正弦定理和余弦定理课件PPT
合集下载
高中数学必修五 1.1 正弦定理和余弦定理 教学课件 PPT (4)
C
b
a=?
A
c
B
三、证明问题
C
b
a=?
A
c
B
向量法:
C
b
a
A
c
B
四、余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这两边与 它们的夹角的余弦的积的两倍。
b A
或 (推论)
C a=?
c
B
五、余弦定理基本应用
1.已知两边及它们的夹角,求第三边;
2.已知三边,求三个角。
例1:隧道工程设计,经常需要测算山脚的长度,工程技术人 员先在地面上选一适当位置A,量出A到山脚B,C的距离,再 利用经纬仪(测角仪)测出A对山脚BC的张角,最后通过计 算求出山脚的长度BC。
转化:在 △ABC中,
B
AB 8km, AC 3km, A 600,
求a。
C A
例2:在△ABC中,已知 a=2,b= , 求A。
解:
∴A=45°
例3:在△ABC中,已知 a=2 ,b= , 解三角形。
解:由例2可知 A=45°
方法一:
方法二:
思考
在解三角形的过程中,求某一个角有时 既可以用余弦定理,也可以用正弦定理,两种方法有 什么利弊呢?
1:1: 3
变式训练
在ABC中,角A、B、C的对边分别 为a、b、c,若AB AC = BA BC = 1,c = 2.
(1)判断ABC的形状; (2)若 AB AC 6,求ABC的面积
答案:等腰三角形
3
2
小结:
一、正弦定理: a b c 2R sin A sin B sin C
其中,R是△ABC的外接圆的半径
正弦定理和余弦定理 (共35张PPT)
2 2 2 2 2
考向二 判断三角形的形状[互动讲练型] [例 2] 在△ABC 中,内角 A、B、C 所对边分别是 a、b、c, c-a 2B 若 sin 2 = 2c ,则△ABC 的形状一定是________. 1-cos B c-a a [解析] 由题意,得 = 2c ,即 cos B= c,又由余 2 2 2 2 a + c - b a 弦定理,得c = 2ac ,整理,得 a2+b2=c2,所以△ABC 为 直角三角形. [答案] 直角三角形
2.(2017· 辽宁五校联考)设△ABC 的内角 A,B,C 所对边的 长分别为 a, b, c, 若 b+c=2a,3sin A=5sin B, 则角 C 等于( ) 2π π 3π 5π A. 3 B.3 C. 4 D. 6 解析:因为 3sin A=5sin B,所以由正弦定理可得 3a=5b. 3 7 因为 b+c=2a,所以 c=2a-5a=5a.令 a=5,b=3,c=7,则 由余弦定理 c2=a2+b2-2abcos C,得 49=25+9-2×3×5cos 1 2π C,解得 cos C=-2,所以 C= 3 . 答案:A
[拓展练]——(着眼于迁移应用) 6.(2016· 浙江)在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,已知 b+c=2acos B. (1)证明:A=2B; a2 (2)若△ABC 的面积 S= 4 ,求角 A 的大小.
考向一 应用正弦、余弦定理解三角形 [自主练透型] [例 1] (2016· 山东,16)在△ABC 中,角 A,B,C 的对边分 tan A tan B 别为 a,b,c.已知 2(tan A+tan B)=cos B+cos A. (1)证明:a+b=2c; (2)求 cos C 的最小值.
考向二 判断三角形的形状[互动讲练型] [例 2] 在△ABC 中,内角 A、B、C 所对边分别是 a、b、c, c-a 2B 若 sin 2 = 2c ,则△ABC 的形状一定是________. 1-cos B c-a a [解析] 由题意,得 = 2c ,即 cos B= c,又由余 2 2 2 2 a + c - b a 弦定理,得c = 2ac ,整理,得 a2+b2=c2,所以△ABC 为 直角三角形. [答案] 直角三角形
2.(2017· 辽宁五校联考)设△ABC 的内角 A,B,C 所对边的 长分别为 a, b, c, 若 b+c=2a,3sin A=5sin B, 则角 C 等于( ) 2π π 3π 5π A. 3 B.3 C. 4 D. 6 解析:因为 3sin A=5sin B,所以由正弦定理可得 3a=5b. 3 7 因为 b+c=2a,所以 c=2a-5a=5a.令 a=5,b=3,c=7,则 由余弦定理 c2=a2+b2-2abcos C,得 49=25+9-2×3×5cos 1 2π C,解得 cos C=-2,所以 C= 3 . 答案:A
[拓展练]——(着眼于迁移应用) 6.(2016· 浙江)在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,已知 b+c=2acos B. (1)证明:A=2B; a2 (2)若△ABC 的面积 S= 4 ,求角 A 的大小.
考向一 应用正弦、余弦定理解三角形 [自主练透型] [例 1] (2016· 山东,16)在△ABC 中,角 A,B,C 的对边分 tan A tan B 别为 a,b,c.已知 2(tan A+tan B)=cos B+cos A. (1)证明:a+b=2c; (2)求 cos C 的最小值.
正弦定理和余弦定理课件PPT
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
正弦定理和余弦定理ppt课件
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦定理与余弦定理时PPT课件
第15页/共28页
• 解法二:已知等式变形为
• b2(1-cos2C)+c2(1-cos2B)= 2bccosB·cosC,
• ∴b2+c2=b2cos2C+c2cos2B+ 2bccosB·cosC,
• ∵b2cos2C+c2cos2B+2bccosBcosC • =(bcosC+ccosB)2=a2, • ∴b2+c2=a2,∴△ABC为直角三角形.
得aab2+ =b62-ab=7 ⇒aab2+ =b62.=13 7 分
消去 b 并整理得 a4-13a2+36=0, 解得 a2=4,a2=9.9 分
所以ab= =23 或ab= =32.
故 a+b=5.12 分 第19页/共28页
•变式训练4.若本例题中(2)的条件不变,
试求“△ABC内切圆的半径r”.
由bcb30bcsin303由正弦定理sinccsinbc60或120c60a90c120a30abc为等腰三角形abca3b4c373743边c最大则角c最大bc2ababcsinasinbsincsinasinbsinccosc2ab9t25t49t3t5t1201203ab2cosasinbsincabc180sincsina2cosasinbsinc2cosasinbsinacosbcosasinbsina根据余弦定理上式可化为coscabc为等边三角形由2cosasinbsinc得cosa2sinb2b3ab4bsinb2bccosbcoscabcsinccsinb2bccosbcoscb2sinbsinccosbcoscsinbsincsinbsinccosbcosccosbc0cosa02bccosbcosc2bccosbcoscbcoscccosbabc2csina
形,且角C为____直__角;a2+b2>c2⇔△ABC是
• 解法二:已知等式变形为
• b2(1-cos2C)+c2(1-cos2B)= 2bccosB·cosC,
• ∴b2+c2=b2cos2C+c2cos2B+ 2bccosB·cosC,
• ∵b2cos2C+c2cos2B+2bccosBcosC • =(bcosC+ccosB)2=a2, • ∴b2+c2=a2,∴△ABC为直角三角形.
得aab2+ =b62-ab=7 ⇒aab2+ =b62.=13 7 分
消去 b 并整理得 a4-13a2+36=0, 解得 a2=4,a2=9.9 分
所以ab= =23 或ab= =32.
故 a+b=5.12 分 第19页/共28页
•变式训练4.若本例题中(2)的条件不变,
试求“△ABC内切圆的半径r”.
由bcb30bcsin303由正弦定理sinccsinbc60或120c60a90c120a30abc为等腰三角形abca3b4c373743边c最大则角c最大bc2ababcsinasinbsincsinasinbsinccosc2ab9t25t49t3t5t1201203ab2cosasinbsincabc180sincsina2cosasinbsinc2cosasinbsinacosbcosasinbsina根据余弦定理上式可化为coscabc为等边三角形由2cosasinbsinc得cosa2sinb2b3ab4bsinb2bccosbcoscabcsinccsinb2bccosbcoscb2sinbsinccosbcoscsinbsincsinbsinccosbcosccosbc0cosa02bccosbcosc2bccosbcoscbcoscccosbabc2csina
形,且角C为____直__角;a2+b2>c2⇔△ABC是
正弦定理和余弦定理-PPT课件
22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.
第4章第6节正弦定理余弦定理课件共47张PPT
=
6+ 4
2 .
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
点评:在△ABC中,若A=m,则B+C=π-m.从而B=π-m-C 或C=π-m-B,由此可消去B或C.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
[跟进训练]
=4或b=5.]
1234
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
02
细研考点·突破题型
考点一 考点二 考点三
利用正、余弦定理解三角形 利用正、余弦定理解决三角形面积问题 判断三角形的形状
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
2.三角形常用面积公式
(1)S=12a·ha(ha 表示边 a 上的高);
(2)S=12absin
1
1
C=___2_a_c_s_in__B___=____2_b_c_s_in__A__;
(3)S=12r(a+b+c)(r 为内切圆半径).
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
因此,选条件②时问题中的三角形存在,此时c=2 3.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
方案三:选条件③.
由C=π6和余弦定理得a2+2ba2b-c2=
3 2.
正弦定理和余弦定理 PPT课件人教版
6 2<
2.
∴∠A 有两解,∴A=60°或 120°.
当 A=60°时,C=180°-45°-60°=75°,
c=bssiinnBC=
s2isni4n57°5°=
6+ 2
2 .
当 A=120°时,C=180°-45°-120°=15°,
c=bssiinnBC=
s2isni4n51°5°=
6- 2
2 .
其他推导方法
(1)因为涉及边长问题,从而可以考虑用向量来研究 此问题.
提示:
作单位向量j⊥AC,j与AB夹角为锐角. j
由向量的加法可得AB = AC + CB, a
C b
则j·AB = j·(AC + CB),
B
A
所以j·AB = j·AC +j·CB,
j AB cos(90°- A)= 0 + j CB cos(90°- C),
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
C
sinA sinB
同理可得 b = cຫໍສະໝຸດ sinB sinCab
从而 a = b = c . B sinA sinB sinC
DA
(2)钝角三角形 如图,类比锐角三角形,请同学 们自己推导.
第五章第六节正弦定理和余弦定理课件共58张PPT
A,bsin
C=csin
B,
cos
C=a2+2ba2b-c2
2.三角形中常用的面积公式
(1)S=12 ah(h 表示边 a 上的高);
(2)S=12
1
1
bcsin A=___2__a_c_s_in_B____=__2__a_b_si_n_C___;
(3)S=12 r(a+b+c)(r 为三角形的内切圆半径).
解析: 在△ABC 中, 由余弦定理及 a=2 2 ,b=5,c= 13 ,有 cos
C=a2+2ba2b-c2
=
2 2
π .又因为 C∈(0,π),所以 C= 4
.
π 在△ABC 中,由正弦定理及 C= 4 ,a=2 2 ,c= 13 ,可得 sin A=
a sin C c
=2 1313
.
答案:
π 4
变形
(1)a=2R sin A,b=_2_R_s_in_B___,c= __2_R_s_in_C___;
cos A=b2+2cb2c-a2
;
(2)a∶b∶c=_si_n_A_∶__s_i_n_B_∶__s_in_C___; cos B=c2+2aa2c-b2 ;
(3)asin B=bsin asin C=csin A
考点·分类突破
⊲学生用书 P84
利用正弦、余弦定理解三角形
(1)(2020·全国卷Ⅲ)在△ABC 中,cos C=23 ,AC=4,BC=3,则
tan B=( )
A. 5
B.2 5
C.4 5
D.8 5
(2)(2020·广东省七校联考)若△ABC 的内角 A,B,C 所对的边分别为 a,
b,c,已知 2b sin 2A=3a sin B,且 c=2b,则ab 等于( )
第六章6.4.3余弦定理、正弦定理PPT课件(人教版)
训练题
1.[2019·江西九江一中高一检测]若三角形的三边长之比是1∶ 3 ∶2,
则其所对角之比是( A ) A.1∶2∶3 B.1∶ 3 ∶2 C.1∶ 2 ∶ 3 D. 2 ∶ 3 ∶2
2. [2019·江西赣州五校高一联考]已知△ABC中,a∶b∶c=2∶ 6 ∶
( 3 +1),求△ABC中各角的度数.
训练题
1. 2019·江西九江一中高一检测]设△ABC的内角A,B,C的对边分别为
a,b,c,且cos A= 3 ,cos B= 5 ,b=3,则c=
5
13
14 5
.
2. [2019·北京东城区高三二模]在△ABC中,A= ,a2+b2-c2=ab, 4
c=3,则C=
3 ,a=
6.
3.已知两边及一边的对角解三角形 例5在△ABC中,a= 3 ,b= 2 ,B=45°,求A,C,c.
【解】 ∵ A=45°,C=30°,∴ B=180°-(A+C)=105°.
由 a = c 得a= csinA =10 sin45 =10 2 .
sinA sinC
sinC
sin30
由 b = c 得b= csinB =10 sin105 =20sin 75°.
sinB sinC
sinC
sin30
∵ sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=
【解】 由正弦定理及已知条件,有 3 = 2 ,得sin A= 3 .
sinA sin45
2
∵ a>b,∴ A>B=45°.∴ A=60°或120°.
当A=60°时,C=180°-45°-60°=75°,
正弦定理、余弦定理-优秀课件
(2)∵A+B+C=180°,∴B+C=180°-60°=120°.
由sin B+sin C= 3,得sin B+sin(120°-B)= 3,
∴sin B+sin 120°cos B-cos 120°sin B= 3.
∴32sin
B+
3 2 cos
B=
3,即sin(B+30°)=1.
∵0°<B<120°,∴30°<B+30°<150°.
(5)在△ABC中,若sin Asin B<cos Acos B,则此三角形是钝
角三角形.
(√)
(6)在△ABC中,若b2+c2>a2,则此三角形是锐角三角形.
(×)
• [感悟·提升]
• 1.一条规律 在三角形中,大角对大边,大边对大 角;大角的正弦值也较大,正弦值较大的角也较大, 即在△ABC中,A>B⇔a>b⇔sin A>sin B,如(1).
• 1.在解三角形的问题中,三角形内角和定理 起着重要作用,在解题时要注意根据这个定 理确定角的范围及三角函数值的符号,防止 出现增解或漏解.
• 2.正、余弦定理在应用时,应注意灵活性, 尤其是其变形应用时可相互转化.如a2=b2+ c2-2bccos A可以转化为sin2 A=sin2 B+sin2 C -2sin Bsin Ccos A,利用这些变形可进行等式 的化简与证明.
Asin
B=1027
2 .
(7分) (9分)
(10分) (12分)
•[反思感悟] (1)在处理三角形中的边角关系时, 一般全部化为角的关系,或全部化为边的关 系.题中若出现边的一次式一般采用到正弦定 理,出现边的二次式一般采用到余弦定理.应 用正、余弦定理时,注意公式变式的应用.解 决三角形问题时,注意角的限制范围.
《正弦定理余弦定理》课件
THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。
正弦定理和余弦定理课件PPT
在钝角三角形 ABC 中,a=1,b=2,c=t,且 C 是最大角,则 t 的取值范围是________.
[错解] ∵△ABC 是钝角三角形且 C 是最大角,∴C>90°, ∴cosC<0,∴cosC=a2+2ba2b-c2<0, ∴a2+b2-c2<0,即 1+4-t2<0. ∴t2>5.又 t>0,∴t> 5, 即 t 的取值范围为( 5,+∞).
sin A
3
y 4sin x 4sin( 2 x) 2 3 3
4 3 sin(x ) 2 3, 6
A ,0 B x 2 .
3
3
故 x ( , 5),sin(x ) (1 ,1],
6 66
62
∴y的取值范围为 (4 3,6 3].
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
(2)由于 a:b:c=1: 3:2, 可设 a=x,b= 3x,c=2x. 由余弦定理的推论,得 cosA=b2+2cb2c-a2 =32x×2+43xx2×-2xx2= 23,故 A=30°. 同理可求得 cosB=12,cosC=0,所以 B=60°,C=90°.
已知三角形的三边长分别为 x2+x+1,x2-1 和 2x+ 1(x>1),求这个三角形的最大角.
∵∠ADC=45°,DC=2x, ∴在△ADC 中,根据余弦定理,得 AC2=AD2+DC2-2AD×DC×cos45°, AC2=4x2-4x+2, 又 AC= 2AB, ∴AC2=2AB2, 即 x2-4x-1=0,解得 x=2± 5. ∵x>0,∴x=2+ 5,即 BD=2+ 5.
名师辨误做答
第一章
解三角形
第一章
1.1 正弦定理和余弦定理
正弦定理和余弦定理 课件(53张)
a≥b 一解
a>b 一解
上表中,若A为锐角,当a<bsin A时无解;若A为钝角或直角,当a≤b时无解.
3.三角形面积
设△ABC的内角A、B、C所对的边分别为a、b、c,其面积为S.
(1)S=
1 2
ah(h为BC边上的高).
1
(2)S= 2 absin C=
1
1
2 acsin B = 2 bcsin A.
1∶13.
由余弦定理得cos
C=
52
112 132 2 511
<0,所以C为钝角,即△ABC一定是钝角
三角形.
2-2 在△ABC中,内角A,B,C所对的边分别是a,b,c,若c-acos B=(2a-b)cos
A,则△ABC的形状为 ( D )
A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形
A. 6 B. 3 C. 6
D. 3
4.△ABC的内角A,B,C所对的边分别为a,b,c,若a2cos Asin B=b2sin Acos B,
则△ABC的形状为 ( D )
A.等腰直角三角形 B.直角三角形 C.等边三角形 D.等腰三角形或直角三角形
5.若满足条件C=60°,AB= 3 ,BC=a的△ABC有两个,那么a的取值范围是
1 2
absin
C≤
3
3 4
,又S△
ABC>0,所以S△ABC∈
0,
3
3 4
.
解法二:因为 a = b = c =2,
sin A sin B sin C
所以a=2sin A,b=2sin B.
又A+B=
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综上可知:A=60°,C=75°,c=
6+ 2
2或 A=120°,
C=15°,c=
6- 2
2 .
例1 在△ABC中,已知A=32.0°,B=81.8°,a =42.9 cm,解三角形.
解:根据三角形内角和定理,
C 180 A B 180 32.0 81.8 66.2.
根据正弦定理,b=
6 2<
2.
∴∠A 有两解,∴A=60°或 120°.
当 A=60°时,C=180°-45°-60°=75°,来自c=bssiinnBC=
s2isni4n57°5°=
6+ 2
2 .
当 A=120°时,C=180°-45°-120°=15°,
c=bssiinnBC=
s2isni4n51°5°=
6- 2
2 .
其他推导方法
(1)因为涉及边长问题,从而可以考虑用向量来研究 此问题.
提示:
作单位向量j⊥AC,j与AB夹角为锐角. j
由向量的加法可得AB = AC + CB, a
C b
则j·AB = j·(AC + CB),
B
A
所以j·AB = j·AC +j·CB,
j AB cos(90°- A)= 0 + j CB cos(90°- C),
注意:(1)正弦定理指出了任意三角形中三条边与对应角
的正弦之间的一个关系式.由正弦函数在区间上的
单调性可知,正弦定理非常好地描述了任意三角形
中边与角的一种数量关系.
2 a b c 等价于
sin A sin B sin C a b , b c ,a c . sin A sin B sin B sin C sin A sin C
探究点2 正弦定理的基本作用
(1)已知三角形的任意两角与一边,求其他的边, 如 a bsin A. sin B
(2)已知三角形的任意两边与其中一边 的对角可以求其他角的正弦值, 如 sin A= a sin B.
b
(3)运用 a:b:c=sinA:sinB:sinC 解决边角之间的转换 关系.
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
第一章 解三角形 1.1 正弦定理和余弦定理
1.1.1 正弦定理
为了测定河岸A点到对岸C点的距离,在岸边选定1公 里长的基线AB,并测得∠ABC=120o,∠BAC=45o,如何求 A,C两点的距离呢?
.C
.B .A
1.通过对任意三角形边长和角度关系的探索, 掌握正弦定理的内容及其证明方法. 2.会运用正弦定理与三角形内角和定理解斜三 角形的两类基本问题.(重点、难点)
3.已知边a,b和角A,求其他边和角的讨论. (1)A为锐角
C
C
C
C
b a ba
ba
b
a
A
A B A B2 B1 A
B
a<bsinA 无解
a=bsinA bsinA<a<b
一解
两解
a≥b 一解
(2)A为钝角
C ba
A
B
C ba A
a>b 一解
a≤b 无解
A为直角时,与A为钝角相同, a>b时,一解;
探究点1 正弦定理
在初中,我们已学过如何解直角三角形,下面首先
来探讨直角三角形中角与边的等式关系.
A
提示:如图,在RtΔABC中,设BC = a,AC = b, C
B
AB = c,根据直角三角形中正弦函数的定义,有 a = sinA, c
b = sinB,sinC = 1 = c,则 a = b = c = c
所以c·sinA = a·sinC,即 a = c , sinA sinC
同理,作j⊥BC,j与AC夹角为锐角.
可得 b = c ,从而 a = b = c .
sinB sinC
sinA sinB sinC
(2)外接圆法 提示:
B a
如图:C=C', c sin
C
c sin C'
2R.
c
·O
C
如下图所示同理:
C
sinA sinB
同理可得 b = c sinB sinC
a
b
从而 a = b = c . B sinA sinB sinC
DA
(2)钝角三角形 如图,类比锐角三角形,请同学 们自己推导.
C
a b
提示:
B
AD
可证得,当ΔABC是钝角三角形时,也有
a = b = c. sinA sinB sinC
【即时练习】
在△ABC 中,a=8,B=60°,C=75°,则 b=( C )
A.4 2
B.4 3
C.4 6
22 D. 3
[分析] 已知两角,由三角形内角和定理第三角可
求,已知一边可由正弦定理求其他两边.
[解析] 在△ABC 中,A=180°-(B+C)=45°,由正 弦定理sinaA=sinbB得,b=assiinnAB=8s·sinin4650°°=4 6.故选 C.
a sin B sin A
=
42.9 sin 81.8 sin 32.0
80.(1 cm);
根据正弦定理,c= a sin C sin A
c
c sinA sinB sinC
从而在RtΔABC中,有 a = b = c . sinA sinB sinC
思考:对于任意的三角形,以上关系式是否仍然成立?
提示:(1)锐角三角形
当ΔABC是锐角三角形时,设边AB上的高是CD,
根据任意角三角函数的定义,有CD = asinB = bsinA,
则a = b
a≤b时,无解.
【即时练习】
已知在△ABC 中,a= 3,b= 2,B=45°,解这 个三角形.
[分析] 在△ABC 中,已知两边和其中一边的对角, 可运用正弦定理求解,但要注意解的个数的判定.
[解析] 由正弦定理及已知条件有sin3A=sin425°,
得 sinA= 23,asinB=
3sin45°=
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
正弦定理概述:
在一个三角形中,各边和它所对角的正弦的比相等,
即
ab sin A sin B
c. sin C