自动控制实验--matlab
(最新版)自动控制原理MATLAB仿真实验报告
实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。
2、;表示时间范围0---Tn。
3、;表示时间范围向量T指定。
4、;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 运行结果: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理 matlab实验报告
自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。
三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。
四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。
会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。
(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。
1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。
幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。
自动控制原理MATLAB仿真实验报告
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
matlab课程设计自动控制原理
matlab课程设计自动控制原理一、教学目标本课程的目标是使学生掌握自动控制原理的基本概念和MATLAB在自动控制领域的应用。
通过本课程的学习,学生应能理解自动控制系统的组成、工作原理和设计方法,熟练运用MATLAB进行自动控制系统的分析和仿真。
知识目标:学生通过本课程的学习,应掌握自动控制基本理论、MATLAB基本操作和自动控制系统仿真方法。
技能目标:学生应能熟练使用MATLAB进行自动控制系统的建模、仿真和分析,具备一定的实际问题解决能力。
情感态度价值观目标:培养学生对自动控制技术的兴趣和热情,提高学生运用现代技术手段进行科学研究的能力,培养学生的创新精神和团队合作意识。
二、教学内容本课程的教学内容主要包括自动控制原理的基本概念、MATLAB的基本操作和自动控制系统的仿真方法。
1.自动控制原理:包括自动控制系统的组成、数学模型、稳定性分析、控制器设计和校正方法等。
2.MATLAB基本操作:包括MATLAB的安装和启动、变量和数据类型、矩阵运算、编程和函数的使用等。
3.自动控制系统仿真:包括MATLAB仿真环境的设置、Simulink的介绍和应用、控制系统仿真的方法和步骤等。
三、教学方法本课程采用讲授法、案例分析法和实验法相结合的教学方法。
1.讲授法:通过教师的讲解,使学生掌握自动控制原理的基本概念和MATLAB的基本操作。
2.案例分析法:通过分析实际案例,使学生理解和掌握自动控制系统的建模和仿真方法。
3.实验法:通过上机实验,使学生熟练掌握MATLAB自动控制系统仿真工具的使用,提高学生的实际操作能力。
四、教学资源本课程的教学资源包括教材、多媒体资料和实验室设备。
1.教材:选用《自动控制原理》和《MATLAB基础教程》作为主要教材,为学生提供系统的理论知识和实践指导。
2.多媒体资料:制作课件、教学视频等,以图文并茂的形式展示自动控制原理和MATLAB的操作方法。
3.实验室设备:提供计算机和MATLAB软件,供学生进行自动控制系统的仿真实验。
利用MATLAB辅助自动控制原理实验
0 引 言
MATL AB中 的 控 制 系 统 工 具 箱 提 供 了 可 视 工 具 S S I O.
自动 化 是 我 国 六 大 高 新 技 术 之 一 , 实 验 课 是 <自动 控 制 原 而 理 ) 个 教 学 过 程 中 不 可 缺 少 的 重 要 组 成 部 分 , 理 论 和 工 程 实 整 是
灵活的优 点。
2 利 用 MA L B进 行 自动 控 制 原 理 计 算 机 辅 助 实验 T A
( 自动 控 制 原 理 > 主要 有 五 个 实 验 , 们 分 别 是 : 验 一 、 型 它 实 典
环 节 及 其 阶跃 响 应 ; 验 二 、 阶 系 统 的 阶 跃 响 应 ; 验 三 、 阶 实 二 实 二 系统 的 频 率 响 应 ; 验 四 、 性 系 统 稳 定 性 的 研 究 ; 验 五 、 统 实 线 实 系 的 串 联 校 正 。对 于 实 验 一 、 、 , 求 学 生 用 L v w r S m— 二 三 要 Tli e 或 i e uik在 计 算 机 上 进 行 仿 真 实 验 , 用 仿 真 结 果 指 导 学 生 在 学 习 l n 并 机上 进 行 实 物 实 验 , 生 在 XMN 一2型 学 习 机 上 完 成 硬 件 电 路 学 的搭 接 后 , 可 根 据 仿 真 所 绘 制 出 的 理 论 曲 线 选 择 采 集 周 期 和 幅 就 值 , 而 快 速 地 得 到 实 测 曲 线 , 大 地 减 少 了 调 试 时 间 。 对 于 实 从 大 验 四 、 , 生 可 用 S S TO 五 学 I O OL设 计 出 实 验 参 数 , 原 来 被 动 接 将 受 实 验 变 为 主 动 设 计 实 验 参 数 , 动 了 学 生 的积 极 性 和 创 造 性 。 调
自动控制原理实验
自动控制原理实验实验一 控制系统的数学模型一、 实验目的1. 熟悉Matlab 的实验环境,掌握Matlab 建立系统数学模型的方法。
2. 学习构成典型环节的模拟电路并掌握典型环节的软件仿真方法。
3. 学习由阶跃响应计算典型环节的传递函数。
二、 实验内容1. 已知图1.1中()G s 和()H s 两方框相对应的微分方程分别是:()610()20()()205()10()dc t c t e t dtdb t b t c t dt+=+=且满足零初始条件,用Matlab 求传递函数()()C s R s 和()()E s R s 。
图1.1 系统结构图2. 构成比例环节、惯性环节、积分环节、比例-积分环节、比例-微分环节和比例-积分-微分环节的模拟电路并用Matlab 仿真;3. 求以上各个环节的单位阶跃响应。
三、 实验原理1. 构成比例环节的模拟电路如图1.2所示,该电路的传递函数为:21().R G s R =-图1.2 比例环节的模拟电路原理图2. 构成惯性环节的模拟电路如图1.3所示,该电路的传递函数为:221(),,.1R KG s K T R C Ts R =-==+图1.2 惯性环节的模拟电路原理图3. 构成积分环节的模拟电路如图1.3所示,该电路的传递函数为:1(),.G s T RC Ts==图1.3 积分环节的模拟电路原理图4. 构成比例-积分环节的模拟电路如图1.4所示,该电路的传递函数为:2211()1,,.R G s K K T R C Ts R ⎛⎫=-+== ⎪⎝⎭图1.4 比例-积分环节的模拟电路原理图5. 构成比例-微分环节的模拟电路如图1.5所示,该电路的传递函数为:221()(1),,.R G s K Ts K T R C R =-+==图1.5 比例-微分环节的模拟电路原理图6. 构成比例-积分-微分环节的模拟电路如图1.6所示,该电路的传递函数为:121211212121121()1(1)()()()()()p d i f p i i ff i f f f f f d f f G s K T s T s R R R R C K R R C T R CT R R C R R C R R R R R R CC T R R C R R C⎛⎫=++ ⎪⎝⎭++=+==+++++=+++图1.6 比例-积分-微分环节的模拟电路原理图四、实验要求1.画出各环节的模拟电路图。
自动控制原理实验报告--控制系统的稳定性和稳态误差
本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。
二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。
即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。
当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。
conv( )函数的调用是允许多级嵌套的。
例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。
2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。
判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。
对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。
MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。
《自动控制原理》Matlab求解控制系统频域分析实验
《自动控制原理》Matlab求解控制系统频域分析实验
一、实验目的
1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、Bode图的基本方法。
3、掌握典型环节的频率特性。
二、实验仪器
Matlab2014b版
三、实验原理
1.奈奎斯特图(幅相频率特性图)
MATLAB为用户提供了专门用于绘制奈奎斯特图的函数nyquist
axis([-2,0.4,-1.5,1.5]);
k=500;
num=[1,10];
den=conv([1,0],conv([1,1],conv([1,20],[h,50])));
w=logspace(-1,3,200)
bode(k*num,den,w);
grid;
五、实验原始数据记录与数据处理
六、实验结果与分析讨论
范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:
[mag,phase,w]=bode(num,den,w)
四、实验内容及步骤
z=[]:
p=[0,-1,-2]:
k=5;
g=zpk(z,p,k):
nyquist(g);
w=0.5:0.1:10:
figure(2):
nyquist(g:w);
自动实验一——典型环节的MATLAB仿真报告
自动实验一——典型环节的MATLAB仿真报告引言:典型环节的MATLAB仿真是一种常见的模拟实验方法,通过使用MATLAB软件进行建模和仿真,可以有效地研究和分析各种复杂的物理系统和控制系统。
本报告将介绍一个典型环节的MATLAB仿真实验,包括实验目的、实验原理、实验步骤、实验结果和讨论等内容。
一、实验目的本实验旨在通过MATLAB仿真实验,研究和分析一个典型环节的动态特性,深入了解其响应规律和控制方法,为实际系统的设计和优化提供理论支持。
二、实验原理典型环节是控制系统中的重要组成部分,一般包括惯性环节、惯性耦合和纯滞后等。
在本实验中,我们将重点研究一个惯性环节。
惯性环节是一种常见的动态系统,其特点是系统具有自身的动态惯性,对输入信号的响应具有一定的滞后效应,并且在输入信号发生变化时有一定的惯性。
三、实验步骤1.建立典型环节的数学模型。
根据实际情况,我们可以选择不同的数学模型描述典型环节的动态特性。
在本实验中,我们选择使用一阶惯性环节的传递函数模型进行仿真。
2.编写MATLAB程序进行仿真。
利用MATLAB软件的控制系统工具箱,我们可以方便地建立惯性环节的模型,并利用系统仿真和分析工具进行仿真实验和结果分析。
3.进行仿真实验。
选择合适的输入信号和参数设置,进行仿真实验,并记录仿真结果。
4.分析实验结果。
根据仿真结果,可以分析典型环节的动态响应特性,比较不同输入信号和控制方法对系统响应的影响。
四、实验结果和讨论通过以上步骤,我们成功地完成了典型环节的MATLAB仿真实验,并获得了仿真结果。
通过对仿真结果的分析,我们可以得到以下结论:1.惯性环节的响应规律。
惯性环节的响应具有一定的滞后效应,并且对输入信号的变化具有一定的惯性。
随着输入信号的变化速度增加,惯性环节的响应时间呈指数级减小。
2.稳态误差与控制增益的关系。
控制增益对稳态误差有重要影响,适当调整控制增益可以减小稳态误差。
3.不同输入信号的影响。
自动控制原理MATLAB分析与设计-仿真实验报告
兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电气工程与信息工程学院班级:电气工程及其自动化四班姓名:学号:时间:年月日电气工程与信息工程学院《自动控制原理》MATLAB 分析与设计仿真实验任务书(2014) 一、仿真实验内容及要求 1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink 的使用。
2.各章节实验内容及要求1)第三章 线性系统的时域分析法∙ 对教材第三章习题3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;∙ 对教材第三章习题3-9系统的动态性能及稳态性能通过仿真进行分析,说明不同控制器的作用;∙ 在MATLAB 环境下选择完成教材第三章习题3-30,并对结果进行分析; ∙ 在MATLAB 环境下完成英文讲义P153.E3.3;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,在100=a K 时,试采用微分反馈控制方法,并通过控制器参数的优化,使系统性能满足%5%,σ<3250,510s ss t ms d -≤<⨯等指标。
2)第四章 线性系统的根轨迹法∙ 在MATLAB 环境下完成英文讲义P157.E4.5; ∙ 利用MATLAB 绘制教材第四章习题4-5;∙ 在MATLAB 环境下选择完成教材第四章习题4-10及4-17,并对结果进行分析;∙ 在MATLAB 环境下选择完成教材第四章习题4-23,并对结果进行分析。
3)第五章 线性系统的频域分析法∙ 利用MATLAB 绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正∙ 利用MATLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能;∙ 利用MATLAB 完成教材第六章习题6-22控制器的设计及验证;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,试采用PD控制并优化控制器参数,使系统性能满足给定的设计指标ms t s 150%,5%<<σ。
自动控制原理MATLAB实验报告
实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理1.比例环节的传递函数为KRKRRRZZsG200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK图形如图1所示。
2.惯性环节的传递函数为ufCKRKRsCRRRZZsG1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK图形如图2所示。
图1 比例环节的模拟电路及SIMULINK图形图2惯性环节的模拟电路及SIMULINK图形3.积分环节(I)的传递函数为ufCKRssCRZZsG1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK图形如图3所示。
4.微分环节(D)的传递函数为ufCKRssCRZZsG10,100)(111112==-=-=-=ufCC01.012=<<其对应的模拟电路及SIMULINK图形如图4所示。
5.比例+微分环节(PD)的传递函数为)11.0()1()(111212+-=+-=-=ssCRRRZZsGufCCufCKRR01.010,10012121=<<===其对应的模拟电路及SIMULINK图形如图5所示。
图3 积分环节的模拟电路及及SIMULINK图形图4 微分环节的模拟电路及及SIMULINK图形6.比例+积分环节(PI)的传递函数为)11(1)(11212sRsCRZZsG+-=+-=-=ufCKRR10,100121===其对应的模拟电路及SIMULINK图形如图6所示。
三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。
自动控制原理MATLAB仿真实验报告
实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
广东工业大学《自动控制原理》MATLAB仿真实验指导书
自动控制原理MATLAB仿真实验指导书李明编写广东工业大学自动化学院自动控制系二〇一四年九月实验项目名称:实验一线性系统的时域响应实验项目性质:MATLAB仿真实验所属课程名称:自动控制原理实验计划学时:2学时一、实验目的1.熟悉控制系统MATLAB仿真的实验环境。
2.掌握使用MATLAB进行系统时域分析的方法,研究一阶系统和二阶系统的时域响应特性。
二、实验环境装有MATLAB6.5或以上版本的PC机一台。
三、实验内容和要求1.了解和掌握MATLAB中传递函数表达式及输出时域函数表达式。
2.利用MATALB观察和分析一阶系统的阶跃响应曲线,了解一阶系统的参数:时间常数对一阶系统动态特性的影响。
3.掌握典型二阶系统模拟电路的构成方法;研究二阶系统运动规律。
研究其重要参数:阻尼比对系统动态特性的影响,分析与超调量%、过渡过程时t的关系。
间s四、实验方法1.MATLAB中建立传递函数模型的相关函数(1)有理分式降幂排列形式: tf()(2)零极点增益模型: zpk()(3)传递函数的连接方式: series(), parallel(), feedback()2.MATLAB中分析系统稳定性的相关函数(1)利用pzmap()绘制连续系统的零极点图;(2)利用roots()求分母多项式的根来确定系统的极点3.MATLAB中分析线性系统的时域响应的相关函数(1)生成特定的激励信号的函数gensig( )(2) LTI 模型任意输入的响应函数lsim( ) (3) LTI 模型的单位冲激响应函数impulse( ) (4) LTI 模型的阶跃响应函数step( )五、 实验步骤1. 线性系统的稳定性分析(1) 若线性系统的闭环传递函数为225()425G s ss,试绘制其零极点分布图,并据此判断系统的稳定性。
(2) 若线性系统的闭环传递函数为229(0.21)()( 1.29)s s G s s s s ,求出该闭环传递函 数的所有极点,并据此判断系统的稳定性。
自动控制 Matlab仿真实验一
仿真实验○一:控制系统的时域分析一、实验目的:1.观察控制系统的时域响应;2.记录单位阶跃响应曲线;3.掌握时间响应分析的一般方法;4.初步了解控制系统的调节过程。
二、实验步骤:1.开机进入Matlab6.1运行界面。
2.Matlab指令窗:"Command Window". 运行指令:con_sys; 进入本次实验主界面。
3.分别双击上图中的三个按键,依次完成实验内容。
4.本次实验的相关Matlab函数:tf([num],[den])可输入一传递函数。
step(G,t)在时间范围t秒内,画出阶跃响应图。
三、实验内容:1、观察一阶系统G=1/(T+s) 的时域响应:取不同的时间常数T,分别观察该系统的脉冲响应、阶跃响应、斜坡响应以及单位加速度响应。
结论:时间常数越小,响应越迅速。
2、二阶系统的时域性能分析:(1)调节时间滑块,使阶跃响应最终出现稳定值。
(2)结合系统的零极点图,观察自然频率与阻尼比对极点位置的影响。
(3)结合时域响应图,观察自然频率与阻尼比对阶跃响应的影响。
结论:阻尼比越小,极点越靠近虚轴,超调量减小,但响应速度变慢。
自然频率减小,极点靠近虚轴,响应速度减小,超调几乎不变。
(4)调节自然频率与阻尼比,要求:Tr<0.56s ,Tp<1.29s,Ts<5.46,超调不大于5%.记录下满足上述要求的自然频率与阻尼比。
调节完成之后的响应曲线如图。
此时自然频率为14.5872rad/sec,阻尼比为0.77456。
各项参数完全满足要求。
3、结合《自动控制原理》一书,Page 135,题3_10. 分别观察比例_微分与测速反馈对二阶系统性能的改善。
(1).按原始的调节参数输入,调节时间滑块,使阶跃响应最终出现稳定值。
(2)采用不同的G输入,观察各项性能指数。
结论:增大分母中间的参数,相当于增大系统阻尼比,从而减小超调量(3).分别取不同的K3,观察比例_微分控制对系统性能的改善。
北京理工大学自动控制matlab实验报告
MATLAB软件工具在控制系统分析和综合中的应用实验班级:01811001学号:1120100209姓名:戚煜华一、试验目的:1.了解MATLAB 这种强大的数学软件的基本特点和语言特点。
2.掌握控制系统在MATLAB 中的描述。
3.学会用MATLAB 的Control 工具箱中提供的仿真函数,例如连续时间系统在阶跃输入激励下的仿真函数step (),脉冲激励下的仿真函数impulse ()等。
4掌握典型一阶、二阶系统中参数的变化对阶跃响应曲线的影响;5掌握使用MATLAB 绘制控制系统的根轨迹图,并了解附加开环零、极点对闭环根轨迹的影响。
6.学会使用MATLAB 绘制系统频率特性曲线—乃氏图和伯德图,并利用MATLAB 求出系统的稳定裕度。
7.掌握系统串联校正后,开环指标及时域响应指标的变化规律。
二、试验设备:一台装有MATLAB 软件的电脑三、试验内容:2.以传函11)(+=Ts s G 为例,令T=0.1,1,10,绘制其单位阶跃响应曲线,并总结给出惯性时间常数对阶跃响应影响的结论。
T=0.1时的单位阶跃响应曲线T=1时的单位阶跃响应曲线T=10时的单位阶跃响应曲线结论:惯性时间常数T越大,上升时间、调节时间和延迟时间越长。
3.以传函2222)(nn n s s s G ωξωω++=为对象,令n ω=1,ξ=0,0.2,0.5,1,1.5分别绘制阶跃响应曲线。
令ξ=0.7,n ω=0.1,1,10分别绘制阶跃响应曲线,进行ξ、n ω对二阶阶跃响应的影响分析。
n ω=1,ξ=0:分析:n ω=1时,ξ=0,零阻尼,响应为无阻尼等幅振荡;ξ=0.2和0.5,欠阻尼,随着ξ的增大,振荡幅值减小,响应速度变慢,超调量减小;ξ=1,临界阻尼,响应变慢,超调和振荡消失;ξ=1.5,过阻尼,系统没有超调,且过渡时间较长。
综上所述,ξ越大,振荡幅值越小,过渡时间越长;ξ>=1以后,系统没有了超调和振荡。
自动控制原理实验1-6
实验一MATLAB 仿真基础一、实验目的:(1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。
(2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。
(3)掌握使用MATLAB 命令化简模型基本连接的方法。
(4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。
二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den )两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。
则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。
四、实验内容:1.已知系统传递函数,建立传递函数模型2.已知系统传递函数,建立零极点增益模型3.将多项式模型转化为零极点模型12s 2s s 3s (s)23++++=G )12()1()76()2(5)(3322++++++=s s s s s s s s G 12s 2s s 3s (s)23++++=G )12()1()76()2(5)(3322++++++=s s s s s s s s G4. 已知系统前向通道的传递函数反馈通道的传递函数求负反馈闭环传递函数5、用系统Simulink 模型结构图化简控制系统模型 已知系统结构图,求系统闭环传递函数 。
自控实验-自动控制系统的MATLAB仿真分析
实验名称:自动控制系统的MATLAB仿真分析一、实验目的1.熟悉MATLAB在自动控制系统仿真中的应用;2.对自动控制系统进行仿真研究;3.掌握用MATLAB绘制自动控制系统根轨迹及对数频率特性的方法,掌握根据系统根轨迹及对数频率特性分析自动控制系统性能的方法。
二、实验设备1.计算机2.MATLAB软件三、实验内容1.用MATLAB提供的Simulink仿真软件工具对实验一中的各个典型环节及二阶系统进行阶跃响应仿真研究,将仿真获得的阶跃响应结果与模拟电路获得的阶跃响应结果进行比较。
(1)比例环节传递函数为200 ()51 G s=建立仿真模型,得到的输出结果如图所示:(2)积分环节传递函数为9.8 ()G ss=建立仿真模型,得到的输出结果如图所示:(3)一阶惯性环节传递函数为3.9 ()0.21G ss=+建立仿真模型,得到的输出结果如图所示:(4)比例积分环节传递函数为0.39781 ()0.102sG ss+=建立仿真模型,得到的输出结果如图所示:(5)比例微分环节传递函数为10 ()220s G ss=++建立仿真模型,得到的输出结果如图所示:(6)比例微分积分环节传递函数为51050 ()220sG ss s+=+++建立仿真模型,得到的输出结果如图所示:(7) 二阶系统的阶跃响应 ①0.325K ξ==传递函数为2()250()10250C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:②0.510K ξ==传递函数为2()100()10100C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:③0.75K ξ==传递函数为2()50()1050C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:2. 单位负反馈系统的开环传递函数为:(1)()()(21)k s G s H s s s +=+仿真绘制K 从0~∞变化时的根轨迹,分析系统的稳定性。
《自动控制原理》Matlab求解控制系统数学模型实验
《自动控制原理》Matlab求解控制系统数学模型实验一、实验目的(1)熟练运用matlab软件,求解控制系统数学模型(2)掌握传递函数在matlab中的表达方法(3)掌握matlab求解拉氏变换和反变换(4)掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器装配Matlab7.0的计算机三、实验原理传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den)其中,sys为系统传递函数。
如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。
MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。
四、实验内容及步骤2、用MATLAB展求拉氏变换和反变换在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 1263、连续系统稳定性分析的MATLAB函数roots函数:求多项式的根句法: r=roots(p)其中,r为由多项式根组成的列向量。
➢pole函数:计算系统的极点句法: p=pole(sys)其中,p为由极点组成的列向量zero函数:计算系统的零点句法: r=zero(sys) 或 [z, k]=zero(sys)其中,r为由多项式根组成的列向量。
k为零极点增益模型之增益pzmap函数:绘制零极点分布图句法: pzmap(sys) 或 [p,z] = pzmap(sys)五、实验原始数据记录与数据处理在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 126六、实验结果与分析讨论七、结论掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型.八、实验心得体会(可略)通过该试验我们熟悉 MATLAB 实验环境,掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型:完成实验的范例题和自我实践,并记录结果;编写M文件程序,完成简单连接的模型等效传递函数,并求出相应的零极点。
自动控制原理 - Matlab实验分析完整报告【优秀版】
利用MATLAB 进行自动控制原理的一些分析来自:我是痕痕的弟弟1、已知三阶系统开环传递函数为G (S )=)232(2723+++s s s ,利用MATLAB 程序,画出系统的奈圭斯特图,求出相应的幅值裕量和相位裕量。
解: 程序如下:G=tf(3.5,[1,2,3,2]); %得到系统的传递函数 subplot(1,2,1);nyquist(G); %绘制奈圭斯特曲线gridxlabel('Real Axis')ylabel('Image Axis')[Gm,Pm,Weg,Wep]=margin(G) %求幅值和相角余度及对应的频率G_ c=feedback(G,1); %构造单位反馈系统subplot(1,2,2); %绘制单位阶跃响应曲线step(G_ c)gridxlabel('Time(secs)')ylabel('Amplitude')显示结果:Gm=1.1433 Pm=7.1688 Wcg=1.7323 Wcp=1.6541系统的奈圭斯特图如下(从MATLAB截图显示):2、绘制二阶环节的伯特图。
解:MATLAB程序如下:figure('pos',[30 100 260 400],'color','w');axes('pos',[0.15 0.2 0.7 0.7]);wn=1w=[0,logspace(-2,2,200)]; %得到对数频率数组for zeta=[0.1 0.5 1 2] %分别绘制阻尼系数为0.1、0.5、1、2的二阶环节bode 图G=tf(1,[wn^-2 2*zeta/wn 1]); bode(G ,w); hold on end;grid程序运行后得到如下图(MATLAB 截图显示):从图中可以看出,频率w 接近Wn 时产生谐振,阻尼比的大小确定谐振峰值的大小,阻尼比越小,谐振峰值越大。
自动控制原理MATLAB仿真实验指导书(4个实验)
自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告课程名称:自动控制原理实验名称:基于MATLAB的线性系统的时域分析院(系):电子科学与工程学院专业:电子科学与技术姓名:学号:同组人员:实验时间:2013.11.15评定成绩:审阅教师:一、实验目的1.观察学习控制系统的时域(阶跃、脉冲、斜坡)响应。
2.记录时域响应曲线,给出时域指标。
3.掌握时域响应分析的一般方法。
二、实验容1、 二阶系统为10/();计算系统的闭环根、阻尼比、无阻尼振荡频率并做记录。
计算实际测取的峰值大小Cmax (tp )、峰值时间tp 、过渡时间ts 并与理论值比较。
2、 试作出以下系统的阶跃响应,并比较与原系统响应曲线的差别与特点,做出相应的实验分析结果。
(a ) H1(s )=(2s+1)/(2210s s ++),有系统零点情况。
(b ) H2(s )=(20.5s +)/2(210)s s ++,分子、分母多项式阶数相等。
(c ) H3(s )=s/2(210)s s ++,分子多项式零次项系数为零。
3、 已知单位反馈开环系统传递函数输入分别为r(t)=2t 和时,系统的响应曲线,分析稳态值与系统输入函数的关系三、实验原理分析和代码实验1实验要求计算系统的闭环根、阻尼比、无阻尼振荡频率。
系统的闭环根利用Matlab 的解方程命令即可求出,根据阻尼比和无阻尼振荡频率的定义,对照表达式,就可以得到,也能利用Matlab 相应命令得到。
实际测取的峰值大小、峰值时间、过渡时间可以分别由Matlab 相关命令得到。
理论的峰值大小、峰值时间和过渡时间由课本上给出的公式 Cmax (tp )=1+πξξ21--e,21ζωπωπ-==n d p t ,±2%误差宽度时的过渡时间n s t ζω4=分别计算出来。
Matlab 代码如下:222)(t t t r ++=)5)(S 1S 1.0(100)(++=S G )5)(S 1S 1.0(50)(++=S S G )1006()12(10)(22+++=S S S S S Gclc;clear;num=[10];den=[1,2,10];r=roots(den) %闭环根[w,z]=damp(den) %w为无阻尼震荡频率,z是阻尼比[y,x,t]=step(num,den);finalvalue=dcgain(num,den); %稳态值[Cmax,n]=max(y); %峰值Cmaxtp=t(n) %峰值时间k=length(t); %以下几行求过渡时间while (y(k)>0.98*finalvalue)&&(y(k)<1.02*finalvalue)k=k-1;endt(k)实验2实验要求做出三个系统的阶跃响应,直接利用Matlab的相关命令构造系统并且作图即可。
Matlab代码如下:clear;clc;b=[1,2,10];a1=10;a2=[2,1];a3=[1,0,0.5];a4=[1,0];[y1,x1,t1]=step(a1,b); %构造系统[y2,x2,t2]=step(a2,b);[y3,x3,t3]=step(a3,b);[y4,x4,t4]=step(a4,b);subplot(2,2,1); %画图plot(t1,y1);title('原系统阶跃响应');xlabel('时间');ylabel('幅值');subplot(2,2,2);plot(t2,y2);title('一系统阶跃响应');xlabel('时间');ylabel('幅值');subplot(2,2,3);plot(t3,y3);title('二系统阶跃响应');xlabel('时间');ylabel('幅值');subplot(2,2,4);plot(t4,y4);title('三系统阶跃响应');xlabel('时间');ylabel('幅值');实验3实验已知单位反馈开环系统传递函数,要求作出给定输入下的系统响应函数。
首先将开环传递函数转换为闭环传递函数,然后构造系统,利用Matlab里的lsim命令就能作出相应输入下的响应曲线了。
Matlab代码如下:clear;clc;b1=[100];a1=[0.1,1.5,105];sys1=tf(b1,a1); %构造闭环系统1b2=[50];a2=[0.1,1.5,5,50];sys2=tf(b2,a2); %构造闭环系统2b3=[20,10];a3=[1,6,100,20,10];sys3=tf(b3,a3); %构造闭环系统3t=0:0.05:50;e1=[2.*t]; %构造激励1e2=[t.*t+2.*t+2]; %构造激励2subplot(2,1,1);lsim(sys1,e1,t);title('0型系统,斜坡信号');xlabel('时间');ylabel('幅值');subplot(2,1,2);lsim(sys1,e2,t);title('0型系统,加速度信号');xlabel('时间');ylabel('幅值');%subplot(2,1,1);lsim(sys2,e1,t);title('1型系统,斜坡信号');xlabel('时间');ylabel('幅值');%subplot(2,1,2);lsim(sys2,e2,t);title('1型系统,加速度信号');xlabel('时间');ylabel('幅值');%subplot(2,1,1);lsim(sys3,e1,t);title('2型系统,斜坡信号');xlabel('时间');ylabel('幅值');%subplot(2,1,2);lsim(sys3,e2,t);title('2型系统,加速度信号');xlabel('时间');ylabel('幅值');四、实验结果和分析实验1:Matlab的输出结果为:r =-1.0000 + 3.0000i-1.0000 - 3.0000iw =3.16233.1623z =0.31620.3162Cmax =1.3509tp =1.0492 ts =3.5147理论计算数据:闭环根r=-1+3i,-1-3i无阻尼振荡频率ξ=0.3162峰值大小Cmax (tp )=1+ πξξ21--e =1.351峰值时间21ζωπωπ-==n d p t =1.047 过渡时间ns t ζω4==4通过比较可知,峰值大小和峰值时间实验值和理论值误差很小,但是过渡时间的理论值和实际值相差却很大,原因是计算理论值用的公式仅仅是近似公式而已,影响过渡时间的各个变量、各种因素比较多,实际的值的计算要复杂的多,仅仅采用包络线的方法有时会带来较大的误差。
实验2实验结果如图:一系统的稳态值为0.1,与原系统相比,增加了系统零点之后,调节时间减少了,说明系统响应加快了,但是超调量达到了400%左右,说明系统稳定系下降了很多。
二系统的稳态值为0.05,因为系统分子、分母多项式阶数相等,分解因式后会出现一个常数项,常数项对阶跃函数的响应还是阶跃函数,所以系统在初始状态时也有一个阶跃。
另外系统调节时间更少了,但是稳定性也更差了。
三系统分子多项式常数项为零,根据终值定理,系统稳态值为零。
实验3实验结果如图:r(t)=1r(t)=tr(t)=212t 0型系统 1/(10)ss e K =+ ss e =∞ ss e =∞ Ⅰ型系统 0ss e = 1/0ss e K = ss e =∞ Ⅱ型系统0ss e =0ss e =1/0ss e K =可以计算相应的稳态误差值K0 r(t)=2t 稳态误差r(t)= 2+2t+2t 稳态误差20ss e =∞ ss e =∞101*2k e ss ==0.2 ∞=∞++=++=0321120k e e e e ss ss ss ss 0.10ss e =3211200k e e e e ss ss ss ss ++=++==20 由于误差相对于幅值来说太小,所以在整体图上看不出误差的具体值,把图局部放大后如下:)5)(S 1S 1.0(100)(++=S G )5)(S 1S 1.0(50)(++=S S G )1006()12(10)(22+++=S S S S S G从图上可以读出误差确实为0.2从图上可以读出,误差确实为20。