3)8.24+0.35﹣7.37(4)(4+0.4)×0.2522.高新一中新图书馆在“校园书香四溢”活动中迎来了借书高潮,上周借书记录如下表:(超过100册的部分记为正,少于100册的部分记为负)(1)上星期借书最多的一天比借书最少的一天多借出图书多少册?(2)上星期平均每天借出多少册书?23.计算:(1)﹣22×3+(﹣3)3÷9(2)-22 -2324.一粒米,许多同学都认为微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整块馒头或整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重11.07克.现在请你来计算(可用计算器):(1)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(结果精确到千位)(2)假若我们把一年节约的大米卖成钱,按2.5元/千克计算,可卖得人民币多少元?(结果保留2位有效数字)(3)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(精确到个位)(4)经过以上计算,你有何感想和建议?三、填空题25.若a <﹣1,则a 2_____﹣a .26.比﹣1小﹣2的数是_____.27.计算:﹣32×(﹣1)3=_____.28.数学考试成绩以80分为标准,王老师将某4名同学的成绩简记为+10,0,–8,+18,则这4名同学实际成绩最高的是______分.29.如果收入10元记作+10元,那么﹣4元表示_____.30.如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 是线段AB 的中点,则点C 所表示的数是_______.31.某年一月份,哈尔滨市的平均气温约为20﹣℃,绥化市的平均气温约为23﹣℃,则两地的温差为_____℃.32.若a 、b 互为负倒数,则2ab ﹣5的值为_____.参考答案1.D【解析】【分析】根据相反数的定义和绝对值的意义,绝对值和相反数都等于它本身的数为0.【详解】A.一个数的绝对值等于它本身,这个数是正数或0,故选项A不合题意;B.一个数的绝对值等于它的相反数,这个数一定是负数或0,故选项B不合题意;C.负数绝对值越大,这个数越小,故选项C不合题意;D.两个负数,绝对值大的那个数反而小.正确.故选D.【点睛】本题考查了绝对值和相反数,解决本题的关键是熟记相反数的定义和绝对值的意义,熟知绝对值和相反数都等于它本身的数为0.2.A【解析】【分析】根据有理数加法法则计算即可.【详解】(-5)+(-7)=-(5+7)=-12.故选A.【点睛】本题考查有理数的加法,熟练掌握运算法则是解题关键.3.A【解析】【分析】根据有理数的加法法则计算即可求解.【详解】解:(-180)+(+20)= -(180-20).故选A.【点睛】考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则: 异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.4.A【解析】【分析】根据有理数的乘法法则,先确定出结果的符号,再把绝对值相乘即可【详解】(﹣3)×(﹣4)=12;故选A【点睛】此题考查有理数的乘法,正确把握两数相乘,同号得正,异号得负是解题的关键.5.C【解析】【分析】根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,可得:m>n.【详解】解:根据图示,可得:m>0>n,∴m>n.故选:C.【点睛】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.6.C【解析】【分析】先分别求出a 、b 的值,然后代入a+b 计算即可.【详解】 ∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选:C .【点睛】本题考查了绝对值的意义、相反数的意义及求代数式的值,熟练掌握绝对值和相反数的意义是解答本题的关键. 绝对值等于一个正数的数有2个,它们是互为相反数的关系. 7.B【解析】【分析】直接利用有理数的加减运算法则计算得出答案.【详解】由题意可得,这一天哈尔滨市的最高气温与最低气温的差是:1-(-8)=9(℃). 故选B .【点睛】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.8.D【解析】【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【详解】−12的倒数与m+4互为相反数,得m+4=2,解得m=−2,故选:D.本题考查了倒数与相反数定义。

七年级数学上册第一次月考测试卷+答案

七年级数学上册第一次月考测试卷+答案

七年级数学上册第一次月考测试卷+答案
一、选择题(每小题2分,共30分)
1. 下面哪个数是奇数?
A. 6
B. 9
C. 12
D. 16
2. 计算:3 × 5 ÷ 2 =
A. 15
B. 7
C. 8
D. 5
3. 把2/3和1/4相加得到的数是:
A. 5/6
B. 1/7
C. 7/9
D. 3/4
...
二、填空题(每小题2分,共20分)
1. 两个互质的数的最大公因数是_______。

2. 1/4 - 1/6 = _______。

3. 一个升斗每分钟出5升水,10分钟能出_______升水。

...
三、解答题(每小题10分,共40分)
1. 有一个长方形的长是5cm,宽是3cm,求它的面积是多少?...
四、简答题(每小题8分,共20分)
1. 什么是比例?
...
五、实际问题(每小题12分,共30分)
1. 某商店最近举行“打八折”的促销活动,如果一件衬衫的原价是160元,打完折后的价格是多少?
...
答案
一、选择题
1. B
2. A
3. A
...
二、填空题
1. 1
2. 1/12
3. 50
...
三、解答题
1. 面积为15平方厘米。

...
四、简答题
1. 比例是指两个数或两个量之间的数量关系,可以用等比例的形式表示,如a:b。

...
五、实际问题
1. 打折后的价格是128元。

...。

七年级上册数学第一次月考试卷【含答案】

七年级上册数学第一次月考试卷【含答案】

七年级上册数学第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是多少?A. 3cmB. 10cmC. 23cmD. 17cm3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是5cm,那么它的面积是多少平方厘米?A. 10cm²B. 15cm²C. 20cm²D. 25cm²5. 下列哪个角是锐角?A. 90°B. 100°C. 80°D. 120°二、判断题(每题1分,共5分)1. 2是最大的质数。

()2. 三角形的内角和总是等于180°。

()3. 0是偶数。

()4. 面积相等的两个图形一定是相似的。

()5. 对角线相等的四边形一定是矩形。

()三、填空题(每题1分,共5分)1. 100的因数有______个。

2. 一个等边三角形的每个内角是______度。

3. 两个质数相乘得到的一个数是______。

4. 一个长方形的长是8cm,宽是4cm,面积是______平方厘米。

5. 一个圆的半径是3cm,它的直径是______cm。

四、简答题(每题2分,共10分)1. 解释什么是因数和倍数。

2. 简述平行四边形的性质。

3. 什么是等腰三角形?给出一个例子。

4. 解释面积和周长的区别。

5. 简述圆的周长公式。

五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。

2. 一个三角形的两个内角分别是45°和90°,求第三个内角的度数。

3. 列出6的所有因数。

4. 一个圆的半径是4cm,求它的直径。

5. 如果一个数的因数有1、2、3、4、6,那么这个数是什么?六、分析题(每题5分,共10分)1. 画出一个边长为6cm的正方形,并标出它的对角线。

七年级上册数学月考试卷及答案

七年级上册数学月考试卷及答案

七年级上册数学月考试卷及答案一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作()A.﹣7℃B.+7℃C.+12℃D.﹣12℃2.某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为()A.+800,+350,﹣100B.+800,+350,+100C.+800,﹣350,﹣100D.﹣800,﹣350,+1003.﹣6的相反数为()A.6B.C.D.﹣64.下列式子中,﹣(﹣3),﹣|﹣3|,3﹣5,﹣1﹣5是负数的有()A.1个B.2个C.3个D.4个5.下列计算不正确的是()A.﹣(﹣3)=﹣1B.+[﹣(﹣)]=1C.﹣3+|﹣3|=0D.﹣5=﹣6.下列四个数中,最小的数是()A.2B.﹣2C.0D.﹣8.某种面粉袋上的质量标识为250.25kg,则下列面粉中合格的是()A.24.70kgB.25.30kgC.25.51kgD.24.80kg9.(﹣1)﹣(﹣3)+2(﹣3)的值等于()A.1B.﹣4C.5D.﹣110.若ab0,则+的值不可能是()A.2B.0C.﹣2D.1二、填空题(每小题3分,共30分)11.①3的相反数是__________,②﹣2的倒数是__________,③|﹣2022|=__________.12.如果m0,n0,m|n|,那么m、n、﹣m、﹣n的大小关系是__________.13.写出一个比﹣1小的数是__________.14.7(﹣2)的相反数是__________.16.若|某|=3,y=2,则|某+y|=__________.17.计算|﹣|﹣的结果是__________.18.武冈某天早晨气温是﹣5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为__________.19.已知a,b互为相反数,且都不为0,则(a+b﹣5)(﹣3)=__________.20.一组按规律排列的数:,,,,请你推断第9个数是__________.三、简答题21.(16分)计算(1)3+(﹣)﹣(﹣)+2(2)(﹣12)(﹣)(﹣9)(3)﹣2﹣12(﹣+)(4)﹣﹣(﹣)﹣|﹣|22.把下列各数写在相应的集合里﹣5,10,﹣4,0,+2,﹣2.15,0.01,+66,﹣,15%,,2003,﹣16正整数集合:__________负整数集合:__________正分数集合:__________负分数集合:__________整数集合:__________负数集合:__________正数集合:__________.23.画出数轴,并在数轴上画出表示:﹣(﹣4),+(﹣2.5),﹣|﹣3|,+2,﹣(﹣1.5)24.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损盈余或亏损多少元25.为节约能源,电力部门按以下规定收取每月电费:用电不超过120度,按每月每度0.57元收费,如果超过120度,超过部分按每度0.69元收费,若某用户五月份共用电220度,该用户五月份应交电费多少元26.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小石距离下午出发地点的距离多少千米(2)若汽车耗油量为0.56升/千米,这天下午汽车共耗油多少升一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作()A.﹣7℃B.+7℃C.+12℃D.﹣12℃考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:∵正和负相对,零上5℃记作+5℃,则零下7℃可记作﹣7℃.故选A.点评:此题考查了正数与负数的定义.解题关键是理解正和负的相对性,确定一对具有相反意义的量.2.某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为()A.+800,+350,﹣100B.+800,+350,+100C.+800,﹣350,﹣100D.﹣800,﹣350,+100考点:正数和负数.分析:根据存入为正数,支出为负数,即可解答.解答:解:根据题意得:+800,﹣350,﹣100,故选:C.点评:此题主要考查了正负数的意义,解题关键是理解正和负的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.﹣6的相反数为()A.6B.C.D.﹣6考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫相反数,可以直接得到答案.解答:解:﹣6的相反数是:6,故选:A,点评:此题主要考查了相反数的定义,同学们要熟练掌握相反数的定义.4.下列式子中,﹣(﹣3),﹣|﹣3|,3﹣5,﹣1﹣5是负数的有()A.1个B.2个C.3个D.4个考点:正数和负数;绝对值.分析:先化简各数,再根据负数的概念求解.解答:解:﹣(﹣3)=3是正数,﹣|﹣3|=﹣3是负数,3﹣5=﹣2是负数,﹣1﹣5=﹣6是负数.负数有三个,故选C.点评:本题主要考查了负数的概念,解题的关键是:先将各数化简.5.下列计算不正确的是()A.﹣(﹣3)=﹣1B.+[﹣(﹣)]=1C.﹣3+|﹣3|=0D.﹣5=﹣考点:有理数的乘法;有理数的加法;有理数的除法.分析:根据有理数的乘法、加法、除法,逐个计算,即可解答.解答:解:A、﹣(﹣3)=1,计算结果错误;B、,计算结果正确;C、﹣3+|﹣3|=0,计算结果正确;D、,计算结果正确;故选:A.点评:本题考查了有理数的乘法、加法、除法,解决本题的关键是熟练掌握有理数的运算.6.下列四个数中,最小的数是()A.2B.﹣2C.0D.﹣考点:有理数大小比较.分析:根据有理数比较大小的法则进行比较即可.解答:解:∵20,﹣20,﹣0,可排除A、C,∵|﹣2|=2,|﹣|=,2,﹣2﹣.故选B.点评:本题考查的是有理数的大小比较,熟知正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是解答此题的关键.8.某种面粉袋上的质量标识为250.25kg,则下列面粉中合格的是()A.24.70kgB.25.30kgC.25.51kgD.24.80kg考点:正数和负数;有理数的加法;有理数的减法.专题:应用题.分析:根据正负数的意义,判断产品是否合格.解答:解:∵25+0.25=25.25,25﹣0.25=24.75,符合条件的只有D.故选D.点评:解答此题关键是要弄清题意,某种面粉袋上的质量标识为250.25kg,则说明面粉的重量在25.25﹣24.75kg之间.9.(﹣1)﹣(﹣3)+2(﹣3)的值等于()A.1B.﹣4C.5D.﹣1考点:有理数的混合运算.专题:计算题.分析:原式先计算乘法运算,再计算加减运算即可得到结果.解答:解:原式=﹣1+3﹣6=﹣4,故选B点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.若ab0,则+的值不可能是()A.2B.0C.﹣2D.1考点:有理数的除法;绝对值;有理数的乘法.分析:由于ab0,则有两种情况需要考虑:①a、b同号;②a、b异号;然后根据绝对值的性质进行化简即可.解答:解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选D.点评:此题考查的是绝对值的性质,能够正确的将a、b的符号分类讨论,是解答此题的关键.二、填空题(每小题3分,共30分)11.①3的相反数是﹣3,②﹣2的倒数是﹣,③|﹣2022|=2022.考点:倒数;相反数;绝对值.分析:根据相反数、倒数、绝对值的定义,即可解答.解答:解:①3的相反数是﹣3,②﹣2的倒数是﹣,③|﹣2022|=2022,故答案为:﹣3,﹣,2022.点评:本题考查了相反数、倒数、绝对值的定义,解决本题的关键是熟记相反数、倒数、绝对值的定义.12.如果m0,n0,m|n|,那么m、n、﹣m、﹣n的大小关系是﹣nm﹣mn.考点:有理数大小比较.分析:先确定m、n、﹣m、﹣n的符号,再根据正数大于0,负数小于0即可比较m,n,﹣m,﹣n的大小关系.解答:解:根据正数大于一切负数,只需分别比较m和﹣n,n和﹣m.再根据绝对值的大小,得﹣nm﹣mn,故答案为:﹣nm﹣mn.点评:此题主要考查了实数的大小的比较,解决本题的关键熟记两个负数,绝对值大的反而小.13.写出一个比﹣1小的数是﹣2.考点:有理数大小比较.专题:开放型.分析:本题答案不唯一.根据有理数大小比较方法可得.解答:解:根据两个负数,绝对值大的反而小可得﹣2﹣1,所以可以填﹣2.答案不唯一.点评:比较有理数的大小的方法:(1)负数0正数;(2)两个负数,绝对值大的反而小.14.7(﹣2)的相反数是14.考点:有理数的乘法;相反数.分析:先计算7(﹣2)=﹣14,再求相反数,即可解答.解答:解:7(﹣2)=﹣14,﹣14的相反数是14,故答案为:14.点评:本题考查了有理数的乘法和相反数,解决本题的关键是熟记有理数的乘法法则.16.若|某|=3,y=2,则|某+y|=5或1.考点:绝对值.专题:计算题.分析:利用绝对值的代数意义求出某的值,即可确定出原式的值.解答:解:∵|某|=3,某=3,当某=3,y=2时,原式=5;当某=﹣3,y=2时,原式=1,故答案为:5或1点评:此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.17.计算|﹣|﹣的结果是﹣.考点:有理数的减法;绝对值.分析:根据绝对值的性质和有理数的减法运算法则进行计算即可得解.解答:解:|﹣|﹣=﹣=﹣.故答案为:﹣.点评:本题考查了有理数的减法运算,绝对值的性质,是基础题,熟记运算法则和性质是解题的关键.18.武冈某天早晨气温是﹣5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为﹣7℃.考点:有理数的加减混合运算.专题:应用题.分析:把实际问题转化成有理数的加减法,可根据题意列式为:﹣5+5﹣3﹣4.解答:解:根据题意得:﹣5+5﹣3﹣4=﹣7(℃),故答案为:﹣7℃.点评:本题考查了有理数的混合运算,解决本题的关键是正确列出式子.19.已知a,b互为相反数,且都不为0,则(a+b﹣5)(﹣3)=.考点:有理数的混合运算;相反数.专题:计算题.分析:利用互为相反数两数之和为0得到a+b=0,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,则原式=3=,故答案为:点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.一组按规律排列的数:,,,,请你推断第9个数是.考点:规律型:数字的变化类.分析:根据已知数据,找出规律,验证正确后,根据规律计算得到答案.解答:解:=,=,=,第9个数是=,故答案为:.点评:本题考查的是数字的变化规律问题,根据给出的一组数据,正确找出其排列规律是解题的关键.三、简答题21.(16分)计算(1)3+(﹣)﹣(﹣)+2(2)(﹣12)(﹣)(﹣9)(3)﹣2﹣12(﹣+)(4)﹣﹣(﹣)﹣|﹣|考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式第二项利用乘法分配律计算即可得到结果;(4)原式利用减法法则及绝对值的代数意义变形,计算即可得到结果.解答:解:(1)原式=(3﹣)+(+2)=3+3=6;(2)原式=﹣12=﹣2;(3)原式=﹣2﹣4+3﹣6=﹣9;(4)原式=﹣+﹣=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.把下列各数写在相应的集合里﹣5,10,﹣4,0,+2,﹣2.15,0.01,+66,﹣,15%,,2003,﹣16正整数集合:10,+66,2003负整数集合:﹣5,﹣16正分数集合:+2,0.01,15%,负分数集合:﹣4,﹣2.15,﹣整数集合:﹣5,10,0,+66,2003,﹣16负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16正数集合:10,+2,0.01,+66,15%,,2003.考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:正整数集合:10,66,2003;负整数集合:﹣5,﹣16;正分数集合:+2,0.01,15%,;负分数集合:﹣4,﹣2.15,﹣;整数集合:﹣5,10,0,+66,2003,﹣16;负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16;正数集合:10,+2,0.01,+66,15%,,2003.点评:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.23.画出数轴,并在数轴上画出表示:﹣(﹣4),+(﹣2.5),﹣|﹣3|,+2,﹣(﹣1.5)考点:数轴.专题:计算题.分析:各项计算得到结果,表示在数轴上即可.解答:解:﹣(﹣4)=4,+(﹣2.5)=﹣2.5,﹣|﹣3|=﹣3,+2=2,﹣(﹣1.5)=1.5,点评:此题考查了数轴,绝对值,以及有理数的乘方,熟练掌握运算法则是解本题的关键.24.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损盈余或亏损多少元考点:正数和负数.分析:把所有收入情况相加,再根据正、负数的意义解答.解答:解:(+853.5)+(+237.2)+(﹣325))+(+138.5)+(﹣280)+(﹣520)+(+103),=853.5+237.2+138.5+103﹣325﹣280﹣520,=1332.2﹣1125,=207.2,答:盈余202.7元.点评:此题主要考查了正负数的意义,解题关键是理解正和负的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.为节约能源,电力部门按以下规定收取每月电费:用电不超过120度,按每月每度0.57元收费,如果超过120度,超过部分按每度0.69元收费,若某用户五月份共用电220度,该用户五月份应交电费多少元考点:有理数的混合运算.专题:应用题.分析:根据题意的用电规定列出算式,计算即可得到结果.解答:解:根据题意得:1200.57+(220﹣120)0.69=68.4+69=137.4(元),则该用户五月份应交电费137.4元.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小石距离下午出发地点的距离多少千米(2)若汽车耗油量为0.56升/千米,这天下午汽车共耗油多少升考点:正数和负数.分析:(1)把所有行车里程相加,再根据正数和负数的意义解答;(2)求出所有行车里程的绝对值的和,再乘以0.56即可.解答:解:(1)15+(﹣3)+14+(﹣11)+10+(﹣12)+4+(﹣15)+16+(﹣18) =15﹣3+14﹣11+10﹣12+4﹣15+16﹣18=0(千米),答:将最后一名乘客送到目的地时,小石距离下午出发地点的距离0千米.(2)|15|+|﹣3|+|14|+|﹣11|+|10|+|﹣12|+|4|+|﹣15|+|16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=1181180.56=66.08(升),答:这天下午汽车共耗油66.08升.点评:此题主要考查了正负数的意义,解题关键是理解正和负的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

2024-2025学年七年级数学上学期第一次月考卷及答案(人教版)

2024-2025学年七年级数学上学期第一次月考卷及答案(人教版)

2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七上第一章~第二章。

5.难度系数:0.8。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列说法中不正确的是( ).A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2 000既是负数,也是整数,但不是有理数D .0是正数和负数的分界2.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出100元记作100−元,那么80+元表示( ) A .支出80元B .收入80元C .支出20元D .收入20元3.在数轴上表示2−与8的点的距离是( ) A .6B .10C .10−D .15−4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075.将()()()3652−−+−−+−写成省略括号和加号的形式是( )A .1B .1−C .10D .10−8.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,例如将2(101),2(1011)换算成十进制数应为: 2102(101)1202124015=×+×+×=++=;32102(1011)12021212802111=×+×+×+×=+++=.按此方式,将二进制2(1001)换算成十进制数的结果为( ) A .17B .9C .10D .189.下列说法中正确的个数有( ).①最大的负整数是1−;②相反数是本身的数是正数;③有理数分为正有理数和负有理数:④数轴上表示a −的点一定在原点的左边:⑤几个有理数相乘,负因数的个数是奇数个时,积为负数. A .1个B .2个C .3个D .4个abc19.(9分)上午八时,张、王两同学分别从A、B两地同时骑摩托车出发,相向而行.已知张同学每小时比王多行2千米,到上午十时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向和原来的速度继续前进,到中午十二时十五分,两人又相距36千米的路程.A、B两地间的路程有多少千米?20.(10分)操作与探索:请你自己画出数轴并表示有理数:52−,3.①大于3−并且小于3的整数有哪几个?②在数轴上表示到1−的点的距离等于2个单位长度的点表示的数是什么?21.(10分)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, ()()()()3333−÷−÷−÷−记作()3−④,读作:“()3−的圈4次方”.一般地,把n 个a 相除记作a ⓝ,读作“a 的圈n 次方”.22.(12分)递等式计算,能简便计算的要简便计算:×,请在下面长方形内写出相应的算式.请你按照小布的方法计算2.4 2.1有理数x的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数之间的距离PA=________(用含2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析【篇一】一、选择题(每小题3分,共30分)1.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作()A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数.分析:根据题意237元应记作﹣237元.解答:解:根据题意,支出237元应记作﹣237元.故选B.点评:此题考查用正负数表示两个具有相反意义的量,属基础题.2.3的相反数是()A.﹣3B.+3C.0.3D.|﹣3|考点:相反数.分析:根据相反数的定义求解即可.解答:解:3的相反数为﹣3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.2012年国庆长假无锡共接待游客约6420000万,数据“6420000”用科学记数法表示正确的是()A.642×103B.64.2×103C.6.42×106D.0.642×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6420000=6.42×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个考点:有理数.分析:根据分母为一的数是整数,可得整数集合.解答:解:+1,﹣14,0,﹣5是整数,故选:C.点评:本题考查了有理数,分母为一的数是整数.5.下列说法正确的是()A.一个负数的绝对值一定是正数B.倒数是它本身的数是0和1C.绝对值是它本身的数是正数D.平方是它本身的数是0、±1考点:绝对值;倒数;有理数的乘方.分析:根据绝对值的性质,倒数的定义有理数的乘方对各选项分析判断利用排除法求解.解答:解:A、一个负数的绝对值一定是正数,正确,故本选项正确;B、倒数是它本身的数是﹣1和1,故本选项错误;C、绝对值是它本身的数是正数和零,故本选项错误;D、平方是它本身的数是0、1,故本选项错误.故选A.点评:本题考查了绝对值的性质,倒数的定义,有理数的乘方,熟记性质和相关概念是解题的关键.6.下列各组数中,相等的是()A.﹣1与(﹣4)+(﹣3)B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣16考点:有理数的乘方;相反数;绝对值;有理数的加法.分析:分别利用有理数的加减运算法则以及绝对值的性质和幂的乘方计算得出答案即可.解答:解:A.(﹣4)+(﹣3)=﹣7,则﹣1与(﹣4)+(﹣3)不相等,故此选项错误;B.|﹣3|=3,﹣(﹣3)=3,则|﹣3|与﹣(﹣3)相等,故此选项正确;C.=,则与不相等,故此选项错误;D.(﹣4)2=16,故(﹣4)2与﹣16不相等,故此选项错误;故选:B.点评:此题主要考查了有理数的运算绝对值等知识,熟练化简各式是解题关键.7.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kgB.0.6kgC.0.5kgD.0.4kg考点:正数和负数.分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的数.解答:解:根据题意从中找出两袋质量波动的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.8.如图所示,根据有理数a、b在数轴上的位置,下列关系正确的是()A.|a|>|b|B.a>﹣bC.b<﹣aD.a+b>0考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置即可得出结论.解答:解:∵由图可知,|b|>a,b<0<a,∴|a|<|b|,a<﹣b,a+b<0,b<﹣a,故A、B、D错误,C正确.故选C.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.A.0个B.1个C.2个D.3个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.故选C.10.观察以下数组:(2),(4、6),(8、10、12),(14、16、18、20),…,问2016在第几组()A.44B.45C.46D.无法确定考点:规律型:数字的变化类.分析:根据数据的个数可知前n组共有数1+2+3+…+n个,利用规律得到n(n+1)≥2016(m为自然数),进一步试值即可求解.解答:解:设2016在第n组,则n(n+1)≥2016,当n=44时,44×(44+1)=1980<2016,当n=45时,45×(45+1)=2070>2016,所以2016在第45组.故选:B.点评:此题考查数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.二、填空题(每小题3分,共24分)11.﹣4.5是4.5的相反数.考点:相反数.分析:直接利用相反数的定义得出答案.解答:解:∵﹣4.5+4.5=0,∴﹣4.5是4.5的相反数.故答案为:﹣4.5.点评:此题主要考查了相反数,正确把握相反数的定义是解题关键.12.用“>”、“<”、“=”号填空:>.考点:有理数大小比较.专题:计算题.分析:先计算得到|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.解答:解:∵|﹣|==,|﹣|==,∴﹣>﹣.故答案为>.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.﹣|﹣|=﹣.考点:相反数;绝对值.分析:利用相反数及绝对值的定义求解即可.解答:解:﹣|﹣|=﹣.故答案为:﹣.点评:本题主要考查了相反数及绝对值,解题的关键是熟记定义.14.计算(﹣1)2012﹣(﹣1)2011的值是2.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)2012﹣(﹣1)2011,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.15.﹣3705.123用科学记数法表示是﹣3.705123×103.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将﹣3705.123用科学记数法表示为﹣3.705123×103.故答案为:﹣3.705123×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.现定义某种运算“*”,对任意两个有理数a、b,有a*b=ab,则(﹣3)*3=﹣27.考点:有理数的乘方.专题:新定义.分析:将新定义的运算按定义的规律转化为有理数的乘方运算,即可得出答案.解答:解:∵a*b=ab,∴(﹣3)*3=(﹣3)3=﹣27;故答案为:=﹣27.点评:此题考查了有理数的乘方,掌握新定义的运算,严格按定义的规律来计算是本题的关键.17.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为﹣10.考点:代数式求值.专题:图表型.分析:根据图表列出算式,然后把x=﹣5代入算式进行计算即可得解.解答:解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣5时,y=[﹣5+4﹣(﹣3)]×(﹣5)=(﹣5+4+3)×(﹣5)=2×(﹣5)=﹣10.故答案为:﹣10.点评:本题考查了代数式求值,根据图表正确列出算式是解题的关键.18.已知有理数a,b,c满足a+b+c=0,abc≠0.则的所有可能的值为±1.考点:有理数的除法;绝对值;有理数的加法.分析:根据有理数的加法和有理数的乘法运算法则判断出a、b、c三个数中只有一个负数,然后根据绝对值的性质解答即可.解答:解:∵a+b+c=0,abc≠0,∴a、b、c三个数中既有正数也有负数,∴a、b、c三个数中有一个负数或两个负数,∴=﹣1+1+1=1或=﹣1﹣1+1=﹣1;∴的所有可能的值为±1.故答案为:±1.点评:本题考查了有理数的除法和绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.解答题19.(40分)计算:(1)(﹣)+(﹣)+(﹣)+;(2)﹣7.2﹣0.8﹣5.6+11.6;(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)3×(﹣4)+28÷(﹣7)(5)(﹣)×0.125×(﹣2)×(﹣8)(6)(7)(8)(﹣24)×(﹣﹣);(9)18×(﹣)+13×﹣4×.(10).考点:有理数的混合运算.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式利用乘法法则计算即可得到结果;(6)原式利用乘法分配律计算即可得到结果;(7)原式变形后,利用乘法分配律计算即可得到结果;(8)原式利用乘法分配律计算即可得到结果;(9)原式逆用乘法分配律计算即可得到结果;(10)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=(﹣﹣)+(﹣+)=﹣1;(2)原式=﹣8+6=﹣2;(3)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(4)原式=﹣12﹣4=﹣16;(5)原式=﹣×××8=﹣1;(6)原式=12﹣18+8=2;(7)原式=(﹣60+)×(﹣16)=960﹣1=959;(8)原式=﹣8+3+4=﹣1;(9)原式=×(﹣18+13﹣4)=×(﹣9)=﹣6;(10)原式=﹣1××+0.2=﹣+=.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.把下列各数填在相应的大括号中分数:{…}非负整数:{…}无理数:{…}.考点:实数.专题:计算题.分析:利用分数,非负整数,以及无理数的定义判断即可.解答:解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9};点评:此题考查了实数,熟练掌握各自的定义是解本题的关键.21.数轴上的点M对应的数是﹣4,一只蚂蚁从M点出发沿数轴以每秒2个单位长度的速度爬行,当它到达数轴上的N点后,立即返回到原点,共用11秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?考点:数轴.分析:(1)根据公式:路程=速度×时间,直接得出答案;(2)先设点N表示的数为a,分两种情况:点M在点N左侧或右侧,求出从M点到N点单位长度的个数,再由M点表示的数是﹣4,从点N返回到原点即可得出N点表示的数.(3)根据点N表示的数即可得出点M和点N之间的距离.解答:解:(1)2×11=22(个单位长度).故蚂蚁爬行的路程是22个单位长度.(2)①当点M在点N左侧时:a+4+a=22,a=9;②当点M在点N右侧时:﹣a﹣4﹣a=22,a=﹣13;(3)点M和点N之间的距离是13或9.点评:本题考查了数轴,两点之间距离的求法:右边的数减去左边的数.22.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣1|,1,0,﹣(﹣3.5)考点:有理数大小比较;数轴.分析:在数轴上表示出各数,从左到右用“<”连接起来即可.解答:解:如图所示,,由图可知,﹣|﹣1|<0<1<2<﹣(﹣3.5).点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=7.(2)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.考点:绝对值;数轴.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x﹣2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.解答:解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.点评:此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.【篇二】一.选择题(共10小题,每题2分,共20分,请把正确答案写在答案卷上.)1.(2分)下列各数中,是负数的是()A.﹣(﹣3)B.2013C.0D.﹣24【分析】利用负数定义判断即可.【解答】解:﹣24=﹣16,是负数,故选D【点评】此题考查了有理数的乘方,正数与负数,以及相反数,熟练掌握各自的性质是解本题的关键.2.(2分)﹣3+5的相反数是()A.2B.﹣2C.﹣8D.8【分析】先计算﹣3+5的值,再求它的相反数.【解答】解:﹣3+5=2,2的相反数是﹣2.故选B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2分)将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣2【分析】利用去括号的法则求解即可.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2,故选:C.【点评】本题主要考查了有理数加减混合运算,解题的关键是注意符号.4.(2分)实数a、b在数轴上的位置如图所示,则a与﹣b的大小关系是()A.a>﹣bB.a=﹣bC.a<﹣bD.不能判断【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,且|a|>|b|,所以,﹣b<0,所以,a<﹣b.故选C.【点评】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.5.(2分)下列各组数中,最后运算结果相等的是()A.102和54B.﹣44和(﹣4)4C.﹣55和(﹣5)5D.()3和【分析】各项两式计算得到结果,比较即可.【解答】解:A、102=100,54=625,不符合题意;B、﹣44=﹣256,(﹣4)4=256,不符合题意;C、﹣55=(﹣5)5=﹣3125,符合题意;D、()3=,=,不符合题意,故选C【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.6.(2分)有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为()A.1个B.3个C.1个或3个D.2个【分析】根据三个数相乘积为负,得到三个数中有1个或3个负数,再由和为正数,确定出三个数中负数只有一个.【解答】解:有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为1个.故选A【点评】此题考查了有理数的乘法,以及有理数的加法,熟练掌握运算法则是解本题的关键.A.361×106km2B.36.1×107km2C.0.361×109km2D.3.61×108km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2分)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2013的值是()A.﹣1B.2013C.﹣2013D.1【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+2|+(b﹣1)2=0,∴a+2=0,b﹣1=0,即a=﹣2,b=1,则原式=(﹣2+1)2013=(﹣1)2013=﹣1.故选A【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握非负数的性质是解本题的关键.9.(2分)下列说法:①1是最小的正数②的负整数是﹣1③任何有理数的绝对值都是正数④若|a|=﹣a,则a是负数⑤互为相反数的两个数,绝对值相等⑥若﹣a=a,那么a=0其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据有理数的含义和分类,相反数的含义和求法,以及绝对值的含义和求法,判断出正确的说法有多少个即可.【解答】解:∵1不是最小的正数,∴选项①不正确;∵的负整数是﹣1,∴选项②正确;∵0的绝对值不是正数,∴选项③不正确;∵若|a|=﹣a,则a是负数或0,∴选项④不正确.∵互为相反数的两个数,绝对值相等,∴选项⑤正确;∵若﹣a=a,∴a=0,∴选项⑥正确.综上,可得正确的个数有3个:②、⑤、⑥.故选:C.【点评】此题主要考查了有理数的含义和分类,相反数的含义和求法,以及绝对值的含义和求法,要熟练掌握.10.(2分)已知m≥2,n≥2,且m、n均为正整数,如果将mn 进行如图所示的“分解”,那么下列四个叙述中正确的有()①在25的“分解”中,的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.A.1个B.2个C.3个D.4个【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,由此规律进一步分析探讨得出正确的答案.【解答】解:①在25的“分解”中,的数是25﹣1+1=17,所以此叙述不正确;②在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43,所以此叙述正确;③若m等于5,由53“分解”的最小数是2,1,则其余四个数为23,25,27,29,31,所以此叙述错误;④若3n的“分解”中最小的数是3n﹣1﹣2=79,则n=5,所以此叙述正确.故正确的有②④.故选:B.【点评】考查学生观察分析问题的能力,由观察可知底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂.由此可以依次判断.二.填空题(共10小题,每题2分,共20分,请把结果直接填在答题卷上.)11.(2分)﹣3的倒数是﹣;相反数是3.【分析】根据相反数,倒数的概念可求解.【解答】解:﹣3的倒数是﹣;相反数是3.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.(2分)如果温度上升6℃记作+6℃,那么下降3℃记作﹣3℃.【分析】用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升6℃记作+6℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.13.(2分)如果﹣x=7,那么x=﹣7;如果|﹣x|=5,则x=±5.【分析】﹣x=7两边同时除以﹣1即可得到x的值;根据绝对值等于一个正数的数有两个可得|﹣x|=5时x=±5.【解答】解:∵﹣x=7,∴x=﹣7;∵|﹣x|=5,∴﹣x=±5,∴x=±5,故答案为:﹣7;±5.【点评】此题主要考查了绝对值和相反数,关键是掌握绝对值的性质:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.14.(2分)若|x|=3,|y|=2,且x>y,则x﹣y的值为1或5.【分析】首先根据绝对值的定义确定出x、y的值,再找出x>y 的情况,然后计算x﹣y即可.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2,∵x>y,∴①x=3,y=2,x﹣y=1;②x=3,y=﹣2,x﹣y=3﹣(﹣2)=3+2=5;故答案为:1或5.【点评】此题主要考查了绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x、y的值.15.(2分)满足条件大于﹣2而小于π的整数共有5个.【分析】在数轴上标出﹣2与π,根据数轴的特点直接解答即可.【解答】解:如图所示:大于﹣2而小于π的整数有:﹣1,0,1,2,3,共5个.故答案为:5.【点评】本题考查的是数轴的特点,根据数轴的特点利用数形结合求解是解答此题的关键.16.(2分)(1)|﹣18|+|﹣6|=24(2)﹣π<﹣3.14.【分析】(1)先求绝对值,再计算加减;(2)两个负数,绝对值大的其值反而小.【解答】解:(1)|﹣18|+|﹣6|=18+6=24;(2)﹣π<﹣3.14.故答案为:24;<.【点评】此题考查有理数的加法,绝对值,有理数大小比较,正确、灵活掌握各运算法则,以及注意运算顺序,是解题的关键.17.(2分)某次数学和测验,以90分为标准,老师公布成绩:小明+10分,小刚0分,小敏﹣2分,则小刚的实际得分是90,小敏的实际得分是88.【分析】根据正负数的意义即可求出答案.【解答】解:根据题意可知:小刚的得分为:90+0=90小敏的得分为:90﹣2=88故答案为:90,88【点评】本题考查正负数的意义,解题的关键是正确理解正负数的意义,本题属于基础题型.18.(2分)在数轴上,点A(表示整数a)在原点的左侧,点B (表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b 的值为﹣671.【分析】根据已知条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b﹣a=2013,a=﹣2b,则易求b=671.所以a+b=﹣2b+b=﹣b=﹣671.【解答】解:如图,a<0<b.∵|a﹣b|=2013,且AO=2BO,∴b﹣a=2013,①a=﹣2b,②由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671.故答案是:﹣671.【点评】本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.19.(2分)初次见面通常以握手示礼,适当的握手时间与力度会让人有一种舒服亲切的感受.某次联谊会有41人参加,若41位与会人员彼此握手一次,那么全体与会人员共握手820次.如果有n个人参加,那么全体与会人员共握手n(n﹣1)次.【分析】设握手x次,根据图表中给出的类比规律,可知当有n 个人时,握手次数为n(n﹣1),根据此规律可求出握手次数.【解答】解:由题意得:设握手n次,则x=n(n﹣1),当n=41时,x=n(n﹣1)=×41×(41﹣1)=820.故答案为:820,n(n﹣1).【点评】本题考查理解题意的能力,关键根据图表给的信心找出握手总次数和人数的关系式,从而可列出方程求解.20.(2分)下边横排有12个方格,每个方格都有一个数字,若任何相邻三个数字的和都是20,则x=5.5ABCDEFxGHI10【分析】根据任何相邻三个数字的和都是20列出关系式,依次即可求出x的值.【解答】解:根据题意得:5+A+B=20,A+B+C=20,C+D+E=20,D+E+F=20,E+F+x=20,∴A+B=15,C=5,B+D=15,D+E=15,F=5,F+x=10,则x=5.故答案为:5【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三.解答题(共8小题,共60分.解答需写出必要的文字说明或演算步骤.)21.(4分)把数2、﹣|﹣1|、1、0、﹣(﹣3.5)在数轴上表示出来,再用“<”把它们连接起来.【分析】首先在数轴上表示各数,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把各数连接起来即可.【解答】解:如图所示:,﹣|﹣1|<0<1<2<﹣(﹣3.5).【点评】此题主要考查了有理数的比较大小,以及数轴,关键是掌握在数轴上表示的两个有理数,右边的数总比左边的数大.22.(5分)把下列各数填在相应的集合内:正分数集合:{3.14,,…}整数集合:{100,﹣2,0,﹣2011,…}负有理数集合:{﹣0.82,﹣30,﹣2,﹣2011,﹣3.1,…}非正整数集合;{﹣2,0,﹣2011,…}【分析】根据分数,有理数,整数以及无理数的概念进行判断即可.【解答】解:正分数集合:{3.14,,…}整数集合:{100,﹣2,0,﹣2011,…}负有理数集合:{﹣0.82,﹣30,﹣2,﹣2011,﹣3.1,…}非正整数集合;{﹣2,0,﹣2011,…}【点评】本题主要考查了实数的分类,解题时注意:有理数和无理数统称实数.23.(20分)计算:①8+(﹣10)﹣(﹣5)+(﹣2);②7﹣(﹣3)+(﹣4)﹣|﹣8|③(﹣+)×(﹣36)④﹣81÷×(﹣)÷3⑤49×(﹣5)(简便方法计算)【分析】按照先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,有时利用乘法结合律、加法结合律进行简便运算.【解答】解:①8+(﹣10)﹣(﹣5)+(﹣2)=8﹣10+5﹣2=13﹣12=1.②7﹣(﹣3)+(﹣4)﹣|﹣8|=7+3﹣4﹣8=10﹣12=﹣2.③(﹣+)×(﹣36)=﹣18+20﹣21=﹣19.④﹣81÷×(﹣)÷3=81×××=12.⑤49×(﹣5)=(50﹣)×(﹣5)=﹣250+=﹣249.【点评】本题考查有理数混合运算,注意:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,有时利用乘法结合律、加法结合律进行简便运算.24.(4分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求m2﹣cd+的值.【分析】利用相反数,绝对值,以及倒数的定义求出a+b,cd以及m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,∴m2=4原式=4﹣1+0=3;【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(6分)出租车司机小王某天下午营运全是在东西走向的太湖大道上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?【分析】(1)把小王下午的行车记录相加,然后根据正负数的意*答;(2)根据行车记录和收费方法列出算式,计算即可得解.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣5+6=﹣13+21=8千米,所以小王在下午出车的出发地的东面,距离出发地8千米;(2)10×8+2×(5﹣3)+2×(10﹣3)+2×(5﹣3)+2×(6﹣3)=80+4+14+4+6=108元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(6分)寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.【分析】(1)根据所给的式子可得S与n之间的关系为:S=n (n+1);(2)首先确定有几个加数,由(1)得出的规律,列出算式,进行计算即可.【解答】解:(1))∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+ (400)=(2+4+6+…+400)﹣(2+4+6+…+160),=200×201﹣80×81,=40200﹣6480,=33720.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.27.(6分)阅读下列材料,并回答问题计算机利用的是二进制数,它共有两个数码:0,1;将一个十进制的数转化为二进制数,只需把该数写成若干个的数的和,依次写出1或0即可.例如十进制数19可以按下述方法转化为二进制数:19=16+2+1=1×24+0×23+0×22+1×21+1×20=10011.二进制数110110可以转换成十进制数为:110110=1×25+1×24+0×23+1×22+1×21+0×20=54.(1)将86化成二进制;(2)将1011101化成十进制.【分析】(1)十进制化成二进制用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.(2)将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.【解答】解:(1)86÷2=43,43÷2=21…1,21÷2=10…1,10÷2=5…0,5÷2=2…1,2÷2=1…0,1÷2=0…1,故86(10)=1010110(2).(2)(1011101)2=1×26+0×25+1×24+1×23+1×22+0×21+1×20=64+0+16+8+4+0+1=93;(1011101)2=(93)10.【点评】本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.28.(9分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在﹣1到1之间运动时(即﹣1≤x≤1时),请化简式子:|x+1|﹣|x﹣1|﹣2|x+3|;(写出化简过程);。

初一数学 七年级数学上册第一次月考试卷附答案

初一数学 七年级数学上册第一次月考试卷附答案

初一数学七年级数学上册第一次月考试卷附答案一、选择题(共10题,每题2分,共20分)1. 请计算:3 + 4 × 5 =A. 23B. 35C. 53D. 702. 请计算:(2 + 3) × (4 - 1) =A. 6B. 9C. 12D. 153. 下列哪个是负数?A. 0B. 5C. -2D. 34. 若a = 3, b = 4,c = 5,则a × b ÷ c 等于A. 0.12B. 1.2C. 12D. 1205. 将7.6写成分数的形式是A. 3/5B. 3 1/5C. 7/6D. 7 3/56. 下列哪个数是最大的?A. -4B. -2C. 0D. 27. 请计算:84 ÷ 6 =A. 7B. 12C. 14D. 218. 下列哪个是正数?A. 0B. -5C. -3D. 49. 请计算:2 + 4 × (5 - 3) =A. 6B. 10C. 12D. 1410. 下列哪个分数是最小的?A. 3/4B. 2/3C. 5/8D. 1/2二、填空题(共10题,每题2分,共20分)1. 小华去动物园看了___只大象。

2. 我们有____队篮球队伍。

3. 今天是2022年2月28日,再过____天就是春节了。

4. (-2) × 5 = ______5. 要把一个13升的装满,需要倒入____升的液体。

6. 一个直角三角形的两条直角边长度分别是3cm和4cm,斜边长度为_____.7. 两个相等的数相加的和是64,这个数是____.8. 60 ÷ 15 = ______.9. 计算:21 × 6 ÷ 7 = ______.10. 如果今天是星期五,再过____天就是星期天。

三、简答题(共5题,每题10分,共50分)1. 请解释下列数学术语的含义并举例:- 分数- 分子和分母- 整数2. 请计算下列算式的值:- 15 ÷ 3 + 2 × 4- 12 - 3(4 - 2)3. 请写出下列数的相反数:- 5- 1/3- 04. 请计算下列算式的积:- 3 × (-4)- (-5) × (-2)5. 请计算下列算式的商:- (-21) ÷ 3- 18 ÷ (-6)初一数学七年级数学上册第一次月考试卷答案一、选择题(共10题,每题2分,共20分)1. B2. D3. C4. B5. D6. D7. C8. D9. C10. B二、填空题(共10题,每题2分,共20分)1. 32. 23. 24. -105. 136. 57. 328. 49. 1810. 2三、简答题(共5题,每题10分,共50分)1.- 分数:指由分子和分母组成的数,分子表示被分割的数量,分母表示分割成几份。

7年级上册数学月考试卷【含答案】

7年级上册数学月考试卷【含答案】

7年级上册数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个正方形的边长是4厘米,那么它的面积是:A. 16平方厘米B. 8平方厘米C. 12平方厘米D. 4平方厘米2. 下列哪个数是质数?A. 21B. 17C. 27D. 353. 下列哪个数是偶数?A. 101B. 202C. 303D. 4044. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是:A. 22厘米B. 32厘米C. 42厘米D. 52厘米5. 下列哪个数是合数?A. 11B. 19C. 23D. 29二、判断题(每题1分,共5分)1. 两个质数相乘,其积一定是合数。

()2. 一个正方形的对角线把正方形分成两个面积相等的直角三角形。

()3. 1是质数。

()4. 一个等腰三角形的底角相等。

()5. 0是偶数。

()三、填空题(每题1分,共5分)1. 一个长方形的长是8厘米,宽是4厘米,那么它的面积是______平方厘米。

2. 2的倍数都是______数。

3. 一个等边三角形的周长是______。

4. 5的倍数的个位数是______或______。

5. 下列数中,______是最大的质数。

四、简答题(每题2分,共10分)1. 请简述什么是质数和合数。

2. 请简述什么是等腰三角形。

3. 请简述什么是等边三角形。

4. 请简述什么是长方形的面积。

5. 请简述什么是周长。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求它的面积。

2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

3. 请找出20以内的所有质数。

4. 请找出50以内的所有2的倍数。

5. 请找出30以内的所有3的倍数。

六、分析题(每题5分,共10分)1. 请分析为什么两个质数相乘,其积一定是合数。

2. 请分析为什么一个正方形的对角线把正方形分成两个面积相等的直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册月考试卷带答案2016一、精心选一选(每小题3分,共24分)1.在下列各数中,﹣3.8,+5,0,﹣,,﹣4,中,属于负数的个数为()A.2个B.3个C.4个D.5个2.下列叙述正确的是()A.正数和分数统称有理数B.0是整数但不是正数C.﹣是负分数,1.5不是正分数D.既不是正数,又不是负数,这样的数一定不是有理数3.下面表示数轴的图中,画得正确的是()A.B.C.D.4.下列比较大小的题目中,正确的题目个数是()(1)﹣5>﹣4;3>0>﹣4;(3)﹣>;(4)﹣>﹣.A.1B.2C.3D.45.下列各式中,等号不成立是()A.︳﹣9|=9B.︳﹣9|=︳+9|C.﹣︳﹣9|=9D.﹣︳﹣9|=﹣︳+9|6.|x﹣1|+|y+3|=0,则y﹣x﹣的值是()A.﹣4B.﹣2C.﹣1D.17.某店一周经营情况记录(记盈利为正)+113,+87,﹣55,﹣35,+80,+90,则该店一周经营情况()A.盈利280元B.亏损280元C.盈利260元D.亏损2608.两个有理数和为0,积为负,则这两个数的关系是()A.两个数均为0B.两个数中一个为0C.两数互为相反数D.两数互为相反数,但不为0二、专心填一填(每题3分,共24分)9.潜艇所在的高度是﹣100m,一条鲨鱼在潜艇上方30m处,则鲨鱼的高度记作.10.﹣的倒数是,绝对值等于的数是,﹣()的相反数是.11.相反数等于本身的有理数是;倒数等于本身的数是.12.绝对值小于5的整数有个.13.把(﹣4)﹣(﹣6)﹣(+8)写成省略加号的和的形式为.14.在﹣1,﹣2,2三个数中,任取两个数相乘,最小的积是,的积是.15.数轴上A点表示的数是2,那么同一数轴上与A点相距3个单位长度的点表示的数是.16.用“>”、“<”、“=”号填空;(1)﹣0.02 1;;(3)﹣(﹣)﹣[+(﹣0.75)];(4)﹣3.14.三、细心算一算(17-20题每小题26分,21、22每题5分,共26分)17.(1)(﹣4.6)+(﹣8.4)(﹣5)﹣5(3)3×[(﹣2)﹣10](4)23+(﹣17)+6+(﹣22)(5)(﹣5.3)+(﹣3.2)﹣(﹣2.5)﹣(+4.8)(6)(+)+(+17)+(﹣1)+(+7)+(﹣2)+(﹣)四、认真解一解.18.把下列各数在数轴上表示出来,并用“>”号把它们连接起来.﹣3,1,﹣4.5,0,3.19.把下列各数填在相应的大括号里:+2,﹣3,0,﹣3,π,﹣1.414,17,.负数集合:{…};正整数集合:{…};负分数集合:{…};有理数集合:{…}.20.已知a与b互为相反数,c与d互为倒数,e=﹣(﹣2014),求2013a+2013b﹣的值.21.已知|x﹣4|+|5﹣y|=0,求(x+y)的值.22.已知10箱苹果,以每箱10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,称重记录如下:+0.2,﹣0.2,+0.7,﹣0.3,﹣0.4,0,﹣0.1,+0.5,﹣0.2,﹣0.5.求12箱苹果的总重量.23.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远在白沙客站的什么方向若每千米的价格为3.5元,这天下午小李的营业额是多少?一、精心选一选(每小题3分,共24分)1.在下列各数中,﹣3.8,+5,0,﹣,,﹣4,中,属于负数的个数为()A.2个B.3个C.4个D.5个考点:正数和负数.专题:推理填空题.分析:根据正负数的定义便可直接解答,即大于0的数为正数,小于0的数为负数,0既不是正数也不是负数.解答:解:根据负数的定义可知,在这一组数中为负数的有:﹣3.8,﹣,﹣4,故选:B.点评:此题考查的知识点是正数和负数,解答此题的关键是正确理解正、负数的概念,区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前面是否有负号.2.下列叙述正确的是()A.正数和分数统称有理数B.0是整数但不是正数C.﹣是负分数,1.5不是正分数D.既不是正数,又不是负数,这样的数一定不是有理数考点:有理数.分析:根据有理数的定义,可判断A,根据零的意义,可判断B、D,根据分数的定义,可判断C.解答:解:A、整数和分数统称有理数,故A错误;B、0是整数单但不是正数,故B错误;C、﹣是负分数,1.5是正分数,故C错误;D、0既不是正数也不是负数,0是有理数,故D错误;故选:B.点评:本题考查了有理数,利用了有理数的定义,注意0不是整数也不是负数,0是有理数.3.下面表示数轴的图中,画得正确的是()A.B.C.D.考点:数轴.分析:数轴就是规定了原点、正方向和单位长度的直线,依据定义即可作出判断.解答:解:A、缺少正方向,故错误;B、单位长度不统一,故错误;C、正确;D、没有原点,故错误.故选C.点评:数轴有三要素:原点、正方向和单位长度,三者必须同时具备.4.下列比较大小的题目中,正确的题目个数是()(1)﹣5>﹣4;3>0>﹣4;(3)﹣>;(4)﹣>﹣.A.1B.2C.3D.4考点:有理数大小比较.分析:(1)根据两个负数比较大小,绝对值大的数反而小,可判断(1);根据正数大于零,零大于负数,可判断;(3)根据正数大于负数,可判断(3);(4)根据两个负数比较大小,绝对值大的数反而小,可判断(4).解答:解:(1)|﹣5|>|﹣4|,﹣5<﹣4,故(1)错误;3>0>﹣4,故正确;(3)正数大于负数,故(3)错误;(4)|﹣|<|﹣|﹣>﹣,故(4)正确;故选:B.点评:本题考查了有理数比较大小,正数大于零,零大于负数,注意两个负数比较大小,绝对值大的负数反而小.5.下列各式中,等号不成立是()A.︳﹣9|=9B.︳﹣9|=︳+9|C.﹣︳﹣9|=9D.﹣︳﹣9|=﹣︳+9|考点:绝对值.分析:根据绝对值的性质对四个选项依次计算即可:如果用字母a 表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.解答:解:A、|﹣9|=9,故等号成立;B、|﹣9|=|+9|=9,故等号成立;C、﹣|﹣9|=﹣9,故等号不成立;D、﹣﹣9|=﹣+9|=﹣9,故等号成立.故选C.点评:本题考查了绝对值的性质,解题时熟练掌握性质是关键,此题比较简单,易于掌握.6.|x﹣1|+|y+3|=0,则y﹣x﹣的值是()A.﹣4B.﹣2C.﹣1D.1考点:非负数的性质:绝对值.专题:计算题.分析:本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”解出x、y的值,再把x、y的值代入y﹣x﹣中即可.解答:解:∵|x﹣1|+|3+y|=0,∴x﹣1=0,3+y=0,解得y=﹣3,x=1,∴y﹣x﹣=﹣3﹣1﹣=﹣4.故选A.点评:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.7.某店一周经营情况记录(记盈利为正)+113,+87,﹣55,﹣35,+80,+90,则该店一周经营情况()A.盈利280元B.亏损280元C.盈利260元D.亏损260考点:正数和负数.分析:可以求出这七个数的和,看其结果即可判断.解答:解:因为113+87﹣55﹣35+80+90=280,所以可知一周盈利280元,故选:A.点评:本题主要考查有理数的加法减运算,正确理解正负数的意义是解题的关键.8.两个有理数和为0,积为负,则这两个数的关系是()A.两个数均为0B.两个数中一个为0C.两数互为相反数D.两数互为相反数,但不为0考点:有理数的乘法;有理数的加法.分析:根据有理数的乘法运算法则和有理数的加法运算法则判断即可.解答:解:∵两个有理数和为0,积为负,∴这两个数的关系是两数互为相反数,但不为0.故选D.点评:本题考查了有理数的乘法,有理数的加法,熟记运算法则是解题的关键.二、专心填一填(每题3分,共24分)9.潜艇所在的高度是﹣100m,一条鲨鱼在潜艇上方30m处,则鲨鱼的高度记作﹣70米.考点:正数和负数.分析:潜艇所在高度是﹣100米,如果一条鲨鱼在艇上方30m处,根据有理数的加法法则即可求出鲨鱼所在高度.解答:解:∵潜艇所在高度是﹣100米,鲨鱼在潜艇上方30m处,∴鲨鱼所在高度为﹣100+30=﹣70米.故答案为:﹣70米.点评:此题主要考查了正负数能够表示具有相反意义的量、有理数的加法等知识,解题关键是正确理解题意,根据题意列出算式解决问题.10.﹣的倒数是﹣,绝对值等于的数是,﹣()的相反数是.考点:倒数;相反数;绝对值.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:﹣的倒数是﹣,绝对值等于的数是,﹣()的相反数是,故答案为:﹣,,.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.11.相反数等于本身的有理数是0 ;倒数等于本身的数是±1.考点:倒数;相反数.专题:推理填空题.分析:根据①相反数的定义:只有符号不同的两个数叫互为相反数,0的相反数是0;②倒数的定义:乘积是1的两个数叫互为倒数;进行解答.解答:解:根据相反数的定义,得相反数等于本身的数是0;根据倒数的定义,得倒数等于本身的数是±1;故答案为:0,±1.点评:本题考查的是相反数、倒数的定义,难度不大,关键正确理解掌握其意义.12.绝对值小于5的整数有9 个.考点:绝对值.分析:求绝对值小于5的整数,即求绝对值等于0,1,2,3,4的整数,可以结合数轴,得出到原点的距离等于0,1,2,3,4的整数;解答:解:根据绝对值的定义,则绝对值小于5的整数是0,±1,±2,±3,±4,共9个,绝对值小于6的负整数有﹣1,﹣2,﹣3,﹣4,﹣5,共5个.故答案为9;点评:本题主要考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.13.把(﹣4)﹣(﹣6)﹣(+8)写成省略加号的和的形式为﹣4+6﹣8 .考点:有理数的减法.分析:根据相反数的定义和有理数的加法运算省略加号的方法解答.解答:解:(﹣4)﹣(﹣6)﹣(+8)写成省略加号的和的形式为﹣4+6﹣8.故答案为:﹣4+6﹣8.点评:本题考查了有理数的减法,有理数的加法省略加号的方法,是基础题,需熟记.14.在﹣1,﹣2,2三个数中,任取两个数相乘,最小的积是﹣4 ,的积是 2 .考点:有理数的乘法.分析:根据有理数的乘法运算法则和有理数的大小比较列式计算即可得解.解答:解:最小的积=﹣2×2=﹣4,的积=(﹣1)×(﹣2)=2.故答案为:﹣4;2.点评:本题考查了有理数的乘法,有理数的大小比较,正确列出算式是解题的关键.15.数轴上A点表示的数是2,那么同一数轴上与A点相距3个单位长度的点表示的数是﹣1或5 .考点:数轴.分析:设与A点相距3个单位长度的点表示的数是x,再根据数轴上两点间的距离公式求出x的值即可.解答:解:设该点表示的数是x,则|2﹣x|=3,解得x=﹣1或x=5.故答案为:﹣1或5.点评:本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16.用“>”、“<”、“=”号填空;(1)﹣0.02 <1;>;(3)﹣(﹣)= ﹣[+(﹣0.75)];(4)﹣< 3.14.考点:有理数大小比较.分析:(1)(4)根据正数大于负数可直接比较大小,(3)先把分数化为小数的形式再比较大小.解答:解:(1)﹣0.02<1;=0.8,=0.75,∴;(3)﹣(﹣)==0.75,﹣[+(﹣0.75)]=﹣(﹣0.75)=0.75,∴﹣(﹣)=﹣[+(﹣0.75)];(4)﹣<3.14.点评:本题考查了有理数的大小比较,解题的关键是把每个数化为统一的形式,再比较大小.三、细心算一算(17-20题每小题26分,21、22每题5分,共26分)17.(1)(﹣4.6)+(﹣8.4)(﹣5)﹣5(3)3×[(﹣2)﹣10](4)23+(﹣17)+6+(﹣22)(5)(﹣5.3)+(﹣3.2)﹣(﹣2.5)﹣(+4.8)(6)(+)+(+17)+(﹣1)+(+7)+(﹣2)+(﹣)考点:有理数的混合运算.专题:计算题.分析:(1)原式利用同号两数相加的法则计算即可得到结果;原式利用减法法则计算即可得到结果;(3)原式先计算括号中的运算,再计算乘法运算即可得到结果;(4)原式结合后,相加即可得到结果;(5)原式利用减法法则变形,计算即可得到结果;(6)原式结合后,相加即可得到结果.解答:解:(1)原式=﹣13;原式=﹣10;(3)原式=3×(﹣12)=﹣36;(4)原式=23+6﹣22﹣17=29﹣39=﹣10;(5)原式=﹣5.3﹣3.2+2.5﹣4.8=﹣13.3+2.5=﹣10.8;(6)原式=﹣+17+7﹣1﹣2=24﹣3=20.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、认真解一解.18.把下列各数在数轴上表示出来,并用“>”号把它们连接起来.﹣3,1,﹣4.5,0,3.考点:有理数大小比较;数轴.分析:数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是:左边的数总是小于右边的数.解答:解:先将各数在数轴上标出来用“>”号把它们连接起来:3>1>0>﹣3>﹣4.5.点评:主要考查了有理数大小的比较,利用数轴上的点与实数是一一对应的关系,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.19.把下列各数填在相应的大括号里:+2,﹣3,0,﹣3,π,﹣1.414,17,.负数集合:{…};正整数集合:{…};负分数集合:{…};有理数集合:{…}.考点:有理数.分析:根据小于零的数是负数,可得负数集合;根据大于零的整数是正整数,可得正整数集合;根据小于零的分数是负分数,可得负分数集合;根据有理数是有限小数或无限循环小数,可得有理数集合.解答:解:负数集合:{﹣3,﹣3,﹣1.414…};正整数集合:{2,17…};负分数集合:{﹣3,﹣1.414…};有理数集合:{+2,﹣3,0,﹣3,﹣1.414,17,…}.点评:本题考查了有理数,利用了有理数的分类.20.已知a与b互为相反数,c与d互为倒数,e=﹣(﹣2014),求2013a+2013b﹣的值.考点:代数式求值;相反数;倒数.分析:根据互为负数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得cd=1,再求出e,然后代入代数式进行计算即可得解.解答:解:∵a与b互为相反数,∴a+b=0,∵c与d互为倒数,∴cd=1,又∵e=﹣(﹣2014)=2014,∴2013a+2013b﹣=﹣=﹣2014.点评:本题考查了代数式求值,主要利用了相反数的定义,倒数的定义,是基础题,熟记概念是解题的关键.21.已知|x﹣4|+|5﹣y|=0,求(x+y)的值.考点:非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,x﹣4=0,5﹣y=0,解得x=4,y=5,所以,(x+y)=×(4+5)=.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.已知10箱苹果,以每箱10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,称重记录如下:+0.2,﹣0.2,+0.7,﹣0.3,﹣0.4,0,﹣0.1,+0.5,﹣0.2,﹣0.5.求12箱苹果的总重量.考点:正数和负数.分析:可以先求出这10箱比标准多或少重量,再加上10箱的标准重量即可.解答:解:因为0.2﹣0.2+0.7﹣0.3﹣0.4+0﹣0.1+0.5﹣0.2﹣0.5=﹣0.3所以12箱总重量为:10×10+(﹣0.3)=99.7(千克),答:12箱苹果的总重量为99.7千克.点评:本题主要考查有理数的加减混合运算,正确利用运算律及有理数的运算法则是解题的关键.23.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远在白沙客站的什么方向若每千米的价格为3.5元,这天下午小李的营业额是多少?考点:正数和负数.分析:(1)把这9个数加起来计算出其他结果,看其正负判断位置即可,求出绝对值的和,再乘价格即可.解答:解:(1)15﹣2+5﹣13+10﹣7﹣8+12+4=16,所以可知距出发白沙站16千米,在白沙客站的北方;|+15|+|﹣2|+|+5|+|﹣13|+|+10|+|﹣7|+|﹣8|+|+12|+|+4|=15+2+5+13+10+7+8+12+4=76,76×3.5=268(元),所以这天下午小李的营业额为268元.点评:本题主要考查有理数的加减运算,灵活运用运算律和正确掌握运算的法则是解题的关键.。

相关文档
最新文档