配电网中性点接地方式的分类及特点
电力系统中性点接地方式分类、特征及应用
电力系统中性点接地方式分类、特征及应用摘要:供电系统的中性点接地方式涉及电网的安全运行,供电可靠性,过电压和绝缘的配合,继电保护,接地设计等多个因素,而且对通信和电子设备的电子干扰、人身安全等方面有重要影响。
目前供配电系统的接地方式主要有中性点不接地、中性点直接接地、中性点经电阻接地和中性点经消弧线圈接地四种,本文对这四种中性点接地方式进行了分类、分析与比较,并针对发展中城市配电系统中接地变的应用进行分析和建议。
关键词:中性点接地系统接地变电力系统中性点接地方式是指电力系统中的发电机和变压器的中性点与地的连接方式。
可以分为大接地电流系统和小接地电流系统,前者即中性点直接接地电流系统,后者又分为中性点不接地系统和中性点经消弧线圈或电阻接地系统。
1.大接地电流系统大接地电流系统,即将中性点直接接地。
该系统运行中若发生一相接地故障时,就形成单相接地短路,线路上将流过很大的短路电流,使线路保护装置迅速动作,断路器跳闸切除故障。
大电流接地系统在发生单相接地故障时,中性点电位仍为零,非故障相对地电压基本不变,这是它的最大优点。
因此在这种系统中的输电设备绝缘水平只需按电网的相电压考虑,较为经济。
此外,该系统单相接地故障时,不会产生间歇性电弧引起的过电压,不会因此而导致设备损坏。
大接地电流系统不装设绝缘监察装置。
中性点直接接地系统缺点也很多,首先是发生单相接地故障时,不允许电网继续运行,防止短路电流造成较大的损失,因此可靠性不如小接地电流系统。
其次中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。
中性点直接接地系统单相接地故障时产生的接地电流较大,对通讯系统的干扰影响也大,特别是当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。
2.小接地电流系统小电流接地系统,即中性点不接地或经消弧线圈或电阻接地系统。
小接地电流系统可分为中性点不接地系统,中性点经消弧圈接地或经电阻接地系统。
电力系统的中性点接地方式
电力系统的中性点接地方式电力系统中发电机绕组通常用Y联结、变压器高压绕组通常Y联结,Y联结绕组中性点统称电力系统中性点。
中性点接地方式有直接接地、不接地和经消弧线圈接地。
中性点接地方式要综合考虑电力系统的过电压与绝缘、继电保护与自动装置的配置、短路电流、供电可靠性。
中性点直接接地方式,系统发生单相接地故障时短路电流很大;中性点不接地和中性点经消弧线圈接地方式,系统发生单相接地故障时短路电流小。
1.中性点直接接地系统110kV及以上电网采用中性点直接接地方式。
实际运行时电网中性点并非全部同时接地,只有一部分接地,即合上中性点接地刀开关,其余则不接地即拉开其中性点接地刀开关。
系统单相接地时短路电流在合适范围,满足继电保护动作灵敏度需要,但不能过大。
一般单相短路电流不大于同一地点三相短路电流。
此系统正常运行时,系统中性点没有入地电流或只有极小的三相不平衡电流。
当发生单相接地时,短路电流足够大,继电保护装置动作,迅速切除故障电路;系统非故障部分仍正常运行。
接地故障线路停电,可在线路加装自动重合闸装置,如发生瞬时性接地故障,重合闸成功,停电约0.5s,系统供电可靠。
单相接地电流较大,对邻近通信线路电磁干扰较强。
我国380/220V三相四线系统,中性点直接接地。
2.中性点不接地系统我国3kV、6kV、10kV、35kV系统,当单相接地时根据电容电流中性点不接地,具体规定为3~6kV电网单相接地电容电流不大于30A;10kV电网单相接地电容电流不大于20A;35kV电网单相接地电容电流不大于10A。
因中性点未接地,当发生单相接地时,只能通过线路对地电容构成单相接地回路,故障点流过很小的容性电流(电弧)自行熄灭。
同时,系统三个线电压对称性未变化,用电设备正常工作,可靠性高。
规程规定,中性点不接地系统发生单相接地故障可继续运行2h,在2h内找到接地点并消除。
单相接地时电容电流近似计算公式如下:对架空线IC=UL/350;对电缆IC=UL/10。
配电网中性点不同接地方式的优缺点
编号:SM-ZD-71752配电网中性点不同接地方式的优缺点Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives编制:____________________审核:____________________时间:____________________本文档下载后可任意修改配电网中性点不同接地方式的优缺点简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
配电网中性点与参考地的电气连接方式,按运行需要可将中性点不接地、经消弧线圈接地、经(高、中、低值)电阻器接地、经低值电抗器接地及直接接地等。
这些中性点接地方式各具独有的优缺点。
1 配电网中性点不接地的优缺点配电网中性点不接地是指中性点没有人为与大地连接。
事实上,这样的配电网是通过电网对地电容接地。
中性点不接地系统主要优点:电网发生单相接地故障时稳态工频电流小。
这样·如雷击绝缘闪络瞬时故障可自动清除,无需跳闸。
·如金属性接地故障,可单相接地运行,改善了电网不间断供电,提高了供电可靠性。
·接地电流小,降低了地电位升高。
减小了跨步电压和接触电压。
减小了对信息系统的干扰。
减小了对低压网的反击等。
经济方面:节省了接地设备,接地系统投资少。
中性点不接地系统的缺点:a与中性点电阻器接地系统相比,产生的过电压高(弧光过电压和铁磁谐振过电压等),对弱绝缘击穿概率大。
b在间歇性电弧接地故障时产生的高频振荡电流大,达数百安培,可能引发相间短路。
基于配电网中性点接地方式相关技术分析
基于配电网中性点接地方式相关技术分析配电网中性点接地方式是指配电系统中,三相电源中性点的接地方式。
在配电系统中,中性点接地方式的选择对系统运行稳定性和安全性有着重要的影响。
本文将从技术角度对基于配电网中性点接地方式进行相关技术分析,探讨其在配电系统中的作用和影响。
二、常见的配电网中性点接地方式在配电系统中,常见的中性点接地方式主要包括:直接接地方式、间接接地方式和零序接地方式。
这些方式各有特点,适用于不同的配电系统环境。
1. 直接接地方式直接接地方式是指将中性点直接接地,即通过接地开关将中性点接地,通常用于小型配电系统中。
这种接地方式简单可靠,能够提高系统的抗干扰能力,但在对地故障时可能会引起严重的过电压问题,因此在大型配电系统中使用较少。
3. 零序接地方式零序接地方式是指通过对中性点进行谐波抑制并隔离地接地,通常用于需要额外对中性点的谐波进行处理的系统中。
这种接地方式能够有效地减小对地故障时的过电压,并且能够改善系统的谐波特性,但在实际应用中需要考虑谐波滤波器的增加成本与维护难度。
三、配电网中性点接地方式选择的影响因素在选择中性点接地方式时,需要考虑以下因素:1. 系统容量不同的系统容量需要不同的中性点接地方式来保证系统的安全运行。
对于小型配电系统,直接接地方式可能更为适用;而对于中、大型系统,则需要考虑中性点电感或电阻接地,或者使用零序接地方式来应对可能的故障。
2. 对地故障处理能力选择中性点接地方式的一个重要因素是系统的对地故障处理能力。
不同的方式对于对地故障的响应速度和处理能力不同,需要对系统的运行环境和对地故障的概率进行综合考虑。
3. 运行要求配电系统的运行要求也会对中性点接地方式的选择产生影响。
比如需要对系统的谐波进行控制时,零序接地方式可能更适合;又如需要提高系统的抗干扰能力时,直接接地方式可能更为简单可靠。
四、中性点接地方式的发展趋势随着现代配电系统对可靠性、安全性和稳定性的要求不断提高,中性点接地方式也在不断的发展演变。
配电网中性点接地方式介绍
配电网中性点接地方式介绍摘要:电力系统中性点的接地方式一般是指供电端或者配电端电力变压器中性点的接地方式,中性点接地方式涉及电网的安全性、可靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。
目前,我国的配电网主要采用消弧线圈接地方式或者小电阻接地方式,部分地区也采用中性点直接接地或不接地运行方式,但是随着科学技术的进步以及人们对电力系统研究水平的提高,中性点消弧线圈接地方式和小电阻接地方式的优势越来越显著。
所以在进行配电网建设时,越来越多的考虑使用这两种接地方式。
关键词:中性点接地方式;配电网;消弧线圈接地;小电阻接地1研究的背景和意义我国电力系统常用的接地方式有四种:中性点直接接地、中性点经消弧线圈(消弧电抗器)接地、中性点经电阻器接地、中性点不接地。
其中,中性点经电阻器接地,按接地电流的大小又可分为高阻接地和低阻接地。
在我国国家标准电工名词术语中,又可以把上述四种接地方式归结为三类接地系统,即中性点有效接地系统、中性点非有效接地系统和谐振接地系统。
中性点直接接地或经一低阻抗接地的系统,称为有效接地系统;中性点不接地、经高阻抗接地或谐振接地,称为中性点非有效接地系统;中性点经消弧线圈(消弧电抗器)接地,称为谐振接地系统。
国内110KV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压升高不会超过倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。
因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。
6~35KV配电网一般采用小电流接地方式,即中性点非有效接地方式。
主要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。
目前,接地方式的改进在实际应用中效果并不理想,各种方式均未得到大范围推广,以致仍然主要通过视配电网的具体情况来选取合适的接地方式来保证配电网的安全可靠运行。
配电网中性点接地方式
配电网中性点接地方式发布时间:2021-01-15T14:04:34.173Z 来源:《基层建设》2020年第25期作者:欧阳昭宇[导读] 摘要:本文首先分析了不同配电网中性点接地的方式,然后探讨了保证配电网中性点接地质量的措施,最后提出配电网中性点接地方式配置的建议,以供参阅。
国网潜江市供电公司湖北潜江 433100摘要:本文首先分析了不同配电网中性点接地的方式,然后探讨了保证配电网中性点接地质量的措施,最后提出配电网中性点接地方式配置的建议,以供参阅。
关键词:配电网;中性点接地方式1配电网中性点接地的方式1.1中性点不接地方式中性点不接地方式运行比较方便,在实际过程中不需要配置相关的辅助设备,而且投资成本也较低,适用于在农村供电网络中应用,但是在实际应用的过程中,中心点不接地方式可能会出现一系列的故障。
如单相接地故障出现,其在故障点所流过的电流只有电网对地的电容电流,而这一数值较小,需要为其配置相关的辅助绝缘检查装置,而在中性点不接地方式出现故障时,能够及时检查到故障问题,并且快速进行处理,防止出现两相短路的状况,导致停电事故的发生。
在中心点不接地系统实际的使用过程中,如果发生单相接地故障,可以定义为瞬间性故障,通常情况下都能够实现自动消护,这种故障不会对系统造成严重的破坏,并且在一定条件下也能够兼容故障,其会持续的供电两个小时,为故障维修提供了一定的时间,提升中性点不接地方式的使用可靠性。
1.2配网中性点接地配电网络中中性点接地方式能够适用于人口规模较大、需求量较大的环境地区。
而中性点接地方式也分为多种方式,有传统小电流的方式和经电阻接地方式。
传统小电流接地方式指的是在配电网运行的过程中,选择小电流接地方式,需要根据相关的标准认真严格的执行,例如国家曾出台过《交流电起装置的过电压保护和绝缘配合》规定,其中明确要求了若架空线路中电容电流低于1A,则可以选择不同的接地方式,在1A以上可以选择消弧线圈节的方式。
配电网中性点接地方式分析
配电网中性点接地方式分析摘要:电力系统中性点接地是一个涉及供电可靠性和连续性、稳定性等方面的技术问题。
本文介绍了配电网中性点不接地、经小电阻接地、经消弧线圈接地三种不同的方式,并对三种方式发生单相接地故障时进行了分析。
关键词:配电网、中性点不接地、中性点经小电阻接地、中性点经消弧线圈接地一、配电网中性点不接地电力系统的运行特点设三相系统的电源电压和电路参数都对称,每相与地之间的分布电容用一个集中电容C来表示,线间电容忽略。
系统正常运行时,三个相电压UA、UB、UC对称,三个相的对地电容电流ICO也对称,其相量和均为O,中性点对地电压为O,各相对地电压就是相电压。
当系统发生单相接地时,例如C相接地。
此时C相对地电压为0,而非接地的A相、B相对地电压均变为线电压UAC、UBC,变为原来的倍,A相、B相对地电容电流ICA、ICB也变为原来的倍。
C相接地时的接地电流IC为非接地的A 相、B相对地电容电流ICA、ICB的相量和。
IC是正常运行时,每相对地电容电流的3倍。
系统的线电压大小和相位差仍保持不变。
接在线电压上的用电设备仍能正常工作。
但这种单相接地状态不允许长时间运行。
因为系统单相接地后长时间运行可能造成非故障相绝缘薄弱处被击穿,形成相间短路,产生很大的短路电流,从而损坏线路及用电设备;此外,较大的单相接地电容电流会在接地点引起电弧,稳定电弧可烧坏设备,引起相间短路,间歇电弧可产生间歇电弧过电压,威胁电力系统的安全运行。
因此,我国电力规程规定,中性点不接地的电力系统发生单相接地故障时,系统运行时间不应超过2h。
配电网中性点不接地是指中性点没有人为与大地连接。
事实上,这样的配电网是通过电网对地电容接地。
优点:a电网发生单相接地故障时稳态工频电流小。
这样如雷击绝缘闪络瞬时故障可自动清除,无需跳闸。
如金属性接地故障,可单相接地运行,改善了电网不间断供电,提高了供电可靠性。
接地电流小,降低了地电位升高。
减小了跨步电压和接触电压。
配电网中性点接地方式比较分析
1配电网中性点接地方式比较分析1.1概述配电网中性点的接地方式主要有三种:中性点不接地运行方式,中性点经消弧线圈接地方式和中性点经电阻接地方式,三种中性点接地方式具有各自的优缺点及不同的适用范围。
1.2配电网各种中性点接地方式的特点(1)中性点不接地运行方式总体上来说,中性点不接地方式具有结构简单、单相接地故障还能继续供电的优点;但由于其容易产生幅值较高的电弧接地过电压(3.5 p.u.),并由此可能引发危害整个配电网的铁磁谐振过电压,对设备的绝缘水平要求高,这势必增加设备绝缘方面的投资。
该中性点接地方式仅适用于电容电流小于10A的农村架空配电网。
因为当架空线路不长时, 对地电容电流不大, 单相接地故障电流数值较小,不易形成稳定的接地电弧, 一般均能迅速自动灭弧而无需跳闸,能保证连续供电。
但当线路较长、对地电容电流相对较大, 对地故障电弧不可能自动熄灭,此时可能会出现由于持续电弧引发严重过电压而烧毁设备的情况,严重影响正常供电。
(2)中性点经消弧线圈接地运行方式在发生单相接地故障时,中性点经消弧线圈接地的方式可以有效的减少单相接地时的接地故障电流。
,形成一个与对地电容电流的大小接近但方向相反的电感电流,它们之间相互补偿,可以使接地处的电流变的很小,这样可以使电弧在电流过零后自动熄灭,从而消除电弧接地过电压及其由此引发危害配电网的铁磁谐振过电压的危害,保证正常供电。
优点:可以消除间歇性电弧过电压,保证故障迅速消失,恢复正常供电。
缺点:1、消弧线圈要增加额外投资,而且电容电流越大,投资也越大;2、消弧线圈在谐波分量严重的情况下并不能根除接地电弧的产生,因为它只能补偿接地电容电流中的工频分量,不能补偿残流中的谐波分量;3、采用消弧线圈是故障线路选线难度大大增加,目前还无法对故障线路实现100%的准确故障选线,这也会严重影响恢复正常供电。
4、过电压较高,可以达3.2 p.u.。
中性点经消弧线圈接地方式使单相接地故障电流降低为最小,并限制了非故障相的工频电压升高,它在单相接地故障一般不会再引起跳闸,从而保证了供电连续性,提高了供电可靠性,是20kV中压配电网中性点接地方式的主要发展趋势。
配电网中性点接地方式浅析及其评价
配电网中性点接地方式浅析及其评价摘要电网中性点的接地方式对电网的安全稳定运行、供电可靠性、系统绝缘配合、继电保护的要求、对通信设备的干扰以及人身安全等方面有必然的影响。
关键词中性点;接地方式;评价配电网的中性点是指星形连接的变压器或发电机的中性点,中性点与大地间电气连接的方式,称为中性点接地方式,又称为中性点运行方式。
不同中性点接地方式将对配电网绝缘水平、过电压保护元件的选择、继电保护方式等产生不同的影响;反过来,针对一个具体的配电网,选择何种接地方式,要综合考虑这些因素,进行安全、技术及经济比较后确定。
1配电中性点常用接地方式1.1中性点直接接地系统将中性点直接与地连接的电力系统,称为中性点直接接地系统.如图1所示。
这种系统中性点的电位固定为地电位,当某一相由于对地绝缘损坏造成接地时,便造成单相短路。
图1中性点直接接地系统由于中性点的电位被固定为零,因而相对地的绝缘水平决定于相电压,这就大大降低了电力网的造价。
电压等级愈高,其经济效益愈显著,这就是中性点直接接地系统的优点。
当中性点直接接地系统发生单相短路时,短路电流Id(1)很大,危害严重,故障线路不能继续运行,并在继电保护作用下,故障线路将被切除,而实际上电网的绝大部分故障是单相接地故障,其中瞬时性故障又占有很大比例,这些故障都会引起供电中断,大大影响供电可靠性。
1.2中性点经小电阻接地系统在中性点串联接入一电阻器以后,泄放燃弧后半波的能量,则中性点电位降低,故障相的恢复电压上升速度也减慢,从而减少电弧重燃的可能性,抑制电网过电压的幅值。
这就是电阻接地的特点。
中性点经小电阻接地方式的中性点与大地之间连接一个电阻,电阻的大小应使流经变压器绕组的故障电流不超过每个绕组的额定值。
经小电阻接地的配电网发生接地故障时,非故障相电压可能达到正常值倍。
这对配电网设备不会造成危害,因为高、中压配电网的绝缘水平是根据更高的雷电过电压制定的。
中性点经电阻接地的配电网中,接地电阻的选取应参照考虑下列情况:1)以电线为主的配电网中,单相接地时允许阻性接地电流较大,如1000-2000A;2)以架空线路为主的配电网,允许阻性接地电流较小,如300A;3)考虑配电网远景规划中可能达到的对地电容电流;4)考虑对电信设备的干扰和影响,以及继电保护、人身安全等因素。
简述电网中性点接地方式有哪几种
1、简述电网中性点接地方式有哪几种,各有何优缺点。
答:①中性点直接接地1)设备和线路对地绝缘可以按相电压设计,从而降低了造价。
电压等级愈高,因绝缘降低的造价愈显著。
2)由于中性点直接接地系统在单相短路时须断开故障线路,中断用户供电,影响供电可靠性.3)单相短路时短路电流很大,开关和保护装置必须完善。
4)由于较大的单相短路电流只在一相内通过,在三相导线周围将形成较强的单相磁场,对附近通信线路产生电磁干扰。
②中性点经消弧线圈接地1)在发生单相接地故障时,可继续供电2小时,提高供电可靠性.2)电气设备和线路的对地绝缘应按线电压考虑.3)中性点经消弧线圈接地后,能有效地减少单相接地故障时接地处的电流,迅速熄灭接地处电弧,防止间歇性电弧接地时所产生的过电压,故广泛应用在不适合采用中性点不接地的以架空线路为主的3-60kV系统。
③中性点不接地1)当发生金属性接地时,接地故障相对地电压为零。
2)中性点对地的电压上升到相电压,且与接地相的电源电压相位相反。
3)非故障相对地电压由相电压升高为线电压。
4)三相的线电压仍保持对称且大小不变,对电力用户接于线电压的设备的工作并无影响,无须立即中断对用户供电。
5)单相接地电流,等于正常运行时一相对地电容电流的三倍,为容性电流。
2,什么是计算负荷?确定计算负荷的目的是什么?答:(1)根据已知的工厂的用电设备安装容量求取确定的,预期不变的最大假想负荷。
也就是通过负荷的统计运算求出的。
用来按发热条件选择供电系统中各个元件的负荷值,成为计算负荷。
(2)目的:计算负荷是用户供电系统结构设计,供电线路截面选择,变压器数量和容量选择,电气设备额定参数选择等的依据,合理地确定用户各级用电系统的计算负荷非常重要。
3,用什么方法进行计算负荷需要系数法,附加系数法,二项式法等。
主要计算:Pc计算有功负荷,Qc无功计算负荷,Ic计算电流等。
4,在供电系统中提高功率因数的措施有哪些?1、提高用户自然功率因数2、无功补偿:1)就地补偿 2)集中补偿:分组集中补偿,高压集中补偿,低压集中补偿。
浅析配电网中性点接地方式特点和选择
( 一) 直接 接 地 系统
因此 , 一般采用适度过补偿状态 。 早期的消弧线圈的调 整采用人 工方式 , 难 以及 时 、 准确地跟踪 系统 电容电流 的变化 。 现在一般 采用 自动跟踪补偿技术 , 极大提高 了消弧线圈的补偿效果 。
三、 中性 点 接 地 方 式 的 选 择 ( 一) 配 电 网采 用 中性 点 直接 接 地 中性点直接接地 系统可 以防止 中性 点电位变化及相对地 电 压 的升高 , 因此过 电压及绝缘水平较低 , 较低保户容易 实现 。在
浅 析 配 电 网中性 点 接 地 方 式 特点 和选 择
杨 明
( 湖 北省 汉江 集 团水 电公 司 4 4 2 7 0 0 )
摘 要: 电力 系统 中性点接地方 式是 一个涉及 电力 系统许 多方面的综合性技术课题 , 涉及 电网的安全可 靠性 、 经 济性 : 同时直接
影响系统设备绝缘水平的选择、 过电压水平及继电保护方式、 通讯干扰等。
( 四) 中性 点 谐振 接 地 采用 中性点经消 弧线 圈接地方式 ,即在 中性点 和大地之 间
对 电缆 为主的系统可以选择较低的绝缘水平 ,以利 节约投 资 ,但是对 以架空线为主 的配 电网因单 相接地而引起的跳闸次 数 则会 大大增 加 。对 以电缆为 主 的配 电网 ,其 电容 电流 达到 1 5 0 A以上 。 故 障电流水平 为 4 0 0 — 1 0 0 0 A, 可 以采 用这 种接 地方 式。采用低电阻方 式时, 对中性点接地电阻的动热稳定应给予充 分的重视 . 以保证运行的安全可靠 。 ( 四) 配 电 网采 用 消弧 线 圈 自动 跟 踪 补 偿 装 置 随着城市配 电网的迅速发展 , 电缆大量增 多 . 电容电流达到 3 0 0 A以上 , 而且 由于运行方式 经常变化 , 特 别 是 电 容 电 流 变 化 的范围 比较大 , 用手动 的消弧线圈 已很难适应要求 , 采用 自动快 速跟踪补偿的消弧线 圈, 并 配合可靠的 自动选线跳 闸装 置 , 可 以
配电网中性点接地方式分析及选择
配电网中性点接地方式分析及选择前言在配电系统中,中性点接地方式的选择对电力系统的安全稳定运行具有重要意义。
因此,在设计和运行中选择恰当的中性点接地方式十分关键。
本文将会介绍中性点接地方式的类型及适用范围,以及不同中性点接地方式的优缺点分析,期望能够帮助电力系统工程师更好地了解中性点接地方式的选择和使用。
中性点接地方式类型在电力系统中,中性点接地方式有以下几种类型:1.无中性点接地(Ungrounded)2.单点接地(Solidly Grounded)3.零序电抗接地(Reactance Grounded)4.零序电阻接地(Resistance Grounded)不同中性点接地方式的优缺点分析1. 无中性点接地(Ungrounded)无中性点接地或称为孤立中性点接地,是一种没有与地相连的中性点接地方式。
电源和负载之间不存在任何的地电流,因此可以将其视为同电压级两端的电压源。
但它也存在很多问题,比如电压冲击,无法及时有效的跳闸,等等。
1.不存在与地相连的中性点,防止电源因地电流而被破坏缺点:1.电容负载的介入导致的零序电流通过电容负载可以被无限放大,给继电保护带来思考不便;2.单个相线电压突变引发的问题以及局部地质介质缺陷等情况都不能及时被发现,但会给电气设备带来隐患;3.系统中出现第一次单相接地故障时,残余电压若满足第二次接地故障判别标准时,系统将不能及时地进行跳闸或投入备用电源;2. 单点接地(Solidly Grounded)单点接地是一种常用的中性点接地方式,也就是将中性点与地相连接,构成一个参考电平,一旦系统中发生一次单相接地故障,将会使系统的继电保护中止电源供应和跳闸故障线路,从而达到保护的作用。
优点:1.系统中出现单相接地故障时,继电保护能够发现并停电,电气设备受到的损害最小;2.在不影响系统情况,若再接入电容补偿,可以消除外界的干扰,减小电压谐波;3.系统跳闸后,抢修工作较为方便;1.中性点与地相连接,会出现地电流,地电压测量有一定难度;2.系统瞬时故障时(如单相接地、短路),电容负载过程中通过谐振形成的高幅度的干扰电压能够被放大,从而引入过电压、过电流以及过热等问题;3.长期电流过大会使绝缘劣化变差;3. 零序电抗接地(Reactance Grounded)零序电抗接地和零序电阻接地都是相对于单点接地的改进。
最新整理浅谈10KV配电网中性点接地方式.docx
最新整理浅谈10KV配电网中性点接地方式1.三种不同接地方式在我国的10kV配电系统中,中性点的接地方式基本上有三种:中性点绝缘接地方式、中性点经小电阻接地方式和中性点经消弧线圈接地方式。
这三种接地方式各有优缺点,特别对于小电阻接地和消弧线圈接地方式孰优孰劣问题,一直存在不同的观点。
1.1中性点不接地中性点不接地方式是我国10KV配电wang采用得比较多的一种方式。
这种接地方式在运行当中如发生了单相接地故障,于流过故障点的电流仅为电wang对地的电容电流,当10kV配电系统Ijd限制在10A以下时,接地电弧一般能够自动熄灭,此时虽然健全相电压升高,但系统还是对称的,故可允许带故障连续供电一段时间(规程规定为2小时),相对地提高了供电可靠性。
这种接地方式不需任何附加设备,只要装设绝缘监察装置,以便发现单相接地故障后能迅速处理,避免单相故障长期存在发展为相间短路故障。
于中性点不接地方式中性点对地是绝缘的,当发生弧光接地时,于对地电容中的能量不能释放,因此会产生弧光接地过电压或谐振过电压,其值一般可达2—3.5Uxg,会对设备绝缘造成威胁。
另一方面,于目前普遍使用的小电流接地系统选线装置的选线准确率比较低,还未能够准确地检测出发生接地故障的线路。
发生单相接地故障后,一般采用人工试拉的方法寻找接地点,因此会造成非故障线路的不必要停电。
1.2 中性点经小电阻接地中性点经小电阻接地方式,即在中性点与大地之间接入一定阻值的电阻,该方式可认为是介于中性点不接地和中性点直接接地之间的一种接地方式,世界上以美国为主的部分国家采用中性点经小电阻接地方式。
采用此种方式,用以泄放线路上的过剩电荷,来限制弧光接地过电压。
中性点经小电阻接地方式中,一般选择电阻的值较小(工程上一般选取10~20Ω)。
在系统单相接地时,控制流过接地点的电流在10A~500A之间,通过流过接地点的电流来启动零序保护动作,因此可快速切除线路单相故障。
中性点接地系统分类及其优缺点
中性点接地系统分类及其优缺点中性点接地系统是电力系统中常见的一种保护措施,用于减少电力系统的短路故障时对设备和人员的损害。
中性点接地系统可以分为直接接地系统、小电阻接地系统和不对称接地系统三种类型。
不同类型的中性点接地系统具有不同的特点和优缺点。
1.直接接地系统:直接接地系统是指将电力系统的中性点与大地直接连通,并与大地形成有一定电阻的接地通路。
直接接地系统的优点包括:-设备简单:直接接地系统不需要添加额外的设备或装置,设备布置和维护较为简单。
-成本低廉:直接接地系统不需要大量的设备投资和维护费用,成本相对较低。
-适用性广泛:直接接地系统适用于大多数低电压电力系统。
直接接地系统的缺点包括:-地电压过高:直接接地系统存在着地电压过高的问题,在系统发生故障时,会导致接地电流增大,增加设备损坏的风险。
-故障隐患:直接接地系统一旦出现了接地故障,可能会导致电力系统的停运,对生产和生活造成不便。
2.小电阻接地系统:小电阻接地系统是指在中性点接地通路中添加一个小电阻,将接地电流限制在较低水平的接地系统。
小电阻接地系统的优点包括:-地电压低:相比于直接接地系统,小电阻接地系统的地电压较低,减少了设备损坏的风险。
-故障性能改善:小电阻接地系统能够提供较高的故障电流,使故障点更易于检测和定位,有利于故障的快速修复。
小电阻接地系统的缺点包括:-投资成本高:相比直接接地系统,小电阻接地系统需要添加电阻器等设备,投资成本较高。
-维护困难:小电阻接地系统的设备较多,维护和检修较为复杂,需要专业技术支持。
3.不对称接地系统:不对称接地系统是指将电力系统中性点的一相与大地直接接地,而其余相则通常通过电感、电容等器件接地。
不对称接地系统的优点包括:-地电压低:不对称接地系统能够通过合理设置接地电感和电容,将地电压限制在较低水平。
-故障定位准确:不对称接地系统能够通过检测故障电流和相位差,准确地确定故障点。
不对称接地系统的缺点包括:-技术较复杂:不对称接地系统需要精确地设置接地电感和电容,需要较高的技术水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电网中性点接地方式的分类及特点配电网中性点接地方式的分类及特点一、我国城乡配电网中性点接地方式的发展概况
(1)建国初期,我国各大城市电网开始改造简化电压等级,将遗留下来的3kV、6kV配电网相继升压至10kV,解放前我国城市配电网中性点不接地、直接接地和低电阻接地方式都存在过,上海10kV电缆配电网中性点不接地、经电缆接地、经电抗接地3种方式并存运行至今,北京地区10kV系统中性点低电阻与消弧线圈并联接地,上海35kV系统中性点经消弧线圈和低电阻接地2种方式并存至今。
但是,从50年代至80年代中期,我国10,66kV系统中性点,逐步改造为采用不接地或经消弧线圈接地两种方式,这种情况在原水利电力部颁发的《电力设备过电压保护设计技术规程SDJ7-79》中规定得很明确。
(2)80年代中期我国城市10kV配电网中,电缆线路增多,电容电流相继增大,而且运行方式经常变化,消弧线圈调整存在困难,当电缆发生单相接地故障时间一长,往往发展
相短路。
从1987年开始,广州区庄变电站为了满足较低绝缘水平10kV电缆线路的成为两
要求,采用低电阻接地方式,接着在近20个变电站推广采用了低电阻接地方式,随后深圳、珠海和北京的一些小区,以及苏州工业园20kV配电网采用了低电阻接地,90年代上海35kV配电网也全面采用电阻接地方式。
(3)90年代对过电压保护设计规范(SDJ7-79)进行了修订,并已颁布执行,在新规程中,有关配电网中性点接地方式的修改主要有以下几点:
1 ?原规程中规定3,10kV配电网中单相接地电容电流大于30A时才要求安装消弧线圈,新的规程将电容电流降低为大于10A时,要求装消弧线圈。
2 ?根据国内已有的中性点经低电阻接地的运行经验,对6,35kV主要由电缆线路构成的系统,其单相接地故障电流较大时,中性点经低电阻接地方式作为一种可选用的方案列入了新规程。
3 ?对于6kV和10kV配电系统以及厂用电系统,单相接地电流较小时,将中性点经高电阻接地也作为一种可选择的方案,列入了新规程。
(4)现有的有关规程对消弧线圈的应用的规定,仅适用于不带电调整分接头,不能自动调谐的消弧线圈。
这种消弧线圈在使用中存在以下问题:
1 ?调节不方便,必须退出运行才能调分接头。
2 ?判断困难,因为没有实时监测电网电容电流,无法对运行状态作出准确判断,因此很难保证失谐度和中性点位移电压满足要求。
3 ?随着电网规模的扩大,如果电网运行方式经常变化,要求变电站实行无人值班,手动的消弧线圈不可能始终运行在最佳档位,消弧线圈的补偿作用不能得到充分发挥,也不能总保持在过补偿状态下运行。
近年来,一些科研及制造厂家研制生产的自动跟踪补偿的消弧线圈,其电感值的改变方法大致可分为调匝式、调气隙、磁阀式、高短路阻抗变压器式和调容式等类型,这些产品在电力系统的推广应用,逐步取得了一定运行经验。
二、电力系统接地方式的分类
电力系统的中性点接地方式指的是变压器星型绕组中性点与大地的电气连接方式。
由于对各种电压等级电网的运行指标的要求日益提高,电力系统中性点接地方式的正确选择具有越来越重要的实际意义。
我国的电力系统按照中性点接地方式的不同可划分为两大类:大电流接地方式和小电流接地方式。
简单地说大电流接地方式就是指中性点有效接地方式,包括中性点直接接地和中性点经低阻接地等。
小电流接地方式就是指中性点非有效接地方式,包括中性点不接地、中性点经高阻接地和中性点经消弧线圈接地等。
在大电流
接地系统中发生单相接地故障时,由于存在短路回路,所以接地相电流很大,会启动保护装置动作跳闸。
在小电流接地系统中发生单相接地故障时,由于中性点非有效接地,故障点不会产生大的短路电流,因此允许系统短时间带故障运行。
这对于减少用户停电时间,提高供电可靠性是非常有意义的。
三、配电网中性点接地方式的特点
采用大电流接地方式的系统我们称之为大电流接地系统,采用小电流接地方式的系统我们称之为小电流接地系统。
1. 大电流接地系统的特点是:
(1)当发生单相接地故障时,由于采用中性点有效接地方式存在短路回路,所以接地相电流很大;
(2)为了防止损坏设备,必须迅速切除接地相甚至三相,因而供电可靠性低;
(3)由于故障时不会发生非接地相对地电压升高的问题,对于系统的绝缘性能要求也相应降低。
2. 小电流接地系统的特点是:
(1)由于中性点非有效接地,当系统发生单相短路接地时,故障点不会产生大的短路电流。
因此,允许系统短时间带故障运行;
(2)此系统对于减少用户停电时间提高供电可靠性非常有意义;
(3)当系统带故障运行时,非故障相对地电压将上升很高,容易引发各种过电压,危及系统绝缘,严重时会导致单相瞬时性接地故障发展成单相永久接地故障或两相故障。
中性点不接地方式,即中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省,适用于农村10kV架空线路长的辐射形或树状形的供电网络。
该接地方式在运行中,若发生单相接地故障,流过故障点的电流仅为电网对地的电容电流,其值很小,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,避
免故障发展为两相短路,而造成停电事故。
若是瞬时故障,一般能自动消弧,非故障相电压升高不大,不会破坏系统的对称性,可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。
采用中性点经消弧线圈接地方式,即在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流对接地电容电流进行补偿,使流过接地点的电流减小到能自行熄弧范围,其特点是线路发生单相接地时,按规程规定电网可带单相接地故障运行2h。
对于中压电网,因接地电流得到补偿,单相接地故障并不发展为相间故障,因此中性点经消弧线圈接地方式的供电可靠性,大大高于中性点经小电阻接地方式。
中性点经电阻接地方式,即中性点与大地之间接入一定阻值的电阻。
该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。
在中性点经电阻接地方式中,一般选择电阻的阻值较小,在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。