人教版初中数学第八章二元一次方程组知识点知识讲解

合集下载

八年级数学二元一次方程组知识点

八年级数学二元一次方程组知识点

八年级数学二元一次方程组知识点八年级数学中二元一次方程组是一个重要的知识点。

以下是几个常见的知识点和解题方法:1. 一次方程组的定义:二元一次方程组由两个一次方程组成,通常形式为:a1x + b1y = c1a2x + b2y = c2其中,a1, a2, b1, b2, c1, c2都是已知的实数系数。

2. 解二元一次方程组的方法:a. 消元法:通过适当的运算,将其中一个未知数的系数相等,然后相减或相加,消去这个未知数,求解另一个未知数;再将该未知数代回到方程中,求出另一个未知数;b. 代入法:将其中一个方程的一个未知数用另一个方程的未知数表示,然后代入到另一个方程中,得到一个含有一个未知数的一元一次方程,求解解。

3. 判断方程组有无解、唯一解或无穷解的条件:a. 方程组有无解:如果两个方程的系数a1/b1和a2/b2比值相等,同时c1/c2的比值与a1/b1的比值不等,则方程组无解;b. 方程组有唯一解:当两个方程系数a1/b1和a2/b2比值不等,或者c1/c2的比值与a1/b1的比值相等时,方程组有唯一解;c. 方程组有无穷解:当两个方程的系数a1/b1和a2/b2比值相等且c1/c2的比值与a1/b1的比值相等时,方程组有无穷解。

4. 解题例子:例1: 求解方程组2x + 3y = 75x - 4y = 2解:可以使用消元法或代入法解。

消元法:将第一个方程乘以4,第二个方程乘以3,然后相减消去y的系数,得到6x = 22,即 x = 22/6 = 11/3。

将x = 11/3代入第一个方程,得到2(11/3) + 3y = 7,解得 y = 1/3。

所以方程组的解为 x = 11/3, y = 1/3。

例2: 判断方程组是否有解3x - 4y = 109x - 12y = 30解:将第一个方程乘以3,第二个方程乘以1/3,然后比较系数。

比较系数发现:-4/3 ≠ 1/3。

所以方程组无解。

第8章 二元一次方程组 知识点梳理

 第8章 二元一次方程组 知识点梳理

-@>% )一二元一次方程组1.二元一次方程(1)二元一次方程:含有两个未知数,并且含有未知数的项的次数是1的方程叫二元一次方程.(2)一般形式:a x+b y+c=0(aʂ0,bʂ0).2.二元一次方程组(1)二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.(2)二元一次方程组的解:二元一次方程组的两个方程的公共解,叫作二元一次方程组的解.二消元法——二元一次方程组的解法1.用代入消元法解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来.(2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.(3)解这个一元一次方程,求出x(或y)的值.(4)将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.(5)把求得的x㊁y的值用 { 联立起来,就是方程组的解.2.用加减消元法解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使其中一个未知数的系数互为相反数或相等.(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程.(3)解这个一元一次方程.(4)将求出的未知数的值代入原方程组的任意一个方程中(技巧:选择系数较简单的方程计算),求出另一个未知数,从而得到方程组的解.(5)把求得的x㊁y的值 { 联立起来,就是方程组的解.三实际问题与二元一次方程组列方程组解应用题的步骤:(1)审题 弄清题目中所给出的相等关系及已知量㊁未知量.(2)设好未知数 其方法通常有两种:①设直接未知数;②设间接未知数,并用含未知数的代数式表示涉及的量.3(3)找出能够包含未知数的等量关系 一般情况下,设几个未知数,就需找几个等量关系.(4)列方程组 根据给定的相等关系建立方程组.(5)解方程组.(6)检验并作答 所求方程组的解在正确的基础上还要符合实际意义,并写清单位名称或符号.四三元一次方程组的解法1.三元一次方程组含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫作三元一次方程组.2.解三元一次方程组的一般步骤(1)把方程组里的一个方程分别与另外两个方程组成两组,用代入法或加减法消去这两组中的同一个未知数,得到一个含有另外两个未知数的二元一次方程组.(2)解这个二元一次方程组.(3)将所求得的两个未知数的值代入原方程组中的任意一个方程中,求得第三个未知数的解,从而求出方程组的解.2。

新课标人教版七年级数学下册《第八章二元一次方程组》知识要点概括

新课标人教版七年级数学下册《第八章二元一次方程组》知识要点概括

1、二元一次方程:
⑴定义:含两个未知数且未知项的最高次数是的方程。

即同时满足以下几个条件的方程就是二元一次方程:①含未知数;②未知项的最高次数是;③分母不含。

⑵使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的;
2、二元一次方程组:
⑴同时满足以下条件的方程组就是二元一次方程组:①共含两个未知数;②未知项的最高次数是;③分母不含。

考点:若︱m-2︱x0.5︱m︱+(n+1)y|n|=5是二元一次方程,则m=,n=.
⑵同时使方程都成立的未知数的值叫二元一次方程组的解。

无论是二元一次方程还是二元一次方程组的解都应该写成的形式。

⑶二元一次方程组的解法:基本思路是。

①消元法;将一个方程变形为用含一个未知数的式子表示另一个未知数的形式再代入另一个方程,将二元化为一元;②消元法;适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数分别的特点,如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。

⑷列方程解应用题的一般步骤是:;关键是找出题目中的两个相等关系,列出方程组。

人教版七年级数学下册第八章 二元一次方程组知识点整理汇总及题型分类练习

人教版七年级数学下册第八章 二元一次方程组知识点整理汇总及题型分类练习

=x的方程组直接写出它的解.两者的行程差=开始时两者相距的路程; ;; (1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率; 打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十) 4.储蓄问题: ①利息=本金×利率×期数 ②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数) ③利息税=利息×利息税率=本金×利率×期数×利息税率。

④税后利息=利息× (1-利息税率) 。

 5.配套问题: 解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。

 6.增长率问题: 解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量; 原量×(1-减少率)=减少后的量. 7.和差倍分问题: 解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量. 8.数字问题: 解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。

如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字 9.优化方案问题: 在解决问题时,常常需合理安排。

需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。

 经典例题透析类型一:列二元一次方程组解决——行程问题 例:甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?举一反三: 【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

新人教版第八章《二元一次方程组》基础知识要点

新人教版第八章《二元一次方程组》基础知识要点

第八章二元一次方程组1、二元一次方程:含有两个未知数,并且未知项的最高次数是一次,两边都是关于未知数的整式的方程叫二元一次方程。

2、二元一次方程的解:使二元一次方程左右两边相等的一组未知数的值叫做二元一次方程的解。

注意:一个二元一次方程有无数多个解。

3、二元一次方程组:含有两个未知数,并且未知项的最高次数是一次,两边都是关于未知数的整式的方程组叫二元一次方程组。

4、二元一次方程组的解:使二元一次方程组中每个方程的左右两边的值都相等的两个未知数的值叫做二元一次方程组的一个解。

5、解二元一次方程组、三元一次方程组的基本思想是消元;二元一次方程组的基本解法:代入法和加减法。

6、代入法解二元一次方程组的一般步骤:变形、代入、求解、代入、结论。

(1)把其中一个方程变形,用一个未知数表示另一个未知数;(2)把表示出的未知数代入另一个方程消去被表示的未知数,得到一元一次方程;(3)解所得到的一元一次方程求得一个未知数的值;(4)把求得的未知数的值代入第(1)步变形得到的式子,求出另一个未知数的值;(5)得出结论。

注意:适当应用整体代入会使问题变简单。

7、加减法解二元一次方程组的一般步骤:变形、加减、求解、代入、结论。

(1)在一个方程或两个方程的两边同乘以一个恰当的数,使某个未知数的系数相等或互为相反数;(2)把所得的两个方程左右两边分别相加或相减消去一个未知数;(某未知数的系数相等时相减,某未知数的系数互为相反数时相加;相减时注意符号);(3)解所得到的一元一次方程,得一个未知数的值;(4)把求得的未知数的值代入原方程组其中的一个方程,求另一个未知数的值;(5)得出结论。

注意:解二元一次方程组时应先把它化为一般形式。

8、三元一次方程组的解法:从原方程组中选择其中一个方程分别与另两个方程结合消去同一个未知数转化为二元一次方程组求解。

积累与应用1、解二元一次方程组时,适当运用整体思想会更简便。

如解方程63233x yxx yx-⎧=-⎪⎪⎨-⎪-=-⎪⎩和215216217x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩2、已知二元一次方程或二元一次方程组的解时,常把它代入原方程或方程组中。

人教版七年级数学下册—第8章二元一次方程(组)单元总结复习

人教版七年级数学下册—第8章二元一次方程(组)单元总结复习

第八章 二元一次方程(组)知识框架⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧实际问题应用三元一次方程组的解二元一次方程的解二元一次方程组的概念二元一次方程组二元一次方程的解二元一次方程的概念二元一次方程二元一次方程(组) 知识梳理 1. 二元一次方程1. 二元一次方程的概念:含有两个未知数,并且未知项的次数都是1,像这样的方程叫做二元一次方程. (1)在方程中,“元”是指未知数,“二元”就是指方程中有且只有两个未知数; (2)“未知数的次数都是1”是指含有未知数的项的次数是1. (3)二元一次方程的左边和右边必须都是整式. 2. 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程组的解. 2. 二元一次方程组1. 二元一次方程组的概念:具有相同未知数的的两个二元一次方程合在一起,就组成了一个二元一次方程组. 判断二元一次方程组的方法:(1)看整个方程组里含有的未知数是不是两个; (2)看含有未知数的项的次数是不是1; (3)等式两边都是整式. 2. 二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.检验一对数是否是某个二元一次方程组的解常用方法:将这组数值分别代入方程组中的每个方程,只有当这对数值满足其中的所有方程时,才能说这对数值是此方程组的解;否则,就不是此方程组的解. 3. 二元一次方程组的整数解的求法:一般情况下,一个二元一次方程都有无数个整数解,解这类问题时,先用一个未知数的代数式表示另一个未4. 二元一次方程组的常用解法:①代入法;②消元法. 3. 三元一次方程组1. 三元一次方程组的概念:由三个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

2. 三元一次方程组求解的步骤:4. 实际应用 1. 和差倍分问题较大量=较小量+多余量,总量=倍数×倍量; 2. 产品配套问题 加工总量成比例; 3. 行程与航速问题行程问题和航速问题:路程=速度×时间(1)⎩⎨⎧==+初始距离慢速度追及问题:快速度初始距离慢速度相遇问题:快速度行程问题-(2)航速问题:①顺流(风):航速=静水(无风)中的速度+水(风)速; ②逆流(风):航速=静水(无风)中的速度-水(风)速; 4. 工程问题(1)工作量=工作效率×工作时间;(2)①工作总量已知;②工作总量未知时,一般设为“单位1”; 5. 利润问题利润=售价-进价;利润率=(售价-进价)/进价×100%; 6. 方案问题 7. 增长率问题原量×(1+增长率)n =增长后的量,原量×(1-增长率)n =减少后的量;(n 为时间) 8. 数字问题9. 几何问题解这类问题的基本关系式是有关几何图形的性质.周长.面积等计算公式; 10. 其他问题考点1:基础概念(二元一次方程(组)的概念、方程(组)的解的概念) 【典型例题】【针对练习】1. 下列方程中,属于二元一次方程的是( )A . 81xy -=B . 2131x y -=+C . 4535x y x y -=-D . 231x y-= 2. 下列方程组中,是二元一次方程组的是( )A . 30x y =⎧⎨=⎩B . 12235x y x y ⎧-=⎪⎨⎪-=⎩C .25xy x y =⎧⎨-=⎩ D . 2363x y y z -=⎧⎨-=⎩3. 已知3(53)40,x y a xy +--=当a = ,它是关于x 、y 的二元一次方程。

人教版七年级第八章二元一次方程组思维导图

人教版七年级第八章二元一次方程组思维导图

人教版七年级第八章二元一次方程组思维导图一、二元一次方程组的概念1. 定义:二元一次方程组是由两个一次方程组成的方程组,其中包含两个未知数。

2. 形式:一般形式为 ax + = c 和 dx + ey = f,其中 a、b、c、d、e、f 是已知数,x 和 y 是未知数。

3. 解:二元一次方程组的解是指同时满足两个方程的 x 和 y 的值。

二、二元一次方程组的解法1. 代入法:将一个方程中的某个未知数用另一个方程中的表达式代替,然后解出另一个未知数。

2. 消元法:通过加减消元或乘除消元,将两个方程中的一个未知数消去,然后解出另一个未知数。

3. 图解法:在坐标轴上画出两个方程的图形,找出它们的交点,交点的坐标即为方程组的解。

三、二元一次方程组的应用1. 实际问题:在解决实际问题中,常常需要建立二元一次方程组来求解。

2. 经济问题:在经济学中,二元一次方程组可以用来解决价格、成本、利润等问题。

3. 几何问题:在几何问题中,二元一次方程组可以用来求解直线、圆等图形的交点、距离等问题。

四、二元一次方程组的注意事项1. 解的个数:二元一次方程组可能有唯一解、无解或无穷多解。

2. 解的表示:解可以用分数、小数或整数表示,但通常要求用分数表示。

3. 解的检验:在解出方程组后,需要将解代入原方程组中进行检验,以确保解的正确性。

五、二元一次方程组的解题步骤1. 分析问题:明确题目中给出的条件和要求,确定需要求解的未知数。

2. 建立方程:根据题目中的条件,建立两个含有未知数的方程。

3. 选择解法:根据方程的特点,选择合适的解法,如代入法、消元法或图解法。

4. 求解方程:按照选择的解法,进行计算和推导,求出未知数的值。

5. 检验解:将求得的解代入原方程组中,检验解的正确性。

6. 得出结论:根据求解结果,得出问题的答案,并给出相应的解释或说明。

六、二元一次方程组的练习题1. 已知甲、乙两地相距 80 公里,一辆汽车从甲地出发,以每小时 60 公里的速度行驶,另一辆汽车从乙地出发,以每小时 80 公里的速度行驶。

第八章 二元一次方程组知识点总结 2023-2024 学年人教版数学七年级下册

第八章 二元一次方程组知识点总结  2023-2024 学年人教版数学七年级下册

第8章二元一次方程组8.1二元一次方程组【知识点】1.含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.判断一个方程是二元一次方程必须同时满足3个条件:(1)必须含有两个未知数;(2)含未知数的项的次数都是1;(3)方程中的分母不含未知数,即方程必须是整式方程.3.一个方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程租.4.一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.5.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.6.二元一次方程有无数个解,但对于一些特殊解(如正整数解),它的解的个数往往是有限的. 确定二元一次方程的整数解一般用列举法求. 方法是:先用含一个未知数x(或y)的代数式表示另一个未知数y(或x),然后给x(或y)一个符合要求的值,求出y(或x)的值,就得到二元一次方程的一个解.8.2消元——解二元一次方程组【知识点】1.解二元一次方程组的基本思路是消元,这种思想初步体现了数学研究中的化未知为已知的化归思想.(一)代入法1.把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.2.用代入法解二元一次方程组的步骤是:(1)变:选定一个系数比较简单的方程进行变形,用x表示y,即y=ax+b(或用y表示x,即x=ay+b)的形式;(2)代:将y=ax+b代入另一个方程,消去y,得到一个关于x的一元一次方程(或代入x=ay+b,消去x);(3)解:解这个一元一次方程,求出x(或y)的值;(4)再代:把x的值代入y=ax+b,求出y的值(或将y的值代入x=ay+b);(5)联:把求得的x,y的值用“{”联立,即是方程组的解.(二)加减法1.当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.2.用加减法解二元一次方程组的步骤:(1)用一个适当的数去乘方程两边每一项,使两个方程中准备消去的未知数的系数相等或相反数;(2)把变形后的两个方程对应相加或相减,消去一个未知数,转化成一元一次方程;(3)求出一个未知数的解,再用代入法或加减法求另一个解.(三)解二元一次方程组总结1.当方程组中某一个未知数的系数绝对值是1或一个方程的常数项为0时,用代入法较方便;到两个方程中同一个未知数的系数绝对值相等或成整倍数时,用加减法较方便.2.当方程组中任一个未知数的系数绝对值不是1,且不成倍数关系时,一般经过变形利用加减法会使解法更简单.3.任何一个二元一次方程组经过变形以后,都可以化为以下标准形式:当a2,b2,c2全不为0时,它的解的情况是:(1)当a1a2≠b1b2时,方程组有唯一的一个解;(2)当a1a2=b1b2=c1c2时,方程组有无数多个解;(3)当a1a2=b1b2≠c1c2时,方程组无解.8.3实际问题与二元一次方程组【知识点】1.列方程组解应用题的一般步骤是:(1)审题:弄清题意和题目中的数量关系;(等量关系)(2)设元:用字母表示题目中的未知数,通常有直接设和间接设两种; (3)列方程组; (4)解方程组; (5)检验作答.2.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足: (1)方程两边表示的是同类量; (2)同类量的单位要统一; (3)方程两边的数值要相符.3.列方程组解应用题要注意检验和作答,检验不仅要求所求的的解是否符合方程组中的每一个方程,更重要的是要检验所求得的结果是否符合客观实际要求.4.在行程问题中,若速度为v ,时间为t ,路程为s ,则有s=vt ,v= st,t= sv.5.在商品经济中,利润=售价-成本价,利润率=利润÷成本价;一件商品原价是a ,打x 折后价格是110ax.6.列方程组解应用题和列一元一次方程解应用题类似.要想正确列出方程组,必须正确掌握以下几种类型的问题:①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数;②行程问题,即路程=速度×时间;③工程问题,即工作量=工作效率 × 工作时间; ④浓度问题,即溶质质量=溶液质量× 浓度;⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系; ⑥等积问题,即变形前后的质量(或体积)不变;⑦数字问题,即若个位上数字为 a ,十位上的数字为b ,百位上的数字 c ,则这个三位数可表示为100c+10b+ a ;8.4三元一次方程组的解法【知识点】1.方程组含有3个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.(三元一次方程组——二元一次方程组——一元一次方程)具体步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出这两个未知数的值;(3)再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程中,求出第三个未知数的值;(4)最后将求得的三个未知数的值用“{”写在一起.3.在三元一次方程组中,适合每一个方程的一组未知数的值,叫做这个方程组的一个解.4.在三元一次方程组中,每一个方程可以是一元一次方程,也可以是二元一次方程,但三个方程中总的未知数的个数是3.练习题一、填空题1. 已知x|a |-1+(a -2)y=2是关于x ,y 的二元一次方程,则a 的值为_________.2. 若关于x ,y 的方程x m+2-y n -1=5是二元一次方程,则m=______,n=________.3. 写出一个以{x =1,y =−3为解的二元一次方程_________. 4. 若x 2m+1+5y 3n -2=7是二元一次方程,则m=______,n=________. 5. 写出满足方程x+2y=9的两个整数解为_______. 6. 已知{x =2y =1是方程2x+ay=5的解,则a=________. 7. 已知{x =3y =−1是方程组{3x +ky =0mx +y =8的解,则k+m=_______.8.写出一个以{x =3y =−5为解的二元一次方程组________.二、选择题1. 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )2. 关于x ,y 的方程组{3x −y =m,x +my =n 的解是{x =1,y =1,则|m -n |的值是( ) A.5 B.3 C.2 D.13. 下列选项中,是二元一次方程的是 ( )A.xy=7B.x+π=6C.x -y=1D.3x -34=5y+3x4. 方程(1)3x -z=2;(2)y+x 2=0;(3)2x+3y=z ;(4)xy=1;(5)5x - 13y =4; ( ) (6)x=-y 中是二元一次方程的有A.1个B.2个C.3个D.4个5. 下列各组数值中,是二元一次方程组{x +y =52x −y =4的解的是( )A.{x =3y =2B.{x =3 y =−2C.{x =−3y =2D.{x =−3y =−26. 下列四个方程组中,是二元一次方程组的是 ( )A.{3x −y =6xy =10B.{x3−y 2=343x +2y =10C.{x +y =10y +z =20D.{5x −7y =6x +4y =5【答案解析】 一、填空题1. 答案:-22. 答案:-1 23. 答案:不唯一,如x+2y=-54. 答案:0 15. 答案:答案不唯一,如:{x =1y =4 ,{x =3y =36. 答案:17. 答案:128.答案:答案不唯一,如{x +y =−2x −y =8二、选择题1. 答案:B2. 答案:D3. 答案:C4. 答案:B5. 答案:A6. 答案:B。

七年级数学下册《第八章 二元一次方程组》知识点归纳(pdf) (新版)新人教版

七年级数学下册《第八章 二元一次方程组》知识点归纳(pdf) (新版)新人教版

第八章二元一次方程组知识点总结
二、概念定义
二元一次方程:含有两个未知数,并且所含未知数的项的次数是1,像这样的方程叫做二元一次方程,一般形式是 ax+by=c(a≠0,b≠0)。

二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程的解。

二元一次方程组的解:一般地,使二元一次方程组的两个方程都成立的公共解叫做二元一次方程组的解
消元:将未知数的个数由多化少,逐一解决的方法,叫做消元思想。

代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

人教版数学七年级下册知识重点与单元测-第八章8-6《二元一次方程组》章末复习(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-6《二元一次方程组》章末复习(能力提升)

第八章 二元一次方程(组)8.6 《二元一次方程组》章末复习(能力提升)【要点梳理】知识点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a ==y x 的形式. 3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个. 要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“ ”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念例1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩B . 1332x y x y +=⎧⎨+=-⎩C . 1334x y x y +=⎧⎨-=⎩D . 1333x y x y +=⎧⎨+=⎩ 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C.【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零), (1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c abc ==,方程组有无数组解; (3)当1222a a a b ≠,方程组有唯一解. 举一反三:【变式1】若关于x 、y 的方程()12m m x y++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14. 类型二、二元一次方程组的解法例2. 解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【答案与解析】解:由①×9得:6(x -y )+9y =45 ③②×4得:6(x -y )-10y =-12 ④③-④得:19y =57,解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩. 举一反三: 【变式】(换元思想)解方程组16105610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩ 【答案】 解:设6x y m +=,10x y n -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩. ∴ 119x y =-⎧⎨=⎩.例3.小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得, 解得:,则a+b+c=2+﹣5=3﹣5=﹣2.举一反三: 【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =, 则=-b a .【答案】11.类型三、实际问题与二元一次方程组例4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y+=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=.答:图中阴影部分的面积为82.例5. 甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。

初中数学第八章 二元一次方程组知识归纳总结及解析

初中数学第八章 二元一次方程组知识归纳总结及解析

初中数学第八章 二元一次方程组知识归纳总结及解析一、选择题1.已知方程组2x y x y a-=⎧⎨+=⎩,且5x y =,则a 等于( )A .5B .4C .3D .22.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩ 3.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩4.用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;用一块B 型钢板可制成1块C 型钢板、4块D 型钢板.某工厂现需14块C 型钢板、36块D 型钢板,设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,则下列方程组正确的是( ) A .2143436x y x y +=⎧⎨+=⎩B .3214436x y x y +=⎧⎨+=⎩C .2314436x y x y +=⎧⎨+=⎩D .2144336x y x y +=⎧⎨+=⎩5.二元一次方程组2213x y ax y +=⎧⎪⎨+=⎪⎩的解也是方程36x y -=-的解,则a 等于( ) A .-3B .13-C .3D .136.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁 B .甲比乙大10岁 C .乙比甲大10岁D .乙比甲大5岁7.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是( )A .425cm 2B .525cm 2C .600cm 2D .800cm 28.方程组的解的个数是( )A .1B .2C .3D .49.若a 为方程250x x +-=的解,则22015a a ++的值为( ) A .2010B .2020C .2025D .201910.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .2 二、填空题11.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.12.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 13.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______. 14.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________15.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.16.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.17.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.18.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.19.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.20.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元三、解答题21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.22.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解;(3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.23.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.24.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a,a ),点B 的坐标(b,c ),且a 、b 、c 满足34624a b c a b c +-=⎧⎨-+=-⎩.(1)若a 没有平方根,判断点A 在第几象限并说明理由.(2)连AB 、OA 、OB ,若△OAB 的面积大于5而小于8,求a 的取值范围;(3)若两个动点M (2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M 、N 为端点的线段MN ∥AB ,且MN=AB .若存在,求出M 、N 两点的坐标;若不存在,请说明理由. 25.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把x=5y 代入到方程组中,得到关于y 、a 的二元一次方程组,解方程组即可. 【详解】将5x y =代入方程组2x y x y a -=⎧⎨+=⎩,得525y y y y a -=⎧⎨+=⎩,解得123y a ⎧=⎪⎨⎪=⎩.故选C . 【点睛】此题考查了二元一次方程组,掌握加减消元法是解答此题的关键.2.B解析:B 【分析】 方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c-=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】 方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,∴142x y +=⎧⎨=⎩, 即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 3.D解析:D 【解析】试题解析:∠A 比∠B 大30°, 则有x=y+30, ∠A ,∠B 互余, 则有x+y=90. 故选D .4.A解析:A 【分析】根据“用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;一块B 型钢板可制成1块C型钢板、4块D 型钢板及A 、B 型钢板的总数”可得 【详解】设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,得:2143436x y x y +=⎧⎨+=⎩,故选:A . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.5.C解析:C 【分析】把2x y +=与36x y -=-组成方程组,求出x ,y 的值,再代入方程213ax y +=,即可解答. 【详解】 由题意得:236x y x y +=⎧⎨-=-⎩,解得:13x y =-⎧⎨=⎩,把13x y =-⎧⎨=⎩代入方程213ax y +=,得:()21313a⨯-+⨯=,解得:3a =. 故选:C . 【点睛】本题考查了二元一次方程组的解,方程组的解为能使方程组中两方程都成立的未知数的值.6.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.7.B解析:B 【解析】 【分析】设每块墙砖的长为xcm ,宽为ycm ,根据“三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm”列方程组求解可得. 【详解】解:设每块墙砖的长为xcm ,宽为ycm , 根据题意得:1032240x yx y +⎧⎨+⎩==,解得:3515x y ⎧⎨⎩==, 则每块墙砖的截面面积是35×15=525cm 2, 故选:B . 【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.8.A解析:A【解析】解:当x >0,y >0时,方程组变形得:,无解;当x >0,y <0时,方程组变形得:,①+②得:2x=14,即x=7, ②﹣①得:2y=﹣6,即y=﹣3, 则方程组的解为;当x <0,y >0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去, 把y=﹣7代入②得:x=﹣3, 此时方程组无解;当x <0,y <0时,方程组变形得:,无解,综上,方程组的解个数是1, 故选A【点评】此题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.9.B解析:B 【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答. 【详解】解:∵a 为方程250x x +-=的解 ∴250a a +-=,即25a a += ∴22015a a ++=5+2015=2020. 故答案为B . 【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.10.D解析:D 【解析】试题分析:把两个方程相加可得3x+3y=2+k ,两边同除以3可得x+y=23k+=2,解得k=4,因此k 的算术平方根为2. 故选D.二、填空题 11.777 【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777 【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a 的值. 【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元, 设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a 故答案为:777. 【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.12.8或9 【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利解析:8或9 【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利用二元一次方程的解的概念进行求解即可. 【详解】如图,图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,由题意得:AC+CD+DB+AD+BC+AB=29, ∵AC+CD+DB=AB ,AD=AC+CD ,BC=CD+DB , ∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD , ∴AB=8,CD=5或AB=9,CD=2, 即AB 的长度为8或9, 故答案为:8或9. 【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.13.34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A 型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意解析:34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B 型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x z y z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.14.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键.15.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x和y关于a的解,根据方程组的解是正整数,得到5-a与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x和y关于a的解,根据方程组的解是正整数,得到5-a与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键. 16.311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元,A 、B 一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x 元/本,则甲为(7+x )元/本解析:311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A 、B 一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x 元/本,则甲为(7+x )元/本,甲购买了a 本,乙买了b 本, ∴A 的单价为x 元/本,B 为(7+x )元/本, A 购买了a 本,B 买了b 本,依题意得:①-②得:7a-7b=2177,∴a-b=311,即甲种书籍比乙种书籍多买了311本.【点睛】本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 17.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的 解析:16【分析】 从6个数中找到使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16. 故答案为16. 【点睛】 本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比.18.5【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a )+(2x-a )=0.5(y-a ),解得:y=5x即快艇静水速度是快船的解析:5【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a)+(2x-a)=0.5(y-a),解得:y=5x即快艇静水速度是快船的静水速度的5倍,故答案为:5.【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.19.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A 的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组23233222x yx y+=⎧⎨+=⎩,再求解45xy=⎧⎨=⎩.故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.20.5【分析】设A饮料a千克,B饮料b千克,C饮料c千克,D饮料d千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A饮料a千克,B饮料b千克,C饮料c千克,D饮料d千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A饮料a千克,B饮料b千克,C饮料c千克,D饮料d千克,根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.三、解答题21.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元, 35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)只,费用为w 元, 5720021400w a a a +-+=()=-,3200a a ≤-(),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22.(1)B ;(2),x y 的最小整数解为104x y =⎧⎨=⎩;(3)隐线中s 的最大值和最小值的和为72【分析】(1)将A,B,C 三点坐标代入方程,方程成立的点即为所求,(2)将P,Q 代入方程,组成方程组求解即可,(3)将P 代入隐线方程,27n +=组成方程组,求解方程组的解,再由()2723147s n n n =--=-即可求解.【详解】解:(1)将A,B,C 三点坐标代入方程,只有B 点符合,∴隐线326x y +=的亮点的是B.(2)将()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭代入隐线方程 得:226163h t h -=⎧⎪⎨-=⎪⎩解得253t h ⎧=⎨=-⎩ 代入方程得:5626x y -=,x y ∴的最小整数解为104x y =⎧⎨=⎩(3)由题意可得273n n s==⎪⎩72n =-n ∴= ()2723147s n n n ∴=--=-2122s ∴=- s ∴的最大值为14,最小值为212- 隐线中s 的最大值和最小值的和为2171422-= 【点睛】本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.23.(1)α∠和β∠的度数分别为70︒和110︒;(2)见解析;(3)40C ∠=︒【分析】根据2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,解二元一次方程组,求出α∠和β∠的度数;根据平行线判定定理,判定//AB CD ;由“AE 是CAB ∠的平分线”:2CAB α∴∠=∠,再根据平行线判定定理,求出C ∠的度数.【详解】解:(1)①+②,得5350α∠=︒,70α∴∠=︒,代入①得110β∠=︒α∴∠和β∠的度数分别为70︒和110︒.(2)180αβ∠+∠=︒//AB EF ∴//CD EF ,//AB CD ∴(3)AE ∵是CAB ∠的平分线2140CAB α∴∠=∠=︒//AB CD ,180C CAB ∴∠+∠=︒40C ∴∠=︒【点睛】本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.24.(1)第三象限;(2)见解析;(3)见解析【解析】【分析】(1)根据平方根的意义得到a <0,然后根据各象限点的坐标点的特征可判断点A 在第三象限;(2)先利用方程组34624a b c a b c +-=⎧⎨-+=-⎩,用a 表示b 、c ,得b=2+a.c=a, 则B 点的坐标为(2+a ,a ),故AB //x 轴,AB=|2+a-a|=2,故11|y |2||||22OAB B S AB a a =⨯⨯=⨯⨯= 由若△OAB 的面积大于5而小于8,可得5||8a <<计算即可得a 的取值范围;(3)由AB //x 轴即MN ∥AB 可得MN ∥x 轴,则M 、N 的y 坐标,以及MN=AB =2,可得方程组解得m 、n 的值,即可得出结论;【详解】(1)∵a 没有平方根,∴a <0,∴点A 在第三象限;(2)解方程组34624a b c a b c +-=⎧⎨-+=-⎩用a 表示b 、c ,得2b a c a =+⎧⎨=⎩∵点B 坐标为(b ,c )∴点B 坐标为(2+a ,a )∵点A 的坐标为(a ,a )∴AB =|2+a-a|=2,AB 与x 轴平行 ∴11|y |2||||22OAB B SAB a a =⨯⨯=⨯⨯= ∵△OAB 的面积大于5而小于8,∴5||8a << 解得:58a <<或85a -<<-(3) ∵AB ∥x 轴又∵MN ∥AB∴MN ∥x 轴∵M(2m, 3m-5) N(n-1, -2n-3), MN=AB=2 ∴3523122m n n m -=--⎧⎨--=⎩∴3523122m n n m -=--⎧⎨--=⎩ 3523122m n n m -=--⎧⎨--=-⎩∴47137m n ⎧=-⎪⎪⎨⎪=⎪⎩ 或4717m n ⎧=⎪⎪⎨⎪=⎪⎩∴847647,,7774M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 或823623,,7777M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 【点睛】本题考查了坐标与图形的性质,平方根,解三元一次方程组,三角形的面积,解不等式,审清题意,能灵活运用各个知识点之间的联系是解决的关键.25.(1)19a ;(2)315;(3)23. 【解析】【分析】(1)首先根据题意,求得S △A1BC =2S △ABC ,同理可求得S △A1B1C =2S △A1BC ,依此得到S △A1B1C1=19S △ABC ,则可求得面积S 1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC 的面积;(3)设S △BPF =m ,S △APE =n ,依题意,得S △APF =S △APC =m ,S △BPC =S △BPF =m .得出23APE BPF S S ∆∆=,从而求解.【详解】解:(1)连接A 1C ,∵B 1C=2BC ,A 1B=2AB , ∴122BCA ABC SS a ==,122BCA ABC S S a ==,1112A B C BCA S S =, ∴1144A B C ABC SS a ==, ∴1166A B B ABC S S a ==,同理可得出:11116A AC CB C S S a ==,∴S 1=6a+6a+6a+a=19a ;故答案为:19a ;(2)过点C 作CG BE ⊥于点G ,设BPF S x ∆=,APE S y ∆=,1·702BPC S BP CG ∆==;1·352PCE S PE CG ∆==, ∴1·7022135·2BPCPCE BP CG S S PE CG ∆∆===. ∴2BP EP =,即2BP EP =.同理,APB APE S BP S PE ∆∆=. 2APB APE S S ∆∆∴=.842x y ∴+=.①8440APB BPD S AP xS PD ∆∆+==,3530APC PCD S AP y S PD ∆∆+==, ∴84354030x y ++=.② 由①②,得5670x y =⎧⎨=⎩, 315ABC S ∆∴=. (3)设BPF S m ∆=,APE S n ∆=,如图所示.依题意,得APF APC S S m ∆∆==,BPC BPF S S m ∆∆==.PCE S m n ∆∴=-.BPC APB APE PCE S S BP S S PE∆∆∆∆==, ∴2m m n m n=-. 2()m m n mn ∴-=,0m ≠,22m n n ∴-=.∴23n m =. ∴23APE BPF S S ∆∆=. 【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.26.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙型挖掘机,支付最少为820元【解析】分析:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.等量关系:甲、乙两种型号的挖掘机共8台;每小时挖掘土石方540m 3;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.详解:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.依题意得:86080540x y x y +=⎧⎨+=⎩,解得: 53x y =⎧⎨=⎩. 答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机.依题意得:60m +80n =540,化简得:3m +4n =27,∴m =9﹣43n ,∴方程的解为53m n =⎧⎨=⎩或16m n =⎧⎨=⎩. 当m =5,n =3时,支付租金:100×5+120×3=860元当m =1,n =6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。

人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)

第八章 二元一次方程(组)8.1 二元一次方程(组)的相关概念(能力提升)【要点梳理】知识点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个.【典型例题】 类型一、二元一次方程例1.已知方程(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,求m 、n 的值.【答案与解析】解:∵(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,∴n ﹣1=1,|m ﹣1|=1, 解得:n=2,m=0或2,若m=2,方程为2y=2,不合题意,舍去, 则m=0,n=2. 举一反三:【变式1】已知方程3241252m nx y +--=是二元一次方程,则m= ,n= . 【答案】-2,14【变式2】方程(1)(1)0a x a y ++-=,当______a a ≠=时,它是二元一次方程,当时,它是一元一次方程.【答案】1±;11-或 类型二、二元一次方程的解 例2.已知是方程2x ﹣6my+8=0的一组解,求m 的值.【答案与解析】 解:∵是方程2x ﹣6my+8=0的一组解,∴2×2﹣6m ×(﹣1)+8=0,解得m=﹣2. 举一反三:【变式】已知方程2x-y+m-3=0的一个解是11x m y m =-⎧⎨=+⎩,求m 的值.【答案】 解:将11x m y m =-⎧⎨=+⎩代入方程2x-y+m-3=0得2(1)(1)30m m m --++-=,解得3m =.答:m 的值为3.例3.写出二元一次方程204=+y x 的所有正整数解. 【答案与解析】解:由原方程得x y 420-=,因为y x 、都是正整数, 所以当4321, , , =x 时,481216, , , =y . 所以方程204=+y x 的所有正整数解为:⎩⎨⎧==161y x , ⎩⎨⎧==122y x , ⎩⎨⎧==83y x , ⎩⎨⎧==44y x .举一反三: 【变式1】已知是关于x 、y 的二元一次方程ax ﹣(2a ﹣3)y=7的解,求a 的值.【答案】 解:把代入方程ax ﹣(2a ﹣3)y=7,可得:2a+3(2a ﹣3)=7, 解得:a=2.【变式2】在方程0243=-+y x 中,若y 分别取2、41、0、-1、-4,求相应的x 的值.【答案】将0243=-+y x 变形得342yx -=. 把已知y 值依次代入方程的右边,计算相应值,如下表:类型三、二元一次方程组及解 例4.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙看错了方程②中的b .得到方程组的解为54x y =⎧⎨=⎩.试计算:20112010110a b ⎛⎫+- ⎪⎝⎭的值.【答案与解析】 解:把31x y =-⎧⎨=-⎩代入②,得-12+b =-2,所以b =10.把54x y =⎧⎨=⎩代入①,得5a+20=15,所以a =-1, 所以201120112010201011(1)101(1)01010ab ⎛⎫⎛⎫+-=-+-⨯=+-= ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式】已知关于,x y 的二元一次方程组41323x ay x by x y +==⎧⎧⎨⎨+==-⎩⎩的解是 , 求的值a b +. 【答案】解:将13x y =⎧⎨=-⎩代入原方程组得:134332a b -=⎧⎨-+=⎩ ,解得113a b =-⎧⎪⎨=⎪⎩,所以23a b +=-.【巩固练习】一、选择题1.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A .5 个 B. 6 个 C.7 个 D.8 个2.方程2x ﹣=0,3x+y=0,2x+xy=1,3x+y ﹣2x=0,x 2﹣x+1=0中,二元一次方程的个数是( )A .5个B .4个C .3个D .2个3.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m 的值为( ) A .4B .﹣4C .D .﹣4.若5x -6y =0,且xy ≠0,则的值等于( )A .23 B. 32C.1D. -1 5.若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) A .无解 B.有唯一一个解 C.有无数多个解 D.不能确定6.在早餐店里,王伯伯买5个馒头,3个包子,老板少拿2元,只要50元.李太太买了11个馒头,5个包子,老板以售价的九折优待,只要90元.若馒头每个x 元,包子每个y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=-⎧⎨+=÷⎩二、填空题 7.已知方程3241252m nxy +--=是二元一次方程,则m =________,n =_________. 8.若方程组的解为,则点P (a ,b )在第象限.9.在13,72x y ⎧=⎪⎪⎨⎪=⎪⎩ 04x y =⎧⎨=⎩,21x y =⎧⎨=⎩,33x y =⎧⎨=⎩这四对数值中,是二元一次方程组32823x y x y +=⎧⎨-=⎩的解的是________ .10. 方程2x+3y=10 中,当3x-6=0 时,y=_________; 11. 方程|a |+|b |=2 的自然数解是_____________; 12.若二元一次方程组的解中,则等于____________.三、解答题13.请你写出一个二元一次方程组,使它的解是.14.甲、乙二人共同解方程组2623mx y x ny +=-⎧⎨-=-⎩①②由于看错了方程①中的m 值,得到方程组的解为32x y =-⎧⎨=-⎩;乙看错了方程②中的n 的值,得到方程组的解为52x y =-⎧⎨=⎩,试求代数式22m n m n ++的值.15.某球迷协会组织36名球迷租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可租用的汽车有两种:一种是每辆车可乘8人,另一种是每辆车可乘4人.要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最少的租车方案,并简述你的理由.【答案与解析】一、选择题1. 【答案】B;2. 【答案】D;【解析】解:2x ﹣=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程.故选:D.3.【答案】【解析】把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.4. 【答案】A;【解析】将5x=6y代入后面的代数式化简即得答案.5. 【答案】B;【解析】76x y=-可知:,x y异号或均为0,所以不可能同时为正,只能同时为0.6. 【答案】B;【解析】根据题意知,x,y同时满足两个相等关系:①老板少拿2元,只要50元;②老板以售价的九折优待,只要90元,故选B.二、填空题7. 【答案】-2,14;【解析】由二元一次方程的定义可得:31241mn+=⎧⎨-=⎩,所以214mn=-⎧⎪⎨=⎪⎩8.【答案】四【解析】:将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P(2,﹣3)在第四象限.9. 【答案】21 xy=⎧⎨=⎩;【解析】把4组解分别代入方程组验证即可.10.【答案】2;【解析】将2x=代入2x+3y=10中可得y值.11.【答案】;12.【答案】-3∶4;【解析】将代入中,得,即;将代入,得,即,即.三、解答题13.【解析】解:答案不唯一,例如:∵,∴x+y=5, x-y=-1,∴所求的二元一次方程组可以是.14.【解析】解:将32xy=-⎧⎨=-⎩代入②中2(3)23n⨯-+=-,32n=.将52xy=-⎧⎨=⎩代入①中-5m+4=-6,m=2.∴229374344 m n mn++=++=.15.【解析】解:(1)设8个座位的车租x辆,4个座位的车租y辆.则8x+4y=36,即2x+y=9.∵ x,y必须都为非负整数,∴ x可取0,1,2,3,4,∴ y的对应值分别为9,7,5,3,1.因此租车方案有5种,任取三种即可.(2)因为8个座位的车座位多,相对日租金较少,所以要使费用最少,必须尽量多租8个座位的车.所以符合要求的租车方案为8个座位的车租4辆.4个座位的车租1辆,此时租车费用为4×300+1×200=1400(元).。

(完整word版)人教版数学七下第八章《二元一次方程组》word知识点整理(打印),推荐文档

(完整word版)人教版数学七下第八章《二元一次方程组》word知识点整理(打印),推荐文档

第八章二元一次方程组4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”2、加减消元法解二元一次方程组(1) 两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。

2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。

3、解这个一元一次方程,求得一个未煮熟的值,即“解”。

4、将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”。

5、把求得的两个未知数的值用{联立起来,即“联”。

四、列方程(组)解应用题1、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案2、典型例题讲解题型一、列二元一次方程组解决生产中的配套问题1、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,贤计划用132米这样布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套题型二、列二元一次方程组解决行程问题2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。

相遇后,拖拉机继续前进,汽车在相遇处停留1小时候后调转车头原速返回,在汽车再次出发后半小时后追上乐拖拉机,这时,汽车、拖拉机各行驶了多少千米?3、一轮船从甲地到乙地顺流航行需4小时,从乙地到甲地逆流航行需6小时,那么一木筏由甲地漂流到乙地需要多长时间?题型三、列二元一次方程解决商品问题4、在“五一”期间,某超市打折促销,已知A商品7.5折销售,B商品8折销售,买20件A商品与10件B商品,打折前比打折后多花460元,打折后买10件A商品和10件B商品共用1090元。

人教版数学七年级下册第八章《二元一次方程组》知识点

人教版数学七年级下册第八章《二元一次方程组》知识点

人教版数学七年级下册第八章《二元一次方程组》知识点一、二元一次方程1、二元一次方程定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程,叫做二元一次方程.满足条件:(1)整式方程;(2)只含含有两个未知数.注意:(1)方程化简后两个未知数的系数都不能为0;(2)含有未知数的项的次数都是1.关于x,y的二元一次方程的一般形式:ax+by=c(a≠0,b≠0)2、二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.满足条件:(1)两个方程都是整式方程;(2)共含有两个未知数;(3)一共有两个方程,每个方程都是一次方程.注意:(1)二元一次方程组不一定都是由两个二元一次方程组成的,其中有的方程可以是一元一次方程;(2)二元一次方程组必须一共含有两个未知数.3、二元一次方程的解二元一次方程的解:一般地,使二元一次方程两边值相等的两个未知数的值,叫做二元一次方程的解。

判断一对数值是不是二元一次方程的解的方法:只需要将数值分别代入到方程的左右两边。

(1)若左边=右边,则这对数值是这个方程的解;(2)若左边≠右边,则这对数值不是这个方程的解.4、二元一次方程组的解二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解;判断一对数值是不是二元一次方程组的解的方法:将这对数值代入到每个方程中进行检验,若满足每个方程,这对数值就是这个方程组的解,只要其中一个不满足,就不是这个方程组的解.二、解二元一次方程1、消元思想二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化为一元一次方程。

先求出一个未知数,然后再求出另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.2、代入消元法定义:把二元一次方程组中一个方程的一个未知数用另一个未知数的式子表示出来,再代入到另一个方程,实现消元,进而求出这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.步骤:(1)变形:选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数;(2)代入:把y=ax+b(或x=ay+b)代入到另一个没有变形的方程中;(3)求解:解消元后的一元一次方程;(4)回代:把求得的未知数的值代入步骤一中变形后的方程中去;(5)写解:把两个未知数的值用大括号联立起来。

七年级数学下册 第八章 二元一次方程组知识点归纳 (新版)新人教版

七年级数学下册 第八章 二元一次方程组知识点归纳 (新版)新人教版

二元一次方程组知识点归纳、解题技巧汇总、练习题1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程.2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

注意:二元一次方程组不一定都是由两个二元一次方程合在一起组成的!也可以由一个或多个二元一次方程单独组成.3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

1.有一组解如方程组x+y=5①6x+13y=89②x=—24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法.例:解方程组x+y=5①6x+13y=89②解:由①得x=5—y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7 ∴x=—24/7y=59/7 为方程组的解基本思路:未知数又多变少。

消元法的基本方法:将二元一次方程组转化为一元一次方程。

代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变"2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 二元一次方程组
8.1 二元一次方程组
1、 二元一次方程的定义:每一个方程都含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.
2、 二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.
3、 二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解.
4、 二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
1.方程组23
x y x y +=+=⎧⎨⎩■的解为2x y ==⎧⎨⎩■,则被遮盖的两个数分别是( B )
A .1,2
B .5,1
C .2,-1
D .-1,9
解:把x=2代入x+y=3中,得:y=1,
把x=2,y=1代入得:2x+y=4+1=5,
则被遮住得两个数分别为5,1,
2
D )
A B .2x -4y=5 C.xy=x+y
D.x+(3 解:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.A 、是一元一次方程,故A 错误;B 、是二元二次方程,故B 错误;C 、是二元二次方程,故C 错误;D 、是二元一次方程,故D 正确;
3.下列方程组中,是二元一次方程组的是( D )
A .12xy x y =⎧⎨-
=⎩ B
C
D
解:A 、第一个方程值的xy 是二次的,故该选项错误;
B C 、含有3个未知数,故该选项错误;
D 、符合二元一次方程组的定义;
4.以方程组⎩
⎨⎧+-=+=11x y x y 的解为坐标的点(x ,y )位于( C ) A .x 轴的正半轴 B .x 轴的负半轴
C .y 轴的正半轴
D .y 轴的负半轴
解:解方程组⎩⎨⎧+-=+=11x y x y 可得⎩⎨⎧==10y x ,所以以方程组⎩⎨⎧+-=+=11x y x y 的解为坐标的点为(0,1),这个点的坐标位于y 轴的正半轴.
5.已知2-=x ,y=3是二元一次方程5ax y +=的一个解,则
解:把x=-2,y=3代入方程5ax y +=可得-2a+3=5,解得a=-1.
6.若方程 2x 1-m + y m n +2 = 是二元一次方程,则mn = -1 .
试题分析:由二元一次方程的定义:含有两个未知数,未知项的的次数为1的整式方程.可以得到m-1=1,2n+m=1,
可求得m=2,mn=-1. 8.2 消元——解二元一次方程组
1、代入消元法解二元一次方程组:
(1) 基本思路:未知数又多变少.
(2) 消元法的基本方法:将二元一次方程组转化为一元一次方程.
(3) 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个
方程,实现消元,进而求得这个二元一次方程组的解.这个方法叫做代入消元法,简称代入法.
(4) 代入法解二元一次方程组的一般步骤:
1、 从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y )用含另一个未知数
(例如x )的代数式表示出来,即写成y=ax+b 的形式,即“变”
2、 将y=ax+b 代入到另一个方程中,消去y ,得到一个关于x 的一元一次方程,即“代”.
3、 解出这个一元一次方程,求出x 的值,即“解”.
4、 把求得的x 值代入y=ax+b 中求出y 的值,即“回代”
5、 把x 、y 的值用{联立起来即“联”
2、加减消元法解二元一次方程组
(5) 两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消
去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.
(6) 用加减消元法解二元一次方程组的解
1、 方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程
两边,使同一个未知数的系数互为相反数或相等,即“乘”.
2、 把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”.
3、 解这个一元一次方程,求得一个未煮熟的值,即“解”.
4、 将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”.
5、 把求得的两个未知数的值用{联立起来,即“联”.
1.解方程组:2431x y x y -=⎧⎨+=⎩
解:24(1)31(2)
x y x y -=⋅⋅⋅⋅⋅⋅⎧⎨+=⋅⋅⋅⋅⋅⋅⎩ ①+②,得:5x=5 解得:x=1 把x=1代入(2),得:3+y=1 解得:y=-2 ∴方程组的解为:12x y =⎧⎨=-⎩
2.解方程组: ⎩⎨⎧-=+=-1
373y x y x 解:①×3:9321x y -= ③ ②+③:1020x =
2x =代入① 得:1y =- ∴原方程组的解为:21
x y =⎧⎨=-⎩
3.解方程组:2()3()34()3153x y x y x y x y +--=⎧⎨++=+⎩
. 解:方程组整理得:2()3()34()3()15x y x y x y x y +--=⎧⎨++-=⎩
①② ①+②得x+y=3③,
把③代入①,得x-y=1④,
③+④得:x=2,
③-④得:y=1, 则原方程组的解是21
x y =⎧⎨=⎩.
4
x+3y 的平方根. 解:由已知得⎩⎨⎧=-+=--08201y x y x 解得⎩
⎨⎧==23y x ∴x+3y=3+2×3=9
∴x+3y 的平方根是±3
8.3 实际问题与二元一次方程组
1.请根据图中提供的信息,回答下列问题:
一个水瓶与一个水杯分别是多少元?
解:设一个水瓶x 元,由一个水杯(48-x )元,根据题意得:
3x+4(48-x )=152
解得:x=40
∴48-x=48-40=8(元)
答:一个水瓶40元,一个水杯8元.
2.甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,求原来甲、乙两车间各有多少名工人?
解:设原来甲车间有x 名工人,乙车间有y 名工人,根据题意得:
⎩⎨⎧-=++=-)
10(2101010y x y x 解得:⎩
⎨⎧==5070y x 答:原来甲车间有70名工人,乙车间有50名工人.
3.小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元,小丽买了2支笔和3盒笔芯,仅用了28元,求每支中性笔和每盒笔芯的价格.
解:设每支中性笔为x 元,每盒笔芯为y 元
依题意得⎩
⎨⎧=+=+283256220y x y x ∴⎩⎨⎧==82y x 答:每支中性笔2元,每盒笔芯为8元
4.儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省14元,已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元.
解:设书包和文具盒的标价分别为x 元、y 元,依题意得:
0.8()1436x y x y x y +=+-⎧⎨-=⎩
, 解这个方程组,得5416
x y =⎧⎨=⎩;
答:书包和文具盒的标价分别为54元、16元.。

相关文档
最新文档