概率论与数理统计(第三版)第七章习题
概率论与数理统计(第三版)第七章习题ppt课件
20. 设两位化验员A,B独立地对某种聚合物含氯量用相同的方法 各作10次测定,其测定值的样本方差依次为sA2=0.5419, sB2=0.6065, 设 A2, B2分别为A,B所测定的测定值总体的方差,设总体均为正态的, 设两样本独立,求方差比A2/B2的置信水平为0.95的置信区间.
解 两正态总体均值未知,方差比A2/B2的一个置信水平为1- 的 置信区间为 (S S B A 2 2F /2 (n 1 1 1 ,n 2 1 ),S S B A 2 2F 1 /2 (n 1 1 1 ,n 2 1 ))
E ( T 2 ) 1 5 [ E ( X 1 ) 2 E ( X 2 ) 3 E ( X 3 ) 4 E ( X 4 ) 1 5 ] ( 1 2 3 4 ) 2
E ( T 3 ) 1 4 [ E ( X 1 ) E ( X 2 ) E ( X 3 ) E ( X 4 ) 1 4 ] ( 1 1 1 1 )
3
的一个置信水平为0.95 的置信.区间为(5.558, 6.442).
9
16.随机地取某种炮弹9发做试验,得炮口速度的样本标准差s=11(m/s). 设炮口速度服从正态分布.求这种炮弹的炮口速度的标准差的置信 水平为0.95 的置信区间.
解 未知,的置信水平为1-的置信区间为 ( n1S , n1S ) 2/2(n1) 12/2(n1)
是两总体公共方差2的无偏估计量(SW2称为2的合并估计). 证 两正态总体N(1, 12 ) ,N(2, 22 )中, 12=22=2
而不管总体X服从什么分布,都有E(S2)=D(X), 因此E(S12)= E(S22)= 2,
E(S w 2n )1 E n 1 (2 ( n1 2 [1 n n )( 1 1 S 1 21 n )2 E (n (2 S 21 2 ) 1 )S (2 2 n 2 ) 1 )E (S 2 2 ) ]2
概率论与数理统计第七章习题答案
解:(1)已知ξ ~N (µ, σ 2 ),取统计量U = ξ − µ ,则有U ~ N (0,1),于给定的置信概率1−α ,
n
σ/ n
可求出uα
+ (4 − 0.8)2 ×1] = 0.831.
14.设ξ1,ξ2,……,ξn是取自总体ξ的一个样本,n ≥ 2,ξ ~ B(1, p),其中p为未知,0 < p < 1, 求证:
(1)ξ12是p的无偏估计; (2)ξ12不是p2的无偏估计;
(3) ξ1ξ2是p2的无偏估计。
证明:(1)Eξ
2 1
tα /2 (4) = 2.78, S = 11.937, n = 5代入(*),求得µ的置信区间为(1244.185,1273.815).
20.假定到某地旅游的一个游客的消费额ξ~N (µ,σ 2 ),且σ = 500元,今要对 该地每一个游客的平均消费额µ进行估计,为了能以不小于95%的置信概率 确信这估计的绝对误差小于50元,问至少需要随机调查多少个游客?
乐山师范学院化学学院
1.设总体ξ 有分布律
第七章 参数估计部分习题答案
ξ
−1
0
2
p
2θ
θ
1-3θ
其中 0 < θ < 1 为待估参数,求θ 的矩估计。 3
解:总体一阶矩为Eξ = (−1) × 2θ + 0×θ + 2× (1− 3θ ) = −8θ + 2.
用样本一阶矩代替总体一阶矩得ξ = -8θˆ + 2,则θˆ = 1 (2 − ξ ). 8
《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节
.............第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=.12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=- (2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-.2.8解:设应配备m 名设备维修人员。
《概率论与数理统计》第7章作业题
第七章
(2)
1 x x 0
1
1
dx
2
1
0
1 由此得 1 , 在上式中以 X 1
x dx , 1
代替1 ,
得到 的矩估计量和矩估计值分别为:
X x ˆ ˆ . 1 X , 1 x
解 由题设可得 1-2 的一个置信水平为1- 的置信区间为
第七章
1 1 ( X Y ) t 2 ( n1 n2 2) S w n1 n2
由题设1- = 0.95, /2 = 0.025, n1 = 4, n2 = 5, n1+ n2-2 = 7,查表和计算得
x1 0.14125,
3s12 0.00002475,
x2 0.1392,
2 2 3 s 4 s 2 2 1 2 4s2 0.0000208, s 2 ( 0 . 00255 ) w 7 t 2 (n1 n2 2) t 0.025 (7) 2.3646, x1 x2 0.00205,
1 0.95,n A n B 10 F (n A - 1, n B - 1) F0.025(9,9) 4.03,
2
1 F (n A - 1, n B - 1) F0.975(9,9) 14.03 2
第七章
2 2 / 故方差比 A B
得 1-2 的一个置信水平为0.95的置信区间为
1 1 ( x1 x2 ) t 2 ( n1 n2 2) s w n1 n2 1 1 0 . 00205 2 . 3646 0 . 00255 4 5 (0.002 0.004) (0.002,0.006).
概率论与数理统计课后习题答案 第七章
习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)
是
的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知
《概率论与数理统计》第三版王松桂科学出版社课后习题答案
第一章 事件与概率1.写出下列随机试验的样本空间。
(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。
(2)同时掷三颗骰子,记录三颗骰子点数之和。
(3)生产产品直到有10件正品为止,记录生产产品的总件数。
(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
(5)在单位正方形内任意取一点,记录它的坐标。
(6)实测某种型号灯泡的寿命。
解 (1)},100,,1,0{n i n i==Ω其中n 为班级人数。
(2)}18,,4,3{ =Ω。
(3)},11,10{ =Ω。
(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。
(5)=Ω{(x,y)| 0<x<1,0<y<1}。
(6)=Ω{ t | t ≥ 0}。
2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。
(1)A 发生,B 与C 不发生。
(2)A 与B 都发生,而C 不发生。
(3)A ,B ,C 中至少有一个发生。
(4)A ,B ,C 都发生。
(5)A ,B ,C 都不发生。
(6)A ,B ,C 中不多于一个发生。
(7)A ,B ,C 至少有一个不发生。
(8)A ,B ,C 中至少有两个发生。
解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃ 3.指出下列命题中哪些成立,哪些不成立,并作图说明。
(1)B B A B A = (2)AB B A =(3)AB B A B =⊂则若, (4)若 A B B A ⊂⊂则,(5)C B A C B A = (6) 若Φ=AB 且A C ⊂, 则Φ=BC 解 : (1) 成立,因为B A B B B A B B A ==))((。
概率论与数理统计教程第七章答案
.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。
成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。
,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。
,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。
解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。
气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。
概率论与数理统计习题及答案第七章
习题7-11. 选择题(1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X L 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()nii X nμ=-∑. (C) μ和σ2. (D) X 和211()nii X X n=-∑.解 选(D).(2) 设[0,]X U θ:, 其中θ>0为未知参数, 又12,,,n X X X L 为来自总体X 的样本, 则θ的矩估计量是( ) .(A) X . (B) 2X . (C) 1max{}i i nX ≤≤. (D) 1min{}i i nX ≤≤.解 选(B).2. 设总体X 的分布律为其中0<θ<12n , 试求θ的矩估计量.解 因为E (X )=(-2)×3θ+1×(1-4θ)+5×θ=1-5θ, 令15X θ-=得到θ的矩估计量为ˆ15X θ-=. 3. 设总体X 的概率密度为(1),01,(;)0, x x f x θθθ+<<=⎧⎨⎩其它.其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量;(2) θ的极大似然估计量. 解 总体 X 的数学期望为1101()()d (1)d 2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰. 令()E X X =, 即12X θθ+=+, 得参数θ的矩估计量为21ˆ1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为1(1),01,0,n n i i i x x L θθ=⎧⎛⎫+<<⎪ ⎪=⎨⎝⎭⎪⎩∏其它. 当0<x i <1(i =1,2,3,…,n )时, L >0且 ∑=++=ni ixn L 1ln )1ln(ln θθ,令1d ln ln d 1ni i L nx θθ==++∑=0, 得θ的极大似然估计值为 1ˆ1ln nii nxθ==--∑,而θ的极大似然估计量为 1ˆ1ln nii nXθ==--∑.4. 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求未知参数λ的矩估计量与极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏,取对数 1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆxλ=,λ的极大似然估计量为1ˆXλ=. 5. 设总体X 的概率密度为,01(,)1,120,x f x x θθθ<<=-⎧⎪⎨⎪⎩,≤≤,其它,其中θ(0<θ<1)是未知参数. X 1, X 2, …, X n 为来自总体的简单随机样本, 记N 为样本值12,,,n x x x L 中小于1的个数. 求: (1) θ的矩估计量; (2) θ的极大似然估计量.解 (1) 1213()d (1)d 2X E X x x x x θθθ==+-=-⎰⎰, 所以32X θ=-矩.(2) 设样本12,,n x x x L 按照从小到大为序(即顺序统计量的观测值)有如下关系:x (1) ≤ x (2) ≤…≤ x (N ) <1≤ x (N +1)≤ x (N +2)≤…≤x (n ) .似然函数为(1)(2)()(1)(2)(1),1()0,,N n N N N N n x x x x x x L θθθ-++-<=⎧⎨⎩L L ≤≤≤≤≤≤≤其它.考虑似然函数非零部分, 得到ln L (θ ) = N ln θ + (n − N ) ln(1−θ ),令d ln ()0d 1L N n N θθθθ-=-=-, 解得θ的极大似然估计值为ˆN nθ=. 习题7-21. 选择题: 设总体X 的均值μ与方差2σ都存在但未知, 而12,,,n X X X L 为X 的样本, 则无论总体X 服从什么分布, ( )是μ和2σ的无偏估计量.(A) 11nii X n=∑和211()nii X X n=-∑. (B)111nii X n =-∑和211()1nii X X n =--∑.(C)111nii X n =-∑和211()1nii X n μ=--∑. (D)11nii X n=∑和211()nii X nμ=-∑.解 选(D).2. 若1X ,2X ,3X 为来自总体2(,)X N μσ:的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 问k 等于多少?解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.3. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X的样本, 试证:2121()2X X -为2σ的无偏估计.证 因为22212112211[()][(2)]22E X X E X X X X -=-+2222112212[()2()()]22E X E X X E X σσ=-+==,所以2121()2X X -为2σ的无偏估计.习题7-31. 选择题(1) 总体未知参数θ的置信水平为0.95的置信区间的意义是指( ). (A) 区间平均含总体95%的值. (B) 区间平均含样本95%的值.(C) 未知参数θ有95%的可靠程度落入此区间. (D) 区间有95%的可靠程度含参数θ的真值. 解 选(D).(2) 对于置信水平1-α(0<α<1), 关于置信区间的可靠程度与精确程度, 下列说法不正确的是( ).(A) 若可靠程度越高, 则置信区间包含未知参数真值的可能性越大. (B) 如果α越小, 则可靠程度越高, 精确程度越低. (C) 如果1-α越小, 则可靠程度越高, 精确程度越低. (D) 若精确程度越高, 则可靠程度越低, 而1-α越小. 解 选(C )习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试, 取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300, 1200. 设灯泡寿命服从正态分布N (μ, 902), 取置信度为0.95, 试求当天生产的全部灯泡的平均寿命的置信区间.解 计算得到1141.11,x = σ2 =902. 对于α = 0.05, 查表可得/20.025 1.96z z ==α.所求置信区间为/2/2(,)(1141.11 1.96,1141.11 1.96)(1082.31,1199.91).x x z +=-=αα2. 为调查某地旅游者的平均消费水平, 随机访问了40名旅游者, 算得平均消费额为105=x 元, 样本标准差28=s 元. 设消费额服从正态分布. 取置信水平为0.95, 求该地旅游者的平均消费额的置信区间.解 计算可得105,x = s 2 =282.对于α = 0.05, 查表可得0.0252(1)(39) 2.0227t n t α-==.所求μ的置信区间为22((1),(1))(105 2.0227,105 2.0227)x n x n αα--+-=+=(96.045, 113.955).3. 假设某种香烟的尼古丁含量服从正态分布. 现随机抽取此种香烟8支为一组样本, 测得其尼古丁平均含量为18.6毫克, 样本标准差s =2.4毫克. 试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解 已知n =8, s 2 =2.42, α = 0.01, 查表可得220.0052(1)(7)20.278n αχχ-==, 220.99512(1)(7)0.989n αχχ--==, 所以方差σ 2的置信区间为2222122(1)(1)(,)(1)(1)n S n S n n ααχχ---=--22(81) 2.4(81) 2.4(,)20.2780.989-⨯-⨯=(1.988, 40.768). 4. 某厂利用两条自动化流水线灌装番茄酱, 分别从两条流水线上抽取样本:X 1,X 2,…,X 12及Y 1,Y 2,…,Y 17, 算出221210.6g,9.5g, 2.4, 4.7x y s s ====.假设这两条流水线上装的番茄酱的重量都服从正态分布, 且相互独立, 其均值分别为12,μμ. 又设两总体方差2212σσ=. 求12μμ-置信水平为0.95的置信区间, 并说明该置信区间的实际意义.解 由题设22121210.6,9.5, 2.4, 4.7,12,17,x y s s n n ======2222112212(1)(1)(121) 2.4(171) 4.71.94212172wn s n s s n n -+--⨯+-⨯===+-+-120.0252(2)(27) 2.05181,t n n t α+-==所求置信区间为122(()(2)((10.69.5) 2.05181 1.94x y t n n s α-±+-=-±⨯ =(-0.40,2.60).结论“21μμ-的置信水平为0.95 的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时, 第一个正态总体的均值1μ比第二个正态总体均值2μ大-0.40~2.60,此结论的可靠性达到95%.5. 某商场为了了解居民对某种商品的需求, 调查了100户, 得出每户月平均需求量为10公斤, 方差为9 . 如果这种商品供应10000户, 取置信水平为0.99.(1) 取置信度为0.99,试对居民对此种商品的平均月需求量进行区间估计; (2) 问最少要准备多少这种商品才能以99%的概率满足需要? 解 (1) 每户居民的需求量的置信区间为2222((1),(1))()(10 2.575,10 2.575)(9.2275,10.7725).,x n x n x z x αααα-+-≈+=-=10000户居民对此种商品月需求量的置信度为0.99的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要.。
概率论与数理统计课后习题答案第7章习题详解
习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】0.094x =- 0.101893s = 9n =0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大, 所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=- 所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L nx θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑ 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=. 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑ 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏ 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛=-=-≥ ⎝于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。
概率论与数理统计第七章课后习题及参考答案
易得ˆ
max
1in
X
i
,ˆ
的密度函数为
p(x)
n(x
) n 1
1
,0
x
,
0, 其他.
7
则 E(ˆ)
xp(x)d x
0
xn
x
n1 n1
1
dx
n n 1
,
可知 的最大似然估计量不是无偏的.
12.设从均值为 ,方差为 2 0 的总体中,分别抽取容量为 n1 ,n2 的两独立样
本.X1 和 X 2 分别是两样本的样本均值.试证对于任意常数 a ,b ( a b 1),
X
1
2
3
P
2
2 (1 )
(1 )2
其中, ( 0 1 )为未知数.已知取得了样本值 x1 1, x2 2 , x3 1 ,求 的矩估计值和最大似然估计值.
(2) 设 X1 , X 2 ,…, X n 是来自参数为 的泊松分布总体的一个样本,试求
的矩估计量和极大似然估计量.
解:(1) 因为 E( X ) 1 2 2 2 (1 ) 3(1 )2 3 2 ,
x c x( 1)d x c
c
c
x
d
x
c 1
,
令
E(X
)
X
,即
X
c 1
,得
的矩估计量为
1
ˆ X . X c
从而 的矩估计量值为 4.设总体 X 的概率密度为
ˆ x . x c
f
(x)
6x(
3
x)
,
x
c,
0, 其他.
X1 , X 2 ,…, X n 是来自总体 X 的一个样本. (1) 求 的矩估计量ˆ ;
第七章 概率论与数理统计试题&答案
第七章试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X服从[0,2θ]上的均匀分布(θ>0),x1, x2, …, x n是来自该总体的样本,x为样本均值,则θ的矩估计 ˆ=()A.x2B.xC.x D.x212答案:B2.设总体nX X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11 B .∑=--ni iXn 12)(11μ C .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ答案:A3.设总体X ~ N (2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( ) A .1ˆμB .2ˆμC .3ˆμD .4ˆμ答案:A4.设(X 1,X 2)是来自总体X 的一个容量为2的样本,则在下列E (X )的无偏估计量中,最有效的估计量是( ) A .)(2121X X + B .213132X X + C .214143X X + D .215253X X + 答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
4.设总体X 具有区间[0,θ]上的均匀分布(θ>0),x 1,x 2,…,x n 是来自该总体的样本,则θ的矩估计θˆ=___________。
答案:x 25.设总体X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x αα,x 1,x 2,…x n 为总体X 的一个样本,则未知参数α的矩估计αˆ=___________.答案:x 16.设总体X 服从参数为λ的泊松分布,其中λ为未知参数.X 1,X 2,…,X n 为来自该总体的一个样本,则参数λ的矩估计量为___________. 答案:x7.设总体X~N (μ,σ2),x 1,x 2,x 3为来自X 的样本,则当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 答案:41 8.设总体X ~ N (1,μ),(321,,x x x )为其样本,若估计量3213121ˆkx x x ++=μ为μ的无偏估计量,则k = ___________。
概率论与数理统计第七章参数估计习题答案
æ çè
x
±
ua
/
2
s n
ö ÷ø
=
(14.95
±
0.1´1.96)
=
(14.754,15.146)
大学数学云课堂
3028709.总体X ~ N (m,s 2 ),s 2已知,问需抽取容量n多大的样本,
才能使m的置信概率为1 -a,且置信区间的长度不大于L?
解:由s
2已知可知m的置信度为1
-
a的置信区间为
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
大学数学云课堂
3028706.设X1,X 2,L,X n是取自总体X的样本,E(X)= m,D(X)= s 2,
n -1
å sˆ 2 = ( X i+1 - X i )2 ,问k为何值时sˆ 2为s 2的无偏估计. i =1 解:令 Yi = X i+1 - X i , i = 1, 2,¼, n -1, 则E(Yi ) = E( X i+1) - E( X i ) = m - m = 0, D(Yi ) = 2s 2 , n -1 å 于是Esˆ 2 = E[k ( Yi2 )] = k(n -1)EY12 = 2s 2 (n -1)k, i =1 那么当E(sˆ 2 ) = s 2 ,即2s 2 (n -1)k = s 2时, 有k = 1 . 2(n -1)
的密度函数为f
(x,q
概率论与数理统计(第三版)课后答案习题7
第七章 参数估计1. 解 )1()(,)(),,(~p np X D np X E p n B X -==∴⎩⎨⎧=-=⎩⎨⎧==22)1(,)()(B p np X np B X D X X E 即由解之,得n,p 的矩估计量为XB p B X X n 2221,-=⎥⎥⎦⎤⎢⎢⎣⎡-=∧∧注:“[ ]”表示取整。
2. 解 因为:220)(22)(1)1()(1)()(λλθλλθλθλθλ++=⋅=+=⋅==⎰⎰⎰∞+--∞+--∞+∞-dx e x x E dx e x dx x xf x E x x所以,由矩估计法得方程组: ⎪⎩⎪⎨⎧++=+=2221)1(1λλθλθA X 解得λθ,的矩估计量为 ⎪⎩⎪⎨⎧=-=∧∧221B B X λθ3. 解 (1) 由于 222)]([)()(X E X E X D -==σ令 ∑===n i iX n A X E 12221)( 又已知 μ=)(X E故 2σ的矩估计值为 ∑∑==∧-=-=-=n i i n i i X n X n A 12122222)(11μμμσ(2) μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-ni in x L 122222)(21exp )2()(μσπσσ因此∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ令 0)(2112)(ln 124222=-+-=∑=ni ixn L d dμσσσσ解得2σ的极大似然估计为: ∑=∧-=n i i X n 122)(1μσ4. 解 矩估计:λλ=∴=)()(X E X E 令X X E =)(故X =∧λ为所求矩估计量。
注意到 λ=)(X D 若令 2)(B X D =, 可得: 2B =∧λ似然估计:因为λλ-==e k k X P k!)(所以,λ的似然函数为∏=-=ni i xe x L i1!)(λλλ取对数λλλn x x L ni i ni i --=∑∑==11)!ln(ln )(ln令ln 1=-=∑=n xd d ni iλλλ, 解得∑=∧=ni ix n 11λ故,λ极大似然估计量为 X =∧λ5. 解 矩估计:21)1()()(11++=+==⎰⎰+∞+∞-θθθθdx x dx x xf X E令 X X E =)(, 即 X=++21θθ; 解之X X --=∧112θ 似然估计: 似然函数为⎪⎩⎪⎨⎧<<+=⎪⎩⎪⎨⎧<<+=∏∏==其它其它,010,)()1(,010,)1()(11i ni i ni n i i x x x x L θθθθθ 只需求10,)()1()(11<<+=∏=i ni i nx x L θθθ的驻点即可.又∑=++=ni ix n L 11ln )1ln()(ln θθθ令∑=++=ni ix n L d d 11ln 1)(ln θθθ; 解之∑=∧--=ni ixn1ln 1θ6. 解:似然函数为∑===---=-=---∏∏ni i i xn i i n ni x i ex ex L 12222)(l n 21112212)(l n 12)()2(21),(μσσμπσσπσμ取对数得 ∑----===∏n i ini i x x n L 122122)(l n 21)l n ()2l n (2),(ln μσπσσμ由 0)(l n 2112),(ln 0)1()(ln 221),(ln 124222122=∑-+⋅-=∂∂=∑-⋅--=∂∂==n i i n i i x n L x L μσσσμσμσσμμ联立解之,2,σμ的极大似然估计值为 ∑∑-=∑===∧=∧n i n i i in i i x n x n x n 12121)ln 1(ln 1,ln 1σμ7. 解:似然函数为 n i x x e ax L i i n i x a i ai ,,2,1;0,00,)(11 =⎪⎩⎪⎨⎧≤>=∏=--λλλ只需求∑⋅===--==--∏∏ni ai ai x a n i n n ni x a i ex a eax L 111111)()(λλλλλ的最值点。
概率论与数理统计第7章参数估计习题及答案
概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。
3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。
⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。
概率论与数理统计练习题第七章答案
概率论与数理统计练习题系 专业 班 姓名 学号第七章 参数估计(一)一、选择题:1矩估计必然是 [ C ] (A )无偏估计 (B )总体矩的函数 (C )样本矩的函数 (D )极大似然估计2.设12,X X 是正态总体(,1)N μ的容量为2的样本,μ为未知参数,μ的无偏估计是 [ D ] (A )122433X X +(B )121244X X + (C )123144X X - (D )122355X X + 3.设某钢珠直径X 服从正态总体(,1)N μ(单位:mm ),其中μ为未知参数,从刚生产的一大堆钢珠抽出9个,求的样本均值31.06X =,样本方差2290.98S =,则μ的极大似然估计值为 [ A ](A )31.06 (B )(31.06-0.98 , 31.06 + 0.98) (C )0.98 (D )9×31.06 二、填空题:1.如果1ˆθ与2ˆθ都是总体未知参数θ的估计量,称1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差一定满足 1212ˆˆˆˆ,E E D D θθθθ=< 2.设样本1230.5,0.5,0.2x x x ===来自总体1~(,)X f x x θθθ-=,用最大似然法估计参数θ时,似然函数为()L θ= 31(0.05)θθ- 3.假设总体X 服从正态分布212(,),,,(1)n N X X X n μσ>为X 的样本,12211()n i i i C X X σ-+==-∑是2σ的一个无偏估计,则C =12(1)n -三、计算题:1.设总体X 具有分布律,其中(01)θθ<<为未知参数,已知取得了样本值1231,2,1x x x ===,试求θ456()2(1)22.5')1(0.6L L θθθθθθθθ=⋅-=-==解:该样本的似然函数.为令得三 、2.设12,,,n X X X 是来自于总体10~()0x X f x θθ⎧≤≤⎪=⎨⎪⎩其它(0)θ>的样本,试求:(1)θ的一个无偏估计1θ;(2)θ的极大似然估计2.θ3.设总体X 的概率密度为(1)01()0x x f x θθ⎧+<<=⎨⎩其它,其中1θ>-是未知参数,12,,,n X X X 为一个样本,试求参数θ的矩估计量和最大似然估计量。
概率论与数理统计习题及答案第七章
概率论与数理统计习题及答案第七章习题7-1的样本,则0的矩估计量是().(A) X .(B) 2X .解选(B).2.设总体X 的分布律为X -215P301-40e其中0v 0< 0.25为未知参数,X 1, X 2, , , X n 为来自总体X 的样本,试求0的矩估计量.解因为 E(X)=(-2) >3 0+1X(1-4 0+5 X0=1-5 0 令 1_5v-X 得到v 的矩估计量为彳二1.53.设总体X 的概率密度为f A严 1)x ;0 ::: x :::1, f (X ; V)0, 其它.其中0>1是未知参数,X 1,X 2,, ,X n 是来自X 的容量为n 的简单随机样本求:(1) r 的矩估计量;(2) 0的极大似然估计量. 解总体X 的数学期望为址 1阳1 日+1E (X ) = f xf (x)d x =[(日 +1) x dx = ----------------------0+21.选择题(1)设总体X 的均值的样本, 则均值□与方差 (A) 2 X 和 S 2. (C)□和d . 解选(D).与方差都存在但未知 C 2的矩估计量分别是( 而X-X 2,…,X n 为来自X ).1(B) X 和 (X i(D)1X 和 (X i20>0为未知参数,又X i ,X 2,…,X n 为来自总体X(C) max{ X i }. 1 < i < n(D) min { X i }. 1 < i < n⑵设X : U [0, v],其中 -X)令E (X )= X ,即二! =X ,得参数0的矩估计量为彳■■ 2设X 1, X 2,, , X n 是相应于样本X 1, X 2,, , X n 的一组观测值,2X -1 1 -x则似然函数为0,当 0<x< p="">,n)时,L>0 且 nXiIn ,0 ::: x i :::1,L = n ln( v I))、In X i ,i =1Ad In L n 二令Ind v 71 -1 i 1X i =0,得0的极大似然估计值为 4-1nnvIn X ii土而的极大似然估计量为4.设总体X 服从参数为彳=-1.二 In Xii -4即X 的概率密度为■的指数分布, 3 x 0,f (X, ■)二I 0,其中,.0为未知参数,X i , X 2, , , X n 为来自总体的矩估计量与极大似然估计量1 -解因为E(X)= =X ,所以,的矩估计量为x < 0,X 的样本,试求未知参数■—.设 X 1, X 2,, , X n 是相X应于样本X i , X 2,, ,X n 的一组观测值,则似然函数n -n _L 二■■■■ In-'7 X i i 士取对数人 d In L n 二令. X i人 \=±1 然估计量为?==.X=0,得?的极大似然估计值为1 -,■的极大似X1.选择题:设总体X ’,X 2,…,X n 为X 的样本,的无偏估计量?X 的均值则无论总体与方差;「2都存在但未知,而服从什么分布,( 2)是.1和二(A)X i 和 (Xn i ±n i 生(C)—JX i 和1n -1 i ±n -1解选(D).2. 若x 1,X 2 ,X(B)1 nX i 和-1 i —, n —2(X i —X) ?1 12—7 X i 和—v (X i 7 .n i -4、 in i -4)的样本,且X 2 ? kX 3为」的无偏估计量,问k 等于多少?解要求1E(—X ! 31 1 1 ? — X2 ? kX 3)2 74 3 45解之,k=.1 25.设总体X 的概率密度为0 ::: x ::: 1,其它,,X n 为来自总体的简单随机样本,记N求:(1) B 的矩估计量;(2) B 的极大似然33 —解 (1) X =E(X)二 xvdx 亠 |X (1 - v)dx,所以 <1 矩 X .22(2)设样本X 1,X 2,…X n 按照从小到大为序(即顺序统计量的观测值)有如下关系:X (1) < X (2) w , wx (N) <1 w X (N+1) W X (N+2)W , W X (n).似然函数为,,■'N(^-r-,X (1) W x (2) W ' "W X (N) <1W X (N 1) W X (N 2) W X n , LQ|0, 其它.考虑似然函数非零部分,得到In L( 0) = N In 0+ (n - N) In(1- 0),令d s o 二‘ 一口 =o ,解得0的极大似然估计值为弓=楚.d B日1 —日n习题7-23.设总体X 的均值为0,方差匚2存在但未知,又X 1, X 2为来自总体X 的1 2 21< x < 2,f (x,=) ?1 七,0,.X 1, X 2,,1的个数? 其中-(0<二<1 )是未知参数为样本值x , ,x 2 , ,x n中小于估计量.nnn2i—'X ).3为来自总体2、(X i 」).(D)i :—样本,试证:一(X ’ 一X 2)为二的无偏估计21 2 1 2 2证因为E[—(X’-X?)] E[( X1^2X 1X2 X2 )]2 21 2 2【E(X’)_2E(X’X2)- E(X2 )]2所以一(X1-X2)2为L的无偏估计.2习题7-31. 选择题(1) 总体未知参数二的置信水平为0.95的置信区间的意义是指().(A) 区间平均含总体95%的值.(B) 区间平均含样本95%的值.(C) 未知参数二有95%的可靠程度落入此区间.(D) 区间有95%的可靠程度含参数n的真值?解选(D).(2) 对于置信水平1- a0< ad),关于置信区间的可靠程度与精确程度,下列说法不正确的是().(A) 若可靠程度越高,则置信区间包含未知参数真值的可能性越大(B) 如果a越小,则可靠程度越高,精确程度越低.(C) 如果1- a越小,则可靠程度越高,精确程度越低?(D) 若精确程度越高,则可靠程度越低,而1- a越小. 解选(C)习题7-41.某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试,取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300,1200.设灯泡寿命服从正态分布N(卩902),取置信度为0.95,试求当天生产的全部灯泡的平均寿命的置信区间.解计算得到x -1141.11,3 =902.对于a= 0.05,查表可得Z -/2 = z0.025 二1-96.所求置信区间为22=(1141.11= (1082.31,1199.91).2. 为调查某地旅游者的平均消费水平,随机访问了40名旅游者,算得平均消费额为X =105元,样本标准差s =28元.设消费额服从正态分布.取置信水平为0.95,求该地旅游者的平均消费额的置信区间 .2 2解计算可得X =105, f =282.对于a = 0.05,查表可得t ..(n -1) =t °.025 (39) = 2.02272所求□的置信区间为=(96.045, 113.955).3?假设某种香烟的尼古丁含量服从正态分布 .现随机抽取此种香烟8支为一组样本,测得其尼古丁平均含量为18.6毫克,样本标准差s=2.4毫克.试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解已知 n =8, S 2=2.42, a = 0.01,查表可得笑厶一 1) = 30.005 ⑺=20.278 ,22..(n -1) =0.995⑺=0.989 ,所以方差/的置信区间为"2本:X 1,X 2,, ,X 12 及丫1,丫2,, ,丫17,算出 x =10.6g ,y = 9.5g , s : =2.4, s ;=4.7 .假设这两条流水线上装的番茄酱的重量都服从正态分布,且相互独立,其均值分别为叫,J 2.又设两总体方差打.求4 - J 2置信水平为0.95的置信区间并说明该置信区间的实际意义.解由题设 X =10.6, y =9.5, s : =2.4, s ; =4.7, n 1 =12, n 2 =17,(Xs (X「28\(n -1),x2\(n -1)) =(10522.0227, 28105—2.0227 )2 2(n -1)S(n -1)S 、(, )=( “-1) J -1)2 22(8 .1)2.420.2782(8 -1)2.40.989)=(1.988, 40.768).4.某厂利用两条自动化流水线灌装番茄酱分别从两条流水线上抽取样2s w2 丄 2(① -1) q ? (n ? -1)S 2 n 1 ' n 2「2 (12 —1) 2.4 ? (17 —1) 4.712 17「2= 1.94(J ■ n)90—1.96, 1141.11sQg +n2—2) =t0.°25 (27) = 2.05181,所求置信区间为2 21 11 1—■■_) =((10.6「9.5) _2.05181 1.94,—、一) n 1 n 2 .12 17 =(-0.40,2.60).结论“叫_ J 的置信水平为0.95的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时,第一个正态总体的均值叫比第二个正态总体均值J 大-0.40?2.60,此结论的可靠性达到95%.5.某商场为了了解居民对某种商品的需求,调查了100户,得出每户月平均需求量为10公斤,方差为9 .如果这种商品供应10000户,取置信水平为0.99.(1) (2) 解 _ s _ s (x ——t (n -1), x ——t (n -1))' 厂g厂?■ f n 2 ■. n 2= (102.575, 102.575) =(9.2275,10.7725).J 100J10010000户居民对此种商品月需求量的置信度为 0.99的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以 99%的概率满足需要?((X7) _t ,(n 1n2—2)S w2取置信度为0.99,试对居民对此种商品的平均月需求量进行区间估计问最少要准备多少这种商品才能以(1)每户居民的需求量的置信区间为99%的概率满足需要? _ s _ s:F (X ---- z , x ---------- z )厂a r ot ■- n 7 ?、n 2</x<>。
概率论与数理统计第七章习题讲解
1 6
1 3
因此T1,T3是的无偏估计量. (2) X1,X2,X3,X4相互独立
1 1 1 5 2 2 1 D(T1 ) [ D( X1 ) D( X 2 )] [ D( X 3 ) D( X 4 )] 2 ( ) 36 9 36 9 18 1 1 5 D(T3 ) [ D( X1 ) D( X 2 ) D( X 3 ) D( X 4 )] (1 1 1 1) 2 2 16 16 20
故 E(Y)=aE(X1)+bE(X2)=(a+b)=, (a+b=1) 所以,对于任意常数,a,b(a+b=1), Y=aX1+bX2都是的无偏估计. 由于两样本独立,故两样本均值X1和X2独立,所以
2 2 2 2 a ( 1 a ) a b ] 2 D(Y ) a 2 D( X 1 ) b 2 D( X 2 ) [ ] 2 [ n1 n2 n1 n2 dD(Y ) 2a 2(1 a ) 2 由极值必要条件 [ ] 0 da n1 n2
1 E( X )
1 0
xf ( x)dx.
1 1 0
x dx x 1 1 解出 ( )2 1 1
1
将总体一阶矩1换成样本一阶矩A1=X ,
得到参数的矩估计量
矩估计值
X 2 ( ) 1 X
x 2 ( ) 1 x
( x1 x2 t / 2 ( n1 n2 2) sw
1 1 2 (n1 1) S12 (n2 1) S22 2 ) Sw , Sw Sw . n1 n2 n1 n2 2
n1=4,n2=5,1-=0.95, =0.05, t/2(n1+n2-2)=t0.025(7)= 2.3646
概率论与数理统计教程习题(第七章假设检验)
习题18(假设检验)一.填空题1. 假设检验的基本原理是2. u 检验、t 检验都是关于 的假设检验。
当 未知时,用t 检验。
3. 设),,,(21n X X X 为来自正态总体),(2σμN 的样本,μ未知,现要检验假设2020:σσ=H ,则应选取的统计量是 ;当0H 成立时,该统计量服从 分布。
二、选择题1. 在假设检验中,0H 表示原假设,1H 表示备择假设,则称为犯第二类错误的是( )①1H 不真,接受1H ②0H 不真,接受1H③0H 不真,接受0H ④0H 为真,接受1H2. 设总体),(~2σμN X ,2σ已知,对于假设00:μμ=H ,01:μμ≠H ,下面结论正确的是( )① 若0μ落入μ的置信水平为α-1的置信区间,则在著性水平α下接受0H ; ② 若0μ落入μ的置信水平为α-1的置信区间,则在著性水平α下接受1H ; ③ 若0μ落入μ的置信水平为α的置信区间,则在著性水平α下接受0H ;④ 以上都不对。
3. 设),,,(21n X X X 为来自正态总体),(2σμN 的样本,μ已知,现在显著性水平05.0=α下接受了2020:σσ=H . 若将α改为0.01时,下面结论中正确的是( )① 必拒绝0H ; ② 必接受0H ;③ 犯第一类错误概率变大; ④ 犯第二类错误概率变小。
三.解答题1. 某厂生产的某种铝材的长度X 服从正态分布,其均值设定为240cm. 现从该厂抽取9件产品,测得5.239=x cm ,16.02=s ,试判断该厂此类铝材的长度是否满足设定要求?(取05.0=α)2. 某种导线的质量标准要求其电阻X 的标准差不得超过0.005(Ω)。
今从一批导线中随机抽取11根,测得样本标准差为007.0=s , 设总体为正态分布。
问在显著性水平05.0=α下能否认为这批导线的标准差显著的偏大?3. 从某锌矿的东、西两支矿脉中,各抽取容量分别为9和8的样本进行测试,得样本含锌平均值及样本方差如下:东支:230.01=x , 1337.021=s ;西支:269.02=x , 1736.022=s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 (1) 2已知,的置信水平为1- 的置信区间为
X
n
z
/
2
n=9, 1-=0.95, =0.05, (z0.025)=1-0.025=0.975, z0.025=1.96,
=0.6 ,x=6, (6 0.6 1.96) (6 0.392) 3
ln
L
n 2
ln
(
令
d
d
ln L
n
2
1
2
n
ln xi
i 1
0
n
1) ln xi
i 1
得到的最大似然估计值
的最大似然估计量
n2
n
(ln xi )2
i 1
n2
n
( ln Xi )2
i 1
4.(2) 设X1,X2,…,Xn是来自参数为的泊松分布总体的一个样本,试
的一个置信水平为0.95 的置信区间为(5.608, 6.392).
(2) 2未知,的置信水平为1- 的置信区间为 X
S n
t
/
2
(n
1)
n=9, 1-=0.95, =0.05, t /2(n-1)=t 0.025(8)= 2.3060
s=0.5745, 6 0.5745 2.3060 6 0.442
解 两正态总体均值未知,方差比A2/B2的一个置信水平为1- 的
置信区间为
(
S
2 A
SB2
1 F / 2(n1 1, n2
1)
,
S
2 A
SB2
1 F1 / 2(n1 1, n2
) 1)
nA=10,nB=10,1-=0.95, =0.05, F /2(nA-1,nB-1)=F0.025(9,9)= 4.03
x
的最大似然估计量Leabharlann 1 n
n
Xi
i 1
X
8 (1)验证第六章§2定理四中的统计量
Sw2
n1 1 n1 n2
2
S12
n2 1 n1 n2
2
S22
(n1
1)S12 (n2 1)S22 n1 n2 2
是两总体公共方差2的无偏估计量(SW2称为2的合并估计). 证 两正态总体N(1, 12 ) ,N(2, 22 )中, 12=22=2
解 由p168(2.19)得 E(X1)=E(X2)=, D(X1)=2/n1, D(X2)=2/n2 .
故 E(Y)=aE(X1)+bE(X2)=(a+b)=, (a+b=1)
所以,对于任意常数,a,b(a+b=1), Y=aX1+bX2都是的无偏估计.
由于两样本独立,故两样本均值X1和X2独立,所以
(2)在上述的无偏估计量中指出哪一个较为有效.
解 Xi ( i =1,2,3,4) 服从均值为的指数分布,故 E(Xi)=, D(Xi)=2 ,
(1)
E(T1
)
1[E( 6
X1)
E(
X2
)]
1[E( 3
X3
)
E(
X4
)]
2
(1 6
1) 3
E(T2 )
1 5
[
E(
X1
)
2E(X2)
i 1
i 1
i 1
i 1
i1 i1
10.设X1,X2,X3,X4是来自均值为的指数分布总体的样本,其中未知.
设有估计量
T1
1 6
(
X1
X2
)
1 3
(
X3
X4
)
T2=(X1+2X2+3X3+4X4)/5,
T3=(X1+X2+X3+X4)/4 . (1)指出T1,T2,T3中哪几个是的无偏估计量;
2 / 2(n 1) 12 / 2(n 1)
n=9, 1-=0.95, =0.05, 2 /2 (n-1)=2 0.025(8)= 17.535
2 1-/2 (n-1)=2 0.975(8)= 2.18, 又s=11,
8 11 7.4, 17.535
8 11 21.1, 2.18
F1
/ 2(nA
1, nB
1)
F0.975 (9,9)
1 F0.025 (9,9)
1 4.03
sA2=0.5419,sB2=0.6065,
0.5419 1 0.222, 0.6065 4.03
0.004)
1 -2的一个置信水平为0.95 的置信区间为(-0.002, 0.006).
20. 设两位化验员A,B独立地对某种聚合物含氯量用相同的方法 各作10次测定,其测定值的样本方差依次为sA2=0.5419, sB2=0.6065, 设 A2, B2分别为A,B所测定的测定值总体的方差,设总体均为正态的, 设两样本独立,求方差比A2/B2的置信水平为0.95的置信区间.
解 两正态总体相互独立, 方差相等,但方差未知, 其均值差1 -2的 一个置信水平为1- 的置信区间为
( x1 x2 t / 2(n1 n2 2)sw
1 n1
1 n2
)
Sw2
(n1
1)S12 n1
(n2 n2 2
1)S22
,
Sw
Sw2 .
n1=4,n2=5,1-=0.95, =0.05, t/2(n1+n2-2)=t0.025(7)= 2.3646
3E(X3)
4E( X4 )]
1 (1 5
2
3
4)
2
E(T3 )
1 4
[
E(
X1
)
E(X2)
E(X3)
E( X4 )]
1 (1 4
1
1 1)
因此T1,T3是的无偏估计量.
(2) X1,X2,X3,X4相互独立
D(T1 )
1 36[D( X1)
而不管总体X服从什么分布,都有E(S2)=D(X), 因此E(S12)= E(S22)= 2, E(Sw2n)1En12((n12[(1nn)11S121n)E2(n(2S212 )1)S(2n22) 1)E(S22 )] 2
(2)设总体X的数学期望为. X1,X2,…,Xn是来自X的样本. a1,a2,…,an
x
X c
xc
2.(2)
f (x)
x 0,
1,0 x 1 其它
其中>0,为未知参数.
解 因为只有一个未知参数,故只计算总体一阶矩1即可.
1 E( X ) xf ( x)dx.
01 x dx
x
1
1 1 0
1
第七章习题
2. 设X1,X2,…,Xn为总体的一个样本, x1,x2,…,xn为一相应的样本值;求 下述各总体的密度函数或分布律中的未知参数的矩估计量和估计值.
c x( 1) , x c
(1) f ( x) 0,
其它
其中c>0为已知,>1,为未知参数.
解 因为只有一个未知参数,故只计算总体一阶矩1即可.
3
的一个置信水平为0.95 的置信区间为(5.558, 6.442).
16.随机地取某种炮弹9发做试验,得炮口速度的样本标准差s=11(m/s). 设炮口速度服从正态分布.求这种炮弹的炮口速度的标准差的置信 水平为0.95 的置信区间.
解 未知,的置信水平为1-的置信区间为 ( n 1S , n 1S )
1 E(X )
xf ( x)dx
x c x( 1)dx
c
c
x dx c x 1
c
1
c
c 1
解出 1 1 c
将总体一阶矩1换成样本一阶矩A1=X ,
得到参数的矩估计量
X
矩估计值
标准差的置信水平为0.95 的置信区间为(7.4, 21.1).
18. 随机地从A批导线中抽取4根,又从B批导线中抽取5根,测得电
阻(欧)为
A批导线:0.143 0.142 0.143 0.137
B批导线:0.140 0.142 0.136 0.138 0.140
设测定数据分别来自分布N(1,2),N(2,2),且两样本相互独立.又1, 2,2均为未知.试求1 -2的置信水平为0.95 的置信区间.
求的最大似然估计量及矩估计量.
解 泊松分布的分布律为 P{ X
x}
xe
,
x 0,1,2, ,
x!
总体一阶矩1=E(X)=, 将总体一阶矩1换成样本一阶矩A1=X ,
得到参数的矩估计量 X
设x1,x2,…,xn为相应的样本值,
似然函数 L( x1, x2 , , xn , )
n xi
e
i1 xi !
e n
n
xi i 1
n
( xi!)
n
n
i 1
取对数得 ln L n ln xi ln( xi!)