概率论与数理统计必考大题解题索引
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论与数理统计题库及答案-知识归纳整理

概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21− (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A)41414121 (B)161814121(C)1631614121 (D)81834121−3. 设延续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f则下列等式成立的是( ).(A) X P (≥1)1=− (B) 21)21(==X P(C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为延续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞−=x x F b d )() (B) X a P <(≤⎰=b ax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞−=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ).(A)⎰ba x x F d )( (B)⎰bax x f d )((C) )()(a f b f − (D) )()(b F a F −6. 下列函数中可以作为延续型随机变量的密度函数的是( ).知识归纳整理7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+−)(x Φ1)(=x (C) Φ=−)(a Φ)(a (D) 2)(=<a x P Φ1)(−a9. 下列数组中,不能作为随机变量分布列的是( ).(A ) 61,61,31,31 (B)104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23−=X Y ( ).(A) )3,2(−N (B) )3,4(−N (C) )3,4(2−N (D) )3,2(2−N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p(C) 1- p (D) p−1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ).(A) E X D X (),().==321(B) 9.0)(,3)(==X D X E 求知若饥,虚心若愚。
概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。
现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。
(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。
P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0。
08,P(B| A2)=0。
09,P(B| A3)=0。
12.由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。
若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率. 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P (1B )=P(1A )P (1B |1A )+P (2A )P(1B |2A )=52301821501021=+(2)P (1B 2B )=194.02121230218250210=+C C C C ,则P (2B |1B )=)()(121B P B B P = 0.485二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1〈X<3};(4)X 的分布函数F (x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()(当x ≥2时,F(x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E (X)=7/12。
看完你就及格啦(概率论与数理统计大题攻略)

一、全概率与贝叶斯公式例:某产品由三个厂家供货,甲、乙、丙三个厂家的产品分别占总数的15%,80%,5%,其次品率分别为0.02,0.01,0.03. (1)取一件产品,是次品的概率(2)现从这批产品中任取一件发现是次品,试求该次品是由乙厂生产的概率.学会读题:此类题目中涉及的情景有明显的分类与先后关系,如本题,要确定某产品为次品,我们第一步必须先确定它是哪一厂生产的,第二步再看次品率,才能确定是不是次品。
一般会作为大题第一或第二题出现 路线图:0.020.010.0315%80%5%⎧−−−−→⎪−−−−→⎨⎪−−−−→⎩次品率次品率次品率甲厂生产()次品某产品乙厂生产()次品丙厂生产()次品 这时我们就可以确定这是要用全概率和贝叶斯公式来解题。
第一问问我们“取一件产品,是次品的概率”,在路线图中是从左边推到右边,要用全概率公式第二问是先知道某产品是次品,让我们倒推此产品是乙厂生产的概率,在路线图中表现为从右至左,要用贝叶斯公式解 (1)记123,,A A A 分别表示产品取自甲、乙、丙厂;B =“所取的产品是次品”. 则123,,A A A 构成样本空间Ω的一个划分,且依题意可知123()=0.15, ()=0.8 , ()=0.05P A P A P A ,123()=0.02, ()=0.01 , ()=0.03P B A P B A P B A .由全概率公式可得,31()()()0.150.020.80.010.050.030.0125i i i P B P A P B A ===⨯+⨯+⨯=∑.(2)再由贝叶斯公式可得,2()P A B 22()()0.80.010.64()0.0125P A P B A P B ⨯===.解析:全概率公式比较简单,只要把每条路线上的概率分别相乘,再加起来就可以了=所求概率所属路线的概率贝叶斯公式:所求概率已知条件的概率“已知条件的概率”一般都是第一问用全概率公式算出来的答案,比如本题第二问已知某产品为次品,概率正好是第一问算出来的总的次品率0.0125。
《概率论与数理统计》习题及答案要点

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
2020年大学必修课概率论与数理统计必考题及答案(完整版)

2020年大学必修课概率论与数理统计必考题及答案(完整版)一、单选题1、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是 (A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭(B){}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅ (C ){}(1),k k n k n kP X C p p n-==-0,1,2,,k n =⋅⋅⋅ (D ){}(1),1k kn k i nP X k C p p i n -==-≤≤ 【答案】B2、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A3、1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ++=++= ,则YZ~( ) )(A )1,0(N )(B )16(t )(C )16(2χ )(D )8,8(F【答案】D4、在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 【答案】C5、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验im(C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D6、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。
下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
概率则是衡量随机事件发生可能性大小的数值。
例 1:抛掷一枚均匀的硬币,求正面朝上的概率。
解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。
知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。
例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。
知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。
二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。
如果一个人的检测结果为阳性,求他真正患病的概率。
解:设 A 表示患病,B 表示检测结果为阳性。
则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。
根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。
再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。
知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。
三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。
2021年大学必修课概率论与数理统计必考题及答案

2021年大学必修课概率论与数理统计必考题及答案(完整版)一、单选题 1、下列函数中,可作为某一随机变量的分布函数是11F (x ) = + — arctan x 2 兀【答案】B2、对于事件人,B,下列命题正确的是F (x ) = 1 + —B ) —(1 - e-x),0,D )F (x )=Jx f (t )dt-s,其中 -s J+sf (t) dt = 1(A ) 若A , B 互不相容,则A 与B 也互不相容。
(B ) 若A ,B 相容,那么X 与B 也相容。
(C ) 若A , B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D ) 若A , B 相互独立,那么X与B 也相互独立。
【答案】D3、设X , X ,…X 为来自正态总体N (R ,。
2)简单随机样本, 12nX 是样本均值,记S 21-^―£(X - X )2, n -1 ii =1S 2 =1 £(X -X)22n ii =1S 2 = -L- £(X -^)2,3n -1 i i=1S 2 = -£ (X -^)2, 4n i则服从自由度为n -1的t 分布的随机变量是X - RA) t = ------ =^=S /%n -11B) t =S / nn -12C) X — R X — Rt =——D) t = ------------S / nn S 八n【答案】B4、设X ,X ,…,X 是取自总体X 的一个简单样本 12 n 则E (X 2)的矩估计是S 2 = 1—£(X - X)21S 2 =1£ (X - X)22n i(C)S T x 2 (D )S ; + X 2【答案】D八 八 八5、设6是未知参数0的一个估计量,若E °W °,则6是0的 (A)极大似然估计 (B)矩法估计 (C)相合估计 (D)有偏估计【答案】D6、已知X , X ,…,X 是来自总体的样本,则下列是统计量的是()12n1 V_ 1「一(A )X + X +A(B )——乙X 2(C )X + a +10(D )-X + aX +5n — 1 ,3 ii =1【答案】B7、设X 「X 2,…,X n 为来自正态总体N (禺02)的一个样本,若进行假设检验,当 时,一般采用统计量X - Nt~~s~r^【答案】C 8、总体X 〜N (从,o 2), o 2已知,n >时,才能使总体均值目的置信水平为0.95的置信区间长不大于L(A )15o 2/L 2 (B )15.3664 o 2/L 2 (C )16o 2/L 2(D )16【答案】B统计量的是( ) (A ) _L (X 2 + X 2 + X 2)(B ) X + 3四o 21 2 31(C )max (X ,X ,X )(D )1(X + X + X )1233123【答案】A则统计量V = y —服从的分n £X 2ii =n +1布是 ____________(A )日未知, 日已知,检验o 2= o 2(B)O 2未知,检验日=日o 2已知,检验N =R(D) 09、设5~ N Q,o 2),其中自已知,o 2未知,X ,X ,X 为其样本,123下列各项不是10、设 X 1,X 2,…X n , X n+1,…,X 是来自正态总体N (0,o 2)的容量为n+m 的样本, n+m【^案】C 二、填空题1、设X , X ,…,X 是来自总体X ~ N (4,02)的简单随机样本,O 2已知,令X = 1-£X ,则统计量121616 ii =14X -16,,、,,一,、,,,,,,—— 服从分布为 (必须写出分布的参数)。
2020年大学基础课概率论与数理统计必考题及答案(精选版)

2020年大学基础课概率论与数理统计必考题及答案(精选版)一、单选题1、设为来自正态总体的一个样本,若进行假设检验,当__ __时,一般采用统计量(A)(B) (C) (D)【答案】C2、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是(A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭(B){}(1),k k n k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅(C ){}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅(D ){}(1),1k k n k i n P X k C p p i n -==-≤≤ 【答案】B3、设离散型随机变量(,)X Y 的联合分布律为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则 A ) 9/1,9/2==βα B ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα【答案】A4、设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____ (A)4114i i X X ==∑ (B)142X X μ+- (C)42211()i i K X X σ==-∑ (D)4211()3i i S X X ==-∑ n X X X ,,,21 2(,)N μσX t =220μσσ未知,检验=220μσσ已知,检验=20σμμ未知,检验=20σμμ已知,检验=【答案】C5、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B6、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A )1.B )9.C )10.D )6.【答案】C7、设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A )增大 B )减少 C )不变 D )增减不定。
概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。
《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引王健题型一:古典概型:全概率公式和贝叶斯公式的应用。
【相关公式】 ❖ 全概率公式:()()()()()()n 1122S P()=|()||()()(|)()=()(|)()(|).i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++==+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有:P ?…其中有:。
特别地:当n 2时,有:❖ 贝叶斯公式:()()i 100(1,2,,),()(|)()(|)()(|)()=()(|)()(|)()(|)()(|)()i i i i ni i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>=====+∑12n 设实验的样本空间为。
为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地:当n 2时,有:【相关例题】1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。
现从出厂的产品中任取一件,求:〔1〕恰好取到不合格品的概率;〔2〕假设取到的是不合格品,它是第二家工厂生产的概率。
解:设事件表示:“取到的产品是不合格品〞;事件i A 表示:“取到的产品是第i 家工厂生产的〞〔i =123,,〕。
那么Ω== 31i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得〔1〕∑=⋅=31)|()()(i i i A A P A P A P1000/37100210035100410025100510040=⨯+⨯+⨯=〔2〕由贝叶斯公式得)|(2A A P =∑=3122)|()()|()(j j j A A P A P A A P A P0.250.0410/3737/1000⨯==2.有朋友远方来访,他乘火车、轮船、汽车、飞机的概率分别为3/10、1/5、1/10、2/5,而乘火车、轮船、汽车、飞机迟到的概率分别为1/4、1/3、1/12、1/8。
概率论与数理统计试题库及答案(考试必做)[1]
![概率论与数理统计试题库及答案(考试必做)[1]](https://img.taocdn.com/s3/m/f4a7fa75ddccda38376baf9f.png)
概率论与数理统计<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。
概率论与数理统计典型例题与解析(期末考试与考研必备的超强资料)

概率论与数理统计典型例题分析(期末考试与考研必备)1.在数学系学生中任选一名学生.设事件A ={选出的学生是男生},B ={选出的学生是三年级学生},C ={选出的学生是科普队的}.(1)叙述事件ABC 的含义.(2)在什么条件下,ABC =C 成立?(3)在什么条件下,C ⊂B 成立?解 (1)事件ABC 的含义是,选出的学生是三年级的男生,不是科普队员.(2)由于ABC ⊂C ,故ABC =C 当且仅当C ⊂ABC .这又当且仅当C ⊂AB ,即科普队员都是三年级的男生.(3)当科普队员全是三年级学生时,C 是B 的子事件,即C ⊂B 成立.2.将一枚硬币独立地掷两次,引进事件:A ={掷第一次出现正面},B ={掷第二次出现正面},C ={正、反面各出现一次},则事件A ,B ,C 是相互独立,还是两两独立? 解 由题设,可知P (AB )=P (A )P (B ),即A ,B 相互独立.而1()(())()()(),4P AC P A AB AB P AB P A P B =+=== ()()()()()(()())P A P C P A P AB AB P A P AB P AB =+=+⋅=+⨯=41)4121(21 故A ,C 相互独立,同理B ,C 也相互独立.但是P (ABC )=P (∅)=0,而 ,81212121)()()(=⨯⨯=C P B P A P 即 )()()()(C P B P A P ABC P ≠,因此A ,B ,C 两两独立.问题 (1)两个事件的“独立”与“互斥”之间有没有关系?在一般情况下,即P (A )>0,P (B )>0时,有关系吗?为什么?(2)设0<P (A )<1,0<P (B )<1,P (B |A )+P (B |A )=1.问A 与B 是否独立,为什么?由此可以得到什么结论?3.设A ,B ,C 是三个随机事件,且=====)()(,41)()()(CB P AB P C P B P A p 0,81)(=AC P ,求A ,B ,C 中至少有一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是P (D )=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ).又因为,41)()()(===C P B P A P ,0)()(==CB P AB P 81)(=AC P ,而由P (AB )=0,有P (ABC )=0,所以⋅=-=858143)(D P 问题 怎样由P (AB )=0推出P (ABC )=0?提示 利用事件的关系与运算导出.4.设事件A 与B 相互独立,P (A )=a ,P (B )=b .若事件C 发生,必然导致A 与B 同时发生,求A ,B ,C 都不发生的概率.解 由于事件A 与B 相互独立,因此P (AB )=P (A )·P (B )=a ·b .考虑到C ⊂AB ,故有,B A B A AB C ⊃+=⊃因此).1)(1()()()()(b a B P A P B A P C B A P --===5.某地铁每隔5 min 有一列车通过,在乘客对列车通过该站时间完全不知道的情况下,求每一个乘客到站等车时间不多于2 min 的概率.解 设A ={每一个乘客等车时间不多于2 min}.由于乘客可以在接连两列车之间的任何一个时刻到达车站,因此每一乘客到达站台时刻t 可以看成是均匀地出现在长为5 min 的时间区间上的一个随机点,即Ω=[0,5).又设前一列车在时刻T 1开出,后一列车在时刻T 2到达,线段T 1T 2长为5(见图1-1),即L (Ω)=5;T 0是T 1T 2上一点,且T 0T 2长为2.显然,乘客只有在T 0之后到达(即只有t 落在线段T 0T 2上),等车时间才不会多于2min ,即L (A )=2.因此图1-1⋅=Ω=52)()()(L A L A P 6.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船和乙船停泊的时间都是两小时,它们同日到达时会面的概率是多少?解 这是一个几何概型问题.设A ={它们会面}.又设甲乙两船到达的时刻分别是x ,y ,则0≤x ≤24,0≤y ≤24.由题意可知,若要甲乙会面,必须满足|x -y |≤2,即图中阴影部分.由图1-2可知:L (Ω)是由x =0,x =24,y =0,y =24图1-2所围图形面积S =242,而L (A )=242-222,因此.)2422(1242224)()()(2222-=-=Ω=L A L A P7.设随机事件B 是A 的子事件,已知P (A )=1/4,P (B )=1/6,求P (B |A ).分析 这是一个条件概率问题.解 因为B ⊂A ,所以P (B )=P (AB ),因此⋅===32)()()()()|(A P B P A P AB P A B P 8.在100件产品中有5件是不合格的,无放回地抽取两件,问第一次取到正品而第二次取到次品的概率是多少?解 设事件A ={第一次取到正品},B ={第二次取到次品}.用古典概型方法求出.010095)(=/=A P 由于第一次取到正品后不放回,那么第二次是在99件中(不合格品仍是5件)任取一件,所以⋅=995)|(A B P 由公式(1-4), ⋅=⨯==3961999510095)|()()(A B P A P AB P9.五个人抓一个有物之阄,求第二个人抓到的概率.解 这是一个乘法公式的问题.设A i ={第i 个人抓到有物之阄}(i =1,2,3,4,5),有⋅=+∅=+=+=Ω=2121212111222)(A A A A A A A A A A A A A根据事件相同,对应概率相等有).|()()()(121212A A P A P A A P A P ==又因为,41)|(,54)(,51)(1211===A A P A P A P 所以 ⋅=⨯=514154)(2A P10.设袋中有4个乒乓球,其中1个涂有白色,1个涂有红色,1个涂有蓝色,1个涂有白、红、蓝三种颜色.今从袋中随机地取一个球,设事件A ={取出的球涂有白色},B ={取出的球涂有红色},C ={取出的球涂有蓝色}. 试验证事件A ,B ,C 两两相互独立,但不相互独立.证 根据古典概型,我们有n =4,而事件A ,B 同时发生,只能是取到的球是涂有白、红、蓝三种颜色的球,即m =1,因而⋅=41)(AB P 同理,事件A 发生,只能是取到的球是涂红色的球或涂三种颜色的球,因而⋅==⋅==2142)(2142)(B P A P 因此,有 ,412121)()(=⨯=B P A P 所以 P (AB )=P (A )P (B ),即事件A ,B 相互独立.类似可证,事件A ,C 相互独立,事件B ,C 相互独立,即A ,B ,C 两两相互独立,但是由于,41)(=ABC P 而 ,4181212121)()()(=/=⨯⨯=C P B P A P 所以A ,B ,C 并不相互独立.11.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%、3%、5%、3%,假定各道工序是互不影响的,求加工出来的零件的次品率.答案是:0.124(或1-0.98×0.97×0.95×0.97).12.一批零件共100个,其中有次品10个.每次从中任取一个零件,取出的零件不再放回去,求第一、二次取到的是次品,第三次才取到正品的概率. 答案是:)989099910010(0084.0⨯⨯或. 13.用高射炮射击飞机,如果每门高射炮击中飞机的概率是0.6,试问:(1)用两门高射炮分别射击一次击中飞机的概率是多少?(2)若有一架敌机入侵,至少需要多少架高射炮同时射击才能以99%的概率命中敌机?分析 本题既可使用加法公式,也可使用乘法公式.解 (1)令B i ={第i 门高射炮击中敌机}(i =1,2),A ={击中敌机}.在同时射击时,B 1与B 2可以看成是互相独立的,从而21,B B 也是相互独立的,且有P (B 1)=P (B 2)=0.6,.4.0)(1)()(121=-==B P B P B P方法1(加法公式)由于A =B 1+B 2,有P (A )=P (B 1+B 2)=P (B 1)+P (B 2)-P (B 1)P (B 2)=0.6+0.6-0.6×0.6=0.84.方法2(乘法公式) 由于21B B A =,有,16.04.04.0)()()()(2121=⨯===B P B P B B P A P于是 .84.0)(1)(=-=A P A P(2)令n 是以99%的概率击中敌机所需高射炮的门数,由上面讨论可知,99%=1-0.4n 即 0.4n =0.01,亦即.026.53979.024.0lg 01.0lg ≈--==n 因此若有一架敌机入侵,至少需要配置6门高射炮方能以99%的把握击中它.14.设某人从外地赶来参加紧急会议.他乘火车、轮船、汽车或飞机来的概率分别是31110510、、及52,如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来迟到的概率分别为41、⋅12131、试问:(1)他迟到的概率;(2)此人若迟到,试推断他是怎样来的可能性最大? 解 令A 1={乘火车},A 2={乘轮船},A 3={乘汽车},A 4={乘飞机},B ={迟到}.按题意有:,103)(1=A P ,51)(2=A P ,101)(3=A P ,52)(4=A P,41)|(1=A B P ,31)|(2=A B P ,121)|(3=A B P .0)|(4=A B P (1)由全概率公式,有⋅=⨯+⨯+⨯+⨯==∑=203052121101315141103)|()()(41i i i A B P A P B P (2)由逆概率公式 ),4,3,2,1()|()()|()()|(41==∑=i A B P A P A B P A P B A P jj j i i i得到.0)|(,181)|(,94)|(,21)|(4321====B A P B A P B A P B A P 由上述计算结果可以推断出此人乘火车来的可能性最大.15.三人同时向一架飞机射击,设他们射中的概率分别为0.5,0.6,0.7.又设无人射中,飞机不会坠毁;只有一人击中飞机坠毁的概率为0.2;两人击中飞机坠毁的概率为0.6;三人射中飞机一定坠毁.求三人同时向飞机射击一次飞机坠毁的概率.解 设A i ={第i 个人射中}(i =1,2,3),有P (A 1)=0.5, P (A 2)=0.6, P (A 3)=0.7.又设B 0={三人都射不中},B 1={只有一人射中},B 2={恰有两人射中},B 3={三人同时射中},C ={飞机坠毁}.由题设可知,0)|(0=B C P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P并且.06.03.04.05.0)()()()()(3213210=⨯⨯===A P A P A P A A A P B P同理)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++=0.5×0.4×0.3+0.5×0.6×0.3+0.5×0.4×0.7=0.29;P (B 2)=0.44;P (B 3)=0.21.利用全概率公式便得到)|()()(30i i i B C P B P C P ∑===0.06×0+0.29×0.2+0.44×0.6+0.21×1=0.532.由上面的讨论可以看出,在使用全概率公式和逆概率公式解题时,“分析题目,正确写出题设,找出(或计算)先验概率和条件概率”是十分重要的.练习:两台机床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍,求任意取出的零件是合格品的概率;又:如果任意取出的零件经检查是废品,求它是由第二台机床加工的概率.答案是:0.973;0.25.16.某类电灯泡使用时数在1000 h 以上的概率为0.2,求三个灯泡在使用1000 h 以后最多只坏一个的概率.解 这是一个n =3,p =0.8二项概型问题P 3(μ≤1)=P (μ=0)+P (μ=1).17.袋中有10个球,其中2个为白色,从中有放回地取出3个,求这3个球中恰有2个白球的概率.解 方法1 设A ={恰有2个白球},由古典概型,有310=n , 8232⨯⨯=m ,因此 ⋅⨯⨯=3210823)(A P 方法2 由二项概型,有⋅⨯⨯====321223310823)108()102()2()(C P A P μ18.袋中有4个白球、6个红球,先从中任取出4个,然后再从剩下的6个球中任取一个,则它恰为白球的概率是______.分析 设A i ={第i 次取到白球},根据古典概型,我们有⋅==104)(110141C C A P 由于 ,)(212111222A A A A A A A ΩA A +=+==并且,94106)|()()(,93104)|()()(1212112121⨯==⨯==A A P A P A A P A A P A P A A P 因此 ⋅=⨯⨯+⨯=1049104634)(2A P 同理 ⋅=104)(5A P 19.有一批产品,其中正品有n 个,次品有m 个,先从这批产品中任意取出l 个(不知其中的次品数),然后再从剩下的产品中任取一个恰为正品的概率为( ).方法1 设A k ={前l 次中恰有k 个正品},k =q ,q +1,…,p ;其中q =max(l -m ,0),p =min(n ,l ).又设B ={第l +1个恰为正品},有,)(,1nm k l m k n k p q q C C C A P ΩA A A +-+==+++ 而 ,)|(11ln m k n C C A B P l n m k n k -+-==-+- 由全概率公式有⋅+==∑=nm n A B P A P B P k k p q k )|()()( 举例说明:(1)n =3,m =5,l =4,这时k =0,1,2,3.⋅=+++=8)4/()0306015()(48C B P⋅=+++=8)4/()5609020()(48C B P 方法2 利用抓阄问题的讨论,直接得到⋅+n m n 方法3 前l +1次取到正品的概率减去前l 次取到正品的概率(有条件限制,有时使用起来不一定方便)方法4 (全排列方法)令第l +1个位置上为正品,由于有n 个正品,故有n 种方法,于是⋅+=+-+=nm n n m n m n B P )!()!1()( 方法5 将第l +1次看成第1次,于是⋅+==+nm n C C B P n m n 11)( 20.袋中有5个球,其中1个是红球,每次取1个球,取出后不放回,前3次取到红球的概率为( ).分析 设A ={前3次取到红球},根据古典概型,有⋅==53)(352411C C C A P说明 利用这一结论,可以计算第3次取到红球的概率:P {第3次取到红球}=P {前3次取到红球}-P {前2次取到红球}⋅=-=-=515253251411352411C C C C C C 注意 这里实际用到了互斥情况下的加法公式.21.设两两相互独立的三事件A ,B ,C ,满足:ABC =∅,P (A )=P (B )=P (C )<21,并且169)(=++C B A P ,求事件A 的概率. 分析 设P (A )=p .由于ABC =∅,有P (ABC )=0,根据三个事件两两独立....情况下的加法公式,有P (A +B +C )=P (A )+P (B )+P (C )-P (A )P (B )-P (B )P (C )-P (A )P (C )+P (ABC ), 即 ,1690332=+-p p 亦即 ,01632=+-p p 解得 41=p 或43(由题意舍去).于是 ⋅=41)(A P 说明 (1)三个事件两两独立,不能推出三个事件相互独立.(2)由ABC =⇒∅P (ABC )=0,反之不真.22.设P (A )>0,P (B )>0,证明(1)若A 与B 相互独立,则A 与B 不互斥.(2)若A 与B 互斥,则A 与B 不独立.分析 (1)由于事件A 与B 相互独立,且P (A )>0,P (B )>0,因此P (AB )=P (A )P (B )>0.可见,AB ≠∅,即事件A 与B 不互斥(相容).(2)由于事件A 与B 互斥,即AB =∅,因此P (AB )=0,而P (A )>0,P (B )>0,故P (AB )≠P (A )P (B ),即事件A 与B 不可能相互独立.说明 (1)事件之间相互独立,并不意味着它们互斥,反之亦然.(2)在P (A )>0,P (B )>0的条件下,两个事件独立与否,是在它们相容情况下讨论的.(3)事件的“互斥”与“相互独立”是没有关系的两个“关系”.23.设A ,B 是两个随机事件,且0<P (A )<1,P (B )>0,)|()|(A B P A B P =,则P (AB )=P (A )P (B ).分析 由公式()()()(|),(|),()()1()P AB P AB P AB P B A P B A P A P A P A ===- 由题设 ),|()|(A B P A B P =即,)(1)()()(A P B A P A P AB P -= 于是,有 ()()(()())()()()(),P AB P A P AB P AB P A P AB AB P A P B =+=+=即A 、B 相互独立.说明 (1) )|()|(A B P A B P =是A ,B 独立的一个充要条件.(2)若此题换成下述选择题:设……,则______ (A)).|()|(B A P B A P = (B)(|)(|).P A B P A B =/(C)P (AB )=P (A )P (B ). (D )P (AB )≠P (A )P (B ).时,能否认为(A )与(B ),或(C )与(D )之中必有一个成立.24.设两个随机事件A ,B 相互独立,已知仅有A 发生的概率为41,仅有B 发生的概率为41,则 P (A )=______,P (B )=______.分析 方法1 因为P (A )>0,P (B )>0,且A 与B 相互独立,所以AB ≠∅(想一想为什么).一方面P (A +B )=P (A )+P (B )-P (A )P (B ); (1-6)另一方面).()(21)()()()()(B P A P B P A P B A P B A P B A P +=++=+ (1-7) 由于)()(B A P B A P =,有 ),()()()(B P AB B A P AB B A P A P =+=+=于是由式(1-6),式(1-7)有,))((21))(()(222A P A P A P +=- 即 ⋅===-21)(,21)(,41))(()(2B P A P A P A P 方法2 因为A 与B 相互独立,所以A 与B 也相互独立.由于)()(B A P B A P =,有P (A )=P (B ),于是,41))(1)(())(1)(()()()(=-=-==A P A P B P A P B P A P B A P 因此 ⋅==21)()(B P A P 问题 比较上述两种方法,哪个更简单一些,还有没有其他方法?25.设随机事件A 与B 的和事件的概率为0.6,且积事件B A ⋅的概率为0.3,则事件A 的概率P (A )=( ).分析 因为B A B A +=⋅,所以.4.06.01)(1)()(=-=+-=+=⋅B A P B A P B A P又因为,)(B A B A B B A ΩA A +=+==故 .7.04.03.0)()(=+=+=B A B A P A P26.甲、乙两封信随机地投入标号是1,2,3,4,5的五个信筒内,则第3号信筒恰好只投入一封信的概率为( ).分析 这是一个古典概型问题,有1422,5C m n ⨯==,因此P (A )=0.32.问题 (1)如何将信投入信箱转化为在信封上写号问题? (2)本题是否可用(有放回)摸球问题来解决?27.袋中有10个球,其中有4个白球、6个红球.从中任取3个,求这3个球中至少有1个是白球的概率.分析 这一个古典概型问题,样本空间中样本点的总数为⋅=310C n方法1 设A ={至少有1个白球},有⋅=++=65)(310063416242614C C C C C C C A P 方法2 设B ={取出的全是红球},有⋅-=-=3104361)(1)(C CC B P A P方法3 先从4个白球中任取一个,然后再从剩下的9个球(有红球又有白球)中任取2个,因此⋅=3102914)(C CC A P问题 上述三种方法都对吗,为什么?28.一批产品共100件,对产品进行不放回地抽样检查,整批产品不合格的条件是:在被检查的5件产品中至少有一件是废品.如果在该批产品中有5件是废品,求该批产品被拒绝接收的概率.解 设A i ={被检查的第i 件产品是废品},i =1,2,3,4,5;B ={该批产品被拒绝接收}.方法1 由于,54321A A A A A B ++++=于是1234512345()1()1()P B P A A A A A P A A A A A =-++++=-1213124123512341()(|)(|)(|)(|),P A P A A P A A A P A A A A P A A A A A =-而 ,9893)|(,9994)|(,10095)(213121===A A A P A A P A P ⋅==9691)|(,9792)|(432153214A A A A A P A A A A P因此 .23.09691979298939994100951)(=⨯⨯⨯⨯-=B P方法2 .23.01)(1)(5100595=-=-=C C B P B P29.由以往记录的数据分析,某船只在不同情况下运输某种物品,损坏2%,10%,90%的概率分别为0.8,0.15和0.05.现在从中随机地取三件,发现这三件全是好的,试分析这批物品的损坏率为多少?分析 设B ={三件都是好的},A 1={损坏率为2%}, A 2={损坏率为10%},A 3={损坏率为90%},则A 1,A 2,A 3两两互斥,且A 1∪A 2∪A 3=Ω.已知P (A 1)=0.8,P (A 2)=0.15,P (A 3)=0.05,且3198.0)|(=A B P , 3290.0)|(=A B P , 3310.0)|(=A B P .由全概率公式可知)()|()(31i i i A P A B P B P ∑==05.01.015.090.08.098.0333⨯+⨯+⨯= 8624.0≈.由贝叶斯公式,这批物品的损坏率为2%,10%,90%的概率分别是,8731.08624.08.098.0)()()|()|(3111≈⨯==B P A P A B P B A P,1268.08624.015.090.0)()()|()|(3222≈⨯==B P A P A B P B A P.0001.08624.005.01.0)()()|()|(3333≈⨯==B P A P A B P B A P由于P (A 1|B )比P (A 2|B ),P (A 3|B )大得多,因此可以认为这批货物的损坏率为2%.30.掷两枚匀称的骰子,X ={点数之和},求X 的分布. 答案是:⋅⎥⎦⎤⎢⎣⎡36/136/236/11232~ X 31.设⎪⎩⎪⎨⎧≤>+=,0,0,0,11)(2x x x x f f (x )是否为分布密度函数?如何改造?解 由于,2πd )(=⎰+∞∞-x x f 所以f (x )不是分布密度函数.令⎪⎩⎪⎨⎧≤>+⋅==.0,0,0,11π2)(π2)(2x x x x f x p则p (x )是分布密度函数.32.设随机变量X 的分布密度函数为⎩⎨⎧≤≤=.,0,10,)(其他x Cx x p求(Ⅰ)常数C ;(Ⅱ)P (0.3≤X ≤0.7);(Ⅲ)P (-0.5≤X <0.5).解 (Ⅰ)由p (x )的性质,有,21|2d d )(110210C x C x Cx x x p =⋅===⎰⎰∞+∞-所以C =2.(Ⅱ).4.0|d 2)7.03.0(7.03.027.03.0===≤≤⎰x x x X P(Ⅲ).25.0|d 2d 0)5.05.0(5.0025.0005.0==+=≤≤-⎰⎰-x x x x X P问题 若连续型随机变量X 的分布密度函数p (x )为不可求积函数,如何计算P (X ∈D )呢?33.从一批有13个正品和2个次品的产品中任意取3个,求抽得的次品数X 的分布列和分布函数,并求⋅≤<)2521(X P 解 先求X 的分布列,X 的所有可能取值为0,1,2,由古典概型的概率计算公式知3122113213213323151********(0),(1),(2)353535C C C C C P X P X P X C C C =========⋅ 故X 的分布列为四个区间.当x <0时,F (x )=P (X ≤x )=0.当10<≤x 时,⋅===3522)0()(X P x F 当12x ≤<时,⋅==+==3534)1()0()(X P X P x F 当x ≥2时,F (x )=P (X =0)+P (X =1)+P (X =2)=1. 综上有X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=.2,1,21,3534,10,3522,0,0)(x x x x x F由分布函数可求出⋅=-=-=≤<351335221)21()25()2521(F F X P 34.设连续型随机变量X 的分布函数⎪⎩⎪⎨⎧≤>+=-,0,0,0,e )(22x x B A x F x求系数A 和B .解 由lim ()1n F x →+∞=,知A =1.再由F (x )在x =0处的连续性可知,)e(lim )(lim 02200B A B A x F x x x +=+==-+→→故 B =-A =-1.35.设连续型随机变量X 的分布函数为()1xAF x e-=+, +∞<<∞-x , 求(Ⅰ)常数A . (Ⅱ)X 的分布密度函数p (x ). (Ⅲ)P {X ≤0}.答案是:(Ⅰ)A =1.(Ⅱ)2)e 1(e )(x xx p --+= +∞<<∞-x . (Ⅲ)⋅==<21)0()0(F X P 问题 (1)离散型随机变量的概率分布与分布函数之间有什么关系?(2)连续型随机变量的概率分布密度与分布函数之间有什么关系? (3)如何利用分布函数计算P (X ∈D )?其中D =(a ,b ]. (4)如何确定分布函数中的待定常数?36.设X 服从指数分布,则Y =min{X ,2}的分布函数( ).(A)连续. (B)至少有两个间断点. (C)阶梯函数. (D)恰有一个间断点. 答案是:D .分析 方法1 由题设可知X ~E (λ),有⎩⎨⎧≤>=-.0,0,0,e )(x x x p x λλ 令X 1=X ,X 2=2,则⎩⎨⎧≥<=⎩⎨⎧>-≤=-.2,1,2,0)(;0,e 1,0,0)(21x x x F x x x F xλ于是,Y =min{X ,2}=min{X 1,X 2}的分布函数为))(1))((1(1)(21y F y F y F ---=○一⎪⎩⎪⎨⎧≥<<-≤=-.2,1,20,e 1,0,0y y y y λ 可见它只有一个间断点y =2.方法2 从图2-1中,容易看出它只有一个间断点y =2.图2-137.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,用X 表示取出的3只球中的最小号码数,求X 的分布函数.解 X 的可能取值为3,2,1.,106/)1(,103/)2(,101/)3(352435233522=========C C X P C C X P C C X P 即X 的分布阵为⎥⎥⎦⎤⎢⎢⎣⎡101103106321, 从而X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=.3,1,32,109,21,106,1,0)(x x x x x F38.设X ~U (a ,b ),即⎪⎩⎪⎨⎧≤≤-=.,0,,1)(其他b x a a b x p则⎪⎩⎪⎨⎧≥<≤--<=.,1,,,,0)(b x b x a a b a x a x x F 其图形是一条连续的曲线,见图2-3.图2-339.设X ~N (0,1),求P (X <2.35),P (X <-1.25)以及P (|X |<1.55). 解 P (X <2.35)=Ф(2.35)查表0.9906.P (X <-1.25)=Ф(-1.25)=1-Ф(1.25)=1-0.8944=0.1056.P (|X |<1.55)=P (-1.55<X <1.55)=Ф(1.55)-Ф(-1.55)=2Ф(1.55)-1=2×0.9394-1=0.8788.40.设X ~N (1,22),求P (0<X ≤5). 解 这里μ=1,σ=2,β=5,α=0,有.5.0,2--=-σμασμβ 于是P (0<X ≤5)=Ф(2)-Ф(-0.5)=Ф(2)-[1-Ф(0.5)]=Ф(2)+Ф(0.5)-1=0.9772+0.6915-1=0.6687.41.若X ~N (μ,σ2),求(Ⅰ)P {μ-σ<X <μ+σ}; (Ⅱ)P {μ-2σ<X <μ+2σ}; (Ⅲ)P {μ-3σ<X <μ+3σ}. 解 (Ⅰ)由于X ~N (μ,σ2),故)()(}{σμσμσμσμσμσμ----+=+<<-ΦΦX P =Ф(1)-Ф(-1)=2Ф(1)-1=0.6826≈0.68.同理有:(Ⅱ) P {μ-2σ<X <μ+2σ}=2Ф(2)-1=0.9545≈0.95. (Ⅲ) P {μ-3σ<X <μ+3σ}=2Ф(3)-1=0.9973≈0.99.42.设X ~N (2,32),求:(Ⅰ)P {-1≤X ≤8};(Ⅱ)P {X ≥-4};(Ⅲ)P {X ≤11}. 解 由于X ~N (2,32),即μ=2,σ=3,因此 (Ⅰ)P {-1≤X ≤8}=P {2-3≤X ≤2+2×3}=P {2-3≤X <2}+P {2≤X ≤2+2×3}}322322{21}3232{21⨯+<≤⨯-++<≤-=X P X P.815.0295.0268.0=+≈(Ⅱ)P {X ≥-4}=P {-4≤X <+∞}=P {2-2×3≤X ≤2}+P {X ≥2}.975.021295.0=+≈(Ⅲ)P {X ≤11}=P {-∞<X ≤11}=P {-∞<X ≤2}+P {2≤X ≤2+3×3}.995.0299.021=+≈43.设X ~N (3,σ2),并且P (3≤X ≤7)=0.4,求P (X ≤-1).答案是:0.1. 分析(略)44.设某机器生产的螺栓的长度(cm)服从参数μ=10.05,σ=0.06的正态分布,规定长度在范围(10.05±0.12)cm 内为合格品,求螺栓的次品率.答案是:0.0455(或0.05). 分析(略).求Y =X +1的概率分布.解 由y i =2i x +1(i =1,2,…,5)及X 的分布,得到把f (x i )=2i x +1相同的值合并起来,并把相应的概率相加,便得到Y 的分布,即,21)2()2()5(==+-===X P X P Y P ,103)1()1()2(==+-===X P X P Y P ⋅====51)0()1(X P Y P 所以46.设X ~U (0,1),并且Y =X ,求Y 的分布密度p 2(y ). 解 X 的分布密度函数为⎩⎨⎧∈=.,0],1,0[,1)(1其他x x p 对于函数y =x 2,当x ∈[0,1]时,α=min{x 2}=0,β=max{x 2}=1,于是⎪⎩⎪⎨⎧≥<<≤=.1,1,10*,,0,0)(y y y y F 当0<y <1时)()()()(2y X P y X P y Y P y F ≤=≤=≤=.d 1d 0d )(01y x x x x p yy=+==⎰⎰⎰∞-∞-由 ,21)()()(2yy y F y p ='='=故随机变量Y 的分布密度函数为⎪⎩⎪⎨⎧<<=.,0,10,21)(2其他y yy p47.设随机变量)2π,2π(~-U X ,求随机变量Y =sin X 的分布密度p 2(y ). 解 X 的分布密度函数为⎪⎩⎪⎨⎧-∈=.0,],2π,2π[,π1)(1其他x x p因为y =sin x 在)2π,2π(-内单调增加,所以存在反函数x =arc sin y ,其导数为 ⋅-='211yx y利用公式求出Y 的分布密度函数,首先计算,1}{sin min 2π2π-==≤≤-x x α ππ22max {sin }1,x x β-≤≤== 于是⎪⎩⎪⎨⎧<<-'⋅=-.,0,11|,|))(()(112其他y x y f p y p y⎪⎩⎪⎨⎧<<--=.,0,11,11.π12其他y y 48.X ~U (0,π),Y =sin X ,求p 2(y ).解 X 的分布密度函数为⎪⎩⎪⎨⎧∈=.,0],π,0[,π1)(1其他x x p0π0πmin{sin }0,max{sin } 1.x x x x αβ≤≤≤≤====当0<y <1时,F (y )=P (Y ≤y )=P (sin X ≤y )=P (0≤X ≤arc sin y )+P (π-arc sin y ≤X ≤π),sin arc π2y =所以⎪⎩⎪⎨⎧≥<<≤=1,,11,0,sin arc π20,,0)(y y y y y F 即⎪⎩⎪⎨⎧<<-=.,0,10,1π2)(22其他y yy p 49.(1).,,2,1,}{N k NAk X P ⋅⋅⋅=== (2) ,!}{k B k X P kλ⋅==k =0,1,2,…,λ>0且λ为常数,试确定常数A 和B .解 (1)由分布律的性质可知,)(111A N NAN A k X P Nk N k =⋅====∑∑== 因此,A =1.于是,X 的分布律为).,,2,1(1)(N k Nk X P === 称这样的分布为离散型的均匀分布.(2)由分布律的性质,有,e !!10λλλ⋅===∑∑∞=∞=B k B k Bkk kk解得B =e -λ.于是.e !)(λλ-==k k X P k这表明X 服从参数为λ的泊松分布.50.设平面区域D 是由x =1,y =0,y =x 所围成(如图2-5),今向D 内随机地投入10个点,求这10个点中至少有2个点落在由曲线y =x 2与y =x 所围成的区域D 1内的概率.图2-5分析 分两步进行.第一步:先计算任投一点落入D 1的概率.根据几何概型,有11()123()1()32L A P A L Ω-===⋅第二步:设X ={落入D 1内的点数},有),31,10(~B X 于是P (X ≥2)=1-P (X =0)-P (X =1).)32)(31()32(1911010C --=51.设随机变量X 具有连续的分布函数F 1(x ),求Y =F 1(X )的分布函数F 2(y ).(或证明题:设X 的分布函数F 1(x )是连续函数,证明随机变量Y =F 1(X )在区间(0,1)上服从均匀分布.)分析 由于F 1(x )为X 的连续分布函数,可知α=min{F 1(x )}=F 1(-∞)=0, β=max{F 1(x )}=F 1(+∞)=1. 因为F 1(x )是单调递增函数,所以11-F (y )存在(单调函数必有单值反函数存在),因而有⎪⎩⎪⎨⎧≥<≤<=≤.1,1,10*,,0,0)()(def2y y y y Y P y F 当0≤y <1时,*=F 2(y )=P (F 1(X )≤y )=P (X ≤11-F (y )) =F 1(11-F (y ))=y .代入F 2(y )表达式有⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2y y y y y F 因此,Y 的分布密度函数为⎩⎨⎧≤≤=.,0,10,1)(2其他y y p即 ).1,0(~U Y52.设X ~E (2),证明Y =1-e -2X~U (0,1)分析 由于X ~E (2),因此⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x p x 当x =0时,y =0=α;当x →+∞时,y →1=β:因为y =1-e -2x单调增加,所以其反函数为)1ln(21y x --=,有 .e 21112111212x yy y x =-=---='方法1(公式法)⎩⎨⎧≤≤'=--.,0,10|,))((|))(()(1112其他y y f y f p y p⎪⎩⎪⎨⎧≤≤⋅=-.,0,10,e 21e 222其他y xx ⎩⎨⎧≤≤=.,0,10,1其他y 即Y ~U (0,1).方法2(定义法) 由分布函数的定义⎪⎩⎪⎨⎧>≤≤<=.1,1,10*,,0,0)(2y y y y F 当0≤y ≤1时,有))1ln(21()e 1()()(22y X P y P y Y P y F X --≤=≤-=≤=-12(ln(1))211(ln(1))1e 2---=--=-y F y,)1(1y y =--=因此⎪⎩⎪⎨⎧>≤≤<=,1,1,10,,0,0)(y y y y y F即Y ~U (0,1).53.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈=,,0],8,1[,31)(32其他x x x fF (x )是X 的分布函数.求随机变量Y =F (X )的分布函数.解 易见,当x <1时,F (x )=0;当x >8时,F (x )=1. 对于x ∈[1,8],有.1d 31)(1332-==⎰xx t t x F设G (y )是随机变量Y =F (X )的分布函数.显然,当y ≤0时,G (y )=0;当y ≥1时,G (y )=1.对于y ∈(0,1),有}1{})({}{)(3y X P y X F P y Y P y G ≤-=≤=≤=,])1[(})1({33y y F y X P =+=+≤=于是,Y =F (X )的分布函数为⎪⎩⎪⎨⎧≥<<≤=.1,1,10,,0,0)(y y y y y G即Y ~U (0,1).54.设随机变量X ~U (0,5),求方程4x 2+4Xx +X +2=0有实根的概率. 分析 因为X 在(0,5)上服从均匀分布,故X 的分布密度为⎪⎩⎪⎨⎧≤≤=.,0,50,51)(其他x x p方程4x 2+4Xx +X +2=0有实根的条件是∆=16X 2-16(X +2)≥0,即 (X +1)(X -2)≥0.解 得X ≤-1或X ≥2.舍去X ≤-1,最后得2≤X ≤5.因此,所求概率为⋅==≤≤⎰53d 51)52(52x X P 问题 本题可否使用其他方法?55. 设随机变量X 的绝对值不大于1,即|X |≤1,且===-=)1(,81)1(X P X P41,在事件{-1<X <1}出现的条件下,X 在(-1,1)内的任一子区间上取值的条件概率与该子区间长度成正比.试求X 的分布函数F (x )及P (X <0)(即X 取负值的概率).分析 (1)由题设,我们有x <-1时,F (x )=0;x ≥1时,F (x )=1.以下考虑-1<x <1时的情形.由于1=P (|X |≤1)=P (X =-1)+P (-1<X <1)+P (X =1), 故 ⋅=--=<<-8541811)11(X P 另据条件,有),1(21)11|1(+=<<-≤<-x X x X P 于是,对于-1<x <1,有(-1,x ]⊂(-1,1),因此P (-1<X ≤x )=P (-1<X ≤x ,-1<X <1)=P (-1<X <1)P (-1<X ≤x |-1<X <1)),1(165)1(2185+=+⨯=x x ⋅+=≤<-+-≤=1675)1()1()(x x X P X P x F综上,有⎪⎩⎪⎨⎧≥<≤-+-<=.1,1,11,16/)75(,1,0)(x x x x x F (2)P (X <0)=P (X ≤0)-P (X =0)=F (0)=7/16.56.射击用的靶子是一个半径为R 的圆盘,已知每次射击都能击中靶子,并且击中靶子上任一以靶心为圆心的圆盘的概率与该盘的面积成正比.设随机变量X 表示击中点与靶心的距离,求X 的分布密度函数.分析 根据分布函数的定义及几何概型,由图2-6有图2-6),0(ππ)()(2222R x R x R x x X P x F ≤≤==≤=于是 22()(),xp x F x R='=因此⎪⎩⎪⎨⎧≤≤=.,0,0,2)(2其他R x R xx p 说明 (1)注意其分布函数应为⎪⎪⎩⎪⎪⎨⎧>≤≤<=.,1,0,,0,0)(22R x R x R x x x F 57.点随机地落在中心在原点,半径为R 的圆周上,并且对弧长是均匀地分布,求(1)落点的横坐标的概率分布密度函数p 1(x ).(2)落点与点(-R ,0)的弦长的概率分布密度函数p 2(y ). (提示:落点的极角θ均匀地分布在(0,2π)上)分析 设落点的极角为Θ,落点P 的横坐标为X ,落点与(-R ,0)点的弦长为Y ,则由题设可知Θ~U (0,2π),即()1,02π,2π0,.p θθΘ⎧≤<⎪=⎨⎪⎩其他 由图2-7不难看出⋅==2cos2,cos ΘR Y ΘR X图2-7(1)定义法试求点P 的横坐标X =R cos Θ的密度函数.因为x =R cos θ(0≤θ<2π)不是单调函数,由图2-8得到,使R cos θ≤x 成立的θ应满足⋅-≤≤Rx R x cos arc π2cosarc θ图2-8于是,对-R ≤x ≤R ,有θθθd )()cos ()()(cos ΘxR X p x ΘR P x X P x F ⎰≤=≤=≤=⋅-==⎰-Rx Rx Rx os arcc π11d 2π1arccosπ2arccosθ 对x <-R ,有.0)()cos ()()(=∅=≤=≤=P x ΘR P x X P x F X对x >R ,有,1)()cos ()()(==≤=≤=ΩP x ΘR P x X P x F X即⎪⎩⎪⎨⎧≥<<---≤=.,1,,cos arc π11,,0)(R x R x R R xR x x F X 所以X 的密度函数为⎪⎩⎪⎨⎧<<--='=.,0,,π1)()(22其他R x R x R x F x p X X(2)公式法设θ∈(-π,π).由,2cos 2θR y =有当0≤θ≤π时,单调递减,⋅--='=2242,2cosarc 2y R R y y θθ 当-π≤θ≤0时,单调递增,2arccos,2y y R θθ=-=' 可见p Y (y )=P θ(f -1(y ))|y y f'-))((1|⋅-=--+-=22222241π2|42|2π1422π1yR y R y R 因此⎪⎩⎪⎨⎧<≤-=.,0,20,4π2)(22其他R y y R y p Y58.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈=.,0],6,3[,92],1,0[,31)(其他x x x p若使得32)(=≥k X P ,则k 的取值范围是________. 分析 由图2-9可知图2-9,32)36(92)63(=-⨯=≤≤X P 因此k ∈[1,3]时,⋅=≤≤=≥32)63()(X P k X P 59.设随机变量X 的分布函数为F (x ),则Y =-2ln F (X )的概率分布密度函数P Y (y )=______.分析 用定义法求出Y 的分布,首先求出Y 的分布函数. 当y >0时,有F (y )=P (Y ≤y )=P (-2ln F (X )≤y ))e )((2y X F P -≥= ))e ((21y F X P --≥= ))e ((121y F F ---=.e 12y--=当y ≤0时,F (y )=0.因此 ⎪⎩⎪⎨⎧≤>-=-.0,0,0,e 1)(2y y y F y 再求出Y 的分布密度函数⎪⎩⎪⎨⎧≤>='=-.0,0,0,e 21)()(2y y y F y p yY60.设)2π,2π(~-U X ,并且y =tan x ,求Y 的分布密度函数p (y ). 分析 由)2π,2π(~-U X ,有⎪⎩⎪⎨⎧-∈=.,0],2π,2π[,π1)(1其他x x p 下面利用公式法求出Y =tan X 的分布,为此先求出:α=-∞,β=+∞.,tan arc )(1y y f x ==-⋅+='='-2111))((yy f x y y 于是有121()(())|(1'())|y p y p f y f y --=⋅').(11.π12+∞<<-∞+=y y61.设二维随机向量(X ,Y )共有6个取正概率的点,它们是:(1,-1),(2,-1),(2,0)(2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,则(X ,Y )的联合分布及边缘分布为62.设(X ,Y )的联合分布密度为⎩⎨⎧≥≥=+-.,0,0,0,e ),()43(其他y x C y x p y x试求:(1)常数C . (2)P {0<X <1,0<Y <2}. (3)X 与Y 的边缘分布密度p 1(x ),p 2(y ).解 (1)由p (x ,y )的性质,有y x C y x y x p y x d d e d d ),(1)43(0+-+∞+∞+∞∞-+∞∞-⎰⎰⎰⎰==3401e d e d ,12x y C x y C +∞+∞--=⋅⋅=⎰⎰ 即C =12.(2)令D ={(x ,y )|0<x <1,0<y <2},有y x y x p D Y X P Y X P Dd d ),(}),{(}20,10{⎰⎰=∈=<<<<).e 1)(e 1(d e d e 12d d e 128342310)43(----+---===⎰⎰⎰⎰y x y x y x y x D(3)先求X 的边缘分布:①当x <0时,p (x ,y )=0,于是10()(,)d 0.p x p x y y +∞==⎰②当x ≥0时,只有y ≥0时,p (x ,y )=12e-(3x +4y ),于是⎰+∞∞--+-==.e 3d e 12)(3)43(1x y x y x p因此⎩⎨⎧<≥=-.0,0,0,e 3)(31x x x p x 同理⎩⎨⎧<≥=-.0,0,0,e 4)(42y y y p y 63.设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中D ={(x ,y ):|x +y |≤1,|x -y |≤1},求X 的边缘密度p X (x ).解 区域D 实际上是以(-1,0),(0,1),(1,0),(0,-1)为顶点的正方形区域(见图3-9),其边长为2,面积S D =2,因此(X ,Y )的联合密度是图3-9⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 11111d ,10,21()(,)d d ,01,20,.x x x X x y x p x p x y y y x +--+∞--∞-⎧-≤≤⎪⎪⎪==<≤⎨⎪⎪⎪⎩⎰⎰⎰其他即 1,10,()1,01,0,.X x x p x x x +-≤≤⎧⎪=-<≤⎨⎪⎩其他 64.设二维随机向量(X ,Y )的联合分布函数为⎩⎨⎧≥≥+--=----.,0,0,0,333),(其他y x C y x F y x y x求(1)常数C ;(2)分布密度p (x ,y ).解 (1)由性质F (+∞,+∞)=1,得到C =1.(2)由公式:yx Fy x p ∂∂∂=2),(有3ln 33ln 3,x x y Fx--∂=-∂ .)3(ln 3)3ln 33ln 3(22y x y x x yyx F -----=-∂∂=∂∂∂故 ⎩⎨⎧≥≥=--.,0,0,0,)3(ln 3),(2其他y x y x p y x65.设D 2是x =0,y =0,y =2x +1围成的区域,ξ=(X ,Y )在D 2上均匀分布,求F (x ,y ).答案是:⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅∈∈-∈+∈-+∈=54232221),(,1,),(,2,),(,)12(,),(,)12(2,),(,0),(D y x D y x y y D y x x D y x y x y D y x y x F 其中区域D 1,D 2,D 3,D 4,D 5如图3-10所示.图3-1066.求 (1)X 与Y 的边缘分布.(2)X 关于Y 取值y 1=0.4的条件分布. (3)Y 关于X 取值x 2=5的条件分布. 解(1)由公式),3,2,1()(====∑⋅i p x X p p ijji i),2,1()(====⋅j p y Y p p ijij j(2)计算下面各条件概率:,8380.030.0)(),()|(,16380.015.0)(),()|(1121211111======y p y x p y x p y p y x p y x p⋅===16780.035.0)(),()|(11313y p y x p y x p因此,X 关于Y(3)同样方法求出Y 关于X 取值x =5的条件分布为67.设二维随机向量(X ,Y )的联合分布密度为.e π1),()52(2122y xy x y x p ++-=求(1)X 与Y 的边缘分布密度; (2)条件分布密度.解 (1)由公式y y y x p x p y xy x d e π1d ),()()52(21122++-∞+∞-∞+∞-⎰⎰==)10125(d e 52e e π1222)10125(102x y x y x x +=⎰∞+∞-+-- ,e 5π2πe 52π1224.04.0x x --=⋅=这里应用了.πd e2=-+∞∞-⎰u u 同理,可求得Y 的边缘分布密度为.e π2)(222y y p -=(2)在给定Y =y 的条件下,X 的条件分布密度为,e 2π1)(),()|(2)(5.02y x y p y x p y x p +-==而在给定X =x 的条件下,Y 的条件分布密度为.e 2π5)(),()|(2)5(1.01y x x p y x p x y p +-==69.设随机变量X 与Y 相互独立,下表列出了二维随机向量(X ,Y )联合分布律及关于X和关于Y 的边缘分布律中的部分数值,试将其余数值填入下表中的空白处.分析 应注意到X 与Y 相互独立. 解 由于P (X =x 1,Y =y 1)=P (Y =y 1)-P (X =x 2,Y =y 1),2418161=-=考虑到X 与Y 相互独立,有P (X =x 1)P (Y =y 1)=P (X =x 1,Y =y 1),⋅===4161241}{1x X P所以同理,可以导出其他数值.故XY 的联合分布律为70.设随机变量X 以概率1取值0,而Y 是任意的随机变量,证明X 与Y 相互独立. 证 X 的分布函数为⎩⎨⎧≥<=.0,1,0,0)(1时当时当x x x F 设Y 的分布函数为F 2(y ),(X ,Y )的分布函数为F (x ,y ),则当x <0时,对任意的y 有F (x ,y )=P {X ≤x ,Y ≤y }=P ({X ≤x }∩{Y ≤y })=P (∅∩{Y ≤y })=P (∅)=0=F 1(x )F 2(y ).当x ≥0时,对任意的y 有F (x ,y )=P ({X ≤x }∩{Y ≤y })=P {Y ≤y }=F 2(y )=F 1(x )F 2(y ).因此,对任意的x ,y 均有F (x ,y )=F 1(x )F 2(y ),即X 与Y 相互独立.71.设(X ,Y )的联合分布密度为⎪⎩⎪⎨⎧<<+=.,0,1||,1||,41),(其他y x xy y x p试证明:(1)X 与Y 是相依的. (2)X 2与Y 2是相互独立的.证 (1)先求X 的边缘分布密度.当|x |<1时,有⋅=+==⎰⎰-+∞∞-21d 41d ),()(111y xy y y x p x p当|x |≥1时,p 1(x )=0,因此⎪⎩⎪⎨⎧<=.,0,1||,21)(1其他x x p 同理⎪⎩⎪⎨⎧<=.,0,1||,21)(2其他y y p 可见,当|x |<1,|y |<1时p (x ,y )≠p 1(x )·p 2(y ),所以X 与Y 不独立,即是相依的.(2)令ξ=X 2,η=Y 2,其分布函数分别为F 1(x )和F 2(y ),于是当0≤x <1时,有)()()(21x X x P x X P x F ≤≤-=≤=⎰-==x x x x ,d 21因此⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(1x x x x x F同理可求得Y 2的分布函数⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2y y y y y F如图3-11所示,将Oxy 平面分成5块区域来讨论,并将(ξ,η)的分布函数记为F 3(x ,y ),则图3-11①当x <0或y <0时,F 3(x ,y )=0. ②当0≤x <1,y ≥1时,.)(),(),(2223x x X P y Y x X P y x F =≤=≤≤=③当0≤y <1,x ≥1时,同理.),(3y y x F =④当0≤x <1,0≤y <1时, F 3(x ,y )=P (X 2≤x ,Y 2≤y )),(y Y y x X x P ≤≤-≤≤-=1d 4sxs t +==⑤当x ≥1,y ≥1时,.1d d 41),(),(1111223=+=≤≤=⎰⎰--y x xyy Y x X P y x F综合起来得到⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤<≤≥<≤≥<≤<<=.1,1,1,10,10,,1,10,,1,10,,00,0),(3y x y x xy x y y y x x y x y x F 或不难验证,对于所有x ,y 都有F 3(x ,y )=F 1(x )·F 2(y ),所以ξ与η相互独立,即X 2与Y 2相互独立.72. 设(X ,Y )的联合分布为求(Ⅰ)Z 1=X +Y ;23解 (Ⅰ)Z 1=X +Y 的正概率点为0,1,2,3.因为。
《概率论与数理统计》练习题参考答案与解题提示

《概率论与数理统计》练习题参考答案与解题提示一、单项选择题1-5 DDACC 6-10 BDBAD 11-15 ACCDA 16-20 BCBDC 21-25 DCDDC 26-30 CDDBC 31-35 CDBBA 36-40 CCDBC 41-45 CBCAC 46-50 ABBDC 51-55 BDAAB 56-60 CBABA 61-65 BCBAA 66-68 DCC 6. ()()()()()()P ABC P AB P ABC P A P B P ABC =-=- 23. 001()1(0)2--Φ=-Φ24. 2(,)(,)4F x y f x y xy x y∂==∂∂37. 若2~(,)X N μσ,则~(0,1)X N μσ-39. 25{1}1{0}1(1)9P Y P Y p ≥=-==--=解得13p =31{1}1{0}1(1)3P X P X ≥=-==-- 44. (,)()()X Y f x y f x f y =45. 画出01,01,1x y x y ≤≤≤≤+≤的公共区域,11101{1}1(1)2y P X Y dy dx y dy -+≤==-=⎰⎰⎰二、填空题1. 0.62. 0.33. 1164.145.63646. 0.67. 0.40968.114 9. 0.18 10. 13 11.1912.1835 13. 1p - 14. 0.5 15. 0.4 16. 0.5 17. 0.42 18.1919.81520. 2321. 0.522. 6581 23. 0.5 24. 0.25 25. 0.25 26. 13 27. 0.5 28. 0.75 29. ,00,x e x -⎧>⎨⎩其它30.101,0220x y ⎧≤≤≤≤⎪⎨⎪⎩其它31. 3 32. 0.2 33. 0.4 34.210x35. 0.25 36. 0.2537. (0,1)N 38. 5356 39. 1927 40. 0.5100xe x -⎧-≥⎨⎩其它41.1342.243. 1,010100,y ⎧≤≤⎪⎨⎪⎩其它 44. 0,00x y e x y --⎧>>⎨⎩其它45. 0.5 46. 447.22x-48.312849. 5 50. 4(1)np p - 51. 8 52. 23 53. 1 54.8955.11256. 0.5 57. 0 58. 0.866459. 0 60. 0.16 61. 16 62. 4 63.2364. 0 65. 0.6826 66. 4 67. 2 68. 18 69. 070. 0.5 71.11272. 21(,)F n n 73. 20 74. 0 75.1276. n 77.2212nσσ+78. 23X 79. θ= 80. [7.7,12.3] 81. 1982. 2 83. 1X84. [9.804,10.196] 85. 0.586. 1X - 87. 0.9三、判断题1-5 对错错错对 6-10 对对错错对四、计算题、证明题1.答案:0.8。
《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
山西省考研数学复习资料概率论与数理统计必备习题

山西省考研数学复习资料概率论与数理统计必备习题概率论与数理统计是数学中的一门重要分支,被广泛应用于各个领域。
对于考研学生来说,掌握概率论与数理统计的基本理论和方法,解决相关习题是提高数学能力的重要途径。
本篇文章将为山西省考研数学复习提供概率论与数理统计的必备习题,帮助学生更好地备战考试。
一、概论部分1. 概率的定义和性质习题- 题目一:已知事件A的概率为0.3,事件B的概率为0.5,求事件A与事件B的交集的概率。
- 题目二:设A、B为两个独立事件,已知P(A) = 0.4,P(B) = 0.6,求P(A并B)的概率。
2. 随机变量和概率分布习题- 题目一:设随机变量X服从正态分布N(5, 4),求P(X < 3)的概率。
- 题目二:设随机变量X服从泊松分布P(2),求P(X ≥ 3)的概率。
二、概率习题1. 条件概率和独立性习题- 题目一:已知甲、乙两袋各装有12只红球和8只白球,从甲袋中任取一球放入乙袋,然后从乙袋中任取一球,为红球的概率是多少?- 题目二:一批产品共有100个,其中10个次品。
每次从中随机取一件,若不放回,则取到2个次品的概率是多少?2. 事件的独立性和完备性习题- 题目一:记A、B、C三个事件的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5,其中P(A并B)是事件C的充要条件,求P(A并C)。
- 题目二:设A、B为两个独立事件,已知P(A) = 0.5,P(B) = 0.4,求P(A或B)。
三、数理统计习题1. 统计量的分布习题- 题目一:设X1、X2、X3为来自总体N(0, 1)的一组样本,求样本平均值X的分布。
- 题目二:设样本容量为n的样本均值Xn服从正态分布N(μ, σ^2/n),求样本方差S^2的分布。
2. 参数估计习题- 题目一:设X1、X2、...、Xn为来自总体N(μ, σ^2)的样本,求样本均值X的无偏估计。
- 题目二:设X1、X2、...、Xn为来自总体泊松分布P(λ)的样本,求样本方差S^2的极大似然估计。
2021年大二重点课程概率论与数理统计必考题及答案(新版)

2021年大二重点课程概率论与数理统计必考题及答案(新版)一、单选题1、设是未知参数的一个估计量,若,则是的___ _____(A)极大似然估计 (B)矩法估计 (C)相合估计 (D)有偏估计【答案】D2、已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值 A )与a 无关,随λ的增大而增大 B )与a 无关,随λ的增大而减小C )与λ无关,随a 的增大而增大D )与λ无关,随a 的增大而减小【答案】C3、在假设检验问题中,犯第一类错误的概率α的意义是( )(A)在H 0不成立的条件下,经检验H 0被拒绝的概率(B)在H 0不成立的条件下,经检验H 0被接受的概率(C)在H 00成立的条件下,经检验H 0被拒绝的概率(D)在H 0成立的条件下,经检验H 0被接受的概率【答案】C4、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等(B)方差分析中的假设检验是双边检验 (C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D 5、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】AˆθθˆE θθ≠ˆθθi m 211.()i m r e ij i i j S y y ===-∑∑2.1()r A i i i S m y y ==-∑6、设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是( ) )(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计【答案】D7、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计必考大题解题索引编制:王健 审核:题型一:古典概型:全概率公式和贝叶斯公式的应用。
【相关公式】 ❖ 全概率公式:()()()()()()n 1122S P()=|()||()()(|)()=()(|)()(|).i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++==+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有:P ?…其中有:。
特别地:当n 2时,有:❖ 贝叶斯公式:()()i 100(1,2,,),()(|)()(|)()(|)()=()(|)()(|)()(|)()(|)()i i i i ni i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>=====+∑12n 设实验的样本空间为。
为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地:当n 2时,有:【相关例题】1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。
现从出厂的产品中任取一件,求:(1)恰好取到不合格品的概率;(2)若已知取到的是不合格品,它是第二家工厂生产的概率。
解:设事件表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工厂生产的”(i =123,,)。
则Ω== 31i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得(1)∑=⋅=31)|()()(i i i A A P A P A P1000/37100210035100410025100510040=⨯+⨯+⨯=(2)由贝叶斯公式得 )|(2A A P =∑=3122)|()()|()(j j j A A P A P A A P A P0.250.0410/3737/1000⨯==2.有朋友远方来访,他乘火车、轮船、汽车、飞机的概率分别为3/10、1/5、1/10、2/5,而乘火车、轮船、汽车、飞机迟到的概率分别为1/4、1/3、1/12、1/8。
求:( 1 ) 此人来迟的概率;( 2 ) 若已知来迟了,此人乘火车来的概率。
解:设事件表示:“此人来迟了”;事件i A 分别表示:“此人乘火车、轮船、汽车、飞机来”(i =123,,,4)。
则Ω== 41i i A ,且P A i ()>0,4321A A A A 、、、两两互不相容(1)由全概率公式得∑=⋅=41)|()()(i i i A A P A P A P518152121101315141103=⨯+⨯+⨯+⨯=(2)由贝叶斯公式得P A A (|)1=∑=4111)|()()|()(j j j A A P A P A A P A P 3131041/58⨯==题型二:1、求概率密度、分布函数;2、正态分布1、求概率密度【相关公式】已知分布函数求概率密度在连续点求导;已知概率密度f(x)求分布函数抓住公式:()1f x dx +∞=-∞⎰,且对于任意实数,有:212211{}()()()x P x X x F x F x f x dx x <<=-=⎰。
【相关例题】(1)设随机变量X 的分布函数为: 0,1x < F X (X )= ln ,1x x e ≤< 1,x e ≥① 5(2)(03)(2)2P X P X P X <<≤<<求、、 ② ().x f x 求概率密度(1)(2)(2)ln 2(03)(3)(0)101555(2)()(2)ln2241(2)()X X X X X P X P X P X F F P X F F d F X dx x<=≤=<≤=-=-=<<=-==解:1,1x e x <<()x f x ∴=0,其他 (2)2()()1Af x x x=-∞<<+∞+,是确定常数A 。
200+1-1+([arctan ][arctan ]11Adx x A x x A π+∞-∞∞=∞+==-⎰解:由相关性质得:解得:,036xx ≤< (3)设随机变量X 具有概率密度f(x)= 2,342xx -≤<,求X 的分布函数。
0,其他 解:0,x<0,0306x x dx x ≤<⎰2,0312x x ⇒≤< 3622,3403x x x x +-≤<⎰⎰232,344x x x ⇒-+-≤< 1,4x ≥ 2、正态分布【相关公式】()F x =(1)公式22()2()()x f x x μσ--=-∞<<+∞其中:,,μσμσ为常数,则称X 服从参数为的正态分布。
(2)若()2~=~(0,1).x X NZ N μμσσ-,,则(3)相关概率运算公式:122112{}{}();{}{}()();()1().X x x P X x P x x x x X P x X x P x x μμμσσσμμμμμσσσσσ---≤=≤=Φ-----≤<=≤<=Φ-ΦΦ=-Φ-【相关例题】1、某地区18岁女青年的血压(收缩压:以mmHg 计)服从N~(110,122),在该地任选一名18岁女青年,测量她的血压X ,求: (1){105},{100120};P X P X ≤<≤ (2)确定最小的,{}0.05x P X x >≤使2(1)~(110,12)1101051105{105}{}()1(0.42)10.66280.3372;121212100110110120110101010{100120}{}()()2()10.5934121212121212110110(2){}1{}1{}1212X N X P X P X P X P X x P X x P X x P --∴<=<=Φ--Φ=-=---<≤=<≤=Φ-Φ-=Φ-=-->=-≤=-≤解:min 1101()0.0512110()0.95(1.65)12110 1.65129.812129.8x x x x x -=-Φ≤-Φ≥Φ-⇒≥⇒≥∴=即有:2、由某机器生产的螺栓的长度(cm )服从参数10.05,0.06μσ==的正态分布,规定长度在范围10.050.12±内为合格品,求一螺栓为不合格的概率。
(){}.9.9310.0510.0510.1710.0510.05(){}(22)2(2)10.95440.060.060.060.06()1()10.95440.0456A P A X X P A P P P A P A =----=≤≤=-≤≤=Φ-=∴=-=-=解:设一螺栓合格,本题求【题型三】二维随机变量的概率密度和边缘概率密度事件的独立性1.设G 为由抛物线y x =2和y x =所围成区域,()X Y ,在区域G 上服从均匀分布,试求:(1)X Y 、的联合概率密度及边缘概率密度;(2)判定随机变量X 与Y 是否相互独立。
解:如图所示,G 的面积为A x x dx =-=⎰()20116因此均匀分布定义得X Y 、的联合概率密度为f x y x y G(,),(,),=∈⎧⎨⎩60其他 而f x f x y dy dy x x x X xx()(,)()===-≤≤-∞+∞⎰⎰660122,f y f x y dx dx y y y Y yy()(,)()===-≤≤-∞+∞⎰⎰6601,所以关于X 和关于Y 的边缘分布密度分别为f x x x x X ()(),,=-≤≤⎧⎨⎩60102其他f y y y y Y ()(),,=-≤≤⎧⎨⎩6010其他(2)由于),()()(y x f y f x f Y X =,故随机变量X 与Y 不相互独立。
2.设二维随机变量(X ,Y )的概率分布为⎩⎨⎧<<=-其它,00,),(yx e y x f y求:(1)随机变量X 的密度函数)(x f X ; (2)概率}1{≤+Y X P 。
解:(1)x ≤0时,f x X ()=0;x >0时,f x X ()=f x y dy e dy e y x x(,)==--+∞-∞+∞⎰⎰故随机变量X 的密度函数f x X ()=e xx x -<≤⎧⎨⎩,,000(2)P X Y {}+≤1==--+≤⎰⎰⎰⎰f x y dxdy dx e dy y xxX Y (,)10121=+---e e 112123.设随机向量()X Y ,的概率密度为⎩⎨⎧<<<<=其他,00,10,),(xy x A y x f试求:(1)常数A ;(2)关于X Y 、的边缘概率密度。
解:(1)由归一性 ⎰⎰⎰⎰===∞+∞-∞+∞-1002),(1Adydx A dxdy y x f x所以2=A 。
的联合概率密度为⎩⎨⎧<<<<=其他,00,10,2),(xy x y x f(2)关于X Y 、的边缘概率密度为 )10(22),()(0≤≤===⎰⎰+∞∞-x x dy dy y x f x f xX即⎩⎨⎧≤≤=其它010,2)(x x x f X 同理可求得关于Y 的边缘分布密度为⎩⎨⎧≤≤-=其他,010),1(2)(y y y f Y4.设随机变量(X ,Y )具有概率密度⎩⎨⎧≥≥=+-其它,00,0,),()(y x Ce y x f y x ,求(1)常数C ;(2)边缘分布密度。
解:(1)由于f x y dxdy (),-∞+∞-∞+∞⎰⎰=1,故1=Cedxdy C e dx e dy C x y xy -++∞--+∞+∞+∞⎰⎰⎰⎰==()所以C =1,即f x y e x y x y (,),()=≥≥⎧⎨⎩-+,,其他00(2)⎰⎰+∞∞--+-+∞===x y x X e dy e dy y x f x f )(0),()( 0≥x ,即⎪⎩⎪⎨⎧≥=-其他,00,)(x e x f x X⎰⎰+∞∞--+-+∞===y y x Y e dx e dx y x f y f )(0),()( 0≥y ,即⎪⎩⎪⎨⎧≥=-其他,00,)(y e y f y Y【题型四】最大似然估计的求解【相关公式】()()(1)()0ln ()0220ln 0(1,2,3,,)i id d L L d d i i L L i k θθθθθθθ==≥∂∂===∂∂当只有一个变量的时候,有:或;当未知变量有的时候,有:或……【相关例题】1、设概率密度为:,01xe x λλ-<<()f x =0,其他λ求的最大似然估计.()1111()exp ln ()ln ()1()0=.nnxni i i nii ni i nL ex l L n x d n l x d d l d x λλλλλλθλλλλλλλλ-====⎛⎫==- ⎪⎝⎭==-=-=∑∏∑∑解:令,即有:2、123,,,n X X X X 设,?… 是来自概率密度为:1,01x x θθ-<<(;)f x θ=0,其他 的总体的样本,θ未知,求θ的最大似然估计。