高校物理专业固体物理学期末考试试卷及答案
高校物理专业固体物理学期末考试答案详解
高校物理专业固体物理学期末考试答案详解物理专业固体物理学期末考试答案详解题一:多晶体和单晶体的区别和联系是什么?答:多晶体和单晶体是固体物质的两种不同形态。
多晶体是由许多晶粒组成的,晶粒之间存在取向差异,呈现出无规则的排列和晶格结构。
而单晶体则具有完美的晶格结构,晶粒排列有序。
多晶体和单晶体在结构和性质上存在一些区别和联系。
首先,在结构上,多晶体由许多晶粒组成,晶粒之间存在取向差异,形成无规则的排列和晶格结构;而单晶体由一个晶粒组成,晶粒之间排列有序且具有完美的晶格结构。
同时,在性质上,多晶体的物理性质通常是各晶粒性质的平均值,具有各向同性;而单晶体的物理性质在晶格各个方向上存在明显差异,具有各向异性。
此外,多晶体与单晶体在制备和应用中也存在差异。
多晶体比较容易制备,其制备成本低,适用于大规模生产;而单晶体的制备比较困难,制备成本高,适用于对晶体结构和性质要求较高的领域,如光电子器件和半导体材料等。
总结起来,多晶体和单晶体在结构、性质以及应用方面存在明显的区别。
多晶体具有无规则排列的结构,各向同性的性质,适用于大规模生产;而单晶体具有有序排列的结构,各向异性的性质,适用于对晶体结构和性质要求较高的领域。
题二:介绍一下福克斯效应和拉曼散射现象。
答:福克斯效应(Focke effect)是固体物理中的一种重要现象,描述了光在晶体中传播时的色散性质。
当光波传播到晶体中时,由于晶体中原子的周期性排列,光波的传播速度因晶体的折射率而发生变化,导致光波的传播方向发生偏折的现象。
福克斯效应的具体表现是,在晶体的X射线或电子束射线入射时,会出现衍射条纹,这些衍射条纹的位置和形状与晶体的结构相关。
通过对这些衍射条纹进行分析和测量,可以确定晶体的晶格常数和晶体结构。
另一方面,拉曼散射现象(Raman scattering)是指光波在与物质相互作用时发生频率或波长的变化。
当光波与物质相互作用时,由于光与物质分子之间的相互作用,光波的能量会改变,从而引起光波的频率或波长发生变化。
固体物理期末试题及答案
固体物理期末试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体的说法,错误的是:A. 晶体具有规则的几何外形B. 晶体内部原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 电子在金属中的自由运动是金属导电的主要原因,这种现象称为:A. 金属键B. 离子键C. 共价键D. 范德华力答案:A3. 半导体材料的导电性介于导体和绝缘体之间,这是因为:A. 半导体材料中的电子不能自由移动B. 半导体材料中的电子在特定条件下才能自由移动C. 半导体材料中的电子数量少于导体D. 半导体材料中的电子数量多于绝缘体答案:B4. 根据泡利不相容原理,一个原子轨道中最多可以容纳的电子数是:A. 1个B. 2个C. 4个D. 8个答案:B二、填空题(每题5分,共20分)1. 晶体的三种基本类型是________、________和________。
答案:单晶体、多晶体、非晶体2. 根据能带理论,固体中的能带可以分为________和________。
答案:导带、价带3. 固体物理中,费米能级是指在绝对零度时,电子占据的最高能级,其对应的温度是________。
答案:0K4. 根据德布罗意波理论,物质粒子也具有波动性,电子的波长与其动量成________关系。
答案:反比三、简答题(每题10分,共30分)1. 简述布拉格定律及其在晶体结构分析中的应用。
答案:布拉格定律是指当X射线或电子波以一定角度入射到晶体表面时,如果满足nλ=2d*sinθ的条件,其中n为整数,λ为波长,d为晶面间距,θ为入射角,那么会发生衍射现象。
这个定律在晶体结构分析中非常重要,因为它允许科学家通过测量衍射角来确定晶体的晶面间距和晶体结构。
2. 解释什么是超导现象,并简述其应用。
答案:超导现象是指某些材料在低于临界温度时,电阻突然降为零的现象。
这意味着在超导状态下,电流可以在材料内部无损耗地流动。
超导现象的应用非常广泛,包括但不限于磁悬浮列车、粒子加速器中的超导磁体、以及医疗成像设备如MRI。
固体物理学 试卷答案
一、简述题1. 声子: 晶格振动中格波的能量量子. 每个振动模式的能量均以ωh 为单位,能量递增为ωh 的整数倍--声子的能量,一个格波就是一个振动模式,对应一种声子.2. 费米能: 电子按泡利不相容原理,能量从低至高逐级填充,所达到的最高能级.3. 空穴: 在能带中有某一个状态k 未被电子占据,此时能带是未满带—近满带,近满带中的电流如同一个正电荷e 所产生的,其运动速度等于处在k 状态的电子运动的速度.这种空的状态称为空穴.空穴可以看成是一个带正电荷具有正有效质量的粒子.4.能带理论的基本假设: (1)绝热近似:将固体分开为电子系统及离子实系统的一种近似方法;(2)单电子近似(自洽场近似):利用哈特里-福克方法将多电子问题归结为单电子问题;(3)周期场近似:假定单电子势场具有与晶格同样的平移对称性.二、推导题对二维简单格子,按德拜模型,求出晶格热容,并讨论高低、温极限.解:德拜模型格波为弹性波,色散关系为vq =ω,在二维波矢空间内,格波等频线是一个个圆周.在dq q q +→区间内波矢数为:()ωπωππd v S qdq S dz ⋅=⋅=22222 模式密度: ()22v S d dz d πωωω==,二维介质由两支格波,总模式密度: ()2vS g πωω= 格波振动能: ()ωωπωωωd e v S E m kT ∫−=021h h晶格热容: ()ωωωπωωωd e e kT k vS C m kT kT V ∫−⎟⎠⎞⎜⎝⎛=02221h h h 其中 ()N d v S d g m m 2020==∫∫ωπωωωωω 令 kT x ωh =, ()dx e x e kT k v Sk C D x x V ∫Θ−⎟⎠⎞⎜⎝⎛=023221h π其中 km D ωh =Θ 高温极限, x e x +≈1,Nk C V 2≈,与经典理论一致.低温极限, ∞→ΘT D ,()()361023ζ=−∫∞dx e x e x x (常数)2AT C V =在低温下二维晶格的热容量与温度的平方成正比.三、计算题已知铝为三价金属,原子量为27,密度为2.7g/cm 3, 求金属铝在K 0=T 下的费米波矢、费米能和费米速度. 解:由题设可得金属铝的电子浓度为:()()32932323m 108.1cm 108.11002.6277.23−−×=×=⎟⎠⎞⎜⎝⎛×××=n ()()()11031292312m 1075.1108.133−×=×××==ππn k F ()11.7eV J 1087.11011.921075.1100546.1218312103422=×=×××××==−−−m k F F h ε()s m k v F F /m 1003.21011.91075.1100546.16311034×=××××==−−h四、推导题设电子在周期性势场中的势能函数为:()()()()⎩⎨⎧+≤<−+−+≤<=a n x d a n d a n x na V x V 11,01,0 ,其中,d a 2=.1. 画出此势能曲线,求势能的平均值;2. 用近自由电子模型,求出晶体的第一及第二个禁带宽度.解:1.势能函数为周期性函数,取一个周期,0=n()⎩⎨⎧≤<=−≤<=d x d d d a x V x V 2,00,0画出势能曲线略. 在一个周期内求势能平均值.()000021d 1d 1V x V a x x V a V d a ===∫∫ 2.根据近自由电子近似模型,禁带宽度 n g V E 2= d x an i d x a πn -i n e a n i a V x e V a V 02002021d 1ππ−−⋅==∫=()[]1120+−n n V π π01122V V E g ==, 0222==V E g五、说明题试举一例,说明晶体中的缺陷对晶体相关性质的影响和实际应用.要点:以晶体中得某一种缺陷(空位,填隙,位错等等)为例,说明对晶体力学,光,电性质得影响,并进一步讨论实际应用.具备以上要点即可得分.六、证明题试证明:在磁场中运动的布洛赫电子,在k 空间中轨迹面积νA 和在r 空间的轨迹面积r A 之间的关系为: νA eB A r 2⎟⎠⎞⎜⎝⎛=h , 式中B 为磁场强度. 证: 在磁场中电子受到洛仑兹力的作用.由晶体电子准经典运动方程B dt r d e B v e dt k d v v v v v h ×⎟⎠⎞⎜⎝⎛−=×−= 两边对时间t 积分得:B r e k v v v h ×−=在垂直B 得平面内,线元r ∆与k ∆得关系为:k eB r ∆⎟⎠⎞⎜⎝⎛=∆h 所以电子在k 空间中轨迹面积νA 和在r 空间的轨迹面积r A 之间的关系为:νA eB A r 2⎟⎠⎞⎜⎝⎛=h。
固体物理期末考试题及答案
固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。
晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。
例如,立方晶系的晶格常数a是指立方体的边长。
7. 简述能带理论的基本概念。
能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。
在固体中,电子的能量不是连续的,而是分成一系列的能带。
价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。
8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。
在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。
三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。
求该链的声子频率。
解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。
解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。
固体物理 期末考试
一、概念、简答1.晶体,非晶体,准晶体;(p1,p41,p48)答:理想晶体中原子排列十分规则,主要体现是原子排列具有周期性,或称为长程有序,而非晶体则不具有长程的周期性.,因此不具有长程序,但非晶态材料中原子的排列也不是杂乱无章的,仍保留有原子排列的短程序.准晶态:具有长程序的取向序而没有长程序的平移对称序;取向序具有晶体周期性所不能容许的点群对称性,沿取向序对称轴的方向具有准周期性,有两个或两个以上的不可公度特征长度按着特定的序列方式排列.2. 布拉菲格子;(p11)答:布拉菲格子是一种数学上的抽象,是点在空间中周期性的规则排列,实际晶格可以看成在空间格子的每个格点上放有一组原子,它们相对位移为r,这个空间格子表征了晶格的周期性叫布拉菲格子.3.原胞,晶胞;(p11)答:晶格的最小周期性单元叫原胞.晶胞:为了反映晶格的对称性,选取了较大的周期单元,我们称晶体学中选取的单元为单胞.4.倒格子,倒格子基矢;(p16)45. 独立对称操作:m、i、1、2、3、4、6、6.七个晶系、十四种布拉伐格子;(p35)答:7.第一布里渊区:倒格子原胞答:在倒格子中取某一倒格点为原点,做所有倒格矢G 的垂直平分面,这些平面将倒格子空间分成许多包围原点的多面体,其中与原点最近的多面体称为第一布里渊区。
8.基矢为 的晶体为何种结构;若 又为何种结构?解:计算晶体原胞体积: 由原胞推断,晶体结构属体心立方结构。
若 则由原胞推断,该晶体结构仍属体心立方结构。
9.固体结合的基本形式及基本特点。
(p49p55、57p67p69 答:离子型结合以离子而不是以原子为结合的单位,共价结合是靠两个原子各贡献一个电子,形成所谓的共价键,具有饱和性和方向性。
金属性结合的基本特点是电子的共有化,在晶体内部一方面是由共有化电子形成的负电子云,另一方面是侵在这个负电子云中的带正点的各原子实。
范德瓦尔斯结合往往产生于原来有稳固电子结构的原子或分子间,是一种瞬时的电偶极矩的感应作用。
固体物理学考试题及答案
固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
高校物理专业固体物理期末试卷及答案
高校物理专业固体物理期末试卷及答案一、选择题(每题5分,共30分)1. 以下哪个不是固体物理的研究对象?A. 电荷的导体中的传播B. 物质的晶体结构C. 电子的运动D. 液体的流动性质答案:D2. 在固体物理中,布拉格方程是用来描述什么现象的?A. 光的干涉现象B. 电子的散射现象C. 磁场的分布现象D. 热传导现象答案:A3. 阻塞模型是固体物理中用来解释材料导电性的模型,它主要考虑了以下哪些因素?A. 电子的散射和杨氏模量B. 电子的散射和晶格缺陷C. 杨氏模量和晶体结构D. 晶格缺陷和电子的能带结构答案:B4. 下列哪个参数不是用来描述固体物理中晶格振动的特性?A. 固体的杨氏模量B. 固体的居里温度C. 固体的声速D. 固体的谐振子频率答案:A5. 铁磁体和反铁磁体的主要区别在于它们的:A. 热传导性质B. 磁化曲线形状C. 磁化方向D. 磁化温度答案:C6. 固体物理中的光栅是一种重要的实验工具,它主要用来:A. 进行晶体的结构分析B. 测定材料的电导率C. 测量固体的磁性D. 研究固体的光学性质答案:D二、填空题(每题10分,共40分)1. 固体物理中用于描述材料导电性的基本参量是电阻率和______。
答案:电导率2. 布拉格方程为d*sin(θ) = n*λ中,d表示晶格的______。
答案:间距3. 固体物理中描述材料磁性的基本参量是磁矩和______。
答案:磁化强度4. 固体物理研究中,振动频率最低的模式被称为______模式。
答案:基态5. 根据阻塞模型,材料的电导率与温度的关系满足______定律。
答案:维恩三、简答题(每题20分,共40分)1. 什么是固体物理学中的费米面?它对材料的性质有什么影响?答案:费米面是能带理论中的一个重要概念,表示能量等于费米能级的电子所占据的状态的集合,它将占据态与未占据态分界开来。
费米面对材料的性质有很大影响,如电导率、热导率等。
带有较高电子密度的材料,其费米面形状趋于球形;而低电子密度材料,费米面呈现出不规则的形状。
大学固体物理试题及答案
·考试时间120 分钟试题Array班级学号姓名一、简答题(共65分)1.名词解释:基元,空间点阵,复式格子,密堆积,负电性。
(10分)2.氯化钠与金刚石是复式格子还是单式格子,各自的基元中包含多少原子?分别是什么原子?(6分)3.在固体物理中为什么要引入“倒空间”的概念?(5分)4.在晶体的物相分析中,为什么使用X光衍射而不使用红外光?(5分)5.共价键的定义和特点是什么?(4分)6.声子有哪些性质?(7分)7.钛酸锶是一种常见的半导体材料,当产生晶格振动时,会形成多少支格波,其中声学支和光学支格波各多少支?(5分)8.晶格振动的Einsten模型在高温和低温下都与实验定律符合吗?为什么?(5分)9.试画出自由电子和近自由电子的D~En关系图,并解释二者产生区别的原因。
(8分)10.费米能级E f的物理意义是什么?在绝缘体中费米能级处在导带、禁带、价带的哪个中?两块晶体的费米能级本来不同,E f1≠E f2,当两块晶体紧密接触后,费米能级如何变化?(10分)二、计算题(共35分)1.铜靶发射λ=0.154nm的X射线入射铝单晶(面心立方结构),如铝(111)面一级布拉格反射角θº,试据此计算铝(111)面族的面间距d与铝的晶格常数a。
(10分)2.图示为二维正三角形晶格,相邻原子间距为a。
只计入最近邻相互作用,使用紧束缚近似计算其s能带E(k)、带中电子的速度v(k)以及能带极值附近的有效质量m*。
(15分)提示:使用尤拉公式化简3.用Debye模型计算一维单式晶格的热容。
(10分)参考答案一、简答题(共65分)1. (10分)答:基元:组成晶体的最小结构单元。
空间点阵:为了概括晶体结构的周期性,不考虑基元的具体细节,用几何点把基元抽象成为一点,则晶体抽象成为空间点阵。
复式格子:晶体由几种原子组成,但各种原子在晶体中的排列方式都是相同的(均为B格子的排列),可以说每一种原子都形成一套布拉菲子格子,整个晶体可以看成是若干排列完全相同的子格子套构而成。
安徽大学期末试卷MK11-12固体物理试卷A考试试题参考答案及评分标准.pdf
第 3 页 共3页
所以:
G2
=
2k ¢
G
=
2kG cos ®
=
2kG sin µ
)
2¼
=
2¼ 2
sin µ
)
2d sin µ
=
¸(1
分)。
d¸
2、证明T = 0K时,能量越低,一维自由电子气的能态密度越大,且每个电子的平均能量为
EF =3。
证明:
p
N (E)
=
2
¢
L 2¼
¢
2 dE =dk
E¹
==R2R0¼EL0EFF¢NN~m(2E(kE)=E)ddEE2¼m=~ LRR0pE0E1FEFE,E¡1可1==2见2 =,能E3F量(越2低分,)。能态密度越大(3
安徽大学期末试卷
安徽大学 20 11 —20 12 学年第 二 学期
《 固体物理 》(A 卷)考试试题参考答案及评分标准
一、填空题(每空 2 分,共 30 分)
1、以下对称素1; 2; 3; 4; 6; i; m; ¹3; ¹4; ¹6中无需独立存在的是 ¹3 和 ¹6 。 2、3C-SiC 具有类金刚石结构,则在其体现晶体对称性的一个单胞中包含 4 个 C 原子, 4 个 Si 原子。其晶格振动谱有 6 支色散关系曲线,其中声学支色散关系曲线数目为 3 , 光学支色散关系曲线数目为 3 。 3、晶体的低温热容量有两部分主要贡献,即晶格和电子。低温时,电子热容量正比于温度一 次方,这是因为贡献主要来自于某一特定能量附近的电子,该特定能量为 费米能 。 4、固体的四种基本结合类型分别为离子性结合、共价性结合、金属性结合、范德瓦尔斯结合。 5、能带论的三个基本近似为 绝热近似 、 单电子近似 、 周期场近似 。
固体物理期末复习题目及答案
第一章 晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。
(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞内含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以43a R =3334423330.68843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞内含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以42a R =3334442330.74642n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.341683n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。
09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。
4、证明正格子晶面 与倒格矢正交。
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。
固体物理期末试卷及参考解答208-b (2)
课程编号: 课程名称: 固体物理试卷类型:卷 考试形式:开 考试时间: 120 分钟 一、简答题(本大题共10小题,每小题5分,共50分)1.什么是晶面指数?什么是方向指数?它们有何联系?2.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件。
3. 为什么组成晶体的粒子(分子、原子或离子)间的相互作用力除吸引力还要有排斥力?排斥力的来源是什么?4.写出马德隆常数的定义,并计算一维符号交替变化的无限长离子线的马德隆常数。
5.什么叫声子?长光学支格波与长声学支格波的本质上有何区别?6.温度降到很低时。
爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的较好。
试解释其原因。
7. 自由电子模型的基态费米能和激发态费米能的物理意义是什么?费米能与那些因素有关?8.什么是弱周期场近似?按照弱周期场近似,禁带产生的原因是什么?9. 什么是本征载流子?什么是杂质导电?10.什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?二、计算题(本大题共5小题,每小题10分,共50分)1. 考虑一在球形区域内密度均匀的自由电子气体,电子系统相对于等量均匀正电荷背景有一小的整体位移,证明在这一位移下系统是稳定的,并给出这一小振动问题的特征频率。
2. 如将布拉维格子的格点位置在直角坐标系中用一组数),,(321n n n 表示,证明:对于面心立方格子,i n 的和为偶数。
3. 设一非简并半导体有抛物线型的导带极小,有效质量m m 1.0=*,当导带电子具有k T 300=的平均速度时,计算其能量、动量、波矢和德布罗意波长。
4. 对于原子间距为a ,由N 个原子组成的一维单原子链,在德拜近似下, (1)计算晶格振动频谱;(2)证明低温极限下,比热正比于温度T 。
5. 对原子间距为a 的由同种原子构成的二维密堆积结构, (1)画出前三个布里渊区;(2)求出每原子有一个自由电子时的费米波矢; (3)给出第一布里渊区内接圆的半径;(4)求出内接圆为费米圆时每原子的平均自由电子数;(5)平均每原子有两个自由电子时,在简约布里渊区中画出费米圆的图形。
大学固体物理考试题及答案参考
固体物理训练题之阳早格格创做1.晶体结构中,里心坐圆的配位数为 12 .晶体里里微瞅结构不妨瞅成是由一些相共的面子正在三维空间做周期性无限分集 .固体物理教本胞、结晶教本胞 .格波的能量量子 ,其能量为 ħωq ,准动量为 ħq .正接归一闭系 .分坐的值 , 即只可与 Na的整数倍. 7.晶体的面缺陷典型有 热缺陷、挖隙本子、纯量本子、色心 .自由电子近似、独力电子近似、无碰碰假设、自由电子费米气体假设 .9.根据爱果斯坦模型,当T→0时,晶格热容量以 指数 的形式趋于整.10.晶体分离典型有 离子分离、共价分离、金属分离、分子分离、氢键分离 . 11.正在千万于整度时,自由电子基态的仄稳能量为 0F 53E . 摩我定容热容为 B m ,23nk C V = .13.依照惯例,里心坐圆本胞的基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=)(2)(2)(2321j i a a k i a a k j a a,体心坐圆本胞基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a a k j i a a k j i a a. 14 .对于晶格常数为a 的简朴坐圆晶体,与正格矢k a j a i a R ˆˆˆ22++=正接的倒格子晶里族的里指数为 122 , 其里间距为 a 32π .15.根据晶胞基矢之间的夹角、少度闭系可将晶体分为 7大晶系 ,对于应的惟有14种 布推伐格子.16.按几许构型分类,晶体缺陷可分为 面缺陷、线缺陷、里缺陷、体缺陷、微缺陷 .17. 由共种本子组成的二维稀排晶体,每个本子周围有 6 个迩来邻本子.18.矮温下金属的总摩我定容热容为 3m ,bT T C V +=γ .19. 中子非弹性集射 是决定晶格振荡谱最灵验的真验要领.1.固体浮现宏瞅弹性的微瞅真量是什么?本子间存留相互效率力.2.简述倒格子的本量.P29~303. 根据量子表里简述电子对于比热的孝敬,写出表白式,并道明为什么正在下温时不妨不思量电子对于比热的孝敬而正在矮温时必须思量?4.线缺陷对于晶体的本量有何效率?举例道明.P1695.简述基础术语基元、格面、布推菲格子.基元:P9组成晶体的最小基础单元,所有晶体不妨瞅成是基元的周期性沉复排列形成.格面:P9将基元抽象成一个代表面,该代表面位于各基元中等价的位子.布推菲格子:格面正在空间周期性沉复排列所形成的阵列.6.为什么许多金属为稀积结构?问:金属分离中, 受到最小能量本理的拘束,央供本子真与公有电子电子云间的库仑能要尽大概的矮(千万于值尽大概的大).本子真越紧稀,本子真与公有电子电子云靠得便越稀切,库仑能便越矮.所以,许多金属的结构为稀积结构.7.简述爱果斯坦模型,并道明其乐成之处、缺累之处及本果问:爱果斯坦模型:假定所有的本子以相共的频次振荡乐成之处:通过采用符合的爱果斯坦温度值,正在较大温度变更的范畴内,表里估计的截止战真验截止相称佳天切合.且热容量随着温度落矮而趋于整缺累之处:温度非常矮时,热容量按温度的指数形式落矮,而真验测得截止标明:热容量按温度的3次圆落矮本果:是爱果斯坦模型忽略了各格波的频次不共8.金属中公有化电子对于热容孝敬为什么战典范表里值存留较大偏偏好?正在什么情况下应付于电子的热容孝敬给予思量,为什么? 由于电子是费米子,按照费米-狄推克分集战泡利不相容本理,果此公有化电子不克不迭局部弥补正在最矮能级上,而是弥补正在能戴中由矮到下准连绝的能级上.正在热激励效率下,惟有费米能附近能级上的电子存留一定跃迁到下能级的机会,进而对于热容有孝敬,而大普遍电子并不介进热激励,那时制成金属中公有化电子对于热容孝敬战典范表里值存留较大偏偏好本果.通过估计创制,电子对于热容量的孝敬战温度的一次圆成正比,而晶格振荡的热容量正在矮温时战温度的三次圆成正比,果此,正在温度趋于整的情况下,电子的热容量是主要圆里,该当给予思量.1.道明自由电子的能级稀度为2123224//)(E m V dE dZ E g ⎪⎭⎫ ⎝⎛==h π.道明:P1902.道明倒格矢332211b h b h b h G h ++=与正格子晶里族(321h h h )正接. 道明:P303. 道明体心坐圆面阵的倒易面阵是里心坐圆.道明:P31oo o A a A a A a 864321===,,,0012090===γβα,,供: 3.倒易面阵单胞基矢;(2)倒易面阵单胞体积;(3)(210)仄里的里间距.P322. 已知金属钠Na 正在常温常压下的品量稀度3970cm g m /.=ρ,本子量为23,价电子数为1,试推算千万于温度时金属钠Na 的费米能量、费米温度 、费米波矢战费米速度.P193×10-24g ,回复力常数为×10-1N/cm.一维单本子链中本子的振荡位移写成如下形式:)cos()(naq t A t x n πω2-=,供:(1)格波的色集闭系;(2)供出由5个本子组成的一维本子晶格的振荡频次.4. 已知金属铜Cu 是里心坐圆晶体,晶格常数a=3.61 10-10m ,每个本子电离时搁出一个自由电子,试推算千万于温度时金属铜的费米能量、费米温度 、费米波矢战费米速度.P194V (r )= r m n r αβ-+表述.若m=2,n=10,而且二本子形成宁静的分子,仄稳时其核间距离为310-10m ,离解能为4eV ,试估计:α战β(10-12J )P726.一维复式格子的晶格常数为2a,回复力常数为β,大本子品量为M,小本子品量为m,(1)列出本子疏通圆程及解的形式.(2)供特别波的色集闭系w(q).英文文件要领[6]M. D. Segall, Philip J. D. Lindan, M. J. Probert et al.First-principles simulation: ideas, illustrations and the CASTEP code, J.Phys.: Cond. Matt. 2002, 14: 2717–2744。
北京化工大学固体物理期末试题-2021-答案
北京化工大学固体物理期末试题-2021-答案此为北京化工大学《固体物理》期末试题及答案北京化工大学2021―2021学年第二学期《固体物理学》期末考试试卷班级:____________ 姓名:______________ 学号:____________ 分数:_________一、简答题(每小题5分,共35分)1.写出面心立方结构的基矢并证明其倒格子为体心立方。
a a1 (j k) a2 22 (a2 2 a3)b1 ( i j k) a a a (i k) a3 (i j) 22 2 2 b2 (i j k) b1 (i j k) aa所以面心立方结构的倒格子为体心立方2.具有面心立方结构的某元素晶体,给出其多晶样品的X射线衍射谱中衍射角最小的三个衍射峰相应的面指数。
衍射面指数为(111)(200)(220),面指数为(111)(100)(110)3.说明能带理论的三个基本近似?作为能带论基础的三个假设为:绝热近似、平均场近似(单电子近似)和周期场近似。
绝热近似:在考虑晶体中电子的运动时,可以认为原子实(原子核)是固定不动的,使一个多粒子问题简化为多电子问题。
平均场近似:用一种平均场来代替价电子之间的相互作用,即假定每个电子的势能均相同,而使多电子问题简化为单电子问题。
周期场近似:单电子薛定谔方程中的势能项具有晶格周期性,因此电子是在一个周期性势场中运动。
4.对惰性气体元素晶体,原子间的相互作用常采用勒纳德-琼斯势,u(r) 4 [()12 ()6],其中ε和σ为待定常数,r为两原子间的距离,说明式中两项的rr物理意义及物理来源。
第一项为原子之间的相互排斥力,起源于泡利不相容原理;第二项表示原子之间的相互吸引力,起源于原子的瞬时偶极矩的吸引作用。
5.晶体中位错有几种类型?各有什么特点。
刃型位错,螺型位错。
刃型位错的位错线同滑移方向垂直,螺型位错的位错线同滑移方向平行。
6.说明德哈斯-范阿尔芬效应的物理机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高校物理专业固体物理学期末考试试卷及答
案
一、选择题(每题2分,共40分)
1. 下列哪种材料是典型的固体?
A. 水
B. 空气
C. 玻璃
D. 油
2. 表征物质导电性质的关键因素是:
A. 导热系数
B. 形变
C. 导电子数
D. 电阻率
3. 相互作用力程远大于它的大小尺度的物质状态是:
A. 液体
B. 气体
C. 等离子体
D. 固体
4. 根据原子内部粒子组织排列方式的不同,将固体分为晶体和非晶态,以下哪种属于非晶态?
A. 钻石
B. 石英
C. 玻璃
D. 铜
5. 材料的抗拉强度指的是:
A. 材料在拉伸过程中发生断裂的能力
B. 材料的硬度
C. 材料的耐磨性
D. 材料的延展性
(以下为第6题至第40题的选项省略)
二、填空题(每题3分,共30分)
1. 固体的最基本由原子、分子或离子组成的单位结构叫作
_____________。
2. 点阵是固体晶体结构中原子、离子或分子的_____________组成的排列方式。
3. 若一堆物体在某种温度下开始熔化,则该温度即为该物质的
_____________点。
4. 固体由于结构的紧密性,其密度通常较_____________。
5. 金属中导电电子为材料的_____________。
6. 非晶态材料的特点是_____________无规律的原子组织结构。
(以下为第7题至第30题的空格省略)
三、问答题(共30分)
1. 简述固体物理学研究的基本内容和意义。
解答:
固体物理学研究的基本内容主要包括固体材料的结构、性质和应用等方面。
它通过研究固体的微观结构和宏观性质,探索物质内部的相互作用和运动规律,从而深入了解固体物质的特性和行为。
固体物理学的研究对于提高材料的功能和性能具有重要意义。
通过深入研究固体的结构和性质,我们可以开发出更好的材料,改善材料的导电、导热、机械强度等性能,为社会发展和工业生产提供重要支
持。
同时,固体物理学的研究还能够为其他领域的科学研究提供基础
和支撑,如电子学、光学、磁学等。
2. 什么是晶体的点阵?
解答:
晶体的点阵是指晶体中原子、分子或离子的三维排列方式。
它描述
了晶体内部粒子组织的周期性规律性。
点阵是晶体特有的结构,不同
材料的点阵形式各异,决定了晶体的物理性质。
3. 请简述非晶态的特点和应用领域。
解答:
非晶态是一种没有长程有序的固态物质结构。
其特点是没有规则的
原子、离子或分子的排列方式,具有较低的密度和较高的软化温度。
非晶态材料还具有良好的韧性和可塑性,且易于制备和加工。
由于其特殊的结构和性质,非晶态材料在许多领域中得到广泛应用。
例如,非晶态金属的弹性变形能够吸收冲击,广泛应用于制作安全玻璃、汽车碰撞件等需要抗冲击性能的产品。
非晶态合金具有优异的磁
性能,可应用于电磁传感器、磁性存储等领域。
非晶态材料还在光学、新能源、储能材料等方面具有潜在的应用前景。
(以下为第4题至第10题的回答省略)
答案解析:
选择题答案:1. C;2. D;3. D;4. C;5. A;
(以下为第6题至第40题的答案省略)
填空题答案:1. 晶胞;2. 重复单元;3. 熔点;4. 大;5. 价电子;6. 无定型
(以下为第7题至第30题的答案省略)
问答题答案:1. 固体物理学的基本内容包括固体材料的结构、性质和应用等方面,其意义在于提高材料的功能和性能,为其他科学研究提供基础和支撑;
2. 晶体的点阵是指晶体中原子、分子或离子的三维排列方式;
3. 非晶态材料的特点包括无规则的原子排列、较低的密度和较高的软化温度,应用领域包括安全玻璃、汽车碰撞件、电磁传感器等。
(以下为第4题至第10题的答案解析省略)
以上是高校物理专业固体物理学期末考试试卷及答案的相关内容。
祝您成功完成考试!。