《数据结构(C语言版)》复习重点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数据结构(C语言版)》复习重点
重点在二、三、六、七、九、十章,考试内容两大类:概念,算法
第1章、绪论
1. 数据:是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。
2. 数据元素:是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
3. 数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。
其4类基本结构:集合、线性结构、树形结构、图状结构或网状结构
4. 逻辑结构:是数据元素之间的逻辑关系的描述。
5. 物理结构(存储结构):是数据结构在计算机中的表示(又称映像)。
其4种存储结构:顺序存数结构、链式存数结构、索引存数结构、散列存数结构6. 算法:是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。
其5个重要特性:有穷性、确定性、可行性、输入、输出
7. 时间复杂度:算法中基本操作重复执行的次数是问题规模n的某个函数f(n),算法的时间度量记作,T(n)=O(f(n));他表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称做算法的渐进时间复杂度,简称时间复杂度。例如: (a) {++x;s=0;}
(b) for(i=1;i<=n;++i){++x;s += x;}
(c) for(j=1;j<=n;++j)
for(k=1;k<=n;++k){++x;s += x;}
含基本操作“x增1”的语句的频度分别为1、n和n²,则这3个程序段的时间复杂度分别为O(1)、O(n)和O(n²),分别称为常量阶、线性阶和平方阶。还可呈现对数阶O(log n)、指数阶O(2的n次方)等。
8. 空间复杂度:算法所需存储空间的度量记作,S(n)=O(f(n))。
第2章、线性表
1. 线性表:是最常用最简单的一种数据结构,一个线性表是n个数据元素的有限序列。
2. 线性表的顺序存储结构:是用一组地址连续的存储单元依次存储线性表的数据元素。其特点为逻辑关系上相邻的两个元素在物理位置上也相邻,可以随机存取表中任一元素。
存储位置计算:假设线性表的每个元素需占用L个存储单元,并以所占的第一个单元的存储地址作为数据元素的存储位置,线性表的第i个数据元素ai的存储位置为LOC(ai)=LOC(a1)+(i-1)*L 式中LOC(a1)是线性表第一个元素a1的存储位置,通常称做线性表的起始位置或基地址。
3. 线性表的链式存储结构:是用一组任意的存储单元存储线性表的数据元素(这组存储单元可以是连续的,也可以是不连续的)。
数据元素ai的存储映像称为结点,包括2个域:存数据的数据域、存后继存储位置的指针域。
1) 线性链表(单链表)特点:每个结点只包含1个指针域。
在单链表的第一个结点之前附设的一个结点,称之为头结点。
假设L是LinkList型变量,则L为单链表的头指针,它指向表中第一个结点;L->next为第一个结点地址,L->next=NULL为空表。
生成结点:p=(LinkList)malloc(sizeof(LNode))
回收结点:free(q)
2) 循环链表特点:表中最后一个结点的指针域指向头结点,整个链表形成一个环。
循环链表的操作与线性链表基本一致,差别仅在于算法中的循环条件不是P或P->next是否为空,而是它们是否等于头指针。
3) 双向链表特点:有2个指针域,其一指向直接后继,另一指向直接前趋。
第3章、栈和队列
1. 栈:是限定仅在表尾进行插入或删除操作的线性表。表尾端称为栈顶,表头端称为栈底,不含有元素的空表称为空栈;栈又称为后进先出的线性表。
2. 队列:是一种先进先出的线性表,它只允许在表的一端进行插入,而另一端删除元素。允许插入的一端叫做队尾,允许删除的一端则称为队头。
1) 链队列:用链表示的队列。一个队列需要两个分别指示队头和队尾的指针(分别成为头指针和尾指针)才能确定唯一。和单链表一样,也给链队列添加一个头结点,并令头指针指向头结点。
2) 循环队列:与顺序栈类似,除了用一组地址连续的存储单元依次存放从队列头到队列尾的元素之外,尚需附设两个指针front和rear分别指示队列头元素及队列尾元素的位置。初始化建空队列时,令front = rear = 0,每当插入新的队列尾元素时,“尾指针增1”;每当删除队列头元素时,“头指针增1”。
第4章、串
1. 串:是由零个或多个字符组成的有限序列。第5章、数组和广义表
1. 数组特点:与线性表一样,所有数据元素都必须属于同一数据类型。
2. 数组的顺序存储结构:由于数组一般不作插入或删除操作,一旦建立了数组,则结构中的数据元素个数和元素之间的关系就不会发生变动,因此采用顺序存储结构表示数组。
存储位置计算:假设每个数据元素需占用L个存储单元,则二维数组A中任一元素aij的存储位置可由下式确定
以行序为主序的存储结构:LOC(i,j)=LOC(0,0)+(b2*i+j)*L
以列序为主序的存储结构:LOC(i,j)=LOC(0,0)+(b2*j+i)*L
式中LOC(i,j)是aij的存储位置;LOC(0,0)是a00的存储位置,即二维数组A 的起始存储位置,也称基地址或基址;b2在以行序为主序的存储结构时为每行存储元素的个数(列数),在以列序为主序的存储结构时为每列存储元素的个数(行数)。
3. 广义表:是线性表的推广,也有人称其为列表(lists,用复数形式以示与统称的表list的区别)。记作LS=(a1,a2,…an),其中LS是广义表(a1,a2,…an)的名称,n是它的长度。在线性表的定义中,ai(1≤i≤n)只限于是单个元素。而在广义表的定义中,ai可以是单个元素,也可以是广义表,分别称为广义表LS的原子和子表。
例如:
第6章、树和二叉树
1. 二叉树:是一种树型的结构,它的特点是每个结点至多只有两棵子树(即二叉树中不存在度大于2的结点),并且,二叉树的子树有左右之分,其次序不能任意颠倒。
2. 二叉树的性质:
1) 性质1:在二叉树的第i层上至多有2的i减1次方个结点(i≥1)。
2) 性质2:深度为k的二叉树至多有2的k次方减1个结点(k≥1)。
深度为k的二叉树至少有k个结点(k≥1)。
深度为k的完全二叉树至少有2的k次方减2的k减1次方个结点
(k≥1)。
3) 性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。
4) 性质4:具有n个结点的完全二叉树的深度为[log2n]+1。
5) 性质5:如果对一棵有n个结点的完全二叉树(其深度为[log2n]+1)的结点按层序编号(从第1层到第[log2n]+1层,每层从左到右),则对任一结点i(1