【真题】2018中考数学试卷带答案全套

合集下载

(完整word版)【真题】2018年山西省中考数学试卷含答案解析(Word版),推荐文档

(完整word版)【真题】2018年山西省中考数学试卷含答案解析(Word版),推荐文档

2018年山西省中考数学试卷(解析版)第I 卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合 题目要求,请选出并在答题卡上将该项涂黑)1. 下面有理数比较大小,正确的是()A. 0 V - 2B. -5 V 3C. -2 V -3D. 1 V - 4【答案】B【考点】有理数比较大小2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监 算学 科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我 国古代 数学著作的是()解 析】《几何原本》的作者是欧几里得3. 下列运算正确的是() A.a 3 2 a 6 B. 2a 2 3a 2 6a 2 C. 2a 2 a 3 答案】D考点】整式运算 【解析】A. a 3 a 6B 2a 2 3a 2 5a 2C. 2a 2 a 32a 54•下列一元二次方程中,没有实数根的是() A. x 2 2x 0 B. x 2 4x 1 0 C.2x 2 4x 3 0 D. 3x 2 5x 2【答案】C【考点】一元二次方程根的判别式【解 析】△ > 0,有两个不相等的实数根,△ =0,有两个相等的实数根,△< 0,没有实数根.A. △ =4B. △ =20C. △ =-8D. △ =15.近年来快递业发展迅速下表是2018年1-3月份我省部分地市邮政快递业务量的统计结果单 位:万件)A.《九章算术》B. 【答案】B【考点】数学文化C. 《海岛算经》D.2a 6 D.少《几何原本》 〈〈周髀算A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即338.87 万件.6•黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观,其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位, 则其年平均流量可用科学计数法表示为A. 6.06 104立方米/时B. 3.136 1 06立方米/时C. 3.636 106立方米/时D. 36.36 1 05立方米/时【答案】C考点】科学计数法【解析】一秒为1010 立方米,则一小时为1010 X60X 60=363600 0立方米,3636000用科学计数法表示为3.636 X 10 6 .7•在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分A.-B.-C.-D.摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有9种等可能结果,其中两次都摸到黄球的结果有4种,4••• P (两次都摸到黄球)=-98•如图,在Rt △ ABC中,/ ACB=90 ° ,/ A=60 ° , AC=6,将厶ABC绕点C按逆时针方向旋转得到△ A' B' C,此时点A '恰好在AB边上,则点B '与点B之间的距离是()A. 12B. 6C.6 .2D. 6 .3£第&题、【答案】D考点】旋转,等边三角形性质【解 析】连接BB ',由旋转可知AC=A ' C , BC=B ' C ,v / A=60 °,二△ ACA '为等边三角形,/ ACA ' =60°,••• / BCB ' =60°A △ BCB '为等边三角形,/• BB ' =BC= 6 3常厂9•用配方法将二次函数y x 2 8x 9化为y a x h 2 k 的形式为() 2 2 2 2A. y x 4 7B. y x 4 25C. y x 47 D. y x 4 25【答案】B【考点】二次函数的顶点式【解析】y x 2 8x 9 x 2 8x 16 16 9 x 4 2 2510.如图,正方形ABCD 内接于O O, O O 的半径为2 ,以点A 为圆心,以AC 为半径画弧交AB 的 延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A.4 n -4B. 4 n -8C. 8 n -4D. 8 n -8答案】A【考点】扇形面积,正方形性质【解 析】•••四 边形ABCD 为正 方形,• / BAD=90 ° ,可知圆和正方形是中心对称图形,第I 卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分) 11. 计算:(3、2 1)(3「2 1) _.【答案】17【考点】平方差公式360AOBD 9Qn>4:2x42(第13趣)【解析】••• (a b )(a b ) a 2 b 2 • (3」2 1)(3「2 1) (3」2 )2 1 18-仁1712. 图1是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状 无一定 规则,代 表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图(第12题图2)(第M 题)【答案】360考点】多边形外角和【解 析】•/任意n 边形的外角和为360°,图中五条线段组成五边形••• 1 2 3 45 360 .13 . 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115cm. 某厂家生 产符合该规定的行李箱,已知行李箱的宽为20cm ,长与高的比为8:11 ,则符合此规定的行李箱 的高的最大值为 __________ cm.【答案】55考点】一元一次不等式的实际应用【解 析】解:设行李箱的长为8xcm ,宽为11xcm20 8x 11x 115解得x 5•高的最大值为115 55cm14 .如图,直线MN // PQ,直线AB 分别与MN , PQ 相交于点A , B.小宇同学利用尺规按以下步骤作 图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;② 分别以C , D 为圆心,1以 大于丄 CD 长为半径作弧两弧在/ NAB 内交于点E ③作射线AE 交PQ 于点F.若AB=2 , ABP=60 °,2则线段AF 的长为 ___________ . 【答案】2 3考 点】角平分线尺规作图,平行线性质,等腰三角形三线合一 【解析】过点B 作BG 丄AF 交AF 于点G由尺规作图可知,AF 平分/ NAB • / NAF= / BAF •/ MN// PQ• / NAF= / BFA • / BAF= / BFABA=BF=2 BG 丄 AF AG=FG / ABP=60 / BAF= / BFA=30Rt △ BFG 中,FG BF c o s BFAAF 2FG 2、32^MP15 .如图,在Rt △ ABC中,/ ACB=900,AC=6,BC=8,点D是AB的中点,以CD为直径作O 0,OO分别与AC,BC交于点E,F,过点F作O O的切线FG,交AB于点G,则FG的长为_________________________考点】直角三角形斜中线,切线性质, 【解析】连接OF•/ FG 为O 0的切线••• OF 丄FG •/ Rt △ ABC 中,D 为AB 中点 • CD=BD • / DCB=Z B •/ OC=OF• / OCF=Z OFC • / CFO=Z B • OF // BD••• O 为CD 中点 • F 为BC 中点1CF BF 2 BC 43Rt △ ABC 中,s in B -5Rt △ BGF 中,FG BF sin B三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16. (本题共2个小题,每小题5分,共10分) 计算:(1 )(2j?)24 3 1 6 20【考点】实数的计算【解析】解:原式=8-4+2+1=7x 2X 2 11【考点】分式化简2x 2 x 1【解析】解:原式=乞上#1x 1 x 4x 417.(本题8分)如图,一次函数 y 1Kx b(K 0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2 (k 0)的图象相交于点C (-4 , -2), D (2 , 4). (1) 求一次函数和反比例函数的表达式;【答案】12 5平行线分线段成比例,三角函数12(2)x 1 x 2 4x 41 _ x+11 _ xx2x2x2x2(第巧题)(第(2)当x为何值时,y1 0 ;3)当x为何值时,y1y2,请直接写出x的取值范围.【考点】反比例函数与一次函数【解析】(1)解:一次函数y, k i X b的图象经过点C (- 4, -2) D (2 ,4)-^4/ri + b = -2*2k}+/? = 4.k,= 1*解•得・|U = 2-二一次雷数的表达式为耳=龙+ 2・丁反比例函数” =L的图彖经过点D < 2、4 ). 4 = g■.二h = &x 2二应比例惭数的农达贰为临=一・X(2}解]由H >0・御X十2> 6:、X A —2* 二当Jt A —2 时P”¥[ A 0,(3)解:x<^L>Ji0<x<2.(3)解:x 4 或0 x 2.18. (本题9分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动. 教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?19. (本题8分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大 地”的一种象征•某数学“综合与实践”小组的同学把“测量斜拉索顶端到 桥面 的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥 斜拉索完成了实地测量• 测量结果如下 表.(1 tan 380.8,sin 28 0.5,cos 28 0.9,tan 280.5);(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可)7 / 15(3) 若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4) 学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项 目的【【(2)武本\.21%(3)解: 答: (4)解:10+15答:男生所占的500 21%=105 估计其中参15百分比为40%. (人)• 加“书法”15 5项目活动的有105人. 15+10+8+15 48 165正好抽到参加“器乐”活动项目的女生的概率为仝16女生的概率是多少?考点】三角函数的应用 【解析】(1)解:过点C 作CD AB 于点D. 设CD= X 米,在Rt ADC 中,/ ADC=90 ,/ A=385 AD BD AB 234 .- x 2x 234.4解得x 72 .答:斜拉索顶端点C 到AB 的距离为72米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受20. (本题7分)2018年1月20日,山西迎来了 “复兴号”列车,与“和谐号”相比一 一 一4 车 多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的一(两 复5列车中途停留时间均除外).经查询,“复兴号” G92次列车从太原南到北京西,停留10分钟.求乘坐“复兴号” G92次列车从太原南到北京西需要多长时间. 兴 【考点】分式方程应用【解析】解:设乘坐“复兴号” G92次列车从太原南到北京西需要X 小时,500500…由题意,得 二+401 51x (x -)6 4 6经检验,x 8是原方程的根.3列8答:乘坐“复兴号” G92次列车从太原南到北京西需要-小时.3时速CDx 5~ — x0.8 4在 RtABDC 中,.CD tan 28° = —fRDDli解得x83EDtan? K :'更21. (本题8分)请阅读下列材料,并完成相应的任务:8 / 15在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙 利数 学家波 利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使 得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步在CA 上作 出一点D 使得CD=CB 连接BD.第二步在CB 上取一点Y '作Y ' Z ' //CA, 交BD 于点Z ',并在AB 上取一点A ',使Z ' A ' =Y ' Z '.第三步,过点A 作AZ//A ' Z ',交 BD 于点乙第四步,过点Z 作ZY//AC ,交BC 于点Y ,再过Y 作YX//ZA ,交AC 于点X.贝U 有 AX=BY=XY.下面是该结论的部分证明:证D明: A Z/ / A'Z BA' Z ' BAZ_上又 Z A'BZ'= Z ABZ.△BA'Z△ BAZZ ' A' BZ 'CX DAZA BZ .(第21题)同理可得Y ' Z ' BZ ' Z ' A ' Y ' Z 'YZ BZ ZAYZZ'A' Y 'Z ', ZA YZ. ...任务:(1 )请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以 证明;(上述解决问题的过程中,通过作平行线把四边形BA ' Z ' Y '放大得到四边形BAZY ,从而确定了点的位置,这里运用了下面一种图形的变化是 _____________________________________________ .A.平移B.旋转C.轴对称D.位似考点】菱形的性质与判定,图形的位似【解析】 再 (1 )答:四边形AXYZ 是菱形.证明: ZY/ / A C, YX/ / ZA 四边形AXYZ 是平行四边形.上(3)上述解决问题的过程中,通过作平行线把四边形BA ' Z ' Y '放 大得到 四边形BAZY ,从而确定 了点Z ,Y 的位置,这里运用了下面一种图形的变化是D (或位似).,在(1)的基础上完成AX=BY=XY 的证明过程;2Z)(3) ,Y 仔ZA YZ ,(2)答:证 AXYZ 是菱形 明:C D C B 12细 ZY / /AC , 1 3.2= 3 . YB YZ .A.平移B.旋转C.轴对称D.位似阅 四边形AXYZ 是菱形, AX=XY=YZ.、壬 AX=BY=XY.22. (本题12分)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图 1,在矩形 ABCD 中,AD=2AB , E 是AB 延长 线上一点且BE=AB ,连接DE ,交BC 于 点M,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线 段AM 与DE 的位置关系. 探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明: B E A B AE 2AB(第22题图1)反思交流:(1) 上述证明过程中的“依据1 ” “依据2 ”分别是指什么?试判断图1中的点A 是否在线段GF 的垂直平分上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2 ,连接CE ,以CE 为一边在CE 的左下方 作正方 形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:⑶如图3 ,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在 线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还 能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【考点】平行线分线段成比例,三线合一,正方形、矩形性质,全等 【解析】(1) 答: 依据1 :两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例). 依据 2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”.答:点A 在线段GF 的垂直平分线上.⑵ 证明:过点G 作GH BC 于点H ,四边形ABCD 是矩形,点E 在AB 的延长线上,CBE ABC GHC 90. 1+ 2=90 .AD 2AB, AD AE 四 边 形ABCD 是矩形, AD / /BC.EM DM EB AB (依据1 )BE AB ,EM , 1DME M DM .即AM 是△ ADE 的DE 边上的中线,又 AD AE, AM DE.(依据 2 )AM 垂直平分DE .CG CE, GCE 9 0 . 1 3 90.2= 3.△GHC 也△CBE. HC BE. 四边形ABCD 是矩形, A D BC.AD 2AB, BE AB, B C 2BE 2HC. HC BHGH 垂直平分BC. 点G 在BC 的垂直平分线上(第22题图2)四边形CEFG为正方形,(3)答:点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上) 证法一:过点F 作FM BC 于点M ,过点E 作EN FM 于点N.BMN ENM ENF 90 .四边形ABCD 是矩形,点E 在AB 的延长线上,CBE ABC 90.四边形 BENM 为矩形BM EN, BEN90.1 2 90 .四边形CEFG 为正方形,EF EC, CEF90. 2 3 90 . 1 = 3.CBEN F90 ,△ ENF ^A EBC.NE BE. BM BE.四边形ABCD 是矩形,AD BC.AD 2AB, AB BE. BC 2BM . BM MC.FM 垂直平分BC , 点F 在BC 边的垂直平分线上.〔第22题图3)证法二:过F 作FNBE 交BE 的延长线于点N , 连接FB , FC.四边形ABCD 是矩形,点E 在AB的延长线上,/ CBE=Z ABC=Z N=90°./ 1+ / 3=90 ° .四边形CEFG 为正方形, EC=EF ,/ CEF=90 ° ./ 1+ / 2=90 ° ./ 2= / 3.△ ENF A CBE.NF=BE,NE=BC.四边形ABCD 是矩形, AD=BC.AD=2AB , BE=AB. 设 BE=a ,贝U BC=EN=2a,NF=a.= J B M I F W J (如応a.CE =i BE~ =.EL = 41CE - q 瓦.〔第22题图3)GBF=CF. 点F在BC边的垂直平分线上.23. (本题13分)综合与探究1 ,3X 4与X 轴交于A , B 两点(点A 在点B 的左侧),与y 轴交于点C ,3AC , M , (1)(2) 等 BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m , PM 交BC 于点Q ,过点P 作PE // AC 交x 轴于点E ,交BC 于 求 试 A , B , C 三点的坐标; 探究在点P 的运动的过程中,是否存在这样的点Q ,使得以A , 用含m 的代数式表示线段QF 点】 析】 几何与二次函数综合(1)1 2 y0 ,得 §x(2) 4=0并求出m 为何值时QF 有x 0 ,得y 4 .点C 的坐标为C (1 答:5、2 5.2 4):Q (——,,Q 2(1,2 2(3) 过点F 作 FG PQ 于点G .贝U FG // x 轴.由B(4 , 0), C (0 , -4OBC QFG 45 .GQ FG -2P E// AC ,1 2 .F G// x 轴, 2 3 1 3 . 3 A(-3,0)FQ .由 )得A O B C 为等腰直角三角形.X i点A ,,X 24 .B 的坐标分别为 ,B (4, 0)0 , -4).出此FGp 点 Q 的0C 标90若不存在请说△明Aqi.由;FG GP (... FG GP ——=——,即 AO OC,-,©尸■ <;p+ GP ■邑 FQ*- Fp ■ FQ2 36PM 丄x 轴・J.l P 的魅唯标沟讯・45° ” QAf =MH = 4-wi . PM =——tn + -rti + 4矩0“矩『亦+-返肿+痊叭773377过点P 作PM x 轴,垂足为点 点F .C , Q 为顶点的三角形是最大值.1 2 如图,抛物线y -x3。

完整word版2018中考数学试卷及答案

完整word版2018中考数学试卷及答案

2018年中考数学试卷说明:1.全卷共6页,满分为150 分,考试用时为120分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是()23)?( B. CA.. D.2017)??(0322?3??n(,为整数)的形式,则为()2.把0.0813写成an10?a10?1?a A. B. C. D.8.130.8132?13.用量角器测量的度数,操作正确的是()MON?m个22?2?…?2?()4. 3?3?…?3n个3m22mm22mD..C..AB 3n n33nn35.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.① B.② C.③ D.④6.如图为张小亮的答卷,他的得分应是()A.100分 B.80分 C.60分 D.40分7.若的每条边长增加各自的得,则的度数与其对应角的度数相比'C10%B?A'?ABC'B'??B()A.增加了 B.减少了 C.增加了 D.没有改变10%)(1?10%10%8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()9.求证:菱形的两条对角线互相垂直.已知:如图,四边形是菱形,对角线,交于点.OABCDACBD求证:.BD?AC 以下是排乱的证明过程:①又,DO?BO②∴,即.BDAC?AO?BD③∵四边形是菱形,ABCD④∴.ADAB?证明步骤正确的顺序是()A.③→②→①→④ B.③→④→①→② C.①→②→④→③ D.①→④→③→②同时出发,并以等速驶向某、在码头10.如图,码头的正西方向,甲、乙两船分别从BBAA为避免行进中甲、乙相撞,则乙的航向不能是(),海域,甲的航向是北偏东?35 B.北偏东A .北偏西.北偏西.北偏东CD??553555??3511.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪cm线长度所标的数据(单位:)不正确的()cm12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()?1003?4??644??4?4?4664?4?4 BA.... C D64?4?4?3?2x1,则(若13.)中的数是()()??x?1x?1A. B. C. D.任意实数3?21??14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大 B.甲、乙两组相同 C.乙组比甲组大 D.无法判断2?x3?y?x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是15.如图,若抛物线与k()的图象是(整数)的个数为,则反比例函数)?y0?xk x16.已知正方形和正六边形边长均为1,把正方形放在正六边形中,使边OKABCDEFMNOK与边重合,如图所示.按下列步骤操作:AB将正方形在正六边形中绕点顺时针旋转,使边与边重合,完成第一次旋转;再绕点BCKMB 顺时针旋转,使边与边重合,完成第二次旋转;……在这样连续6次旋转的过程中,CDCMN点,间的距离可能是()MBA.1.4B.1.1C.0.8D.0.5第Ⅱ卷(共78分)个小题,满分10分,将答案填在答题纸上)二、填空题(本题共有3,连接不能直接测量其距离.如图,,两点被池塘隔开,于是,小明在岸边选一点,17.CACBA,分别延长到点,,使,,测得,则,间的距离mBCMN?200??CBNAMACBNBAM m.为?.18.如图,依据尺规作图的痕迹,计算???????1,2两数中较小的数,如min,因此对于实数,,我们用符号min1p,q,表示19.ppqq???22?32,min??;若.,则?x1?,(minx?1)x三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点,,,其中,,如图所示.设点1?BCC2?AABB,,所对应数的和是.pCBA(1)若以为原点,写出点,所对应的数,并计算的值;若以为原点,又是多少?ppCCAB(2)若原点在图中数轴上点的右边,且,求.p28COC?O21.编号为号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中51~记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为.40%(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于的学生的概率;50%(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.发现任意五个连续整数的平方和是5的倍数.2222232?1?1)(???0的结果是5)的几倍?验证(1(2)设五个连续整数的中间一个为,写出它们的平方和,并说明是5的倍数.n23.如图,,为中点,点在线段上(不与点,重合),将绕点逆OCO16OOBOCAB?BAB CD于点,,且点,在异时针旋转后得到扇形,,分别切优弧QQBQ COD270?ABPAPP侧,连接.OP(1)求证:;BQAP??34BQ?);的长(结果保留(2)当时,求QD(3)若的外心在扇形的内部,求的取值范围.OCAPO?COD339xx轴,直线轴交于点与24.如图,直角坐标系中,,直线与?y??x(0,5)xOyA5??xD88x轴对称,连接.关于,及直线.点,分别交于点C??5xABEBE(1)求点,的坐标及直线的解析式;CABE S?S?S,求(2)设面积的和的值;S ABDO?CDE(3)在求(2)中时,嘉琪有个想法:“将沿轴翻折到的位置,而与四x CDB?CDE?SCDB?边形拼接后可看成,这样求便转化为直接求的面积不更快捷吗?”但大AOC??AOCABDOS S?S,请通过计算解释他的想法错在哪里.家经反复验算,发现AOC?4.点为边上任意一点,,25.平面内,如图,在中,,?Atan15?10ABCDADAB?ADP3连接,将绕点逆时针旋转得到线段.PQ?90PPBPB(1)当时,求的大小;??10?DPQ APB?(2)当时,求点与点间的距离(结果保留根号);Q23:tanA??tanABP:B(3)若点恰好落在的边所在的直线上,直接写出旋转到所扫过的面积(结PQQ ABCDPB?).果保留x(件)完成一种产品的生产,其中.每件的售价为某厂按用户的月需求量26.18万元,0x?x(件)浮动价与月需求量是基础价与浮动价的和,其中基础价保持不变,每件的成本(万元)y xnn为整数,成反比.经市场调研发现,月需求量(与月份)符合关系式12?1?n2?2kn?9(k?2x?n3)(为常数),且得到了表中的数据.k2 1 月份(月)n12 11 件)成本(万元/y100(件需求量/月) 120x 12万元;满足的关系式,请说明一件产品的利润能否是(1)求与y x)求,并推断是否存在某个月既无盈利也不亏损;(2k.个月的利润相差最大,求个月和第3()在这一年12个月中,若第mm1)?(m。

2018山东省中考数学真题试卷7套(含答案及名师解析)

2018山东省中考数学真题试卷7套(含答案及名师解析)

2018山东省中考数学真题试卷7套(含答案及名师解析)2018年山东省滨州市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.82.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣23.(3分)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°4.(3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.45.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A 的对应点C的坐标为()A.(5,1) B.(4,3) C.(3,4) D.(1,5)7.(3分)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A.B.C.D.9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.110.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.411.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.312.(3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.二、填空题(本大题共8小题,每小题5分,满分40分)13.(5分)在△ABC中,若∠A=30°,∠B=50°,则∠C=.14.(5分)若分式的值为0,则x的值为.15.(5分)在△ABC中,∠C=90°,若tan A=,则sin B=.16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M 在第二象限的概率是.17.(5分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.18.(5分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为.19.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.20.(5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为.三、解答题(本大题共6小题,满分74分)21.(10分)先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.22.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.23.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.(13分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.26.(14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)1.A【解析】∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.2.B故选:B.3.D【解析】如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.4.B【解析】①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.5.B【解析】解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.6.C【解析】∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.7.D【解析】A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.8.C【解析】如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.9.A【解析】根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.10.B【解析】①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.11.D【解析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.12.A【解析】当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.二、填空题(本大题共8小题,每小题5分,满分40分)13.100°【解析】∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°14.﹣3【解析】因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.15.【解析】如图所示:∵∠C=90°,tan A=,∴设BC=x,则AC=2x,故AB=x,则sin B===.故答案为:.16.【解析】列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.17.【解析】方法一:∵关于x、y的二元一次方程组,的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组,的解是,由关于a、b的二元一次方程组可知解得:故答案为:18.y2<y1<y3【解析】设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.19.【解析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.20.9【解析】由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.三、解答题(本大题共6小题,满分74分)21.解:原式=xy(x+y)••=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.22.证明:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.23.解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.24.解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:,则直线AB解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.25.(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)解:BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.26.解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.2018年山东省东营市中考数学真题一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣的倒数是()A.﹣5B.5C.﹣D.2.(3分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6D.(xy2)2=x2y43.(3分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣15.(3分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是306.(3分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.157.(3分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.9.(3分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.10.(3分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3分)分解因式:x3﹣4xy2=.13.(3分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M 为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.18.(4分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=,b=,c=,d=;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9分)关于x的方程2x2﹣5x sin A+2=0有两个相等的实数根,其中∠A是锐角三角形ABC 的一个内角.(1)求sin A的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【参考答案】一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.A【解析】﹣的倒数是﹣5,故选:A.2.D【解析】A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.3.B【解析】A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.4.C【解析】∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.5.B【解析】该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.6.B【解析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.7.D【解析】正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.8.C【解析】把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.9.D【解析】过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.10.A【解析】∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.4.147×1011【解析】4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×101112.x(x+2y)(x﹣2y)【解析】原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)13.【解析】∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.14.y=【解析】设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=15.15【解析】如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.16.20π【解析】根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π17.【解析】取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)18.【解析】分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.20.解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.21.解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.22.(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.23.解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sin A=或,∵∠A为锐角,∴sin A=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sin A=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sin A=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.24.解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.25.解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,∴点C的横坐标为,又OC=,点C在x轴下方,∴C(,﹣),设直线BM的解析式为y=kx+b,把点B(3,0),C(,﹣)代入得:,解得:b=﹣,k=,∴y=x﹣,又∵点C(,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x,x﹣),∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC的面积最大,S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,当x=﹣=时,S△BCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,﹣).2018 年山东省济宁市中考数学真题一、选择题:本大题共10 小题,每小题3 分,共30 分。

全国2018年中考数学真题汇总(含答案)

全国2018年中考数学真题汇总(含答案)

全国2018年中考数学真题汇总(含答案)图形初步、相交线、平行线(20题)一、选择题1.若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】一个角为,则它的补角的度数为:故答案为:C.【分析】根据补角的定义,若两个角之和为180°,则这两个角互为补角,即可求解。

2.如图,直线a,b被直线c所截,那么∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】解:∵直线a,b被直线c所截,∴∠1的同位角是∠4故答案为:C【分析】两条直线被第三条直线所截,位于两条直线的同一侧,第三条直线的同旁,呈“F”形的角是同位角,即可得出答案。

3.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D【解析】:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故答案为:D.【分析】根据二直线平行,同旁内角互补得出∠3+∠5=180°,根据对顶角相等及等量代换得出∠3+∠4=180°,4.如图是正方体的表面展开图,则与“前”字相对的字是()A. 认B. 真C. 复D. 习【答案】B【解析】观察正方形的展开图,可得出与“前”字相对的字是“真”.【分析】观察正方形的展开图,可得出答案。

5.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故答案为:A.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.6.如图,直线被所截,且,则下列结论中正确的是( )A. B. C. D.【答案】B【解析】:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.7.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。

(真题)安徽省2018年中考数学试题(有答案)

 (真题)安徽省2018年中考数学试题(有答案)

2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键. 17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。

2018陕西省中考数学试卷(附答案解析版)

2018陕西省中考数学试卷(附答案解析版)

2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。

每小题只有一个选项是符合题意的)1.(3.00分)(2018•陕西)﹣711的倒数是()A.711B.−711C.117D.−1172.(3.00分)(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3.00分)(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3.00分)(2018•陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.−12B.12C.﹣2 D.25.(3.00分)(2018•陕西)下列计算正确的是()A.a2•a2=2a4 B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣46.(3.00分)(2018•陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()A.43√2B.2√2 C.83√2 D.3√27.(3.00分)(2018•陕西)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)8.(3.00分)(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=√2EF B.AB=2EF C.AB=√3EF D.AB=√5EF 9.(3.00分)(2018•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.(3.00分)(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)(2018•陕西)比较大小:3 √10(填“>”、“<”或“=”).中,AC 与BE 相交于点F ,则∠AFE 的度数为 .13.(3.00分)(2018•陕西)若一个反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),则这个反比例函数的表达式为 .14.(3.00分)(2018•陕西)如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=12AB ;G 、H 是BC 边上的点,且GH=13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .三、解答题(共11小题,计78分。

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是( ) A .0<﹣2B .﹣5<3C .﹣2<﹣3D .1<﹣42.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .B .C .D .《九章算术》《几何原本》《海岛算经》《周髀算经》3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2C .2a 2•a 3=2a 6D .(−b 22a )3=−b68a34.(3分)下列一元二次方程中,没有实数根的是( )A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2 5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68302.34319.79 725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .198.(3分)如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A 'B 'C ,此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( )A .12B .6C .6√2D .6√39.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3√2+1)(3√2﹣1)=.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于1CD长为半径作弧,两弧在∠NAB2内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20. (2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内容课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC ,BC 相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内.测量数据 ∠A 的度数∠B 的度数AB 的长度 38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z'∥CA,交BD于点Z',并在AB 上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴Z′A′ZA=BZ′BZ.同理可得Y′Z′YZ =BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.如图,抛物线y=13x2−13x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x 轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.2.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2 C .2a 2•a 3=2a 6 D .(−b 22a )3=−b 68a3 【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断. 【解答】解:A 、(﹣a 3)2=a 6,此选项错误; B 、2a 2+3a 2=5a 2,此选项错误; C 、2a 2•a 3=2a 5,此选项错误;D 、(−b 22a )3=−b68a3,此选项正确;故选:D .4.(3分)下列一元二次方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2【分析】利用根的判别式△=b 2﹣4ac 分别进行判定即可.【解答】解:A 、△=4>0,有两个不相等的实数根,故此选项不合题意; B 、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意; C 、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D 、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C .5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( ) A .319.79万件 B .332.68万件 C .338.87万件 D .416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78 由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87故选:C . 6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:1010×3600=3.636×106立方米/时,故选:C .7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A.49B.13C.29D.19【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选:A.8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.6√2D.6√3【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°﹣60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6√3,故选:D.9.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.10.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=90⋅π⋅42360﹣12×4×2=4π﹣4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3√2+1)(3√2﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3√2)2﹣12=18﹣1=17故答案为:17.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知, ∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 55 cm .【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可. 【解答】解:设长为8x ,高为11x , 由题意,得:19x +20≤115, 解得:x ≤5,故行李箱的高的最大值为:11x =55, 答:行李箱的高的最大值为55厘米.故答案为:5514.(3分)如图,直线MN ∥PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在∠NAB内交于点E ;③作射线AE 交PQ 于点F .若AB =2,∠ABP =60°,则线段AF 的长为 2√3 .【分析】作高线BG ,根据直角三角形30度角的性质得:BG =1,AG =√3,可得AF 的长. 【解答】解:∵MN ∥PQ , ∴∠NAB =∠ABP =60°, 由题意得:AF 平分∠NAB , ∴∠1=∠2=30°, ∵∠ABP =∠1+∠3, ∴∠3=30°, ∴∠1=∠3=30°, ∴AB =BF ,AG =GF , ∵AB =2, ∴BG =12AB =1,∴AG =√3,∴AF =2AG =2√3,故答案为:2√3.15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为125.【分析】先利用勾股定理求出AB =10,进而求出CD =BD =5,再求出CF =4,进而求出DF =3,再判断出FG ⊥BD ,利用面积即可得出结论. 【解答】解:如图,在Rt △ABC 中,根据勾股定理得,AB =10, ∴点D 是AB 中点, ∴CD =BD =12AB =5,连接DF ,∵CD 是⊙O 的直径, ∴∠CFD =90°, ∴BF =CF =12BC =4,∴DF =√CD 2−CF 2=3, 连接OF ,∵OC =OD ,CF =BF , ∴OF ∥AB , ∴∠OFC =∠B , ∵FG 是⊙O 的切线, ∴∠OFG =90°,∴∠OFC +∠BFG =90°, ∴∠BFG +∠B =90°, ∴FG ⊥AB ,∴S △BDF =12DF ×BF =12BD ×FG , ∴FG =DF×BF BD =3×45=125,故答案为125.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20. (2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得; (2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得. 【解答】解:(1)原式=8﹣4+13×6+1=8﹣4+2+1 =7.(2)原式=x−2x−1⋅(x−1)(x+1)(x−2)2−1x−2=x+1x−2−1x−2 =x x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.【分析】(1)将C 、D 两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D 代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案. (3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y 1=k 1x +b 的图象经过点C (﹣4,﹣2),D (2,4),∴{−4k 1+b =−22k 1+b =4,解得{k 1=1b =2.∴一次函数的表达式为y 1=x +2.∵反比例函数y 2=k2x 的图象经过点D (2,4),∴4=k22.∴k2=8.∴反比例函数的表达式为y2=8x.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15×100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)1515+10+8+15=1548=516.答:正好抽到参加“器乐”活动项目的女生的概率为516.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB 的长度38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C 作CD ⊥AB 于点D .解直角三角形求出DC 即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等 【解答】解:(1)过点C 作CD ⊥AB 于点D .设CD =x 米,在Rt △ADC 中,∠ADC =90°,∠A =38°. ∵tan38°=CD AD ,∴AD =CD tan38°=x 0.8=54x . 在Rt △BDC 中,∠BDC =90°,∠B =28°.∵tan28°=CD BD ,∴BD =CD tan28°=x 0.5=2x . ∵AD +BD =AB =234,∴54x +2x =234.解得x =72.答:斜拉索顶端点C 到AB 的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据速度=路程÷时间结合“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据题意得:500x=50054x+40,解得:x =52,经检验,x =52是原分式方程的解, ∴x +16=83.答:乘坐“复兴号”G 92次列车从太原南到北京西需要83小时.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX =BY =XY .(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD =CB ,连接BD .第二步,在CB 上取一点Y ',作Y 'Z '∥CA ,交BD 于点Z ',并在AB 上取一点A ',使Z 'A '=Y 'Z '.第三步,过点A 作AZ ∥A 'Z ',交BD 于点Z .第四步,过点Z 作ZY ∥AC ,交BC 于点Y ,再过点Y作YX ∥ZA ,交AC 于点X .则有AX =BY =XY . 下面是该结论的部分证明:证明:∵AZ ∥A 'Z ',∴∠BA 'Z '=∠BAZ , 又∵∠A 'BZ '=∠ABZ .∴△BA 'Z '~△BAZ .∴Z′A′ZA =BZ′BZ .同理可得Y′Z′YZ=BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z 'A '=Y 'Z ',∴ZA =YZ .任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明; (2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX =BY =XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA 'Z 'Y '放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 D (或位似) .A .平移B .旋转C .轴对称D .位似【分析】(1)四边形AXYZ 是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ 是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX =XY =YZ .根据等量代换得到AX =BY =XY . (3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ 是菱形. 证明:∵ZY ∥AC ,YX ∥ZA , ∴四边形AXYZ 是平行四边形. ∵ZA =YZ ,∴平行四边形AXYZ 是菱形.(2)证明:∵CD =CB , ∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【分析】(1)①直接得出结论;②借助问题情景即可得出结论;(2)先判断出∠BCE+∠BEC=90°,进而判断出∠BEC=∠BCG,得出△GHC≌△CBE,判断出AD=BC,进而判断出HC=BH,即可得出结论;(3)先判断出四边形BENM为矩形,进而得出∠1+∠2=90°,再判断出∠1=∠3,得出△ENF≌△EBC,即可得出结论.【解答】解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,。

2018年天津市中考数学试卷(答案+解析)

2018年天津市中考数学试卷(答案+解析)

2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)计算(﹣3)2的结果等于( ) A .5B .﹣5C .9D .﹣92.(3分)cos 30°的值等于( ) A .√22B .√32C .1D .√33.(3分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( ) A .0.778×105B .7.78×104C .77.8×103D .778×1024.(3分)下列图形中,可以看作是中心对称图形的是( )A .B .C .D .5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√65的值在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间7.(3分)计算2x+3x+1−2x x+1的结果为( ) A .1B .3C .3x+1D .x+3x+18.(3分)方程组{x +y =102x +y =16的解是( )A .{x =6y =4B .{x =5y =6C .{x =3y =6D .{x =2y =89.(3分)若点A (x 1,﹣6),B (x 2,﹣2),C (x 3,2)在反比例函数y =12x的图象上,则x 1,x 2,x 3的大小关系是( ) A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 2<x 110.(3分)如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD =BDB .AE =AC C .ED +EB =DB D .AE +CB =AB11.(3分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP 最小值的是()A.AB B.DE C.BD D.AF12.(3分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算2x4•x3的结果等于.14.(3分)计算(√6+√3)(√6﹣√3)的结果等于.15.(3分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)将直线y=x向上平移2个单位长度,平移后直线的解析式为.17.(3分)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为(度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。

2018年中考数学试卷含答案(精选4套真题)40

2018年中考数学试卷含答案(精选4套真题)40

初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。

本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。

2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。

3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。

在试卷或草稿纸上答题无效。

4.如有作图需要,请用2B铅笔作答,并请加黑加粗,描写清楚。

一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.与-2的乘积为1的数是()A.2 B.-2 C.12D.12-2.函数1y x=-中自变量x的取值范围是( ) A.x>1B.x≥1C.x<1D.x≤1 3.下列运算正确的是( ) A.2233x x-=B.33a a a?C.632a a a?D.236()a a=4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是()(第4题)DCBA5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )A B C D6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数2 5 2 2 1 则这12名队员年龄的众数、中位数分别是 ( )A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( )A .M <NB .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)好在BC上,且AB'=2AC,则AB的长度为()A.3B.6C.9D.129.(3分)___在一张长方形的纸片上剪去一个正方形,然后将剩下的部分固定在桌子上,如图所示.如果剪掉的正方形面积是整个纸片面积的1/5,那么剩下部分的周长是纸片周长的()A.1/5B.2/5C.3/5D.4/510.(3分)已知函数f(x)=x2+bx+c,其中b,c为常数,当x∈[0,2]时,f(x)的最大值为4,最小值为2.则b+c的值为() A.1B.2C.3D.42018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑。

)1.(3分) 下面有理数比较大小,正确的是()A。

<﹣2B。

﹣5<3C。

﹣2<﹣3D。

1<﹣42.(3分) “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。

下列四部著作中,不属于我国古代数学著作的是()A。

《九章算术》B。

《几何原本》C。

《海岛算经》D。

《周髀算经》3.(3分) 下列运算正确的是()A。

(﹣a3)2=﹣a6B。

2a2+3a2=6a2C。

2a2•a3=2a6D。

(−)3=−bb/32b8b4.(3分) 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):城市。

| 邮政快递业务量太原市 | 3303.78大同市 | 332.68长治市 | 302.34运城市 | 725.86临汾市 | 416.01吕梁市 | 338.87晋中市 | 319.791~3月份我省这七个地市邮政快递业务量的中位数是()A。

319.79万件B。

332.68万件C。

338.87万件D。

416.01万件6.(3分) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观。

2018年成都市中考数学试题及答案详解

2018年成都市中考数学试题及答案详解

四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。

2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。

2018年河南省中考数学试卷附参考答案

2018年河南省中考数学试卷附参考答案

2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣的相反数是()A.﹣B.C.﹣D.2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3.00分)下列运算正确的是()A.(﹣x2)3=﹣x5 B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3.00分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE 的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填11.(3.00分)计算:|﹣5|﹣=.12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3.00分)不等式组的最小整数解是.14.(3.00分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3.00分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10.00分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11.00分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣的相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3.00分)下列运算正确的是()A.(﹣x2)3=﹣x5 B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3.00分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE 的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3.00分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3.00分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3.00分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可.【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,DB′==,A′B′==2,∴S阴=﹣1×2÷2﹣(2﹣)×÷2=π﹣.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3.00分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10.00分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11.00分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m ﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.。

2018年湖北省中考数学真题试卷6套(含答案及名师解析)

2018年湖北省中考数学真题试卷6套(含答案及名师解析)

2018年湖北省中考数学真题试卷6套(含答案及名师解析)2018年湖北省武汉市中考数学真题一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.(3分)计算3x2﹣x2的结果是()A.2B.2x2C.2x D.4x24.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6B.a2+a﹣6C.a2+6D.a2﹣a+66.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3B.4C.5D.68.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.9.(3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.201310.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.(3分)计算﹣的结果是.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.三、解答题(共8题,共72分)17.(8分)解方程组:18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(8分)如图,P A是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC 交AB于点E,且P A=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM ∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tan C的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m 的值及相应点P的坐标.【参考答案】一、选择题(共10小题,每小题3分,共30分)1.A【解析】温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.2.D【解析】∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.3.B【解析】3x2﹣x2=2x2,故选:B.4.B【解析】这组数据的众数和中位数分别42,38.故选:B.5.B【解析】(a﹣2)(a+3)=a2+a﹣6,故选:B.6.A【解析】点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.7.C【解析】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.8.C【解析】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.9.D【解析】设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.10.B【解析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解析】原式=+﹣=故答案为:12.0.9【解析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.13.【解析】原式=+=故答案为:14.30°或150°【解析】如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.15.216【解析】t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.16.【解析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.三、解答题(共8题,共72分)17.解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.18.证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.19.解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.20.解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.21.(1)证明:连接OP、OB.∵P A是⊙O的切线,∴P A⊥OA,∴∠P AO=90°,∵P A=PB,PO=PO,OA=OB,∴△P AO≌△PBO.∴∠P AO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵P A、PB都是切线,∴P A=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=P A=2a,∵△P AK∽△POA,∴P A2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.22.解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.23.解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠P AC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tan C==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.24.解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).2018年湖北省恩施州中考数学真题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣8的倒数是()A.﹣8B.8C.﹣D.2.(3分)下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1075.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1B.2C.3D.46.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.(3分)64的立方根为()A.8B.﹣8C.4D.﹣48.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3B.a<3C.a≥3D.a≤39.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.810.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.1212.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2B.3C.4D.5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程)13.(3分)因式分解:8a3﹣2ab2=.14.(3分)函数y=的自变量x的取值范围是.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于O.求证:AD与BE互相平分.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【参考答案】一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C【解析】根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.2.B【解析】A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.3.D【解析】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.B【解析】0.000000823=8.23×10﹣7.故选:B.5.B【解析】∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:B.6.A【解析】∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.7.C【解析】64的立方根是4.故选:C.8.D【解析】解不等式2(x﹣1)>4,得:x>3,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选:D.9.A【解析】由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.10.C【解析】设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.11.D【解析】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.12.B【解析】∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程)13.2a(2a+b)(2a﹣b)【解析】8a3﹣2ab2=2a(4a2﹣b2)=2a(2a+b)(2a﹣b).故答案为:2a(2a+b)(2a﹣b).14.x≥﹣且x≠3【解析】根据题意得2x+1≥0,x﹣3≠0,解得x≥﹣且x≠3.故答案为:x≥﹣且x≠3.15.π【解析】∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;∴点B所经过的路径与直线l所围成的封闭图形的面积=+=.故答案为π.16.1946【解析】2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.三、解答题(本大题共有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:•(1+)÷=••=,把x=2﹣1代入得,原式===.18.证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.19.解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.20.解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.21.解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)当y=2时,2=,即x=3,∴D(3,2),∴CD=3﹣1=2,∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),∴△CDE的面积=×2×(6+2)=8.22.解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.23.(1)证明:如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)解:设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)解:PF=FD,理由是:∵∠APD=∠ABE=90°,∠P AD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠P AD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.24.解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.2018年湖北省黄石市中考数学真题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(3分)下列各数是无理数的是()A.1B.﹣0.6C.﹣6D.π2.(3分)太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×108C.0.696×107D.6.96×1053.(3分)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列计算中,结果是a7的是()A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a45.(3分)如图,该几何体的俯视图是()A.B.C.D.6.(3分)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)7.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.(3分)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.9.(3分)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B 两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<410.(3分)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD 沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.二、填空题(本大题给共6小题,每小题3分,共18分)11.(3分)分解因式:x3y﹣xy3=.12.(3分)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为13.(3分)分式方程=1的解为14.(3分)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是米.(结果保留根号)15.(3分)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为16.(3分)小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指2石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或验算步骤)17.(7分)计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|18.(7分)先化简,再求值:.其中x=sin60°.19.(7分)解不等式组,并求出不等式组的整数解之和.20.(8分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.21.(8分)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.22.(8分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?23.(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C240D x260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m >0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.24.(9分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.25.(10分)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.【参考答案】一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.D【解析】A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.2.B【解析】696000千米=696000000米=6.96×108米,故选:B.3.C【解析】A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.4.B【解析】A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=;故选:B.5.A【解析】从几何体的上面看可得,故选:A.6.C【解析】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.7.A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.8.D【解析】连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.9.B【解析】解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.10.A【解析】∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x ﹣18,故选项A正确;故选:A.二、填空题(本大题给共6小题,每小题3分,共18分)11.xy(x+y)(x﹣y)【解析】x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).12.4π【解析】∵∠C=90°,CA=8,CB=6,∴AB==10,∴△ABC的内切圆的半径==2,∴△ABC内切圆的周长=π•22=4π.故答案为4π.13.x=0.5【解析】方程两边都乘以2(x2﹣1)得,8x+2﹣5x﹣5=2x2﹣2,解得x1=1,x2=0.5,检验:当x=0.5时,x﹣1=0.5﹣1=﹣0.5≠0,当x=1时,x﹣1=0,所以x=0.5是方程的解,故原分式方程的解是x=0.5.故答案为:x=0.514.100(1+)【解析】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tan A=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.故答案为100(1+).15.【解析】根据题意列表得:2345。

【真题】2018年河北省中考数学试卷含答案解析

【真题】2018年河北省中考数学试卷含答案解析

河北省2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.1.下列图形具有稳定性的是(下列图形具有稳定性的是()A .B .C .D .2.2.一个整数一个整数用科学记数法表示为,则原数中,则原数中“0”“0”“0”的个数为(的个数为(8155500 108.155510 )A .4B 4 B..6C 6 C..7D 7 D..103.3.图图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A .B B..C C..D D..1l 2l 3l 4l 答案:答案:C C4.4.将将变形正确的是(变形正确的是( ))29.5A .B . 2229.590.5=+29.5(100.5)(100.5)=+-C. D D..2229.5102100.50.5=-⨯⨯+2229.5990.50.5=+⨯+5.5.图图2中三视图对应的几何体是(中三视图对应的几何体是( ))A .B B..C. D D..6.6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线线上一点作这条直线的垂线;Ⅳ.作角的平分线..图3是按上述要求排乱顺序的尺规作图:则正确的配对是(则正确的配对是( ))A .①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-Ⅰ.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-Ⅰ.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. C. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D D D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.7.有三种不同质量的物体,有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( ))A .B B..C. D D..8.8.已知:如图已知:如图4,点在线段外,且.求证:点在线段的垂直平分线P AB PA PB =P AB 上.在证明该结论时,需添加辅助线,则作法不正确的是(在证明该结论时,需添加辅助线,则作法不正确的是( ))A .作的平分线交于点APB ∠PC AB C B .过点作于点且P PC AB ⊥C AC BC =C.C.取取中点,连接AB C PC D .过点作,垂足为P PC AB ⊥C9.9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:)的平均数与方差为:,;,cm 13x x ==甲丙15x x ==乙丁223.6s s ==甲丁.则麦苗又高又整齐的是(则麦苗又高又整齐的是( ))22 6.3s s ==乙丙A .甲.甲 B B B.乙.乙.乙 C. C. C.丙丙 D D.丁.丁10.10.图图5中的手机截屏内容是某同学完成的作业,他做对的题数是(中的手机截屏内容是某同学完成的作业,他做对的题数是( ))A .2个B B..3个 C. 4个 D D..5个11.11.如图如图6,快艇从处向正北航行到处时,向左转航行到处,再向右转继续P A 50︒B 80︒航行,此时的航行方向为(航行,此时的航行方向为( ))A .北偏东 B B.北偏东.北偏东30︒80︒C.C.北偏西北偏西 D D.北偏西.北偏西30︒50︒12.12.用一根长为用一根长为(单位:)的铁丝,首尾相接围成一个正方形的铁丝,首尾相接围成一个正方形..要将它按图7的方式向a cm 外等距扩1(单位:), 得到新的正方形,则这根铁丝需增加(得到新的正方形,则这根铁丝需增加( ))cmA .B B.. C. D D..4cm 8cm (4)a cm +(8)a cm+13.13.若若,则( ))22222n n n n +++=n = A.-1 B.-2 C.0 D.1414.14.老师设计了接力游戏,用合作的方式完成分式化简老师设计了接力游戏,用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简式子,并进行一步计算,再将结果传递给下一人,最后完成化简..过程如图8所示:接力中,自己负责的一步出现错误的是(接力中,自己负责的一步出现错误的是( ))A.A.只有乙只有乙B.B.甲和丁甲和丁C.C.乙和丙乙和丙D.D.乙和丁乙和丁15.15.如图如图9,点为的内心,,,,将平移使其顶I ABC 4AB =3AC =2BC =ACB ∠点与重合,则图中阴影部分的周长为(重合,则图中阴影部分的周长为( ))I A.4.5 B.4 C.3 D.216.16.对于题目对于题目对于题目““一段抛物线与直线有唯一公共:(3)(03)L y x x c x =--+≤≤:2l y x =+点.若为整数,确定所有的值的值.”.”.”甲的结果是甲的结果是,乙的结果是或4,则(,则( ))c c 1c =3c =A.A.甲的结果正确甲的结果正确B.B.乙的结果正确乙的结果正确C.C.甲、乙的结果合在一起才正确甲、乙的结果合在一起才正确D.D.甲、乙的结果合在一起也不正确甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17.17~~18小题各3分;分;1919小题有2个空,每空3分.把答案写在题中横线上)17.17.计算:计算: ..123-=-18.18.若若,互为相反数,则 ..a b 22a b -=19.19.如图如图,作平分线的反向延长线,现要分别以,,101-BPC ∠PA APB ∠APC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一BPC ∠个图案个图案..例如,若以为内角,可作出一个边长为1的正方形,此时,而BPC ∠90BPC ∠=︒是(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,90452︒=︒360︒18填充花纹后得到一个符合要求的图案,如图所示所示..102-图中的图案外轮廓周长是中的图案外轮廓周长是 ;在所有符合要;在所有符合要102-求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是轮廓周长是 ..三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 20. 嘉淇准备完成题目:化简:嘉淇准备完成题目:化简:嘉淇准备完成题目:化简:发现系数发现系数““”印刷不2268)(652)x x x x ++-++清楚.(1)他把)他把““”猜成3,请你化简:;22(368)(652)x x x x ++-++(2)他妈妈说:)他妈妈说:““你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图)和不完111-整的扇形图(图),其中条形图被墨迹掩盖了一部分,其中条形图被墨迹掩盖了一部分..112-(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了的中位数没改变,则最多补查了 人人.22. 22. 如图如图1212,阶梯图的每个台阶上都标着一个数,从下到上的第,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着标着-5-5-5,,-2-2,,1,9,且任意相邻四个台阶上数的和都相等尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?x 应用 求从下到上前31个台阶上数的和个台阶上数的和..发现 试用试用(为正整数)的式子表示出数为正整数)的式子表示出数“1”“1”“1”所在的台阶数所在的台阶数所在的台阶数..k k23. 23. 如图如图1313,,,为中点,点为射线上(不与点重合)的50A B ∠=∠=︒P AB M AC A 任意一点,连接,并使的延长线交射线于点,设.MP MP BD N BPN α∠=(1)求证:;APM BPN △△≌(2)当时,求的度数;2MN BN =α(3)若的外心在该三角形的内部,直接写出的取值范围的取值范围..BPN △α24. 24. 如图如图1414,直角坐标系,直角坐标系中,一次函数的图像分别与,轴交于,xOy 152y x =-+1l x y A 两点,正比例函数的图像与交于点.B 2l 1lC (,4)m(1)求的值及的解析式;m 2l(2)求的值;AOC BOC S S -△△(3)一次函数的图像为,且,,不能围成三角形,直接写出的值的值..1y kx =+3l 1l 2l 3l k25. 25. 如图如图1515,点,点在数轴上对应的数为2626,以原点,以原点为圆心,为半径作优弧,使A O OA AB 点在右下方,且.在优弧上任取一点,且能过作直线B O 4tan 3AOB ∠= AB P P 交数轴于点,设在数轴上对应的数为,连接.//l OB Q Q x OP(1)若优弧上一段的长为,求的度数及的值; AB AP 13πAOP ∠x(2)求的最小值,并指出此时直线与所在圆的位置关系;x A B AB (3)若线段的长为,直接写出这时的值的值..PQ 12.5x26.26.图图16是轮滑场地的截面示意图,平台距轴(水平)轴(水平)1818米,与轴交于点,与AB x y B 滑道交于点,且米.运动员(看成点)在方向获得速度米/秒(1)k y x x =≥A 1AB =BA v 后,从处向右下飞向滑道,点是下落路线的某位置是下落路线的某位置..忽略空气阻力,实验表明:A M ,的竖直距离(米)与飞出时间(秒)的平方成正比,且时;,M A h 1t =5h =M 的水平距离是米.A vt (1)求,并用表示;k h (2)设用表示点的横坐标和纵坐标,并求与的关系式(不写的取值5v =M x y y x x范围),及时运动员与正下方滑道的竖直距离;13y (3)若运动员甲、乙同时从处飞出,速度分别是5米/秒、米/秒.当甲距轴1.8米,A v 乙x 且乙位于甲右侧超过4.5米的位置时,直接写出的值及的范围的范围..v 乙。

2018年吉林省中考数学试卷(答案+解析)

2018年吉林省中考数学试卷(答案+解析)

2018年吉林省中考数学试卷一、选择题(共6小题,每小题2分,满分12分) 1.(2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣32.(2分)如图是由4个相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .3.(2分)下列计算结果为a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 2)3D .(﹣a 2)34.(2分)如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°5.(2分)如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB =9,BC =6,则△DNB 的周长为( )A .12B .13C .14D .156.(2分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .{x +y =352x +2y =94B .{x +y =354x +2y =94C .{x +y =354x +4y =94D .{x +y =352x +4y =94二、填空题(共8小题,每小题3分,满分24分) 7.(3分)计算:√16= .8.(3分)买单价3元的圆珠笔m 支,应付 元.9.(3分)若a +b =4,ab =1,则a 2b +ab 2= .10.(3分)若关于x 的一元二次方程x 2+2x ﹣m =0有两个相等的实数根,则m 的值为 .11.(3分)如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为 .12.(3分)如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B =∠C =90°,测得BD =120m ,DC =60m ,EC =50m ,求得河宽AB = m .13.(3分)如图,A ,B ,C ,D 是⊙O 上的四个点,AB ̂=BC ̂,若∠AOB =58°,则∠BDC = 度.14.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =12,则该等腰三角形的顶角为 度.三、解答题(共12小题,满分84分)15.(5分)某同学化简a (a +2b )﹣(a +b )(a ﹣b )出现了错误,解答过程如下: 原式=a 2+2ab ﹣(a 2﹣b 2) (第一步) =a 2+2ab ﹣a 2﹣b 2(第二步) =2ab ﹣b 2 (第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出此题正确的解答过程.16.(5分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.17.(5分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(5分)在平面直角坐标系中,反比例函数y=kx(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(7分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D 1; 第二步:点D 1绕点B 顺时针旋转90°得到点D 2; 第三步:点D 2绕点C 顺时针旋转90°回到点D . (1)请用圆规画出点D →D 1→D 2→D 经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π).21.(7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平课题 测量学校旗杆的高度活动目的 运用所学数学知识及方法解决实际问题 方案示意图测量步骤(1)用 测得∠ADE =α;(2)用 测得BC =a 米,CD =b 米.计算过程22.(7分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411频数种类甲30013乙0150分析数据:表二种类平均数中位数众数方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2√3cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.26.(10分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.2018年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3【分析】根据“两数相乘,同号得正”即可求出结论.【解答】解:(﹣1)×(﹣2)=2.故选:A.2.(2分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.3.(2分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.4.(2分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.5.(2分)如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB =9,BC =6,则△DNB 的周长为( )A .12B .13C .14D .15【分析】由D 为BC 中点知BD =3,再由折叠性质得ND =NA ,从而根据△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD 可得答案.【解答】解:∵D 为BC 的中点,且BC =6, ∴BD =12BC =3,由折叠性质知NA =ND ,则△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD =3+9=12,故选:A .6.(2分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .{x +y =352x +2y =94B .{x +y =354x +2y =94C .{x +y =354x +4y =94D .{x +y =352x +4y =94【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【解答】解:由题意可得, {x +y =352x +4y =94, 故选:D .二、填空题(共8小题,每小题3分,满分24分) 7.(3分)计算:√16= 4 .【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16, ∴√16=4,故答案为4.8.(3分)买单价3元的圆珠笔m 支,应付 3m 元. 【分析】根据总价=单价×数量列出代数式. 【解答】解:依题意得:3m .故答案是:3m .9.(3分)若a +b =4,ab =1,则a 2b +ab 2= 4 .【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.10.(3分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1.【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.11.(3分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可.【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB=√32+42=5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),12.(3分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴ABEC=BDCD,AB=BD×ECCD,解得:AB =120×5060=100(米).故答案为:100.13.(3分)如图,A ,B ,C ,D 是⊙O 上的四个点,AB ̂=BC ̂,若∠AOB =58°,则∠BDC = 29 度.【分析】根据∠BDC =12∠BOC 求解即可;【解答】解:连接OC .∵AB̂=BC ̂, ∴∠AOB =∠BOC =58°, ∴∠BDC =12∠BOC =29°,故答案为29.14.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =12,则该等腰三角形的顶角为 36 度.【分析】根据等腰三角形的性质得出∠B =∠C ,根据三角形内角和定理和已知得出5∠A =180°,求出即可.【解答】解:∵△ABC 中,AB =AC , ∴∠B =∠C ,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =12,∴∠A :∠B =1:2, 即5∠A =180°, ∴∠A =36°,故答案为:36.三、解答题(共12小题,满分84分)15.(5分)某同学化简a (a +2b )﹣(a +b )(a ﹣b )出现了错误,解答过程如下: 原式=a 2+2ab ﹣(a 2﹣b 2) (第一步) =a 2+2ab ﹣a 2﹣b 2(第二步) =2ab ﹣b 2 (第三步)(1)该同学解答过程从第 二 步开始出错,错误原因是 去括号时没有变号 ;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第 二步开始出错,错误原因是 去括号时没有变号; 故答案是:二;去括号时没有变号;(2)原式=a 2+2ab ﹣(a 2﹣b 2) =a 2+2ab ﹣a 2+b 2=2ab +b 2.16.(5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE =CF ,求证:△ABE ≌△BCF .【分析】根据正方形的性质,利用SAS 即可证明; 【解答】证明:∵四边形ABCD 是正方形, ∴AB =BC ,∠ABE =∠BCF =90°,在△ABE 和△BCF 中, {AB =BC∠ABE =∠BCF BE =CF, ∴△ABE ≌△BCF .17.(5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率. 【解答】解:列表得:A B C A (A ,A ) (B ,A ) (C ,A ) B (A ,B ) (B ,B ) (C ,B ) C(A ,C )(B ,C )(C ,C )由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种, 所以该同学两次摸出的小球所标字母相同的概率=39=13.18.(5分)在平面直角坐标系中,反比例函数y =kx (k ≠0)图象与一次函数y =x +2图象的一个交点为P ,且点P 的横坐标为1,求该反比例函数的解析式.【分析】先求出P 点的坐标,再把P 点的坐标代入反比例函数的解析式,即可求出答案. 【解答】解:∵把x =1代入y =x +2得:y =3, 即P 点的坐标是(1,3),把P 点的坐标代入y =kx 得:k =3,即反比例函数的解析式是y =3x.19.(7分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示 甲队每天修路的长度 ,庆庆同学所列方程中的y 表示 甲队修路400米所需时间或乙队修路600米所需时间 ;(2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题.【分析】(1)根据两人的方程思路,可得出:x 表示甲队每天修路的长度;y 表示甲队修路400米所需时间或乙队修路600米所需时间;(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米;(3)选择两个方程中的一个,解之即可得出结论.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程, ∴x 表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程, ∴y 表示甲队修路400米所需时间或乙队修路600米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间或乙队修路600米所需时间. (2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可). (3)选冰冰的方程:400x=600x+20,去分母,得:400x +8000=600x , 移项,x 的系数化为1,得:x =40, 检验:当x =40时,x 、x +20均不为零, ∴x =40.答:甲队每天修路的长度为40米. 选庆庆的方程:600y﹣400y=20,去分母,得:600﹣400=20y , 将y 的系数化为1,得:y =10, 经验:当y =10时,分母y 不为0, ∴y =10, ∴400y=40.答:甲队每天修路的长度为40米.20.(7分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D 1; 第二步:点D 1绕点B 顺时针旋转90°得到点D 2; 第三步:点D 2绕点C 顺时针旋转90°回到点D . (1)请用圆规画出点D →D 1→D 2→D 经过的路径; (2)所画图形是 轴对称 对称图形; (3)求所画图形的周长(结果保留π).【分析】(1)利用旋转变换的性质画出图象即可; (2)根据轴对称图形的定义即可判断; (3)利用弧长公式计算即可;【解答】解:(1)点D →D 1→D 2→D 经过的路径如图所示:(2)观察图象可知图象是轴对称图形, 故答案为轴对称.(3)周长=4×90⋅π⋅4180=8π.21.(7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平课题 测量学校旗杆的高度活动目的 运用所学数学知识及方法解决实际问题方案示意图测量步骤 (1)用 测角仪 测得∠ADE =α; (2)用 皮尺 测得BC =a 米,CD =b 米.计算过程【分析】在Rt △ADE 中,求出AE ,再利用AB =AE +BE 计算即可; 【解答】解:(1)用 测角仪测得∠ADE =α; (2)用 皮尺测得BC =a 米,CD =b 米. (3)计算过程:∵四边形BCDE 是矩形, ∴DE =BC =a ,BE =CD =b ,在Rt △ADE 中,AE =ED •tan α=a •tan α,∴AB =AE +EB =a •tan α+b .22.(7分)为了调查甲、乙两台包装机分装标准质量为400g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411频数种类甲303013乙031510分析数据:表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【分析】整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义,方差小分装质量较为稳定即可得.【解答】解:整理数据:表一质量(g)393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411频数种类甲303013乙031510分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.23.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为 4000 m ,小玲步行的速度为 100 m /min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y 与时间x 之间的函数关系式; (3)两人相遇实际上是函数图象求交点.【解答】解:(1)结合题意和图象可知,线段CD 为小东路程与时间函数图象,折线O ﹣A ﹣B 为小玲路程与时间图象 则家与图书馆之间路程为4000m ,小玲步行速度为2000÷20=100m /s 故答案为:4000,100(2)∵小东从离家4000m 处以300m /min 的速度返回家,则xmin 时, ∴他离家的路程y =4000﹣300x 自变量x 的范围为0≤x ≤403(3)由图象可知,两人相遇是在小玲改变速度之前 ∴4000﹣300x =200x 解得x =8∴两人相遇时间为第8分钟.24.(8分)如图①,在△ABC 中,AB =AC ,过AB 上一点D 作DE ∥AC 交BC 于点E ,以E 为顶点,ED 为一边,作∠DEF =∠A ,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,▱ADEF 的形状为 菱形 ;(3)延长图①中的DE 到点G ,使EG =DE ,连接AE ,AG ,FG ,得到图②,若AD =AG ,判断四边形AEGF 的形状,并说明理由.【分析】(1)根据平行线的性质得到∠BDE =∠A ,根据题意得到∠DEF =∠BDE ,根据平行线的判定定理得到AD ∥EF ,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE =12AC ,得到AD =DE ,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE ⊥EG ,根据有一个角是直角的平行四边形是矩形证明. 【解答】(1)证明:∵DE ∥AC , ∴∠BDE =∠A , ∵∠DEF =∠A , ∴∠DEF =∠BDE ,∴AD ∥EF ,又∵DE ∥AC , ∴四边形ADEF 为平行四边形;(2)解:▱ADEF 的形状为菱形, 理由如下:∵点D 为AB 中点, ∴AD =12AB ,∵DE ∥AC ,点D 为AB 中点, ∴DE =12AC , ∵AB =AC , ∴AD =DE ,∴平行四边形ADEF 为菱形, 故答案为:菱形; (3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形, ∴AF ∥DE ,AF =DE , ∵EG =DE ,∴AF ∥DE ,AF =GE ,∴四边形AEGF 是平行四边形, ∵AD =AG ,EG =DE , ∴AE ⊥EG ,∴四边形AEGF 是矩形.25.(10分)如图,在矩形ABCD 中,AB =2cm ,∠ADB =30°.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB ﹣BC 运动,在AB 上的速度是2cm /s ,在BC 上的速度是2√3cm /s ;点Q 在BD 上以2cm /s 的速度向终点D 运动,过点P 作PN ⊥AD ,垂足为点N .连接PQ ,以PQ ,PN 为邻边作▱PQMN .设运动的时间为x (s ),▱PQMN 与矩形ABCD 重叠部分的图形面积为y (cm 2) (1)当PQ ⊥AB 时,x =23s ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.【分析】(1)当PQ ⊥AB 时,BQ =2PB ,由此构建方程即可解决问题; (2)分三种情形分别求解即可解决问题; (3)分两种情形分别求解即可解决问题; 【解答】解:(1)当PQ ⊥AB 时,BQ =2PB , ∴2x =2(2﹣2x ), ∴x =23s .故答案为23s .(2)①如图1中,当0<x ≤23时,重叠部分是四边形PQMN .y =2x ×√3x =2√3x 2. ②如图②中,当23<x ≤1时,重叠部分是四边形PQEN .y =12(2﹣x +2tx ×√3x =√32x 2+√3x ③如图3中,当1<x <2时,重叠部分是四边形PNEQ .y =12(2﹣x +2)×[√3x ﹣2√3(x ﹣1)]=√32x 2﹣3√3x +4√3; 综上所述,y ={2√3x 2(0<x ≤23)√32x 2+√3x(23<x ≤1)√32x 2−3√3x +4√3(1<x <2).(3)①如图4中,当直线AM 经过BC 中点E 时,满足条件.则有:tan ∠EAB =tan ∠QPB ,∴√32=√3x 2−2x−x, 解得x =25.②如图5中,当直线AM 经过CD 的中点E 时,满足条件.此时tan ∠DEA =tan ∠QPB ,∴2√31=√3x2−2x−x, 解得x =47,综上所述,当x =25或47时,直线AM 将矩形ABCD 的面积分成1:3两部分.26.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a =﹣1时,抛物线顶点D 的坐标为 (﹣1,4) ,OE = 3 ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设∠DEO =β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【分析】(1)求出直线CD 的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题;【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC=√3OE=3√3,∴﹣3a=3√3,∴a=﹣√3,∴45°≤β≤60°,a的取值范围为﹣√3≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,DM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).第21页(共21页)。

江苏省淮安市2018年中考数学真题试题(含答案)

江苏省淮安市2018年中考数学真题试题(含答案)

江苏省淮安市2018年中考数学真题试题注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .C .D .32.地球与太阳的平均距离大约为150 000 000km,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .74.若点A(﹣2,3)在反比例函数的图像上,则k 的值是A .﹣6B .﹣2C .2D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B.45° C .55° D.65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是 A .20 B .24 C .40 D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是 A .70° B.80° C.110° D.140°第II 卷 (选择题 共126分)13-13ky x =二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:= . 10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt△ABC 中,∠C=90°,AC =3,BC =5,分别以点A 、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:(2)解不等式组:23()a 32x y =⎧⎨=⎩21y x =-1202sin 45(1)2π︒+-+-.18.(本题满分8分)先化简,再求值:,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数. 21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.35131212x x x x -<+⎧⎪⎨--≥⎪⎩212(1)11aa a -÷+-(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =S△BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为2,∠B=50°,AC =4.8,求图中阴影部分的面积.131.414≈ 1.732≈25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为 件;(2)当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润. 26.(本题满分12分)如果三角形的两个内角与满足=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °; (2)如图①,在Rt△ABC 中,∠ACB=90°,AC =4,BC =5,若AD 是∠BAC 的平分线,不难证明△ABD 是“准互余三角形”.试问在边BC 上是否存在点E (异于点D ),使得△ABE 也是“准互余三角形”?若存在,请求出BE 的长;若不存在,请说明理由.(3)如图②,在四边形ABCD 中,AB =7,CD =12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC 的长.αβ2αβ+27.(本题满分12分)如图,在平面直角坐标系中,一次函数的图像与x 轴和y 轴分别相交于A 、B 两点.动点P 从点A 出发,在线段AO 上以每秒3个单位长度的速度向点O 作匀速运动,到达点O 停止运动.点A 关于点P 的对称点为点Q ,以线段PQ 为边向上作正方形PQMN .设运动时间为t 秒.(1)当t =秒时,点Q 的坐标是 ;(2)在运动过程中,设正方形PQMN 与△AOB 重叠部分的面积为S ,求S 与t 的函数表达式;(3)若正方形PQMN 对角线的交点为T ,请直接写出在运动过程中OT +PT 的最小值.243y x =-+13参考答案一、选择题三、解答题17.(1)1;(2).18.化简结果为,计算结果为﹣2.19.先证△AOE≌△COF,即可证出AE =CF . 20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名. 21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2);(2)点A 落在第四象限的概率为.22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米. 24.(1)先根据“SSS”证明△AEO≌△DEO,从而得到∠ODE=∠OAE=90°,即可判断出直线DE 与⊙O 相切;(2)阴影部分面积为:. 25.(1)180;13x ≤<12a -13241059π-(2), ∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为(思路:利用△CAE∽△CBA 即可);(3)20,思路:作AE⊥CB 于点E ,CF⊥AB 于点F ,先根据△FCB∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20. 27.(1)(4,0);(2);(3)OT +PT.2[20010(50)](40)10(55)2250y x x x =---=--+9522233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩祝福语祝你考试成功!。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档