最新七年级一元一次方程解决问题

合集下载

第14讲用一元一次方程解决问题七年级数学上册同步学与练(苏科版2024)[含答案]

第14讲用一元一次方程解决问题七年级数学上册同步学与练(苏科版2024)[含答案]

第14讲 用一元一次方程解决问题课程标准学习目标①引导学生学会分析实际问题中的数量关系,将其转化为一元一次方程.②培养学生运用一元一次方程解决实际问题的能力,包括设未知数、列方程、解方程、检验答案等步骤.③让学生体会方程思想在解决实际问题中的重要性,感受数学与生活的紧密联系.1.掌握用一元一次方程解决问题的基本方法和步骤.2.能够准确找出实际问题中的等量关系,建立一元一次方程模型并求解.3.培养学生解决实际问题的兴趣和信心,提高应用数学的意识.知识点一、用一元一次方程解决实际问题的一般步骤1.审:审清题意(注意关键词),找出题中的等量关系,理清题中的已知量与未知量;2.设:设未知数,并用含未知数的代数式表示其他未知量;①设直接未知数:一般情况下,题中问什么就设什么;②设间接未知数:特殊情况下,设直接未知数难以列出方程时,可设另一个相关的量为未知数;③设辅助未知数:在某些问题中,为了便于列方程,可以设辅助未知数.3.列:根据题中相等关系,列出一元一次方程;4.解:解所列出的一元一次方程;5.验:检验所得的解是不是所列方程的解、是否符合实际意义(这一步可在草稿纸上完成);6.答:写出答案,包括单位.知识点二、常见列方程解决问题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一、同地不同时出发:前者走的路程=追者走的路程;第二、同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.5.利润问题(1)利润利润率=100%进价´(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损,打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1 127.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.题型01比例分配问题1.甲、乙、丙三位同学向灾区捐款.已知他们捐款金额之比为7:5:8,且共捐款200元,则甲同学所捐款金额为元.2.甲、乙两瓶中分别有水4升和10升,现要从这两瓶中各倒一些水到空的丙瓶中,使三个瓶中水量的比为3:2:1,那么乙瓶需倒出水升.3.超市原有某品牌纯牛奶和酸牛奶共80箱,其数量之比为9:7,现新进一批纯牛奶和酸牛奶,箱数之比为2:5,将新进牛奶分别放置于超市A,B两个空置区域(A区域放纯牛奶,B 区域放酸牛奶),在搬运过程中工作人员不小心将2箱酸牛奶放到了A区域,结果导致A,B 两区域的牛奶箱数之比为3:7,求目前超市中纯牛奶、酸牛奶各有多少箱.4.甲、乙两个瓶子里共有药片260片,如果将甲瓶药片的18装入乙瓶里,那么这时两瓶里药片的片数之比为76:.原来两个瓶子里分别有多少片药片?题型02 配套问题5.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x 名工人生产螺母,由题意可知下面所列的方程正确的是( )A .212002000(22)x x ´=-B .21200(22)2000x x ´-=C .220001200(22)x x ´=-D .22000(22)1200x x´-=6.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?7.某车间有60个工人,生产甲,乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型03 调配问题8.在甲处工作的有132人,在乙处工作的有108人,如要使乙处工作的人数是甲处工作人数的12,应从乙处调多少人到甲处?若设应从乙处调x 人到甲处,则下列方程中正确的是( )A .()11321082x x +=-B .()11321082x x -=-C .11321082x x ´+=-D .()11321082x x +=-9.在植树节活动中,A 班有30人,B 班有21人,现从B 班调一部分人去A 班,使A 班人数为B 班人数的2倍,那么应从B 班调出 人.10.受连日暴雨影响,某地甲、乙两个村庄突发泥石流灾害,急需从市中心东、西两个储备仓库调运救灾物资,已知两个储备仓库均有救灾物资15吨,其中A 村需要18吨,B 村需要12吨,从东仓库运往A 、B 两村的运费分别为60元/吨和20元/吨,从西仓库运往A 、B 两村的运费分别为40元/吨和30元/吨.(1)若从东仓库运往A 村10吨,则从西仓库运往B 村的物资为 吨;(2)设从东仓库调运x 吨救灾物资去A 村,完成表格中的填空;运往A 村的物资/吨运往B 村的物资/吨东仓库x西仓库(3)调运结束后结算时发现,支付给东、西两个仓库的运费相差220元.求从东仓库运往A 村物资是多少吨?题型04 环形跑道问题11.运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小林第一次与爷爷相遇,小林跑步的速度是( )米/分.A .120B .160C .180D .20012.已知甲沿周长为300米的环形跑道按逆时针方向跑步,速度为a 米/秒,与此同时在甲后面100米的乙也沿该环形跑道按逆时针方向跑步,速度为3米/秒.(1)若a =1,求甲、乙两人第一次相遇所用的时间;(2)若a >3,甲、乙两人第一次相遇所用的时间为80秒,试求a 的值.13.学校运动场环形跑道周长400m ,李老师的跑步速度是小明的35,他们从同一起点沿跑道的同一方向出发,5分钟后小明第一次与李老师相遇.求:(1)小明和李老师跑步的速度各是多少?(2)如果李老师与小明第一次相遇后立即转身沿相反方向跑,那么再过几分钟后小明第二次与李老师相遇?题型05 航行问题14.某轮船在静水中的速度为20km /h ,水流速度为4km /h ,该船从甲码头顺流航行到乙码头,再返回甲码头,共用时5h (不计停留时间),设甲、乙两码头之间的距离为km x ,则可列方程为()A .2045x x +=B . (204)(204)5x x ++-=C .5204x x +=D . 5204204x x +=+-15.轮船往返A B 、两港之间,逆水航行需要3小时,顺水航行需要2小时,水流速度为3千米/时,则船在静水中的速度是 千米/时.16.甲、乙两船分别从A ,B 码头同时出发相向而行,两船在静水中的速度都是km/h a ,水流速度是km/h b .已知甲船从A 码头到B 码头顺流而行,用了2h ;乙船从B 码头到A 码头逆流而行,用了2.5小时.(1)A ,B 两码头相距______km ;(用含有a ,b 的式子表示)(2)1.5h 后甲船比乙船多航行多少千米?(用含有b 的式子表示)(3)若两船相距50km ,且5b =时,甲船行驶的时间是多少小时?题型06 火车过桥问题17.已知某铁路桥长1500米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是60秒.则这列火车长为( )A .100mB .200mC .300mD .400m18.一列匀速前进的火车,从它进入320m 长的隧道到完全通过隧道需要18s ,隧道顶部一盏固定的灯在火车上照了10s ,则这列火车的长为 m .19.我县境内的某段铁路桥长2200m ,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用30s ,整列高铁在桥上的时间是25s ,试求此列高铁的车速和车长.题型07 销售问题20.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x 元,列出如下方程:0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变21.某种商品的进价为100元,出售标价为150元,由于该商品积压,商店准备打折销售,为保证获得20%利润率,则要打 折.22.某商场购进了A 、B 两种商品,其中A 种商品每件的进价比B 种商品每件的进价多20元,购进A 种商品3件与购进B 种商品4件的进价相同.(1)求A 、B 两种商品每件的进价分别是多少元?(2)该商场购进了A 、B 两种商品共100件,所用资金为6900元,出售时,A 种商品按标价出售每件的利润率为25%,B 种商品按标价出售每件可获利15元.若按标价出售A 、B 两种商品,则全部售完商场共可获利多少元?(3)在(2)的条件下,A 商品按标价全部出售,B 商品按标价先出售一部分后,余下的再按标价九折出售,A ,B 两种商品全部售出,总获利比全部按标价售出获利少了150元,则B 商品按标价售出多少件?题型08 银行利率问题23.2016年,王先生到银行存了一笔三年期的定期存款,年利率是2.75%,若到期后取出,得到本息和(本金+利息)为33852元.若设王先生存入的本金为x 元,则下面所列方程正确的是( )A .3 2.75%33825x x +´=B . 2.75%33825x x ´+=C .3 2.75%33825x ´=D .()3 2.75%33825x x +=24.李先生到银行存了一笔三年期的定期存款,年利率是4.25%,到期后取出得到本息和(本金+利息)共33825元,设王先生存入的本金为x 元,则所列方程为 .25.小明的爸爸于2021年1月1号在银行存入了2年期的定期储蓄1万元,2022年年底到期后,按如图所示的程序,小明爸爸取出的本息和(本金与利息的和)为1.05万元,该银行2年期定期储蓄的年利率是 .(结果用百分数表示)26.越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.第一次第二次第三次手续费/元0 1.8 1.2(1)小新使用微信至今,用自己的微信账户共提现两次,提现金额均为1500元,则小新这两次提现分别需支付手续费多少元?(2)小管使用微信至今,用自己的微信账户共提现三次,若小管第三次提现金额恰好等于前两次提现金额的差,提现手续费如表,求小管第一次提现的金额.题型09 比赛积分问题27.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A .2B .3C .4D .528.在2022年女足亚洲杯决赛中,中国女足以3:2逆转韩国女足,时隔16年再夺亚洲杯冠军!某学校掀起一股足球热,举行了班级联赛,九(1)班开局11场保持不败,共积25分,按照比赛规则,胜一场积3分,平一场积1分,负一场积0分,求该班获胜的场数.题型10 数字问题29.小王编了一道数学谜题:42233´-=W W ,若等号左、右两边的“W ”内表示同一个数字,若设这个数字为x ,则所列方程是( )A .4223103x x ´-=+B .()4223103x x +-=+C .()420233x x +-=D .()42023103x x +-=+30.一个两位数,个位上的数字为3,交换这个两位数个位和十位的数字后,得到新的两位数比原来的两位数小45,则这个两位数是 .31.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是 .题型11 规律问题32.如图,将正整数1至1000按一定规律排列,整体平移表中带阴影的三个方框,平移后被方框遮住的三个数的和可能是( )A .1002B .1004C .1006D .100833.有一列数,按一定的规律排列成:1-,3,9-,27,81-,….若其中某三个相邻数的和是567-,则这三个数中第一个数是 .34.将连续的奇数1、3、5、7…排成如图所示的数阵:(1)如图,十字框中五个数的和与框正中心的数17有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于295吗?若能,请写出这五个数;若不能,请说明理由.题型12分段计费问题35.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x公里,应付给司机21元,则x=.36.大润发和通用两家超市相同商品的标价相同,在2024新年即将到来之际,两大超市分别推出如下促销活动:大润发超市:全场均按八五折优惠;通用超市:购物不超过200元,不给予优惠;超过了200元而不超过500元一律打八八折;超过500元时,其中的500元优惠12%,超过500元的部分打八折;(1)当购物总额是多少时,大润发、通用两家超市实际付款相同?(2)某顾客在通用超市购物实际付款490元,试问该顾客的选择划算吗?试说明理由.37.已知甲地到乙地的单程汽车票价为75元/人,春运期间,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打六折;非学生10人以下(含10人)没有优惠:团购:超过10人,其中10人按原价售票,超出部分每张票打八折.(1)若有8名学生乘客买票,则总票款为______元;(2)若20名非学生乘客采用团购方式买票,则总票款为______元;(3)一辆汽车共有50名乘客,其中非学生乘客若达到团购人数则按团购方式买票,已知该车乘客总票款为3000元,问:车上有学生乘客、非学生乘客各多少人?38.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过40立方米时,按2元/立方米计费;月用水量超过40立方米时,其中的40立方米仍按2元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x 立方米.(1)当x 不超过40时,应收水费为 (用x 的代数式表示);当x 超过40时,应收水费为 (用x 的代数式表示化简后的结果);(2)小明家四月份用水26立方米,五月份用水52立方米,请帮小明计算一下他家这两个月一共应交多少元水费?(3)小明家六月份交水费150元,请帮小明计算一下他家这个月用水量多少立方米?39.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .()237230x x +-=B .()327230x x +-=C .()233072x x +-=D .()323072x x +-=40.《九章算术》中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊,若每人出5钱,则还差45钱;若每人出7钱,则仍然差3钱.求买羊的人数和这头羊的价格.设买羊的人数为x 人,根据题意,可列方程为( )A .54573x x -=+B .54573x x +=-C .54573x x -=-D .54573x x +=+41.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x 天完成,则符合题意的方程是( )A .222214530x -+=B .222213045x ++=C .222214530x ++=D .2213045x x -+=42.如图,在两个完全相同的大长方形中各放入五个完全一样的白色小长方形,得到图(1)与图(2).若AB m =,则图(1)与图(2)阴影部分周长的差是( )A.m B.54m C.65m D.76m43.如图,沿着边长为90米的正方形,按A B C D A®®®®××××××方向,甲从A以63米/分的速度,乙从B以72米/分的速度同时行走,当乙第一次追上甲时是在正方形的某个顶点处,则这个顶点是()A.顶点A B.顶点B C.顶点C D.顶点D44.在数轴上,点A、点B 表示的数分别是8-,16.点P 以2个单位/秒的速度从A 出发沿数轴向右运动,同时点Q 以3个单位/秒的速度从点B 出发沿数轴在B、A之间往返运动.当点P 到达点B 时,点Q 表示的数是.45.如下表,乐乐将7-,5-,3-,1-,1,3,5,7,9分别填入九宫格内.使每行、每列、每条对角线上的三个数之和相等,现在a、b、c、d分别标上其中的一个数,则a b c d-+-的值为.a95-3-1bd c346.一个奇怪的动物庄园里住着猫和狗,狗比猫多180只,有15的狗错认为自己是猫;有15的猫错认为自己是狗.在所有的猫和狗中,有825认为自己是猫,那么狗有只.47.如图所示“L”形图形的面积为29cm,如果4cmb=,那么a=cm.48.轮船沿江从A港顺流行驶到B港,比从B港原路返回A港少用1小时,若船自身速度为20千米/小时,水速为2千米/时,则A港和B港相距千米.a=,49.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,10+=,080a bab<.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.t>时电子蚂蚁P表示的数是______,Q表示的数是______(用含t的式子表①运动t秒()0示);②设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?50.为了丰富学生的课余生活、拓展学生的视野,学校小卖部准备购进甲、乙两类中学生书刊.若购买400本甲和300本乙共需要6400元.其中甲、乙两类书刊的进价和售价如下表:甲乙m-进价(元/本)m2售价(元/本)2013(1)求甲、乙两类书刊的进价各是多少元?(2)第一次小卖部购进的甲、乙两类书刊共800本,全部售完后总利润(利润=售价-进价)为5750元,求小卖部甲、乙两类书刊分别购进多少本?(3)第二次小卖部购进了与上次一样多的甲、乙两类书刊,由于两类书刊进价都比上次优惠了10%,小卖部准备对甲书刊进行打折出售,让利于学生,乙书刊价格不变,全部售完后总利润比上次还多赚10元,求甲书刊打了几折?51.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?52.7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在哥哥和妹妹的年龄各是多少岁?53.为庆祝元旦活动,某中学组织大合唱比赛,甲、乙两个班级共92人(其中甲班51人以上,不足55人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表为:购买服装的套数1套至50套51套至90套91套及以上每套服装的价格50元40元30元(1)甲、乙两个班级共92人合起来统一购买服装共需付款____________元;(2)如果两个班级分别单独购买服装一共应付4080元,甲、乙两个班级各有多少学生准备参加演出?(3)如果甲班有8名同学抽调去参加书法绘画比赛不能参加演出,请你为两个班级设计一种最省钱的购买服装方案.1.70【分析】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设甲捐款7x 元,则乙捐款5x 元,丙捐款为8x 元,根据他们共捐款200元列出方程,求解即可.【详解】解:设甲捐款7x 元,则乙捐款5x 元,丙捐款为8x 元,根据题意得758200x x x ++=,解得10x =,所以甲捐款770x =元,答:甲捐款70元.故答案为:70.2.3升或513【分析】根据题意和题目中的数据,可以计算出最后三个瓶中水的升数,再根据题意可以确定最少的为甲瓶中的水,然后分两种情况,列出相应的方程,再求解即可.【详解】解:(10+4)÷(3+2+1)=14÷6=73(升),则最后三个瓶中的水分别为:73=73´(升),722=433´(升),771=33´(升),∵甲、乙两瓶中分别有水4升和10升,现要从这两瓶中各倒一些水到空的丙瓶中,∴最后甲瓶中一定有水73升,则乙瓶中有水7升或243升,设乙瓶倒出水x 升,则10﹣x =7或10﹣x =243,解得x =3或1=53x ,即乙瓶需倒出水3升或153升,故答案为:3升或153.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程,注意要分类讨论,不要漏解.3.目前超市中纯牛奶、酸牛奶各有85箱,135箱【分析】此题考查了一元一次方程的应用,设新进的纯牛奶为2x 箱,酸牛奶为5x 箱,A ,B 两区域的牛奶箱数之比为3:7,据此列出比例式,得到方程并解方程,进一步即可求出答案.【详解】解:设新进的纯牛奶为2x 箱,酸牛奶为5x 箱,则根据题意可得:(22):(52)3:7x x +-=,则7(22)3(52)x x +=-解得20x =.目前纯牛奶有9220808597´+´=+(箱)目前酸牛奶有57520801397´+´=+(箱)答:目前超市中纯牛奶、酸牛奶各有85箱,135箱.4.原来两个瓶子里分别有160和100片药片.【分析】本题考查比例和百分比,先计算出最后药片的分数,根据总药品的数量求出每份的数量,从而计算出最后甲瓶中药片的数量,根据导入得比例即可求出甲瓶原有的数量,即可求得答案.【详解】解:两瓶里药片的片数之比为76:,说明甲是7份,乙是6份,甲乙一共6713+=份,一共有260片药,一共13分,∴每份药为2601320¸=片,∴最后甲瓶子有720140´=片,∴甲原来的药片数量为:71401608¸=片,∴乙瓶子原来有260160100-=片.答:甲瓶原来有160片药片,乙瓶原来有100片药片.5.B【分析】题目已经设出分配x 名工人生产螺母,则(22-x )人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【详解】解:设分配x 名工人生产螺母,则(22-x )人生产螺钉,由题意得2000x=2×1200(22-x ),故B 答案正确,故选:B .【点睛】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.生产大齿轮20人,生产小齿轮48人【分析】设生产大齿轮的人数为x 人,则生产小齿轮的人数为(68x -) 人,再由2个大齿轮与3个小齿轮配成一套列出比例式,求出x 的值即可.【详解】设生产大齿轮的人数为x 人,则生产小齿轮的人数为(68x -) 人,因为平均每人每天可加工大齿轮16个或小齿轮10个,所以x 人生产大齿轮的个数为16x 个,(68x -)人生产小齿轮的个数为10×()68x -个又两个大齿轮与三个小齿轮酿成一套,可得:3162x ´=´10×()68x -,解得:20x =,68682048x -=-=(人),答:生产大齿轮的人数为20人,生产小齿轮的人数为48人.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.【分析】本题考查一元一次方程的应用和理解题意的能力.设应分配x 人生产甲种零件,则()60x -人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.【详解】解:设分配x 人生产甲种零件,则共生产甲零件24x 个和乙零件()1260x -,依题意得方程:()22412603x x =×-,解得15x =,601545-=(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.8.D【分析】用含x 的式子表示出调动后甲处和乙处的人数,再根据等量关系列方程即可.【详解】解:设应从乙处调x 人到甲处,则甲处现有的工作人数为()132x +人,乙处现有的。

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。

七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题

七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题

例2 某项工作,甲单独做需要 4 小时,乙单独做需要 6 小 时,甲先做 30分钟,然后甲、乙合作.甲、乙合作还需要多少 小时才能完成全部工作?
解法1:设甲、乙合作还需要x小时才能完成全部工作.
根据题意,得
1 4
1 2Βιβλιοθήκη x1 6x
1.
解方程,得 x=2.1.
答:甲、乙合作还需要2.1小时才能完成全部工作.
归纳
工程问题中的等量关系 (1)在工作总量不明确、不具体的情况下,通常把工作总量看 成单位____1__. (2)工作总量=_工__作__效__率__×__工__作__时__间__. (3)甲、乙合作的工作效率=_甲__的__工__作__效__率_+_乙__的__工__作__效__率__. (4)所有人工作量的和等于__总__工__作__量__.
为 8(x+2) .
40
40
思考 根据前面的分析,完成表格:
项目
人均效率 人数 时间/h 工作量
第一阶段工作
1
40
第二阶段工作
1 40
x
4
x+2
8
4x 40
8(x 2) 40
问题 列出方程,对本题进行解答.
解:设安排 x 人先做 4 h. 根据先后两个时段的工作量之和应等于总工作量,列出方程
4x 8(x 2)=1.
第2课时 一元一次方程的 应用——工程问题
上节课,我们学习了如何运用一元一次方程来解决实际问 题中的配套问题,本节课,我们来探究一元一次方程与实际问 题——工程问题.
在学习新课之前,先完成下面的填空: 工作量=__工__作__效__率__×__工__作__时__间__; 工作效率=_工___作__量__÷__工__作__时__间__; 工作时间=__工__作__量__÷__工__作__效__率__.

苏科版2024新版七年级数学上册教案:4.3.2 用一元一次方程解决问题——利用线形示意图解决问题

苏科版2024新版七年级数学上册教案:4.3.2 用一元一次方程解决问题——利用线形示意图解决问题

学校七年级数学教案课题 4.3 用一元一次方程解决问题(2)课型新授课编号时间主备复备审核教学目标1.能用画线形示意图作为建模策略,分析实际问题中的等量关系,列方程解决问题.2.经历用方程解决问题的过程,进一步体会建立方程模型的作用,培养抽象、概括、分析问题、解决问题的能力和克服困难的意志.教学重难点重点:线形示意图的构建和分析.难点:如何画线形示意图来反映问题中的数量关系.教学环节教学过程师生活动个人复备知学1.揭示课题:2.揭示目标课上板书课题;学生齐读目标.预学阅读课本P 123、124页,完成课本练习T1 根据预学情况给各小组评分.互学1.生活中,我们经常可以在各种售货平台看见一些商品优惠信息,要想知道商家有没有少赚,我们需要知道什么?上述的基本量之间有什么样的关系呢?2.如图,可列方程为:让学生从常见实际生活情境中感受数学.回顾进价、标价、售价、利润等关系.导学活动:用线形示意图分析问题例1:一件羽绒服的标价为进价的1.5倍,在促销活动中以8折出售,获利96元,这件羽绒服的进价是多少元?例2:小明、小亮相约从学校去博物馆,小明以5km/h的速度步行0.5h后,小亮骑自行车以15km/h的速度沿相同路线出发,并在途中追上了小明,小亮出发多久后可以追上小明?例3:运动场环形跑道周长400m,小红跑步的速度是爷爷的53倍,他们从同一起点沿跑道的同一方向同时出发,5min后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?分层教学,一部分学生直接列式,一部分学生借助线形示意图分析.明确等量关系,注意草稿检验和答.追及问题,关键是理解“追上”.感受利用线形示意图分析等量关系的优越性,并引导学生观察线形示意图以及如何画线形示意图.检学1.沿河县为进一步提升旅游业质量和档次,满足游客消费需求,开通了沿河——洪渡古镇的乌江水上旅游航线,已知游艇在乌江河中来往航行于沿河、洪渡古镇两码头之间,顺流航行全程需2小时,逆流航行全程需3小时,已知水流速度为每小时3km,求沿河、洪渡古镇两码头间的距离,若设沿河、洪渡古镇两码头间距离为x km,则所列方程为()A.B.独立完成,课堂交流.C.D.2.A,B两站间的距离为335km,一列慢车从A站开往B 站,每小时行驶55km,慢车行驶1h后,另有一列快车从B站开往A站,每小时行驶85km,设快车行驶了x h后与慢车相遇,可列方程为()A.55x +85x =335 B.55(x﹣1)+85x =335C.55x +85(x﹣1)=335 D.55(x+1)+85x =335总结谈谈你这一节课有哪些收获.课后作业板书设计教后记。

(完整word版)七年级一元一次方程解决实际问题及分析答案

(完整word版)七年级一元一次方程解决实际问题及分析答案

1、列方程解行程问题例1:甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中吉普车每小时60千米,是另一辆客车的1.5倍。

①几小时后两车相遇?②若吉普车先开40分钟,那客车开出多长时间两车相遇?分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500①解:设两车X小时后相遇,根据题意得60x (60 1.5)x 1500解得:x 15答:15小时后两车相遇。

②分析:吉普车先出发40分钟,则等量关系式为:吉普车先行路程+吉普车后行路程+客车行驶路程=1500, 即吉普车行驶路程+ 客车行驶路程=1500。

解:设客车开出X小时后两车相遇,根据题意得60 (2 x) (60 1.5)x 15003解得x 14.6答:客车开车14.6小时后两车相遇。

例2、甲乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?分析:甲让乙先跑1秒,则等量关系为:乙先跑的路程+乙后跑的路程=甲跑到路程,也就是乙跑的路程=甲跑的路程。

解:设甲经过X秒追上乙,根据题意得6.5(x 1) 7x解:得x 13答:甲经过13秒后追上乙。

例3、小明、小亮两人相距40km,小明先出发1.5h,小亮再出发,小明在后小亮在前,两人同向而行,小明的速度是8km/h,小亮的速度是6km/h,小明出发后几小时追上小亮?分析:小明快,小亮慢,两人同向而行,等量关系式为:小明走的路程一小亮走的路程=相距路程解:设小明出发后x小时追上小亮,根据题意得8x 6(x 1.5) 40解得x 15.5答:小明出发后15.5小时追上小亮例4、一艘船从甲码头到乙码头顺水行驶,用了2小时,从乙码头返回甲码头,逆水行驶,用了 2.5小时, 已知水流速度是3千米/时,求船在静水中的速度。

分析:水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。

由顺水行程=逆水行程可列方程.解:设船在静水中的速度为x千米/时,则船在顺水中的速度为( x 3 )千米/时,船在逆水中的速度为(x 3 )千米/时,根据题意得2(x 3) 2.5(x 3)解得x 27答:船在静水中的速度为27千米/时。

七年级数学一元一次方程解决问题应用题全集

七年级数学一元一次方程解决问题应用题全集

七年级数学一元一次方程应用题解答题全集【配套问题】1、某服装厂生产一种运动服,已知每3m长的布料可做上衣2件或裤子3条,一件上衣一条裤子为一套,计划用800m长的布料生产服装,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2、某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母,要求每天生产的螺柱和螺母刚好配套.(1)若1个螺柱需要配2个螺母,应安排生产螺柱和螺母的工人各多少名?(2)若3个螺柱需要配5个螺母,则安排生产螺母的工人有名.3、某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?4、一张圆桌由一个桌面和四条桌腿组成.如果1m3木料可以制作圆桌的桌面50个,或制作桌腿300条,那么5m3的木料如何分配可以使桌面和桌腿正好配套?最多能制作成多少张圆桌?【工程问题】1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?2、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成?3、一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?4、甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?【销售打折问题】1、某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?2、2020年,某商场开展“双十一”促销活动,将M,N两种电器捆绑售卖,M电器降价20%,N电器降价30%,已知M,N两种电器的原销售单价之和为2500元,小明参加活动购买M,N电器各一件,共付1900元.(1)M,N两种电器原销售单价各是多少元?(2)若商场在这次促销活动中M电器盈利25%,N电器亏损20%,你认为商场在这次促销活动中是盈利还是亏损了?M,N两种电器捆绑售卖一件盈利或亏损了多少元?3、某文具店今年1月份购进一批笔记本,共2290本.每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量为2200本,则2月份售价多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调整,售价比2月份在(1)的条件下的售价减少了m%,结果3月份的销量比2月份在(1)的条件下的销售量增加了50%,3月份的销售利润达到6600元,求m的值.【课后作业】1、某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x2、一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天3、超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.84、商场经销甲、乙两种商品,甲种商品每件售价70元,利润率为40%,乙种商品每件进价60元,售价90元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2700元,求购进甲种商品多少件?1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

七年级数学一元一次方程的应用

七年级数学一元一次方程的应用

七年级数学一元一次方程的应用一元一次方程是初中数学中的基础内容,也是数学在实际生活中广泛应用的一种工具。

本文将从实际问题的角度出发,探讨七年级数学一元一次方程的应用。

1. 商品打折问题假设某商场正在进行打折促销活动,现有一款商品原价为x元,经过折扣后降价到原价的80%。

我们可以通过一元一次方程来计算出折后价格。

设折后价格为y元,则有方程:y = 0.8x。

通过解这个方程,便可以得出折后价格。

这个例子展示了一元一次方程在计算打折后价格问题中的应用。

2. 速度问题在旅行中,我们常常需要计算行驶距离、速度和时间之间的关系。

假设某辆汽车行驶的速度是v km/h,行驶t小时后,行驶的总距离s km。

我们可以通过一元一次方程来计算这些参数之间的关系。

设总距离s为y km,则有方程:s = vt。

通过解这个方程,我们可以计算出汽车行驶的总距离。

这个例子展示了一元一次方程在速度问题中的应用。

3. 家庭预算问题家庭预算是人们生活中常遇到的问题之一。

假设某家庭每月的总收入是x元,总支出是y元。

我们可以通过一元一次方程来计算每月结余或者透支的情况。

设结余为z元,则有方程:z = x - y。

通过解这个方程,我们可以得到每月的结余或者透支情况。

这个例子展示了一元一次方程在家庭预算问题中的应用。

4. 距离、时间、速度问题某辆汽车行驶了一段距离d,行驶的时间是t小时,我们需要计算汽车的平均速度v km/h。

通过一元一次方程我们可以找出速度与距离、时间之间的关系。

设平均速度v为y km/h,则有方程:v = d/t。

通过解这个方程,我们可以计算汽车的平均速度。

这个例子展示了一元一次方程在距离、时间和速度问题中的应用。

以上是几个七年级数学中一元一次方程的应用例子,从商品打折、速度问题、家庭预算问题到距离、时间、速度问题,一元一次方程在实际生活中无处不在。

掌握了一元一次方程的应用,我们不仅能更好地理解数学的基础概念,还能更好地解决实际生活中的问题。

苏科版(2024新版)七年级数学上册课件:4.3.1 用一元一次方程解决问题——步骤及配比问题

苏科版(2024新版)七年级数学上册课件:4.3.1 用一元一次方程解决问题——步骤及配比问题

0.6x+6×0.15x=10.5 x=7
答:可以做7套茶具
方程是解决实际生活中具有相等的数量关系的有效的数学模型.
用一元一次方程来解决问题,通常先用字母表示适 当的未知数,并用含有这个字母的代数式表示其他相关 的量,再根据实际问题中数量之间的相等关系列出方程, 然后解这个方程,写出问题的答案.
用一元一次方程解决实际问题步骤
设可做x套茶具,根据题意,得 0.6x+6×0.15x=10.5 解得: x=7
答:可以做7套茶具
新知探究:
上述问题中,列方程方法解决问题,经历了如下过程: 1.根据题意,设一个合适的未知数 设可做x套茶具
2.根据问题中的等量关系,列出方程 茶壶泥料+茶杯泥料=总泥料
3.解方程,求出未知数的值 4.写出问题的答案
的过程,体会数学的应用价值.
情境引入:
右图中的一套紫砂壶茶具包括1把茶壶和6只茶杯。 做1把茶壶需要0.6kg的泥料, 做1只茶杯需要0.15kg的泥料。 10.5kg泥料可以做几套这样的茶具? (不计制作时的损耗)
【算术方法】
【列方程方法】
0.6+6×0.15=1.5(kg) 10.5÷1.5=7(套) 答:可以做7套茶具
分析:这个问题中有这样的相等关系: 做桌面所需木材的体积+做桌腿所需木材的体积=3.8 m3
课堂练习:
1.如图是一个计算机程序,如果输出“25”, 那么输入的数值为多少?
解:设输入的数值为x
(x-2)×4+1=25
解得:
x=8
输入 -2 ×4 +1
输出 -15
2.今年爸爸的年龄是小丽年龄的3倍,5年后爸爸的年龄与 小丽的年龄之和为58岁,小丽今年多少岁?

人教版七年级上册数学一元一次方程应用题—配套问题

人教版七年级上册数学一元一次方程应用题—配套问题

人教版七年级上册数学一元一次方程应用题—配套问题1.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)列一元一次方程解决问题:现库内存有布料200m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料327m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?2.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,4个甲种部件和6个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?3.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?4.利兴罐头盒厂有18个工人,每人每天可制作盒身25个,或制作盒底40个,一个盒身与2个盒底配成一套罐头盒,那么安排多少人制作盒身、多少人制作盒底才能使一天生产的盒身与盒底刚好配套?(列方程解)5.某糕点厂中秋节前要制作一批盒装月饼,每盒中装4块大月饼和8块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉,现共有面粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?最多可生产多少盒盒装月饼?6.某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?7.为积极落实“垃圾分类”,环保公司计划派出13名工人外出安放A、B两种型号的专用垃圾箱,其中每人每天可以安放4个A型垃圾箱或者5个B型垃圾箱.按照规范要求,1个A型垃圾箱要配2个B型垃圾箱.为使每天安放的A型垃圾箱和B型垃圾箱刚好配套,公司应分配多少名工人安放A型垃圾箱?8.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?9.一车间加工轴杆和轴承,每名工人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90名工人;(1)应该怎样调配,多少名工人加工轴杆,多少名工人加工轴承,才能使每天生产的轴承和轴杆正好配套?(2)由于急需,又从二车间抽调12名具有相同能力的工人来一车间;问能安排这些新来的工人加工轴杆、轴承,使每天生产的轴承和轴杆正好配套?10.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?11.某丝巾厂家70名工人义务承接了志愿者手上,脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾180条或者脖子上的丝巾120条,一条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成_______套.12.某车间36名工人生产螺母和螺钉,每人每天平均生产螺钉200个或螺母500个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?13.某礼品制造厂接了一批玩具熊的订单,按计划天数生产,若每天生产20个玩具熊,则最终比订单少生产100个;若每天生产23个玩具熊,则最终比订单多生产20个.原计划几天完成订单?14.制作一张桌子,要用一个桌面和4条腿组成,31m木材可制作300条桌腿或可制作15个桌面,现有330m木材,应该用多少立方木材制作桌面,用多少立方木材制作桌腿,才能使桌腿和桌面配套?15.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,求该工厂有多少工人生产A 零件?16.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,每吨需费用10元;乙厂每小时可处理垃圾45吨,每吨需费用11元.(1)甲,乙两厂同时处理该城市的垃圾,每天需多少时间完成?(2)如果该城市每天用于处理垃圾的费用为7300元,那么甲厂每天处理垃圾多少吨?17.机械厂加工车间有52名工人,平均每人每天加工大齿轮12个或小齿轮8个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?18.某车间有28名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母12个或螺栓22个.若分配多少名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.19.为了增强身体素质,提高班级凝聚力,某校初一年级师生在11月中旬集体乘车去青龙湖参加定向越野活动.学校租来大巴车若干辆,若按照每辆车载40名学生,则还有22名学生没有座位;若按照每辆车载43名学生,则前面的车辆都是载43名学生,只有最后一辆车载23名学生,求参加定向越野的学生共有多少人?20.某工厂车间有28个工人,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.设该工厂有x名工人生产A零件:(1)求车间每天生产A零件和B零件各多少个?(用含x的式子表示)(2)求该工厂有多少工人生产A零件?。

苏科版(2024新版)七年级数学上册第四章专题课件:利用一元一次方程解决分段问题

苏科版(2024新版)七年级数学上册第四章专题课件:利用一元一次方程解决分段问题

②若第一次购买此种蔬菜在15千克以上且不超过35千
克,第二次购买此种蔬菜超过35千克,
则7.2 m +6.4(60- m )=400.
解得 m =20.则60- m =40.
③若第一次购买此种蔬菜在35千克以上,则第二次购
买的数量少于第一次,不合题意.
答:第一次购买此种蔬菜20千克,第二次购买此种蔬
甲用户该月的天然气费用.
若 x ≤75,则费用为
2.5 x
元;
若 x >75,则费用为
(2.7 x -15)
元.
(2)若甲用户11月份的天然气费用为201元,求甲用户11月
份天然气的用量.
解:因为2.5×75=187.5(元)<201元,所以2.7 x -15
=201,解得 x =80.
答:甲用户11月份天然气的用量为80立方米.
4元/立方米
超出10立方米的部分
8元/立方米
请根据上表的内容解答下列问题:
(1)若某户居民2月份用水8立方米,则应收水费 20 元.
(2)若某户居民3月份用水 a 立方米(其中6< a ≤10),请用
含 a 的代数式表示应收水费 (4 a -12) 元.
(3)若某户居民4月份交水费52元,求该户居民4月份的用
水量为多少立方米?
解:设该户居民4月份的用水量为 x 立方米.因为2×6+
4×(10-6)=28(元),28<52,所以 x >10.根据题意,
得2×6+4×(10-6)+8( x -10)=52,解得 x =13.
答:该户居民4月份的用水量为13立方米.
0.6元/千瓦时
4 800千瓦时的部分
第3档
超过4 800千瓦时的部分
( a +0.3)元/千瓦时

202年初中数学七年级上册第二单元一元一次方程07 一元一次方程(7)解决问题2

202年初中数学七年级上册第二单元一元一次方程07 一元一次方程(7)解决问题2

一元一次方程(7)——解决问题1。

1.小明今年13岁,妈妈38岁,多少年后,小明的年龄是妈妈的22.工程队挖一条水汇,计划每天挖100米。

24天完成,实际提前4天完成,实际平均每天挖多少米?3.一辆汽车从甲地到乙地,前3小时行了156千米,照这样的速度,从甲地到乙地共需8小时,甲地到乙地相距多少千米?1,第二天运的比总数的40%多4吨,4.仓库有一批货物,第一天运走了总数的3这时还剩20吨,这批货物共有多少吨?5.一批零件分别甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3:4来做,丙共做了2000个,问这批零件共有多少个?6.在阅览室阅读的同学有6个男生离开后,男女生人数的比是6:7,又有12个女生离开后,男、女生人数的比是12:11,原来在阅览室的同学一共有多少人?7.一辆汽车从甲地开往乙地,计划在行一半路时休息,但实际少行了20千米就休息,这时已行的路程与未行的路程比是4:5,甲乙两地的路程是多少千米?(用两种不同思路的算术式列综合算式解答)1多2000袋,下午又运回来粮仓6000袋,这时,8.某粮仓上午运走全部存粮的31,粮仓中原来粮分多少袋?粮仓中粮食比原来少61,这时乙堆9.有两堆煤共136吨,某厂从甲堆中取走了30%,从乙堆中取走4剩下的煤恰好比原来两堆煤总数的62.5%少13吨,这个厂从甲堆中取走了多少吨煤?10.五(1)班师生进行野营拉练,3小时走了12千米,按这个速度前进,再走30千米还需几小时?11.某部队行军,每小时走6千米,需10小时到过目的地,按照命令必须在8小时内赶到,每小时至少要走多少千米?12.洗衣机厂今年生日生产洗衣机250台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台?13.用一根铁丝可以围成一个边长是4厘米的正方形,还用这根铁丝,围成一个宽是2厘米的长方形,这个长方形的长是多少厘米?14.两艘货船同时从一个码头出发,各住东西方向行驶,甲船每小时行驶30千米,乙船每小时行驶42千米。

七年级数学 用一元一次方程解决问题》课件

七年级数学 用一元一次方程解决问题》课件

解得 x=48
y=80
(60+60)-(48+80)=-8(元)
答:卖这两件衣服总的亏损了8元.
请试一试:
商店这两件进价不同的衣服都卖60元,其中一件盈利 50%,另一件亏本20%.这次交易中的盈亏情况? 解:设盈利50%的那件衣服进价为X元,亏本 20%的那件衣服进价为Y元,得:Biblioteka x+0.5x=60
x=40
y–0.2y=60
y=75
所以两件衣服的进价为40+75=115元,而两件衣服售价 是60+60=120元,进价小于售价,因此两件衣服总的盈 利5元.
请再试一试:
商店这两件进价不同的衣服都卖60元,其中 一件亏本25%,这次交易中要保本,则另一 件需盈利百分之几 ?
分析: 设亏本25%的那件衣服进价为y元,它 的利润是-0.25y元,则y+(–0.25y)=60 得 y=80 交易要保本售价和进价均为120元,盈利那件 衣服进价为120-80=40,设盈利那件衣服利润 率为x,则:40+40x=60,x=50%.
售价=进价(1+利润率)
售价=标价×(折数/10)
探究:
某商店在某一时间以每 件60元的价格卖出两件衣 服,其中一件盈利25﹪, 另一件亏损25﹪,卖这两 件衣服总的是盈利还是亏 损,或是不盈不亏?
想一想:
1.盈利率、亏损率指的是什么? 2.这一问题情境中有哪些已知
量?哪些未知量?如何设未
知 数?相等关系是什么?
列一元一次方程解应用题一般步骤:
①审 ②设 ③列 ④解 ⑤验 ⑥答
小结: 通过本节课的学习你有哪 些收获?你还有哪些疑惑?
3.如何判断是盈是亏?

202年初中数学七年级上册第二单元一元一次方程06 一元一次方程(6)解决问题1

202年初中数学七年级上册第二单元一元一次方程06 一元一次方程(6)解决问题1

3.4实际问题与一元一次方程(第1课时)1、卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?解:设x周后树苗长高到100厘米.根据题意,得 .解方程,得 .答:周后树苗长高到100厘米.2、汽车上共有1500千克苹果,卸下 600千克,还有30箱,每箱苹果重多少?解:设每箱苹果重为X,根据题意,得, .3、某数的3倍加上5等于它的4倍减3,求某数.解:设某数为x,根据题意,得, .4、某数减去14等于它的1,求某数.3解:设某数为x,根据题意,得, .5、用一根长24厘米的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为x厘米,根据题意,得, .6、一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?解:设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得, .1、某数的34比它的67少1,求某数.解:设某数为x,根据题意,得 .2、扎西家今年底的存款将达到21000元,是去年底的2倍少3000元,求扎西家去年底的存款数.解:设扎西家去年底的存款为x元,根据题意,得 .3、某商店对电脑购买者提供分期付款服务,顾客可以先付3000元,以后每月付1500元.单增叔叔想用分期付款的形式购买价值19500元的电脑,他需要多少个月才能付清全部贷款?解:设他需x个月才能付清全部贷款,根据题意,得 .4、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ型洗衣机计划生产多少台?解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.根据题意,得 .解方程,得 .答:Ⅰ型洗衣机计划生台.5、某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?解:(1)设上半年每月平均用电x度,则下半年每月平均用电度;上半年共用电度,下半年共用电度.(2)根据全年用电15万度,列出方程:.1、在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的1,其和等于19.”你能7求出问题中的“它”吗?解:设问题中的“它”为x,根据题意,列方程得 .2、地球上的海洋面积为陆地面积的2.4倍,地球的表面积为5.1亿平方公里,求地球上的陆地面积.解:设地球上陆地面积为x平方公里,根据题意,列方程得 .3、某中学初一年级,一班人数是全年级人数的1,二班人数50人,两个班级人6数的和是98人.求该校初一年级的人数.解:设该校初一年级的人数为x,根据题意,列方程得 .4、某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(1)解:设这个足球场的长为x米,则宽为米.根据题意,列方程得 .解方程得 .这个足球场的宽==(米)答:这个足球场的长为米,宽为米. (2)解:设这个足球场的宽为x米,则长为米.根据题意,列方程得 .解方程得 .这个足球场的长==(米)答:这个足球场的宽为米,长为米.1、卓玛是4月出生的,卓玛的年龄的2倍加上8,正好是卓玛出生那一月的总天数,求卓玛有多少岁.解:设卓玛有x岁,根据题意,列方程得 .2、蜘蛛有8条腿,蜻蜓有6条腿.现有一些蜘蛛和蜻蜓,它们共有120条腿,并且蜻蜓的只数是蜘蛛的2倍.蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x只,则蜻蜓有只.根据题意,列方程得 .3、某校图书室用172元钱买了两种书,共10本,一种书每本的价格为18元,另一种书每本的价格为10元.每种书各买了多少本?解:设价格为18元的书买了x本,则价格为10元的书买了本.根据题意,列方程得 .4、一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?(1)解:设全家有x口人.可以用两个式子来表示苹果总数,由此可得方程 .解方程得 .共有苹果个数== .答:全家有口人,共有个苹果.(2)思考题:(供学有余力的同学做)解:设共有x个苹果.可以用两个式子来表示全家的人口数,由此可得方程.解方程得 .全家人口数== .答:共有个苹果,全家有口人.1.一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?这个学生共带了多少钱?解:(1)如果设笔记本每本x元,则这个学生所带的钱数可以用两个式子来表示由此可列出方程.解:(2)思考题:如果设这个学生带了x元,则笔记本每本的钱数也可以用两个式子来表示,由此可列出方程.2.卓玛骑自行车从A村到B村,用了0.5小时;扎西走路从A村到B村,用了1.5小时.已知卓玛的速度比扎西的速度每小时快10千米,求扎西走路的速度.(1)设扎西走路的速度为每小时x千米,根据题意,在下面的图中填空:B村A村(2) 解:设扎西走路的速度为每小时x千米,则卓玛骑自行车的速度为每小时千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得.解方程得 .答:扎西走路的速度为每小时千米.3.(1)墙上钉着用一根彩绳围成的梯形的装饰物,如下图实线所示.德吉将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示.德吉所钉长方形的长为多少厘米?解:设德吉所钉长方形的长为x,根据梯形周长与长方形周长相等,列方程得s.6 61010 10104、思考题:如下图,汽车匀速行驶,从A 县城开到C 县城用了3小时;从A 县城开到B 县城用了2小时.已知B 县城距C 县城60千米,A 县城到B 县城有多远?解:设A 县城到B 县城有x 千米,则A 县城到C 县城有 千米.根据:汽车从A 县城开到C 县城的速度=汽车从A 县城开到B 县城的速度 列方程得.5、甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?解:(1)如果设甲种铅笔买了x 枝,那么乙种铅笔买了 枝,买甲种铅笔用了 元,买乙种铅笔用了 元.(2)把这道题完整解一遍:解:设甲种铅笔买了x 枝,则乙种铅笔买了 枝.根据题意,列方程得 .解方程得 .乙种铅笔买的枝数= = .答:甲种铅笔买了 枝,乙种铅笔买了 枝.6、按下面的设法解探究题:解:设分配x 名工人生产螺母,则有 名工人生产螺钉.根据螺母数量与螺钉数量关系,列方程得 .解方程得 .生产螺钉的人数= = .答:应分配 名工人生产螺母, 名工人生产螺钉. C 县城B 县城A 县城1、如图,用长为10米,宽为8米的长方形铁丝围成一个正方形,此时正方形的边长是多少米?解:设此时正方形的边长是x米,根据长方形与正方形的周长相等,列方程得.2、思考题:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?解:设高变成了x厘米,根据锻压前后的体积相等,列方程得 .(提示:圆柱体积=底面积×高)3、甲组有10人,乙组有14人.现在另增调12人加入到甲组或乙组,要使甲组人数是乙组人数的12,甲组和乙组各应增调多少人?.根据题意填表:(2)根据增调后,甲组人数=乙组人数的12,列方程得.(3)通过上面的思考,将本题完整地解一遍.解:设甲组应增调x人,则乙组应增调人.根据题意,得 .解方程得 .乙组应增调的人数== .答:甲组应增调人,乙组应增调人.x米8米10米1.填空:我们已经学习的三个基本相等关系是:(1)总量=的和;(2)表示的两个不同式子相等;(3)一个量=另一个量的或几分之几.2.根据题意,列出方程:小巴桑今年6岁,他的波啦72岁.几年后,小巴桑的?年龄是他波啦的14解:设x年后,小巴桑的年龄是他波啦年龄的1.根据题意,得4.3.探究题:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?请你默读题目,一直读到可以不看题目说出题目的意思.分析:(1)如果设分配x名工人生产螺钉,则有名工人生产螺母,这个车间每天生产螺钉个,每天生产螺母个.(2)一个螺钉要配两个螺母,为了使这个车间每天的产品刚好配套,应使生产的螺母数量恰好是螺钉数量的,根据这一相等关系,列方程得.(3)这道题完整的解答过程是:解:设分配x名工人生产螺钉,则有名工人生产螺母.根据螺母数量与螺钉数量关系,列方程得 .解方程得 .生产螺母的人数== .答:应分配名工人生产螺钉,名工人生产螺母.1.利用“路程=速度×时间”列整式:(1)扎西骑自行车,每分钟骑500米,x 分钟骑了 米;(2)扎西骑自行车,每分钟骑500米,先骑了3分钟,后又骑了x 分钟,他一共骑了 米;(3)扎西骑自行车,每分钟骑500米,边巴骑摩托车,每分钟骑1000米,x 分钟两人一共骑了 米.2.完成下面的思考和解题过程:扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,3分钟后边巴骑摩托车也从家里出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1) 如果设边巴出发x 分钟后他们在路上相遇,根据题意,填图.骑了 分钟 骑了 分钟相遇扎西家边巴家(2) 从上图,你发现了什么相等关系,根据这一相等关系,你列出的方程是 .(3)根据上面的审题和分析,请你完成下面的解题过程:解:设边巴出发x 分钟后他们在路上相遇.根据题意,列方程得 .解方程得 .答:边巴出发 分钟后他们在路上相遇.3.某中学发起“献爱心希望工程”捐款活动.该校共有师生2200人,教师每人捐100元,学生每人捐5元,结果学生捐款数只有教师的一半.这个中学师生各有多少人?该校师生共捐了多少钱?1.扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,扎西骑了1500米后边巴骑摩托车也从家出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1)设边巴出发x 分钟后他们在路上相遇,根据题意填图.骑了 分钟 骑了 分钟相 遇扎西家 边巴 家(2)根据扎西的路程+边巴的路程=全程,你列出的方程是.2.一天早上,扎西以每分钟80米的速度从家里出发上学去,5分钟后,扎西的巴啦发现扎西忘了带藏语书,于是巴啦以每分钟180米的速度去追扎西.巴啦追上扎西用了多长时间?(3) 设巴啦追上扎西用了x 分钟,根据题意填下图.家追上处(2) 解:设巴啦追上扎西用了x 分钟.根据题意,列方程得 .解方程得 .答:巴啦追上扎西用了 分钟.3.思考题:如果扎西家离学校只有700米,巴啦能否在路上追上扎西?为什么?1.填空:(1)加工60个零件,甲单独做20小时完成,甲每小时加工零件个;(2)加工60个零件,甲单独做20小时完成,甲4小时加工零件个;(3)加工60个零件,甲单独做20小时完成,甲x小时加工零件个;(4)一件工作,甲单独做20小时完成,甲每小时完成工作的;(用分数表示)(5) 一件工作,甲单独做20小时完成,甲4小时完成工作的;(6) 一件工作,甲单独做20小时完成,甲x小时完成工作的 .2.完成下面的思考和解题过程:一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙一起做.剩下的部分需要几小时完成?(1)甲的工作效率=,乙的工作效率= .(2)如果设剩下的部分需要x小时完成,那么乙做了小时,甲共做了小时.(3)根据题意填图:甲工作 小时乙工作 小时(4)根据甲的工作量+乙的工作量=1列出方程 .(5)解:设剩下的部分需要x小时完成.根据题意,列方程得 .解方程得 .答:剩下的部分需要小时完成.1、填空:(1)某厂去年的产值是100万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(2)某厂去年的产值是200万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(3)某厂去年的产值是x万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元.2、某公司去年的产值是400万元,今年的产值是500万元,则今年比去年增长().(A)20% (B)25% (C)80% (D)125%3、全校学生人数为x,女生占全校学生数的52%,则女生人数是,男生人数是,女生人数比男生人数多;4、一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

七年级一元一次方程计算题

七年级一元一次方程计算题

七年级一元一次方程计算题一、简单的一元一次方程求解(1 - 10题)1. x + 5 = 12- 解析:方程两边同时减去5,得到x+5 - 5=12 - 5,即x = 7。

2. 2x-3 = 7- 解析:首先方程两边同时加上3,得到2x - 3+3=7 + 3,即2x=10。

然后方程两边同时除以2,2x÷2 = 10÷2,解得x = 5。

3. 3(x + 1)=18- 解析:先使用分配律将括号展开,得到3x+3 = 18。

方程两边同时减去3,3x+3 - 3=18 - 3,即3x = 15。

最后方程两边同时除以3,3x÷3=15÷3,解得x = 5。

4. (x)/(2)+1 = 3- 解析:方程两边同时减去1,得到(x)/(2)+1 - 1=3 - 1,即(x)/(2)=2。

然后方程两边同时乘以2,(x)/(2)×2 = 2×2,解得x = 4。

5. 4x-2x+3 = 7- 解析:先合并同类项,4x-2x = 2x,方程变为2x+3 = 7。

方程两边同时减去3,2x+3 - 3=7 - 3,即2x = 4。

最后方程两边同时除以2,2x÷2 = 4÷2,解得x = 2。

6. 5(x - 2)=3x- 解析:先展开括号,得到5x-10 = 3x。

方程两边同时减去3x,5x-3x - 10=3x - 3x,即2x-10 = 0。

方程两边同时加上10,2x-10 + 10=0 + 10,即2x = 10。

最后方程两边同时除以2,2x÷2 = 10÷2,解得x = 5。

7. (2x + 1)/(3)=3- 解析:方程两边同时乘以3,得到2x + 1=9。

方程两边同时减去1,2x+1 - 1=9 - 1,即2x = 8。

最后方程两边同时除以2,2x÷2 = 8÷2,解得x = 4。

8. 3x+5 = 2x - 1- 解析:方程两边同时减去2x,3x - 2x+5 = 2x - 2x-1,即x+5=-1。

苏教版七年级上册数学 第4章 4.3 用一元一次方程解决问题(第5课时)

苏教版七年级上册数学  第4章 4.3 用一元一次方程解决问题(第5课时)

苏教版七年级上册数学 第4章 一元一次方程4.3 用一元一次方程解决问题第5课时 用一元一次方程解决问题(5)1.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若着设甲、乙共用x 天完成,则符合题意的是( ) A.140153015=+-x B.140153015=++x C. 1403015=++x x D.1301540=-+x x 2.有一个水池,只打开进水管,2 h 可把空水池注满;只打开出水管,3 h 可把满池水放空.若两管同时打开,则把空水池注满到水池的65需要的时间是( ) A.3h B.4h C.5h D.6h3.(2019秋・贵阳白云区期末)一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要________ 天才能完成该工程.4.为进一步缓解城东干道交通拥堵现象,市政府决定修建一条高架道路,为使工程能提前3个月完成,施工单位增加了机械设备,将原定的工作效率提高了20%.则原计划完成这项工程需要____________个月.5.(2019秋・哈尔滨道里区校级月考)整理一批图书,如果一个人单独整理需要30小时,现在先安排一部分人用1小时整理,随后又安排了6人和他们一起又整理了2小时,恰好整理完成假设每个人的工作效率相同,先安排整理的人员有多少人?6.一项工程,由甲、乙、丙三人完成,甲单独做需10天完成,乙单独做需12天完成,丙单独做需15天完成.现计划7天完成,乙、丙先合做3天后,乙有事,由甲、丙完成剩下工程,问:能否按计划完成?7.阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时,若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何时没电?( )A.晚上7点20分B.晚上7点40分C.晚上8点20分D.晚上8点40分8.甲、乙两人完成一项工作,甲先做了3天,然后乙加入一起做,完成剩下的工作,设工作总量为1,工作进度如下表,则完成这项工作共需( )A.9天B.10天C.11天D.12天9.(2019秋・哈尔滨南岗区校级月考)有9人14天完成了一件工作的53,而剩下的工作必须要在4天内完成,则需增加工作效率相同的人数是________人.10.一项工程,甲独做50小时完成,乙独做30小时完成,现在甲先做1小时,然后乙做2小时,再由甲做3小时,接着乙做4小时……两人如此交替工作,完成任务共需__________ 小时.11.某水池中有甲、乙两个进水管和丙出水管,若单独开甲水管,则24分钟可注满一池水,若单独开乙水管,则40分钟可注满一池水,若单独开丙水管,则1小时可排光一池水.现水池中原有51池水,先开乙水管10分钟,不关闭乙水管的情况下,再同时打开甲、丙两水管,问:再经过多长时间后,水池中的水开始溢出?12.抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修建需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)请向甲、乙两工程队合修需几个月完成?共耗资多少万元?(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度地节省资金.(时间按整月计算)13.(绍兴中考题)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm ,则开始注入__________分钟的水量后,甲与乙的水位高度之差是0.5cm.14.某中学举行数学竞赛,计划用A ,B 两台复印机复印试卷.如果单独用A 机器需要90分钟印完,如果单独用B 机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.(1)若两台复印机同时复印,共需多少分钟才能印完?(2)若两台复印机同时复印30分钟后,B 复印机出了故障,暂时不能复印,此时离发卷还有13分钟.请你计算一下,如果由A 复印机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)在(2)的问题中,B 复印机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?。

最新七年级下册用一元一次不等式解决问题

最新七年级下册用一元一次不等式解决问题

用一元一次不等式解决实际问题用一元一次方程解决实际问题弄清题意,找出题目中的不等关系弄清题意,找出题目中的等量关系根据所求问题,设出适当的未知数根据所求问题,设出适当的未知数用未知数表示不等关系中的数量,建立不等关系,列出不等式用未知数表示等量关系中的数量,建立等量关系,并列出方程求出所列不等式的解集求出所列方程的解检验解集是否符合实际意义,写出答案检验解,写出答案注意:特别说明的是,利用不等式解决实际问题时,往往要注意问题中的限制条件,求出的解集必须使实际意义有意义,如人数为非负整数,图形的面积、时间、速度、路程、价格为正数等。

例某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员。

(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?几种题型分析题型一快餐营养问题例2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.题型二商品购买问题例(2011四川内江)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8。

七年级一元一次方程解应用题

七年级一元一次方程解应用题

七年级一元一次方程解应用题一、行程问题。

1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。

- 甲先走12米后,甲走的路程为8x米,乙走的路程为6(x - (12)/(8))米(因为甲先走了12米,这12米所用时间为(12)/(8)秒,所以乙走的时间比甲少(12)/(8)秒)。

- 根据甲、乙两人相距285米可列方程:8x+6(x - (12)/(8))=285- 去括号得:8x + 6x-9 = 285- 移项得:8x+6x=285 + 9- 合并同类项得:14x=294- 解得:x = 21- 所以甲出发21秒与乙相遇。

2. 一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离。

- 设甲、乙两地的距离为x千米。

- 汽车原来速度v = 60千米/小时,行驶4.5小时后的路程为60×4.5 = 270千米。

- 剩下的路程为(x - 270)千米,后来的速度为60 - 20=40千米/小时。

- 按原计划所需时间为(x)/(60)小时,实际用时为4.5+(x - 270)/(40)小时。

- 因为实际比预计晚45分钟((45)/(60)=(3)/(4)小时),可列方程:4.5+(x - 270)/(40)=(x)/(60)+(3)/(4)- 去分母(两边同时乘以120)得:120×4.5 + 3(x - 270)=2x+120×(3)/(4)- 化简得:540+3x - 810 = 2x + 90- 移项得:3x-2x=90 + 810 - 540- 解得:x = 360- 所以甲、乙两地的距离为360千米。

二、工程问题。

3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)1、某车间可以制作甲种零件和乙种零件,每天甲种零件可以制作500只,乙种零件可以制作250只。

一套产品需要一只甲种零件和一只乙种零件。

现在需要在30天内制作尽可能多的成套产品,问甲、乙两种零件各应制作多少天?解:设甲种零件制作x天,那么乙种零件制作(30-x)天。

因为总数量相等,所以有500x=250(30-x),解得x=10,即甲种零件制作10天,乙种零件制作20天。

2、制作一张桌子需要一个桌面和四条桌腿,现在有12立方米的立方木材,1立方米木材可以制作20个桌面或400条桌腿。

问如何计划用料才能制作尽可能多的桌子?解:设用x立方米木材制作桌面,那么用(12-x)立方米木材制作桌腿。

因为总数量相等,所以有20x=400(12-x),解得x=2.4,即用2.4立方米木材制作桌面,用9.6立方米木材制作桌腿。

3、某车间有22名工人,每人每天平均可以生产1200个螺钉或2000个螺母。

一只螺钉需要配两只螺母。

为了使每天的产品刚好配套,问应该分配多少名工人生产螺钉?多少名工人生产螺母?解:设生产螺钉的工人数为x,那么生产螺母的工人数为(22-x)。

因为总数量相等,所以有1200x=2000(22-x),解得x=12,即应该安排12名工人生产螺钉,10名工人生产螺母。

4、一套仪器由一个A部件和三个B部件构成。

现在有6立方米的钢材,1立方米钢材可以制作40个A部件或240个B部件。

问应该用多少钢材制作A、B两种部件,才能恰好配成这种仪器多少套?解:设用x立方米钢材制作A部件,那么用(6-x)立方米钢材制作B部件。

因为总数量相等,所以有40x=240(6-x),解得x=1,即用1立方米钢材制作A部件,用5立方米钢材制作B部件。

因为每套仪器需要一个A部件和三个B部件,所以可以制作1个A部件和15个B部件,即可以制作5套仪器。

5、机械厂加工车间有85名工人,平均每人每天可以加工16个大齿轮或10个小齿轮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级一元一次方程应用一、行程问题基本关系式:路程=时间×速度 时间= 速度路程 速度=时间路程 1)相遇问题:相遇路程=相遇时间×(乙甲V V +)(速度和)相遇时间=相遇路程÷(乙甲V V +)(速度和)速度和(乙甲V V +)=相遇路程÷相遇时间2)追及路程(速度快比速度慢多走的路程)=追及时间×(慢快V V -)(速度差)追及时间=追及路程÷(慢快V V -)(速度差)速度差(慢快V V -)=追及路程÷追及时间3)行船/航行问题:()()⎩⎨⎧÷+=÷-=⇒⎭⎬⎫-=+=22逆流顺水静水逆流顺流水流水流静水逆流水流静水顺流V V V V V V V V V V V V4)环形跑道问题例1、A 、B 两地相距450千米,甲,乙两车分别从A ,B 两地同时出发,相向而行。

已知甲车的速度为120 km/h, 乙车的 速度为80 km/h, 经过x 小时两车相距50km,则x 的值为多少?例4、甲乙两人在一条长400m 的环形跑道上跑步,甲的速度为360 m/min ,乙的速度为240m/min(1)两人同时同地同向跑,问第一次相遇时,两人共跑了几圈?(2)两人同时同地反向跑,问多长时间两人第一次相遇?行程问题汇总1.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。

两车的速度各是多少?13. 一艘船在两个码头之间航行,水流速度是12千米每小时,顺水航行需要4小时,逆水航行需要6小时,求两码头的之间的距离?二、工程问题工程问题中的三个量及其关系为:1) 工作总量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率2) 经常在题目中未给出工作总量时,设工作总量为单位1;如果一件工作分成几个阶段完成,那么各阶段的工作总量的和=工作总量=1例1、一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合做8天后,余下的工程再由甲队单独做还需几天完成?(提示:相等关系:甲乙两队合做8天的工作量+甲队又单独做的工作量=1)变式1:一项工程,甲队独做10小时完成,乙队独做要15小时完成,丙队独做要20小时完成,开始时三队一起做,中途甲队有任务离开,由乙、丙完成,从开始到结束共用了6小时,问甲队实际做了多少小时?变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。

若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?变式3:某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的65?变式4:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?变式5:甲乙打字员完成一份稿件,甲先工作2小时完成了101,乙又单独工作了3小时,此时共完成了21,2.某商品的进价是2000元,标价为3000元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?3.一家商店某种裢子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获利10元,试求每条裤子的成本价是多少元?4.某商场甲、乙两个柜组12月份营业额共64万元,1月份甲增长了20%,乙增长了15%,营业额共达到75万元,试求两柜组1月份各增长多少万元?5.某商店对一种商品调价,按原价的八折出售,打折后的利润率是20﹪,已知该商品的原价是63元,求该商品的进价。

6.国家规定存款的纳税办法是:利息税=利息×20﹪,银行一年定期储蓄的年利率为2.25﹪,现在小明取出一年到期的本金和利息时,交纳了利息4.5元,则小明一年前存入银行的钱为多少元?7、某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多可降多少元出售此商品?8、某商场将某种DVD 产品按进价提高35%, 然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD 仍获利208元,则每台DVD 的进价是多少元?9、个体户小张,把某种商品按标价的九折出售,仍可获利20%,若按货物的进价为每件24元,求每件的标价是多少元?10、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?11、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后又降20%,现售价为n 元,那么该电脑的原售价为( )A 、(45n+m) 元B 、(54n+m) 元 C 、(5m+n ) D 、(5n+m ) 12、一件商品的成本是200元,提高30%后标价,然后打9折销售,则这件商品的标价为_________,售价为_____________,利润为_____________ ;13、某商品的进价为100元,标价为150元,现打8折出售,此时利润为_________元,利润率为___________ ;14、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?15、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?16、某织布厂有工人200名,为改善经营,增设制衣项目,已知每人每天能织布30米,或利用所织布制衣4件,制衣一件用布1.5米,将布直接出售,每米布可获利2元;将布制成衣后出售,每件可获利25元,5.某种三色冰淇淋45g,咖啡色、红色和白色配料比为1:2:6,这种三色冰淇淋中咖啡色、红色、白色配料分别是多少?6.甲队原有工人68人,乙队原有工人44人,现又有42名工人调入这两队,为了使乙队人数是甲队人数,应调往甲乙两队各多少人?7.某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?8.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?9. 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?10.某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?11.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

求房间的个数和学生的人数。

12.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?13.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。

14.某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?15. 某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?16.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?17. 包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?18.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?19.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。

该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

10.某体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?11.根据图中信息,解答下面的问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.12.一列火车匀速行驶经过一条长300m隧道需要20s的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度。

13.某大商场家电部送货人员与销售人员人数之比为1:8。

今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。

结果送货人员与销售人数之比为2:5。

求这个商场家电部原来各有多少名送货人员和销售人员?小学二年级数学下册 第4单元练习题姓名:一、直接写出得数。

32÷8 = 54+26 = 3×7 = 83-60 = 63÷9 = 24+37 = 9×2 = 61-34 = 35÷7 = 55+14 = 6×8 = 87-63 = 56÷8 = 75+15 = 5×7 = 65-28 = 21÷3 = 30+48 = 6×6 = 40-23 =二、想一想,选择合适答案的序号填在( )里。

1、被除数是54,商是6,除数是9,求商列式是( )。

(1)54÷6 (2)54÷9 (3)6×92、求6个7相加是多少,列式是( )。

(1)6-7 (2)7×6 (3)6+6+6+6+6+6+6+63、钢笔每支8元,圆珠笔每支2元,钢笔和价钱是圆珠笔价钱的多少倍?这题是求()。

(1)8和2倍是多少 (2)把8平均分成2份,每份是多少(3)8是2的多少倍4、一个因数是12,另一个因数是4,积是多少?列式是( )。

(14 (2)12÷4 (3)12+45、8+×2(1)﹥ (2)﹤ (3) =6、每两个男生之间站一名女生,6个男生之间站( )个女生。

相关文档
最新文档