光纤通信系统的原理与分析
光纤通信电路设计与分析

光纤通信电路设计与分析光纤通信电路是现代通信领域中最常用的传输媒介之一。
它通过利用光的传导特性来实现高速、远距离的数据传输。
本文将对光纤通信电路的设计与分析进行详细介绍。
一、光纤通信电路的基本原理光纤通信电路的基本原理是光的传输,它依靠光的折射和反射特性在光纤中传输信息。
一般而言,光纤通信系统包括光源、调制器、光传输介质、解调器和接收器等组成部分。
其中,光源产生的光信号经过调制器调制后,通过光传输介质即光纤传输至接收器,经过解调后即可恢复出原始信息。
二、光纤通信电路的设计步骤1. 系统需求分析:根据实际应用场景和需求,确定通信系统的传输速率、传播距离、传输容量等关键指标。
2. 光源选择与设计:根据系统需求,选择合适的光源,如激光二极管、半导体激光器等,并进行光源驱动电路的设计。
3. 调制器设计:根据传输信号特点,选择适当的调制方式,如直接调制、外调制等,并设计相应的调制电路。
4. 光传输介质选择与设计:根据传输距离和传输容量要求,选择合适的光纤类型,并进行光纤布线和连接方案的设计。
5. 解调器设计:选择合适的检测方法、解调算法和电路结构,设计相应的解调器电路。
6. 接收器设计:设计合适的前端电路、放大电路和数字信号处理电路,实现对接收信号的恢复和处理。
三、光纤通信电路的性能分析光纤通信电路的性能分析主要包括传输衰减、带宽和误码率等指标的评估。
1. 传输衰减:通过衡量信号在光纤中传输过程中的损耗情况,评估传输衰减程度,以保证信号的传输距离。
2. 带宽:通过测量信号在光纤中的传输速率,评估信号的带宽,以满足数据传输的需求。
3. 误码率:通过检测接收端解调后的信号正确率,评估传输过程中引入的误码率,以保证数据传输的可靠性。
四、光纤通信电路的应用领域光纤通信电路广泛应用于各行各业的信息传输领域,其中包括但不限于以下几个方面:1. 通信网络:光纤通信电路是构建宽带通信网络的重要组成部分,应用于电话、宽带互联网、移动通信等领域,实现高速、稳定的数据传输。
光纤通信系统的组成与工作原理

光纤通信系统的组成与工作原理首先是光信号的产生。
光信号可以通过激光二极管(LD)或者半导体激光器产生。
激光二极管是一种能够产生高亮度和高单频的光源,它通过电流注入产生激励态电子与基态电子的受激辐射而发光。
半导体激光器则是一种基于电流注入的PN结的半导体器件,它可以产生高亮度、高单频和窄线宽的激光光源。
接下来是光信号的传输。
光信号通过光纤进行传输。
光纤是一种由高折射率的纤维材料制成的细长物体,其核心是由折射率较低的材料组成,外包覆着一个折射率较高的包层。
光信号通过光纤的传输是基于全内反射的原理。
当光信号由光纤的尾部入射到光纤的头部时,当入射角小于临界角时,光信号会发生全内反射,沿着光纤一直传输到目的地。
最后是光信号的接收。
光信号到达目的地后,需要被光电器件转换成电信号。
光电器件通常使用光电二极管(PD)或者光电探测器来完成这一过程。
当光信号到达光电器件时,光能转化为电能,产生电流。
接收到的电流经放大和滤波处理后,就可以得到我们需要的信号。
光源是光信号的发射源,如激光二极管、半导体激光器等。
光源需要具备稳定的光功率、窄的光谱线宽和较小的时延,以保证光信号的传输质量。
光纤是光信号的传输介质,它是一种波导结构,能够将光信号进行高效的传输。
光纤需要具备低损耗、高带宽和低色散等特点,以提高光信号的传输质量。
光电器件是光信号的接收器件,如光电二极管、光电探测器等。
光电器件能够将光信号转换为电信号,并经过电子电路的处理从而得到所需的信息。
除了以上的主要组成部分,光纤通信系统还包括光纤连接器、光纤调制器、光纤分光器等其他辅助设备,以提供更加稳定和高效的光信号传输。
总之,光纤通信系统是一种利用光纤进行光信号传输的通信系统。
它的工作原理基于光的全内反射原理,通过光源产生光信号,光纤进行光信号的传输,并通过光电器件将光信号转换为电信号。
光纤通信系统的组成包括光源、光纤和光电器件等主要部分,还包括其他辅助设备。
光纤通信系统的应用广泛,使用光纤传输可以实现高速、大容量和低延时的信息传输。
光纤通信系统的设计与仿真分析

光纤通信系统的设计与仿真分析光纤通信系统是现代通信领域中的重要技术,它利用光纤作为传输介质,将信息以光的形式传送。
本文将围绕光纤通信系统的设计和仿真分析展开讨论,介绍其原理、组成部分以及相关技术。
一、光纤通信系统的原理光纤通信系统的工作原理基于光的传播特性以及调制解调技术。
光纤具有高带宽、低传输损耗、抗电磁干扰等优点,使得光纤通信系统成为目前最主流的通信方式之一。
光在光纤中的传播是基于全反射原理实现的。
通过在光源端发射的激光器将信号调制为光脉冲,经过光纤的传输后,在接收端的光电探测器上转化为电信号。
在传输过程中,需要使用光纤放大器对信号进行增强,以克服传输损耗。
二、光纤通信系统的组成部分光纤通信系统由多个重要的组成部分构成,包括光源、调制解调器、光纤和接收器等。
1. 光源:光源是光纤通信系统中的信号发生器,通常使用半导体激光器作为光源。
激光器通过注入电流或电击产生激发光,形成高亮度、高单色性的光脉冲。
2. 调制解调器:调制解调器在光纤通信系统中起到信号调制和解调的作用。
调制是将电信号转换为光信号的过程,解调则是将光信号转换为电信号的过程。
3. 光纤:光纤是信息传递的载体,其优良的特性使得光信号能够在光纤中进行长距离传输。
光纤主要由纤芯、包层和包覆层组成,其中纤芯是光信号传输的核心区域。
4. 接收器:接收器将传输的光信号转换为电信号。
接收器包括光电转换器和电信号处理器,光电转换器将光信号转换为电流信号,然后经过信号处理器进行滤波、放大、解码等操作。
三、光纤通信系统的技术为了实现光纤通信系统的高速稳定传输,需要运用多种技术来解决光纤通信系统中的挑战。
1. 多重复用技术:光纤通信系统中通过采用多重复用技术,将多个信道复用到同一根光纤上,从而提高传输容量。
常见的多重复用技术有密集波分复用(DWDM)、频分复用(FDM)等。
2. 光放大技术:在光纤通信系统中,由于信号传输的过程中会存在信号衰减,因此需要使用光放大器对信号进行增益。
数字光纤通信系统的工作原理

数字光纤通信系统的工作原理数字光纤通信系统是一种高速、高带宽的数据传输技术,其工作原理基于光学和电学的相互作用。
数字光纤通信系统主要由三部分组成:发射机、光纤传输线路和接收机。
发射机是数字光纤通信系统中的第一部分,它将电信号转换为光信号并将其发送到光纤传输线路上。
发射机主要由三个部分组成:激光器、调制器和驱动电路。
激光器是发射机的核心部件,它能够产生高强度、单色、相干的激光束。
调制器则是将电信号转换为激光脉冲的设备,它能够对激光束进行调制以便在传输过程中能够正确地识别出每一个二进制位。
驱动电路则是用来控制调制器的工作状态,以便让其按照正确的时间序列进行工作。
光纤传输线路是数字光纤通信系统中的第二部分,它是负责将激光脉冲从发射机传输到接收机的媒介。
在传输过程中,激光脉冲会在光纤中不断地反射和折射,以保证光信号能够稳定地传输到目的地。
光纤传输线路主要由两个部分组成:光纤和连接器。
光纤是数字光纤通信系统中最重要的部件之一,它具有非常高的抗干扰性和传输带宽。
在数字光纤通信系统中,常用的是单模光纤,它能够将激光脉冲通过一个非常小的核心直接传送到接收机中。
连接器则是用来连接不同段光纤的设备,它能够确保激光脉冲在传输过程中不会受到损失或干扰。
接收机是数字光纤通信系统中的第三部分,它负责将从传输线路上接收到的激光脉冲转换为电信号并将其输出。
接收机主要由两个部分组成:探测器和前置放大器。
探测器是接收机中最重要的部件之一,它能够将从传输线路上接收到的激光脉冲转换为电信号。
前置放大器则是用来增强探测器输出信号强度,并将其输出到后续的数字处理器中进行解码和处理。
总之,数字光纤通信系统是一种高速、高带宽的数据传输技术,其工作原理基于光学和电学的相互作用。
通过发射机将电信号转换为光信号并将其发送到光纤传输线路上,再通过接收机将从传输线路上接收到的激光脉冲转换为电信号并将其输出,从而实现了数字信息在长距离范围内的高速、稳定地传输。
光纤通信系统

第一章概论光纤通信系统是以光纤为传输媒介,光波为载体的通信系统,主要由光发电机、光纤光缆、中继器和光接收机组成。
光线通信系统可以传输数字信号,也可以传输模拟信号。
不管是数字系统,还是模拟系统,输入到光发射机的带有信息的电信号,都可以调制转换为光信号。
光载波经过光纤线路传输到接收端。
再由光接收机把光信号转换为电信号。
光纤的主要作用:利用光的全反射原理传递光学信号,其优点是信号损耗小,抗干扰能力强。
与电缆或微波等电通信方式相比,光通信优点:(1)通信容量大(2)中继距离长(3)保密性能好(4)适应能力强(5)体积小、重量轻,便于施工维护(6)原材料资源丰富,节约有色金属和能源,潜在价格低廉。
光纤通信中常用的三个低功耗窗口的中心波长为:0.85微米 1.31微米 1.55微米其中后两个的应用更为广泛。
基本光纤传输系统作为独立的“光信道”单元,若配置适当的接口设备,则可以插入现有的数字通信系统或模拟通信系统,有线通信系统或无线通信系统的发射与接收之间。
光发射机、光纤线路和光接收机,若配置适当的光器件,可以组成传输能力更强、功能更完善的光纤通信系统。
光发射机的功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。
光发射机由光源、驱动器和调制器组成。
其中,光源是光发射机的核心。
光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。
光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。
光纤线路由光纤、光纤接头和光纤连接器组成。
光纤是光纤线路的主体,接头和连接器是不可缺少的器件。
实际工程中使用的是容纳多根光纤的光缆。
光接收机的功能是把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经放大和处理后恢复成发射前的电信号。
光接收机由光检测器、放大器和相关电路组成,光检测器是光接收机的核心,对光检测器的要求是响应度高、噪声低和响应速度快。
光纤通信系统

什么是光纤通信系统什么是光纤通信系统?本文将从光纤通信系统的构成,发展,优点,光纤通信技术的发展趋势方面来进行阐述。
光纤即为光导纤维的简称。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。
光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。
光导纤维通信简称光纤通信。
可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。
实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
光纤通信系统的构成一个实用的光纤通信系统,配置各种功能的电路、设备和辅助设施,如接口电路、复用设备、管理系统以及供电设施等,才能投入运行。
要根据用户需求、要传输的业务种类和所采用传输体制的技术水平等来确定具体的系统结构。
因此,光纤通信系统结构的形式是多种多样的,但其基本结构仍然是确定的。
有种通信系统主要是由3部分组成:光发射机、光纤光缆和光接收机。
由于光纤只能传光信号不能传电信号,因此,这种通信系统在发送端必须先把电信号变成光信号,在接收端再把光信号变为电信号,即电/光和光/电变换。
其电/光和光/电变换的基本方式是直接强度调制和直接检波。
实现过程如下:输入的电信号既可以是模拟信号(如视频信号、电视信号),也可以是数字信号(如计算机数据、PCM 信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电处理过程,弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传输过程。
光纤通信系统原理

4 信号调制
信号调制是指信号的数字、模拟和复合形式 通过调制器装置发送到光纤上。
光纤通信系统的基本组成部分
光纤
光纤是光信号传输的核心媒介, 具有高速传输、低损耗、大带宽 等特点。
Hale Waihona Puke 设备连接器设备包括光纤传输设备、路由器、 交换机和中继器等。
连接器是用于光纤之间的连接和 衔接的一种重要设备。
光纤通信的工作原理
未来
• 城市照明 • 医疗应用 • 海底通信
1
发光源
电流输入LED或激光器,产生有源信号光波。
2
传输信号
光波沿光纤传输,根据传输距离和信号强度会发生衰减、散射等。
3
光电转换
光信号到达接收器,转换为电信号供显示、储存等使用。
光纤通信系统的优势和应用领域
高速传输
光纤可以传输海量数据,速度比铜线快得多。
应用领域广
光纤通信已应用于通信、医疗、军事等众多领 域。
安全性高
光纤传输是通过光信号进行传输的,不会受到 电磁干扰。
保密性强
光纤传输不会发射电磁辐射,信息更不容易被 窃听和干扰。
光纤通信系统的挑战和限制
• 光纤通信传输受制于距离和强度的影响。 • 光纤传输硬件和设备成本更高。 • 光纤传输系统故障更难以检测和维修。
光纤通信系统的未来发展趋势
城市照明
医疗应用
光纤技术正在用于提高城市照明, 包括路灯、停车场、广场等的智 能化和互联网化。
光纤技术正在被应用于医疗成像 和手术领域。
海底光缆
光纤技术正在被用于海底通讯线 路,解决了长距离、高带宽的需 求。
总结
优势
• 高速传输 • 安全性高 • 保密性强 • 应用领域广
光纤通讯的原理

光纤通讯的原理
光纤通信是利用光传输信息的一种信号传输方式。
其基本原理是利用纤维内部的光导纤维,将光信号作为信息的传输介质。
光纤通信主要包括光源、传输介质光纤和接收器三个部分。
光源是产生光信号的装置,一般使用激光器作为光源。
光信号生成后经过调制器对光信号进行模拟或数字信号调制。
调制器可以是电调制器或直接调制器,电调制器通过改变电压变化来调制光强,而直接调制器则根据输入信号的波形直接改变光强。
调制后的光信号通过光纤进行传输。
光纤由一根细而长的玻璃或塑料纤维组成,具有光的全反射特性。
光线在光纤中的传输依靠光的全反射原理,在内部表面发生反射,从而使光信号沿着光纤传输。
由于采用光纤传输,信息的传输距离可以达到数十公里甚至上百公里。
最后,光信号到达接收器后,通过光电转换器将光信号转换为电信号。
光电转换器是一种将光信号转换为电信号的装置。
光电转换器将光信号照射到光电二极管上,产生电流。
电流经过放大、滤波与解调等处理步骤后,得到与原始信号一致的电信号。
光纤通信具有传输速度快、传输容量大、抗干扰能力强等优点,广泛应用于长距离通信、局域网、数据中心等领域。
光纤通信的原理是基于激光光源产生光信号,通过光纤传输,再通过光电转换器将光信号转换为电信号,从而实现信息的传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信论文光纤通信论文光纤通信系统工程设计摘要根据课堂所学内容的原理,这次我们设计的任务是34MB/S光纤通信系统工程,具体设计是从实训楼D339到数学A楼弱电间之间开通一套34MB光纤系统。
要求设计当中要选择合适的路线,并计算总长度以及光纤的长度、光纤的使用芯数,而且要选择合适的光纤、光缆和光端机。
并写出具体的实施及方案、工程造价、光通路保护、光端机安装后的系统调测,并说明如何对工程施工质量进行控制。
目录前言 (1)第1章概论 (2)1.1 光纤通信发展的历史 (2)1.2光纤通信发展的现状 (2)1.3光纤通信的发展趁势 (3)第2章光通信系统 (5)2.1 光纤的介绍 (5)2.1.1光纤概念 (5)2.1.2光纤传输原理分析 (5)2.1.3光纤的传输特性 (5)2.1.4光纤的型号介绍 (7)2.2光缆的介绍 (8)2.2.1光缆历史 (8)2.2.2光缆的种类 (8)2.2.3光缆网是信息高速路的基石 (9)2.3光端机的介绍 (9)2.3.1模拟光端机 (10)2.3.2数字光端机 (10)2.4光纤通信的介绍 (11)2.5光纤通信技术与产业发展中几个值得思考的问题 (11)2.5.1积极创新开发具有自主知识产权的新技术 (12)2.5.2开发具有先进技术水平、与使用环境、施工技术相配套的新产品 (12)第3章材料选择 (13)3.1距离测量 (13)3.2光纤、光缆选择 (13)3.3光端机选择 (14)第4章具体的实施及方案 (17)4.1光缆线路的施工程序 (17)4.2光缆的直埋敷设 (18)4.3 用光纤将发送与接收连接 (18)第5章光通路保护 (19)第6章光端机安装后的系统调测 (21)6.1光发送机参数测试 (21)6.1.1平均发送光功率测量 (21)6.1.2 消光比的测试 (21)6.2光接收机参数测试 (21)6.2.1动态范围的测试 (21)6.2.2灵敏度的测试 (21)6.3 抖动测试 (22)6.4误码性能测试 (22)6.5警报系统的测试 (22)第7章整个工程的造价 (23)第8章结束语 (24)参考文献 (25)致谢 (26)前言人类社会的一切活动都离不开资讯的传递——通信,它像人的神经系统一样重要。
通信是人与人之间通过某种媒体进行的信息交流与传递。
从广义上说,无论采用何种方法,使用何种媒质,只要将信息从一地传送到另一地,均可称为通信。
古代的通信方式有烽火台、击鼓、驿站快马接力、信鸽、旗语等。
古代的通信对远距离来说,最快也要几天的时间,而现代通信以电信方式,如电报电话、快信、短信、E-MAIL等,实现了即时通信在目前人类的一切通信方式中,电话通信是应用最广泛的一种。
电话通信的目的是达成人们在任意两地之间的通话。
因此,必须要解决三个问题:第一是语音信号的发送和接收;第二是语音信号的传输;第三是语音信号的交换。
第一个问题由使用者的终端设备——电话机来解决。
第二个问题由各种类型的电话传输设备从最简单的音频传输线到多路载波设备,数位微波,卫星通信线路设备等等来解决。
第三个问题,则由各种类型的电话交换设备来解决。
这三个部分只要有系统地结合起来,就能构成一个完整的电话通信系统。
而电话交换设备,是整个电话通信网路中的枢纽,有着相当重要的作用。
20世纪90年代中期以前的光线通信系统事以电时分复用为基础的单波长系统。
在新一代超高速光线通信系统中,最具代表性的成就事指在2000年,光波分复用系统使用波分复用技术在一根光纤上实现了3.28Tb/s的传输速率。
光波分复用的突出优点是可有效地利用单模光纤地损耗区所带来的巨大带宽资源,明显提高系统的传输容量,同时将相应增加的成本降到很低的程度。
目前,“掺铒光纤放大器+密集波分复用+非零色散光纤+光子集成”正成为国际上长途高速光纤通信线路的主要技术方向。
同时,光交叉链接设备和光分插复用设备以及基于波长选路的密集波分复用全光网正在大力研究和试验。
此外,新型的光器件,新兴的技术和新型的系统也都层出不穷,并获得迅速发展。
第一章概论1.1 光纤通信发展的历史伴随社会的进步与发展,以及人们日益增长的物质与文化需求,通信向大容量、长距离的方向发展已经是必然趋势。
由于光波具有极高的频率,也就是说是具有极高的宽带从而可以容纳巨大的通信信息,所以用光波作为载体来进行通信是人们几百年来追求的目标。
1966年,英籍华裔学者高锟博士在PIEE杂志上发飙了一篇十分著名的文章——《用于高频的光纤表面波导》,该文从理论上分析和证明了用光纤作为传输媒体以实现光通信的可靠性,并设计了通信用光纤的波导结。
1970年,美国康宁玻璃公司根据高锟文章的设想,用改进型化学汽相沉积法制造出当时世界上第一根超低损耗光纤,成为使光纤通信爆炸性竞相发展的导火索。
虽然当时康宁玻璃公司制造出的光纤只有几米长,衰耗约20dB/km,而且几个小时之后便损坏了。
但它证明了用当时的科学技术与工艺方法制造通信用的超低损耗光纤是完全有可能的。
1970年以后,世界各发达国家对光纤通信的研究倾注了大量的人力与物力,其来势之凶、规模之大、速度之快远远超出了人们的意料,使光纤通信技术取得了及其惊人的进展。
从光纤的损耗来看,1970年是20dB/km,1972年是4 dB/km,1974年是1.1dB/km,1976年是0.5 dB/km,1979年是0.2 dB/km,1990年是0.14 dB/km,已经接近石英光纤的理论衰耗极限值0.1 dB/km。
从光器件看,1970年,美国贝尔公司研制出世界上第一只在室温下连续波工作的的砷化镓铝半导体激光器,为光纤通信找到了合适的光源器件。
后来逐渐发展到性能更好、寿命达几万小时的异质结条形激光器和现在的分布反馈式单纵模激光器以及多量子阱激光器。
光接收器件也从简单的硅PIN光二极管发展到量子效率达90%的雪崩光二极管APD。
从光纤通信系统看,正是光纤制造技术和光电器件制造技术的飞速发展,以及大规模、超大规模集成电路技术和微处理机技术的发展,带动了光纤通信系统从小容量刀大容量、从短距离刀长距离、从低水平到高水平、从旧体制刀新体制的迅猛发展。
1.2光纤通信发展的现状1976年美国在亚特兰大进行的现场试验,标志着光纤通信基础研究发展到了商业应用的新阶段。
此后,光纤通信技术不断创新;光纤从多模发展到单模,工作波长从0.85um发展到1.31 um和1.55 um,传输速率从几十兆特每秒发展到几十吉比特每秒。
另一方面,随着技术的进步和大规模产业的形成,光纤价格不断下降,应用范围不断扩大;从初期的单一类型信息的传输到多种业务的传输。
目前光纤已成为信息宽带传输的主要媒质,光纤通信系统将成为未来国家信息基础设施的支柱。
总之,从1970年刀现在虽然只有短短30多年的时间,但光纤通信技术却取得了及其惊人的进展。
用带宽极其惊人的进展。
用带宽极其宽的光波作为传送信息的载体以实现通信,这一百年来人们梦寐以求的幻想在今天已成为活生生的现实。
然而就目前的光纤通信而言,其实际应用的仅是其潜在能力的2%左右,尚有巨大的潜力等待人们去开发和利用。
因此,光纤通信技术并未停滞不前,而是向高水平、更高阶段方向发展。
1.3光纤通信的发展趁势光纤通信从1970年真正起步,乃今为止仅有30多年的时间,但光纤通信的技术无论是光纤制造技术还是光电器件的制造技术,以及光纤通行系统的水平都取得了极其惊人的进展,它以成为现代通信最主要的传输手段。
光纤通信的潜力是巨大的,目前的光纤通信应用水平据分析仅仅是其能力的1%~2%左右。
光纤通信作为现代通信的主要支柱,在现代通信网中起着重要的作用。
光纤通信具有以下几个发展趁势:1.波分复用技术所谓波分复用,就是用一根光纤同时传输几种不同波长的光波,已达到扩大通信容量的目的。
在系统的发送端,由各个分系统分别发出不同波长的光波,并由合波器合成一束光波进入光纤进行传输,而在接收端用光波分离开,分别输入刀各个系统的光接收机。
2.相干光通信乃今为止,已应用的光纤通信都是采用强度调制与直接检波的工作方式,它只相当于原始的无线通信所使用的调制与解调技术。
在此方式下,光波元器件的调制速率、光接收机的灵敏度受到局限而难以再提高,适用不了超大容量、超长距离通信的要求。
所谓相干光通信,就是在发端由激光器发出谱线较窄,频率稳定、相位恒定的相干光,并用先进的调制方法对之进行调制。
在收端,把由光纤传输来的相干光载波与本振光源发出的相干光,经光耦合器后加到光混合器上进行混频与差额,然后把差额后的中频光信号进行放大、检波。
3.超大波长光纤通信为了实现越来越大的信息容量和超长距离传输,必须适用低损耗和低色散的单模光纤。
目前石英光纤的损耗已接近理论极限值,再无多大潜力可挖。
4.光集成技术它和电子技术中的集成电路相类似,是把许多微型光学元件,如光源器件、光检测器,光透镜、光滤波器、光栅等集成在一块很小的芯片上,构成具有复杂性能的光器件;还可以和集成电路等电子元件集成在一起形成功能更复杂的光电部件,如光发送机与光接收机等。
采用光集成技术,不仅是设备的体积、重量大大减少、而且提高了稳定性与可靠性。
5.光弧子通信通信容量越大,要求光脉冲越窄。
窄光脉冲经光纤传输后,因光纤的色散作用出现脉冲展宽一直是制约大容量、长距离传输的关键因素。
经研究发现,当注入光强密度足够大时,会引起光脉冲变窄的奇特现象,其光脉冲宽度可抵达几个皮秒,即所谓光弧子脉冲。
因此用弧子脉冲可以实现超大容量的光纤通信。
第二章光通信系统2.1光纤的介绍2.1.1光纤概念光纤,是由纤芯和包层两部分组成的。
纤芯区域完成光信号的传输,包层则是将光封闭在纤芯内,并保护纤芯,增加光纤的机械强度。
目前,通信光纤的纤芯和包层的主体材料都是石英玻璃,但两区域中掺杂情况不同,因而折射率也不同。
纤芯的折射率一般是1.463~1.467,包层的折射率是1.45~1.46左右。
也就是说,纤芯的折射率比包层的折射率稍微大一些。
这就满足了全反射的一个条件。
当纤芯内的光线入射到纤芯与包层的交界面时,只要其入射角大于临界角,就会在纤芯内发生全反射,光就会全部由交界面偏向中心。
当碰到对面交界面时,又全反射回来,光纤中的光就是这样在芯包交界面上,不断地来回全反射,传向远方,而不会漏射到包层中去。
2.1.2光纤传输原理分析光独立传播定律认为,从不同光源发出的光线,以不同的方向通过介质某点时,各光线彼此互不影响,好象其他光线不存在似的。
光的直线传播和折射、反射定律认为,光在各向同性的均匀介质(折射率n不变)中,光线按直线传播。
光在传播中遇到两种不同介质的光滑界面时,光发生反射和折射现象。
光在均匀介质中的传播速度为:V=c/n。
(式中c是光在真空中的传播速度,n是介质的折射率) 反射定律为反射线位于入射线和法线所决定的平面内,反射线和入射线处于法线的两侧,反射角等于入射角。