九年级圆基础知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一对一授课教案

学员姓名:____何锦莹____ 年级:_____9_____ 所授科目:___数学__________

上课时间:____ 年月日_ ___时分至__ __时_ __分共 ___小时

一、圆的定义:

1. 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随

之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.

2 圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O

⊙”,读作“圆O”.

3 同圆、同心圆、等圆:

圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.

注意:同圆或等圆的半径相等.

1. 弦:连结圆上任意两点的线段叫做弦.

2. 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.

3. 弦心距:从圆心到弦的距离叫做弦心距.

4. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B

、为端点的圆弧记作AB,读作弧AB.

5. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.

6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.

7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.

8. 弓形:由弦及其所对的弧组成的图形叫做弓形.

1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心

角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.

2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.

3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.

4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,

所对的弦相等,所对的弦的弦心距相等.

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.

一、圆的对称性

1. 圆的轴对称性:圆是轴对称图形,对称轴是经过圆心的任意一条直线.

2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心.

3. 圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合.

二、垂径定理

1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

3. 推论2:圆的两条平行弦所夹的弧相等.

练习题;

1.判断:(1)直径是弦,是圆中最长的弦。()(2)半圆是弧,弧是半圆。()

(3)等圆是半径相等的圆。()(4)等弧是弧长相等的弧。()

(5)半径相等的两个半圆是等弧。()(6)等弧的长度相等。()2.P为⊙O内与O不重合的一点,则下列说法正确的是()

A.点P到⊙O上任一点的距离都小于⊙O的半径 B.⊙O上有两点到点P的距离等于⊙O的半径

C.⊙O上有两点到点P的距离最小 D.⊙O上有两点到点P的距离最大3.以已知点O为圆心作圆,可以作()

A.1个B.2个C.3个D.无数个

4.以已知点O为圆心,已知线段a为半径作圆,可以作()

A.1个B.2个C.3个D.无数个

5、如下图,

(1)若点O为⊙O的圆心,则线段__________是圆O的半径;

线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.

(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.

5.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这圆的半径是 cm.

6.圆上各点到圆心的距离都等于,到圆心的距离等于半径的点都在.

7.如图,点C在以AB为直径的半圆上,∠BAC=20°,∠BOC等于()

A.20° B.30°C.40° D.50°

8、如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.

9.如图1,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是().

A.CE=DE B.BC BD

= C.∠BAC=∠BAD D.AC>AD A

C E

D

O

B

A

O

M

B

A

C

D

P

O

B

A

C

E

D

O

B

A

C

E

D

O

F

(5)

(1) (2) (3) (4)

10.如图2,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.8

11.如图3,在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()A.AB⊥CD B.∠AOB=4∠ACD C.AD BD

= D.PO=PD

12.如图4,AB为⊙O直径,E是BC中点,OE交BC于点D,BD=3,AB=10,则AC=_____.

13.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.

14(、深圳南山区,3分)如图1-3-l,在⊙O中,已知∠A CB=∠CDB=60○,AC=3,则△ABC的周长是____________.

15.如果两个圆心角相等,那么()

A.这两个圆心角所对的弦相等;B.这两个圆心角所对的弧相等

C.这两个圆心角所对的弦的弦心距相等;D.以上说法都不对

16(、大连,3分)如图1-3-7,A、B、C是⊙O上的三点,∠BAC=30°

则∠BOC的大小是()

A.60○B.45○

C.30○D.15○

相关文档
最新文档