四年级数学三角形内角和

合集下载

《三角形的内角和 》PPT课件

《三角形的内角和 》PPT课件

2.特点 (1)近代中国交通业逐渐开始近代化的进程,铁路、水运和 航空都获得了一定程度的发展。 (2)近代中国交通业受到西方列强的控制和操纵。 (3)地域之间的发展不平衡。 3.影响 (1)积极影响:促进了经济发展,改变了人们的出行方式, 一定程度上转变了人们的思想观念;加强了中国与世界各地的 联系,丰富了人们的生活。 (2)消极影响:有利于西方列强的政治侵略和经济掠夺。
∠1+∠2+∠3=180°
2 13
抢答游戏:
(1) 这个三角形的内角 和是多少度?
抢答游戏: (2)把这个三角形平均分成 两个小三角形,每个小三角形 的内角和都是多少度?
抢答游戏: (3)把这个小三角形再分成 一大一小两个三角形,这两个 三角形的内角和分别是多少度?
抢答游戏: (4)把两个小三角形拼成一 个大三角形,这个大三角形的 内角和是多少度?
[合作探究·提认知] 电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。 提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展; 政府及各阶层人士的提倡与推动。
1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
为长江上重要商局,招商局和英商太古、怡和三家呈鼎立
之势”。这说明该企业的创办
()
A.打破了外商对中国航运业的垄断
B.阻止了外国对中国的经济侵略
C.标志着中国近代化的起步

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)〖人教版数学四年级下册三角形的内角和优秀教案第【1】篇〗《三角形内角和》教学设计教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平行与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握“三角形的内角和是 180°”这一规律具有重要意义。

首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。

三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是 180 度。

二是把三个内角折叠在一起,发现也能组成一个平角。

每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于 90 度,钝角三角形里的两个锐角和小于90 度。

本节课的教学重点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

而教学难点则放在对不同探究方法的指导和学生对规律的灵活运用。

学情分析:四年级的学生已初步具备了动手操作的意识和能力,并能够在探究问题的过程中,运用已有的知识和经验,通过交流、比较、评价等寻找解决问题的途径和策略。

“三角形的内角和是 180°”这一结论,大多数学生在四年级上册“角的度量”也有接触,但不一定清楚道理,所以本课的重点不在于了解,而在于验证,让学生在课堂上经历研究问题的全过程。

学生在本课学习前已经认识了三角形的基本特征及分类,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。

四年级下《三角形的内角和》PPT课件

四年级下《三角形的内角和》PPT课件
按边可分为等边三角形、等腰三角 形和一般三角形;按角可分为锐角 三角形、直角三角形和钝角三角形。
三角形边长与角度关系
三角形边长关系
任意两边之和大于第三边,任意两边 之差小于第三边。
三角形角度关系
三角形内角和等于180°,外角和等于 360°。
特殊三角形性质介绍
等腰三角形
有两条边相等,两 个底角相等。
学生自主发言,分享学习心得
分享对三角形内角和定理的理解
01
学生可以分享自己在学习过程中对三角形内角和定理的理解,
包括定理的表述、证明方法以及在实际问题中的应用等。
交流学习方法和经验
02
学生可以交流自己在学习三角形内角和定理过程中采用的方法
和经验,如如何记忆定理、如何应用定理解决问题等。
提出问题和困惑
锐角三角形
三个角都是锐角 (小于90°)。
等边三角形
三边相等,三个角 都是60°。
直角三角形
有一个角是90°,其 余两个角互余。
钝角三角形
有一个角是钝角 (大于90°),其余 两个角是锐角。
02 三角形内角和定理推导
直观感知法
01
通过测量不同类型的三角形的三个 内角,并求和,观察结果是否接近 或等于180度。
1 2
三角形内角和
已知三角形的内角和为180°。
多边形内角和公式 多边形的内角和 = (n - 2) × 180°,其中n为多 边形的边数。
3
公式推导
根据多边形划分为三角形的策略,多边形可以划 分为(n - 2)个三角形,因此多边形的内角和等于 三角形内角和的(n - 2)倍。
典型例题分析
例题1
求一个六边形的内角和。
已知三角形两边及夹角,判断三 角形形状

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?我们通常所说的角就是三角形的内角。

为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。

用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。

〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。

是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

小学四年级 三角形: 三角形的内角和 讲义

小学四年级   三角形: 三角形的内角和 讲义

三角形第3节三角形的内角和【知识梳理】1.三角形的内角和外角三条线段首尾顺次相接组成的图形是三角形,这三条线段就是三角形的三条边,在三角形内部三角形的两条边所成的角是三角形的内角,三角形一边的延长线与另一边所成的角是三角形的外角,三角形有三个内角三个外角。

2.三角形内角和三角形内角和180°。

得到这个结论可以用两种方法(1)方法一:量一量用量角器测量三个内角并求和,重复多次即可发现三角形的内角和180°,测量时有时候会出现误差,不能肯定三角形的内角和就是180°,因此还需要用实验的方法来加以验证。

(2)方法二:剪一剪将三角形的三个内角剪下来拼一拼,若能够拼成一个平角,则证明三角形的内角和为180°,在运用拼剪法时,原三角形中的每个内角一定要标上记号,以防拼时用错角。

通过拼剪可以发现三角形的三个内角之和正好是一个平角,因为平角是180°,进而验证了三角形内角和为180°。

3.三角形内角的范围三角形有三个内角,因为三角形的内角和为180°,所以三角形的内角的范围在0°到180°之间,即大于0°小于180°。

三角按角分类可分为锐角三角形、直角三角形、钝角三角形,其中,锐角三角形的三个内角都是锐角,直角三角形有一个直角两个锐角,钝角三角形有一个钝角,两个锐角。

因此,三角形中至多有一个直角或一个钝角,至少有两个锐角。

【诊断自测】一、选择题1.一个三角形的两个内角和小于第三个内角,这个三角形是()三角形.A.锐角B.钝角C.直角D.等腰2.三角形的三个内角()A.至少有两个锐角 B.至少有一个直角 C.至多有两个钝角 D.至少有一个钝角3.一个三角形的一个内角等于另外两个内角的和,这个三角形是()A.直角三角形 B.锐角三角形C.钝角三角形 D.何类三角形不能确定二、填空题1.三角形一个内角的度数是108°,这个三角形是()三角形2.一个三角形三条边的长度分别为7厘米,8厘米,7厘米,这个三角形是()三角形。

小学四年级上册认识三角形的内角和外角

小学四年级上册认识三角形的内角和外角

小学四年级上册认识三角形的内角和外角1. 介绍三角形的基本概念(200字左右)三角形是几何学中非常重要的一个图形,它由三条边和三个顶点组成。

在我们的日常生活中,三角形无处不在。

了解三角形的内角和外角是我们学习几何学的第一步。

2. 认识三角形的内角(800字左右)内角是指三角形的内部角度大小。

对于任何一个三角形来说,它的三个内角之和总是等于180度。

所以,当我们知道两个内角的大小时,就可以计算出第三个内角的大小。

例如,对于一个等边三角形来说,它的三个内角都是60度;而对于一个直角三角形来说,它的一个内角是90度,其他两个内角的和也是90度。

通过了解三角形的内角特点,我们可以更好地理解和解决与三角形相关的数学问题。

3. 认识三角形的外角(800字左右)外角是指三角形的一个内角的补角。

也就是说,三角形的外角等于其对应的内角与180度的差值。

例如,如果一个三角形的一个内角是60度,那么它的对应的外角就是120度。

同样地,我们可以通过了解三角形的外角特点,来解决与三角形相关的问题。

4. 探索三角形内角和外角之间的关系(1500字左右)在前面的部分,我们已经了解了三角形的内角和外角的概念和性质。

接下来,我们将探索一些关于内角和外角之间的特殊关系。

首先,我们可以发现,任何一个三角形的内角和都是恒定的,即180度。

这意味着,当我们知道一个三角形的两个内角的大小时,可以通过简单的计算得出第三个内角的大小。

其次,我们可以发现,在一个三角形中,一个内角的补角等于其他两个内角的外角之和。

这一特点可以通过角度的补角性质来推导得出。

此外,我们还可以进一步探索三角形内角和外角之间的其他特殊关系,如外角之和等于360度等。

通过深入研究三角形内角和外角之间的关系,我们可以更好地理解和应用这些知识,解决更加复杂的三角形问题。

5. 总结(200字左右)认识三角形的内角和外角对于我们学习几何学至关重要。

通过了解三角形的内角之和恒定为180度,以及外角与内角的特殊关系,我们可以更好地理解和解决与三角形相关的数学问题。

四年级数学教案三角形的内角和

四年级数学教案三角形的内角和

四年级数学教案三角形的内角和一、教学目标1.让学生理解三角形内角和的概念。

2.使学生掌握三角形内角和为180度的性质。

3.培养学生运用三角形内角和的性质解决实际问题的能力。

二、教学重难点重点:理解三角形内角和为180度。

难点:运用三角形内角和的性质解决实际问题。

三、教学准备1.教具:三角形模型、直尺、圆规、三角板。

2.学具:三角形纸片、剪刀、胶水。

四、教学过程(一)导入新课1.教师出示一个三角形,提问:“同学们,你们知道三角形有什么特点吗?”(二)探究三角形内角和1.教师提问:“同学们,你们知道三角形的内角和是多少度吗?”2.学生猜测,教师给出提示:我们可以通过实验来验证。

3.学生分组实验,用三角板测量三角形的内角和。

(三)三角形内角和的性质1.教师提问:“同学们,你们知道三角形的内角和为什么是180度吗?”2.学生思考,教师给出提示:我们可以通过画图来理解。

3.学生画图,发现三角形的内角和可以拼成一个平角。

(四)巩固练习1.教师出示练习题,让学生运用三角形内角和的性质解决问题。

2.学生独立完成,教师点评。

(五)拓展延伸1.教师出示三角形模型,提问:“同学们,你们知道三角形的内角和与边长有什么关系吗?”2.学生思考,教师给出提示:我们可以通过观察三角形的形状来理解。

3.学生观察,发现三角形的内角和与边长有关。

(六)课堂小结1.教师提问:“同学们,本节课我们学习了什么内容?”五、作业布置1.完成课后练习题。

2.收集生活中的三角形,观察并记录三角形的内角和。

六、教学反思本节课通过实验、观察、讨论等方式,让学生理解三角形内角和的概念,掌握三角形内角和为180度的性质,并培养学生运用三角形内角和的性质解决实际问题的能力。

在教学过程中,要注意引导学生主动参与,激发学生的学习兴趣,使学生在轻松愉快的氛围中掌握知识。

同时,教师应关注学生的个体差异,因材施教,使每个学生都能在课堂上得到提升。

重难点补充:一、教学重点1.理解三角形内角和为180度的概念。

《三角形的内角和》说课稿范文(通用11篇)

《三角形的内角和》说课稿范文(通用11篇)

《三角形的内角和》说课稿范文(通用11篇)说教材《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。

“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的根底。

本节课是在学生学过角的度量、三角形的特征和分类等学问的根底上进展教学的,学生已经具备肯定的关于三角形的熟悉的直接阅历,也已具备了一些相应的三角形学问和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的根底。

说学情一节胜利的课,不仅在于对教材的把握,还有对学生的讨论。

四年级的学生正处于详细形象思维为主导的阶段,他们解决问题的力量很强,但自控力稍差。

因此本节课将注意引导学生动脑思索,动手实践,打破以学问传授为主的传统数学课堂模式,采纳敏捷多样的教学方法,牢牢将学生的留意力集中在课堂中。

说教学目标依据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:学问与技能目标:通过量、剪、拼等活动发觉、证明三角形内角和是180°,并会应用这一学问解决生活中简洁的实际问题。

过程与方法目标:经受观看、猜测、验证的过程,提升自身动手操作及推理、归纳总结的力量。

情感态度价值观目标:在参加学习的过程中,感受数学的魅力,体验胜利的喜悦,激发学习数学的兴趣。

说教学重难点依据教学目标,我确定了本节课的重点和难点。

重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

说教法为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,依据学生的心理进展规律,我将采纳启发式教学法,引导学生利用已有的学问阅历去探究新知,并在探究过程中把握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。

我将引导学生采纳自主探究,合作沟通的方式进展学习,通过动手动脑动口来把握本节课的教学重难点。

说教学内容为了更好地完本钱节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:(一)创设情境,导入新课为了引入新课,调动学生的学习兴趣,一开头上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场剧烈的争吵。

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)下面是我分享的《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案),供大家赏析。

《三角形内角和》数学教案1学习目标:(1) 知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。

使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习二.回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的'步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。

如何把三个角转化为平角或两平行线间的同旁内角呢?① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

三、巩固练习四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)五、达标检测:略六、布置作业《三角形内角和》数学教案2教学内容义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。

新人教版四年级数学下册三角形的内角和PPT课件

新人教版四年级数学下册三角形的内角和PPT课件

2021
13
2、在一个三角形中,∠1=140°,∠3=25°, 求∠2的度数。
∠2=180°-∠1- ∠3 =180°- 140°- 25° = 40°- 25° = 15°
2021
14
3、猜猜三角精灵内角的度数。
60°
Байду номын сангаас
42°
50°
2021
15
4、把三角形的一个内角截去,剩下图形 的内角和是多少度?
10
锐角三角形内角和
180° 180°
180°×2 -180°=180°
2021
11
钝角三角形内角和
180°
180°
180°×2-180°=180°
2021
12
练一练
1、看图,口算未知角的度数。

80° 30°
20°
40°?
180°- 80°- 30° = 100°- 30° = 70°
180°- (40°+ 20°) = 180°- 60° = 120°
法国著名的数学 家、物理学家。12岁 时发现“任意三角形 的内角和都是180º”。
2021
7
布莱士·帕斯卡 (1623—1662)
法国著名的数学 家、物理学家。12岁 时发现“任意三角形 的内角和都是180º”。
2021
8
帕斯卡的验证过程
2021
9
直角三角形内角和
360°÷ 2 = 180°
2021
2021
4
小组合作要求:
1、选择三角形。
2、用你们喜欢的方法验证,并进行小组交流,得 出结论。
3、准备汇报。(选了什么图形 用了哪些方法 验证 结论是什么)

四年级《三角形内角和》教学设计8篇

四年级《三角形内角和》教学设计8篇

四年级《三角形内角和》教学设计8篇作为一位不辞辛劳的人民教师,有必要进行细致的教学设计准备工作,教学设计是一个系统化规划教学系统的过程。

优秀的教学设计都具备一些什么特点呢?下面是小编为大家整理的四年级《三角形内角和》教学设计,希望能够帮助到大家。

四年级《三角形内角和》教学设计1教学目标:1、通过测量,撕拼,折叠等方法。

探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:探索和发现“三角形内角和是180°”。

教学难点:验证“三角形内角和是180°,以及对这一知识的灵活运用。

”教具准备:三角形,多媒体课中。

教学过程设计:一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?二、探究新知:(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°(二)、拼一拼引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?引导学生得出:三角形内角和等于180°(三)折一折引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展1、填一填①直角形三角形的两个锐角和是()度。

②直角三角形的一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()2、火眼金晴①钝角三角形的两个钝角和大于90°()。

《三角形内角和》数学教案(优秀3篇)

《三角形内角和》数学教案(优秀3篇)

《三角形内角和》数学教案(优秀3篇)作为一名默默奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么优秀的教学设计是什么样的呢?读书破万卷,下笔如有神,这里是漂亮的编辑帮大伙儿找到的《三角形内角和》数学教案【优秀3篇】,希望大家能够喜欢。

《三角形内角和》教学设计篇一【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。

通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

【教学难点】通过多种方法验证三角形的内角和是180 。

【教学准备】课件。

四组教学用三角板。

铅笔。

大帆布兜子。

固体胶。

剪刀。

筷子若干。

【教学过程】一、激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。

激发学生的好奇心。

然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。

我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。

教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

四年级数学优质课《三角形内角和》教学教案设计一等奖

四年级数学优质课《三角形内角和》教学教案设计一等奖

4、四年级数学优质课《三角形内角和》教学设计一等奖教学目标:1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。

大三角形说:“我的个头大,所以我的内角和一定比你大。

”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。

”。

谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)生2:小三角形大(有钝角)(教师不做判断,让学生带着问题进入新课)2、什么是三角形的内角和?(板书:内角和)讲解:三角形内两条边所夹的角就叫做这个三角形的内角。

每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:1、你认为谁说得对?你是怎么想的?2、你有什么办法可以比较一下这两个三角形的内角和呢?生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角(二)探索与发现活动一:量一量(1)①了解活动要求:(屏幕显示)A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。

(测量时要认真,力求准确)B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?(引导生回顾活动要求)②小组合作。

③汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?(引导学生发现每个三角形的三个内角和都在180°,左右。

四年级数学三角形内角和

四年级数学三角形内角和

巩固练习
1、 求三角形中一个未知角的度数。 (1)在三角形中,已知∠1=70°,∠2=50°,求∠3。 (2)在三角形中,已知∠1=78°,∠2=44°,求∠3。 (3)根据图形选则算式:(1)∠A=180°-55° (2)∠A=180°-90°-55°(3)∠A=90°-55°
2、判断 (1) 一个三角形的三个内角度数是: 80° 、75° 、 24° 。 ( ) (2)三角形越大,它的内角和就越 大。 ( ) (3)一个三角形至少有两个角是锐 角。 ( ) (4)钝角三角形的两个锐角和大于 90°。 ( )Fra bibliotek方法三
用一个平角去比较的方法,先在纸上画 一个平角,再将三角形一个内角的一边 与平角的一边重合,顶点与顶点重合, 沿这个角的一边画线,用这样的方法依 次画完另两个角,而得出内角和是18 0°。
思考
三角形的三个内角和等于180°
结论对任意三角形都成立吗?
是这样吗?
我的个头比你大, 我的内角和一定比你大。
三角形的内角和
每个内角的度数
三个内角和
你的发现:
想一想
三角形的三个内角和是多少? 有什么办法可以验证呢?
把三个角拼在一起试试看
方法一
用割补法,先割下三角形的三个内角,再 把这三个内角拼到一起得出了三角形内角 和是180°。
方法二
用折叠法,将三角形的三个内 角向形内折叠,使三个内角的 顶点交于一点,三个内角边两 两重合。得出一个平角,也就 是三个内角之和等于180°
哦,看来所有的三角形, 不论大小,它的内角和都 是180度。
小结
今天这节课我们学习了什么?你有什 么收获?
同学们真了不起,我们通过量一量、算一算, 就初步发现了规律,并通过折一折、拼一拼、 比一比、议一议等方法实验验证了三角形内 角和是180°这一规律。“观察——猜 想——验证”这是一种有效的数学学习方法, 希望同学们在今后的求知过程中能经常运 用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中药材生产质量管理规范的简称A.GMPB.GAPC.GCPD.GLPE.GPP 有一种电解电容器无正负极性之分,称为电解电容器,主要用于交流电路中。 介导适应性体液免疫应答的细胞是A.单核细胞B.巨噬细胞C.中性粒细胞D.B淋巴细胞E.自然杀伤细胞 推力盘端面不平度的测量方法是:用平尺靠在推力盘端面上,用0.02mm塞尺检查端面与平尺之间的间隙A.正确B.错误 情景综合分析法的预测期间为年。A.2~4B.3~5C.2~5D.3~4 患儿男性,出生8个月,脐部肿块突出2月余,并逐渐增大。体格检查:哭闹时脐窝可见2cm×3cm突出的肿块,安静入睡时肿块消失。患儿最有可能发生的是()A.腹股沟斜疝B.脐疝C.腹白线疝D.切口疝E.腹股沟直疝 甲乙有仇,甲为了报复乙,将一张画有人形和写有乙名字的字符烧毁,企图靠神力将其杀死。甲的行为A.故意杀人B.手段认识错误C.意外事件D.不构成犯罪 已知船舶排水量为18000t,GM=0.80m,横倾角为5°,则船舶的稳性力矩为kN•m。A.1255B.14345C.12312D.140724 关于病毒学检验中标本采集、处理与运送错误的是A.诊断与病期不同采集的标本不同B.要进行预处理才能用于接种C.采集后立即送到病毒实验室D.暂时不能检查或分离培养时,应将标本放入冻存液E.暂时不能检查或分离培养时,应将标本存放在-20℃冰箱 电力需求侧管理 病案质量控制范畴不包括。A.病案内容质量B.出院病案的回收率C.疾病分类编码的准确率D.门诊病案的当日回库率E.医疗收费的合理性 直接反映HBV复制能力的指标是A.HBsAgB.抗HBcC.HBeAgD.HBcAgE.HBV-DNA 关于低密度脂蛋白(LDL)描述错误的是A.VLDL是LDL的降解产物B.主要作用是将胆固醇从肝内运送至肝外组织C.LDL含量升高不引起血浆混浊D.LDL义可分为LDL和LDL两个亚型E.血浆LDL水平升高与心血管病患病率和病死率升高有关 乳腺癌骨显像时“超级影像”是指下列哪种情况。A.肾影明显,膀胱内放射性增多,骨影浓而清晰,软组织本底高B.肾影不明显,膀胱内放射性很少,骨影浓而清晰,软组织本底低C.肾影不明显,膀胱内放射性减少,骨影淡而不清晰,软组织本底低D.肾影明显,膀胱内放射性减少,骨影淡而不清晰, 底高E.以上都不是 甲亢病人在甲状腺大部切除术后出现呼吸困难最常见的原因A.双侧喉上神经外侧支损伤B.一侧喉返神经损伤C.甲状腺功能低下致颈前黏液性水肿D.甲状腺危象E.伤口内出血或喉头水肿 核周空穴细胞又称为()A.角化细胞B.挖空细胞C.湿疣细胞D.角化不良细胞E.产后细胞′ 多次分娩妇女易出现A.真性尿失禁B.假性尿失禁C.压力性尿失禁D.充溢性尿失禁E.急迫性尿失禁 什么叫坠落高度基准面? 浊度是由于水中含有泥沙、黏土、有机物、无机物、浮游生物和微生物等悬浮物质所造成的,可使光被或。 在学校体育中加强培养学生社会适应能力的基本要求有A、营造民主的体育氛围,建立融洽的师生关系B、优化学校体育环境,创造良好的体育锻炼空间C、组织丰富多彩的课外体育活动,提高社会适应能力D、广泛开展学校体育竞赛,培养竞争与协助意识 神经反射 有关会议、展览和特殊活动的共性说法不正确的是。A.这些活动均涉及到人员的迁徙和移动B.这些活动能为人们生活增添乐趣C.这些活动是长期筹备、短期举办的"线"状活动D.这些活动的组织管理都是以独立的项目方式进行的 动脉造影常规采用穿刺A.颈内动脉B.颈外动脉C.股动脉D.股静脉E.锁骨下静脉 关于艾滋病的诊断要素中,最有意义的是A.高危人群B.临床表现C.抗HIV抗体D.CD+/CD8+T淋巴细胞比值E.机会性感染 下列哪种方法不是正规的手臂消毒法。A.肥皂水刷手法B.碘尔康刷手法C.酒精刷手法D.灭菌王刷手法E.碘伏刷手法 知觉是对客观事物哪种属性的反映A.个别B.整体C.本质D.主要E.特定 队员,凡被判罚直接任意球,均应罚球点球。A、在比赛中严重犯规B、在比赛中屡次违反规则C、在罚球区内犯规D、在球门区内犯规 对一些有试刀要求的刀具,应采用的方式进行。A.快进B.慢进C.渐进D.工进 急腹症患者突发腹痛,影像检查如图,最可能的诊断为A.出血坏死性胰腺炎B.尿路梗阻C.小肠梗阻D.主动脉瘤破裂E.以上都不是 商业银行下列金融创新行为中,符合客户利益保护原则的是。A.损害客户利益不会损害银行自身的利益B.在业务创新过程中,银行要识别并妥善处理金融创新引发的各类利益冲突,公平地处理银行与客户之间、银行与第三方服务提供者之间的利益冲突C.银行开展创新业务时,不必严格区分银行资产 产D.不得通过低价倾销排挤竞争对手 常见的风玫瑰图,是用绘制的。A.最大风速B.风向频率C.主导风向D.风向次数 下列关于主动管理方法的描述正确的是。A.采用此种方法的管理者认为证券市场是有效的B.经常预测市场行情或寻找定价错误的证券C.坚持"买入并长期持有"的投资策略D.通常购买分散化程度较高的投资组合 一般来说,医患之间信托-契约关系所倡导的医患交往模式是A.双方冲突型B.患者主导型C.主动-被动型D.指导-合作型E.共同参与型 1966年,手冢治虫推出日本第一部彩色电视动画系列片。 高压氧治疗的绝对禁忌证是()A.新生儿B.有颅骨缺损者C.未经处理的气胸D.收缩压>150mmHgE.体温在
相关文档
最新文档