经济数学线性代数第二版课后答案(吴传生著)高等教育出版社(20201014001441)

合集下载

线性代数(经管类)参考答案

线性代数(经管类)参考答案

参考答案一.选择题(本大题共 5 小题,每小题 2 分,共 10 分)1—5 C A B B D二. 填空题(本大题共10 小题,每小题 2 分,共 20 分)6. ___6_____.7. 2111⎛⎫⎪⎝⎭8. 13 9. ()10,25,16- 10. ()2,1,0T- 11. -2 12. 3 13. 60 14. 43,55⎛⎫⎪⎝⎭15. 2 三.计算题(本大题共 7 小题,每小题 9 分,共 63 分)16 . 解一 100100010010011001001001a a a b a b D c a b c d d ++==-++--100010001000aa ba b c d a b c a b c d+==++++++++解二 ()()111410111111101101001bD c a d++-=-⋅⋅-+-⋅---a b c d =+++ 17.解: 2AB -A =B -E2∴AB -B =A -E ()2A-E B =A -E()()12-∴B =A -E A-E()()()1-=A -E A -E A +E()=A+E315052432⎛⎫ ⎪B =- ⎪⎪-⎝⎭()12412112412118.,123012001113233012015234T T --⎛⎫⎛⎫⎪ ⎪A B =→--- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解:12412112032110152340103211001113001113---⎛⎫⎛⎫ ⎪ ⎪→----→-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 1003211100321101032110103211001113001113--⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭ 3211=3211113T -⎛⎫ ⎪X -- ⎪ ⎪-⎝⎭则,331=22111113-⎛⎫⎪X - ⎪ ⎪--⎝⎭故.19.解:()12345,,,,αααααT T T T TA =1114311143113210113121355000003156700000--⎛⎫⎛⎫⎪⎪----- ⎪ ⎪=→⎪ ⎪-⎪⎪-⎝⎭⎝⎭∴向量组的秩=2且1α,2α是一个极大无关组(回答1α,3α;1α,4α;1α,5α也可).20.解:对增广矩阵作初等行变换()101211012110121213140113201132=123450226400000112130113200000b ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-----⎪ ⎪ ⎪A A =→→ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭, 同解方程组为1342342132x x x x x x =---⎧⎨=-+-⎩,34x x ,是自由未知量,特解()*=1200ηT --,,, 导出组同解方程组为13423423x x x x x x =--⎧⎨=-+⎩,34x x ,是自由未知量,基础解系()1=1110ξT--,,,,()2=2301ξT-,,,,通解为*1122=k k ηηξξ++,12k k R ∈,21.解:特征方程()()2200=0212221001a a aλλλλλλλλ-E -A --=---+-=-- 将特征值=1λ代入特征方程有()()=1212210a a E-A ---+-=,则2a =. 故()()()=213=0λλλλE-A ---,特征值为123=2=1=3λλλ,,.1=2λ对应的齐次线性方程组为123000000100100x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为23=0=0x x ⎧⎨⎩,1x 是自由未知量,特征向量1100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1ξ单位化为1100p ⎛⎫⎪= ⎪ ⎪⎝⎭,2=1λ对应的齐次线性方程组为123100001100110x x x -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨-⎩,3x 是自由未知量,特征向量2011ξ⎛⎫⎪=- ⎪ ⎪⎝⎭,2ξ单位化为2011p ⎛⎫⎪=-⎪⎪⎭,3=3λ对应的齐次线性方程组为123100001100110x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨⎩,3x 是自由未知量,特征向量3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3ξ单位化为3011p ⎛⎫⎪=⎪⎪⎭, 正交矩阵()123100,,00Q p p p ⎛⎫⎪⎪==⎝,213⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,使得1Q Q -A =Λ.011101110-⎛⎫ ⎪A =- ⎪ ⎪⎝⎭22.解:二次型矩阵()()211=11=21=011λλλλλλ--A -E ---+--令,123=2==1λλλ-得,.1211101=22=121011112000λ-⎛⎫⎛⎫⎪ ⎪-A +E -→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当时,132333x x x x x x =-⎧⎪∴=-⎨⎪=⎩ 1111ξ-⎛⎫ ⎪∴=- ⎪ ⎪⎝⎭ 则1111-⎛⎫⎪P =-⎪⎪⎭ 23111111==1=111000111000λλ---⎛⎫⎛⎫ ⎪ ⎪A +E --→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭当时,1232233x x x x x x x =-+⎧⎪∴=⎨⎪=⎩ 2110ξ-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭, 3112ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭则2110-⎛⎫⎪P =⎪⎪⎭,3112⎛⎫⎪P =⎪⎪⎭因此=0⎛ ⎪T ⎪ ⎪ ⎪ ⎪⎝⎭,X=TY . 化二次型为2221232f y y y =-++.四.证明题(本大题7分)23.证明:基础解系中向量个数为3.设()()()1123212331232220k k k ααααααααα++++++++=即()()()1231123212332220k k k k k k k k k ααα++++++++=123,,ααα是基础解系,故线性无关,因此123123123202020k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩,系数行列式21112140112A ==≠,则齐次线性方程组只有零解, 故1230k k k ===.因此1232ααα++,1232ααα++,1232ααα++线性无关. 又()()()1231231231231231232=2=02=2=02=2=0ααααααααααααααααααA ++A +A +A A ++A +A +A A ++A +A +A 则1232ααα++,1232ααα++,1232ααα++也是该方程组的基础解系.说明:1.试卷题目均要求为自学考试真题;2.命题参照自学考试试卷的题型、题量;3.根据课程性质不同,可以更换或调整题型;4.试卷格式统一为:宋体 五号 单倍行距;选择题选项尽量排在一行;其他题型留出适当的答题区域。

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整

1 a2 a3 1 0
0
( )( ) ( )( ) 22、解法 1: 1 b2 b3 = 1 b2 − a2 b3 − a3 = b2 − a2 c3 − a3 − c2 − a2 b3 − a3
1 c2 c3 1 c2 − a2 c3 − a3
整理得 = (ab + bc + ca)(b − a)(c − a)(c −b)
1 1 11 1 1 1 1
−2 1 0
1 −1 2 1
1 −1 2 1 0 −2 1 0
13、
第1,4行交换 −
=−
= − −3 −2 −4 = −7
4 1 20
4 1 2 0 0 −3 −2 −4
−1 −5 −3
1 1 11
5 0 4 2 0 −1 −5 −3
14、先将第 1 行与第 5 行对换,第 3 行与第 4 行对换(反号两0 0 1 3 第3,5行对换 − 0 1 0 1 1 = − 6 7 8
= −10*2 = −20
43
00024
00024 010
01 01 1
00 01 3
17、根据课本 20 页公式(1.22)
0 0 1 −1 2
0030 0024 1 240
2
1 −1 2
0 = (−1)2×3 3
2 2 3 L 2 2 第3行 − 第1行 1 0 1 L 0 0
28、
L L L L L L LLLLLL L L L L L L
2 2 2 L n −1 2 第n行 − 第1行 1 0 0 L n − 3 0
−5 0 0 0 0
所以
* A = (−1)3*5 | A || B |= −3!5!

线性代数简明教程,(第二版)科学出版社课后答案第四章、线性方程组习题答案

线性代数简明教程,(第二版)科学出版社课后答案第四章、线性方程组习题答案

∴ (k0 + L + k n − r )η + k1ξ1 + k 2ξ 2 + L + k n − rξ n − r = ϑ
*
k 0 + L + k n − r = 0 k1 = 0 M kn−r = 0
复习题四
1、解: Q n = 4, n − r
= 2 ⇒ R( A) = 2
(a − 1) = 0 ⇒ a = 1 2、答:n − 1
2
3 、解:
(α 3 α 2 α1
−1 − 2 a 1 β)= 1 1 2 b 4 5 10 − 1
a 1 −1 − 2 ~ 0 − 1 2 + a b + 1 α 2 x2 + α 3 x3 + α 4 x4 = b 为其向量表达式
b −a 0 2 、解: D = 0 − 2c 3b = −5abc ≠ 0 c 0 a − 2ab − a 0 2 D1 = bc − 2c 3b = 5a bc 0
D2 = 0 c
0
a
0 3b = −5ab 2 c a
⇒ x1α1 + x2α 2 + x3α 3 + x4α 4 = α1 + α 2 + α 3 + α 4
⇒ x1 (2α 2 − α 3 ) + x2α 2 + x3α 3 + x4α 4 = 2α 2 − α 3 + α 2 + α 3 + α 4
⇒ (2 x1 + x2 + 3)α 2 + (− x1 + x3 )α 3 + ( x4 − 1)α 4 = ϑ

线性代数第二版 主编 吴传生 第一章 线性方程组的消元法和矩阵的初等变换)

线性代数第二版 主编 吴传生 第一章 线性方程组的消元法和矩阵的初等变换)

a22 x2 a2 n xn b2
am 2 x2 am n xn bm
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
考查方程组 (1) 分析系数
a11 x1 a12 x2 a1n xn b1
a21 x1 a22 x2 a2n xn b2
am1 x1 am2 x2 amn xn bm
两边同乘以已知常数 ,得到一个新的线性方程:
a1 x1 a2 x2 L an xn b.
线性方程与常数相乘,也称为方程的数乘。
线性方程的线性组合
将线性方程(1)和(2)分别称两个已知常数 1, 2
再将所得的两个方程相加,得到新方程:
1a11 2a21 x1 1a12 2a22 x2 L
方程组转换成 x2 , ,xn 的方程组来解 ,
若 x1 的系数不全为0,则利用变换(1),使 a11 0 . (2) 化简:利用初等变换(3),分别把第一个方程的 ai1 倍
a11 加到第 i 个方程,则方程组可以变成:
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
考查方程组
a11 x1 a12 x2 a1n xn b1
c11 x1 c12 x2 c1n xn d1
c22 x2 c2n xn d2
crr xr crn xn dr
0 dr1
00
00
(II)当 dr1 0 或方程组中根本没有0 0 的方程,分两种情形:
ii)r n . 这时阶梯型方程组为:
c11 x1 c12 x2 c1r xr c1,r1 xr1 c1n xn d1
定理1 线性方程组的初等变换总是把方程组变成 同解方程组 .
2、利用初等变换解一般线性方程组(化为阶梯型方程组)

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

2
d2
(d + 1)2
(d + 2) 2
2 2
b (b + 3) 第 3 列 − 第 1 列 c2 (c + 3) 2 第 4 列 − 第 1 列 d2 (d + 3) 2 2a + 1 2 6 2b + 1 2 6 =0 2b + 1 2 6 2b + 1 2 6
第2列 − 第1列
a2
2
2a + 1 4a + 4 6a + 9 2b + 1 4b + 4 2c + 1 4c + 4 6b + 9 6c + 9
线性代数课后习题答案
第 2 版 清华大学出版社
1、
a 2 ab = a 2 ⋅ b2 − ab ⋅ ab = 0 ab b2
cos α sin α − sin α = cos α ⋅ cos α − (− sin α ) ⋅ sin α = cos 2 α + sin 2 α = 1 cos α
2、
= 10 ⋅ (−1)
1 1 1 −1 1 1 1 1 1 1
⋅1⋅ 2L 8 ⋅ 9 = 10!
11、
1 1 1 1 1 第2行 − 第1行 1 0 −2 0 0 第3行 − 第1行 = 1*(−2)3 = −8 −1 1 0 0 −2 0 第4行 − 第1行 1 −1 0 0 0 −2
12、该行列式中各行元素之和均为 10,所以吧第 2,3,4 列加到第 1 列,然后再把第 1 列 后三个元素化为零,再对第 1 列展开,即
= 10*16 = 160
5
13、
0 1 1
4 2 2 0 1 1 第1,行交换 4 −

《经济数学》第2版习题答案完整版人大版

《经济数学》第2版习题答案完整版人大版

())1(32.150.1450),50(25.05015.0500,15.0.13100),100(541001000,.1230)3(3120)2(360)1.(111000,200908001001000800),800(90801008000,100.10,.939539.8.7.62,ln ,,.5sin ,,.4222)5.0(,2)0(,2)3(.3)111(1)(.2),1()1,)(2(]1,00,1-)[1.(1222122212≥+-=≤--==⎩⎨⎧>-+⨯≤≤=⎪⎩⎪⎨⎧>-+≤≤⋅==-=-=⎪⎩⎪⎨⎧>⨯+⨯≤<-+⨯≤≤=≤≤+==========-==++=+∞⋃--∞⋃-x x x y x xy y x x x x y x x a a x x a P Q Q Q R P Q Q Q Q Q Q R bq a q c c c x w w v v u u y x v v u e y f f f xx x f u 略偶函数()1、1191.016万元.2、561.256元.3、约2884年.4、7.18%.5、631.934元.6、收益的现值是61.977万元,租赁设备的方案更好.7、美国、中国、日本的年均增长率分别为6.83%,15.85%,12.65%.8、(1)14;(2)0;(3)13;(4)12;(5)2.9、(1)0;(2)0;(3)0;(4)极限不存在.10、(1)-16;(2)32;(3)0;(4)13;(5) 2x;.11、(1)w;(2)14;(3)2;(4)8;(5)12e;(6) e;(7) 2e;(8)53e.12、(1)0;(2)1;(3)0;(4)1.习题三答案1(1) 26sec x x - (2) 2ln 22x x + (3) 2732x x +(4) 2661x x -+ (5) 2cot csc sec tan x x x x x -+ (6) 1[ln ln 5]xe x x ++ (7)22(1)x + (8) 1cos 1x - (9) 222sec (1tan )xx - (10) 32(1) 2614(1)x x - (2)(3) 210x e -- (4) 22sec tan x x (5) 222sin 2cos 2cos sin x x x x x -- (6) 2(cos35sin 3)xe x x --(7) 1ln ln ln x x x (8) 13cot x x + (9) 243(21)x x + (10) 2 3(1) (62)x dx + (2) 322[2(3)(2)3(3)(2)]x x x x dx +-++- (3) 2(ln 2ln )x x dx + (4) (sin 2cos sin )x x x x dx -+(5) 33224(1)x dx x -+ (6) 2sin ln(12)12x dx x+-+ 4(1) (100)2200C =元 (100)22C =元/吨;(2) (100)9.5C '=元 5 (10)125C =, (10)5C '= 6 ()C Q'=, 25R ()(1)Q Q '=+, 25()(1)L Q Q '=+ 7 5060050pp η=- 1(1)111η=<; (6)1η=; (8)2η= 8(1) 214x- (2) 214x e - (3) 2sin cos x x x -- (4) 2cos te t --9(1) yy x - (2) x y x ye y x e++--10(1) 3(1)2t + (2) 2211t t +-11(1) (,)23x f x y x y '=+;(,)32y f x y x y '=+ (2) (,)2sin 2x f x y x y '=;2(,)2cos2y f x y x y '=百件。

近世代数初步(第二版)课后习题答案(石生明)04

近世代数初步(第二版)课后习题答案(石生明)04

第三章 有限域及其应用1畅有限域中的元素的数目.pn元域的存在及唯一性,它的结构(Zp上的n维向量空间、是xpn-x=0的全部根、它的全部非零元组成乘法循环群),它的子域.2畅有限域上不可约多项式的性质.Fq上全部n次不可约多项式皆为xqn-x的因子.不可约多项式f(x)(≠cx)的周期性.本原多项式及用于纠错码.3畅移位寄存器序列(线性递归序列)序列的数学刻画:引入F2上向量空间V(F2)={a=(a0,a1,a2,…,)|ai∈F2}及V(F2)上左移变换L:La=(a1,a2,a3,…).对F2上递归关系an+k=cn-1a(n-1)+k+cn-2a(n-2)+k+…+c0ak,k=0,1,2,…(倡)引入F2上多项式f(x)=xn+cn-1xn-1+…+c0.则V(F2)中向量a满足(倡)(即a是满足(倡)的线性递归序列)的充分必要条件是f(L)a=0.优美的理论结果:0≠a的周期等于f(x)的周期(这时f(x)必须是不可约多项式且f(x)≠x)m序列及其优美性质(参看习题)1畅§3内容是总导引中第一点思想的又一体现.读者自己察看一下,§3中共组织了两个运算系统.一个是F2上的无限序列作成的线性空间V(F2);一个是引入左移变换L,组成了V(F2)上线性变换的多项式环.正是有这两个运算系统才能将线性递归序列的周期性与F2上多项式的理论联系起来.2畅§1及§2内容是有限域及其上的多项式理论的一个简短而较全面的介绍.这在一般近世代数教材中少见.而§3内容在这些教材中从未出现过.其中的应用使我们看到这些内容与当代信息技术有密切联系.实际上它们对今后更·86·大范围的应用来说也是基本的.3畅§3内容是理论与实践相互促进的范例.正是分析移位寄存器序列性质的需要产生了理论的研究,理论的建立和优美的结果又解决了实践中的问题.这充分显示了理论的力量读者试作出一个具体线性递归序列来验证一下§3中关于周期性的结果.§1 有限域的基本构造 倡1畅验证x2+1及x2+x+2皆为Z3[x]上不可约多项式.写出下列两域Z3[x]/(x2+1) 及 Z3[x]/(x2+x+2)的加法表和乘法表.找出这两个域之间的同构对应. 倡2畅作出Z2[x],Z3[x]中所有的二次、三次、及两个四次不可约多项式.作出22,23,24个元的域. 倡3畅f1(x),f2(x)都是Zp[x]上m次不可约多项式,则Zp[x]/(f1(x))碖Zp[x]/(f2(x)).4畅作出一个34个元的域,并在其中找出一个32个元的子域. 倡5畅设d|m,证明(1)pd-1|pm-1.(2)xpd-x|xpm-x. 倡6畅设Fpn=Zp(α).问α是乘法群F倡pn=Fpn\{0}的生成元吗?1畅x2+1及x2+x+2在Z3上皆无根,故它们在Z3[x]中不可约.Z3[x]/(x2+1) 及 Z3[x]/(x2+x+2)都是域.我们略去它们的加法表和乘法表,只证明它们同构.Z3[x]/(x2+1)=Z3[珔x],其中珔x=x+((x2+1)).珔x满足Z3上x2+1=0.而·96·Z3[x]/(x2+x+2)=Z3[珕x]其中珕x=x+((x2+x+2)).珕x满足Z3上x2+x+2=0.我们要找出Z3[珕x]中的元素α,满足方程x2+1=0.实际上由0=珕x2+珕x+2==珕x2+珕x+1=+1==珕x2+4珕x+4=+1==(珕x+2=)2+1=(在Z3中4==1=).取α=珕x+2=就适合α2+1==0.由此[Z3(α):Z3]=2.再由Z3(α)彻Z3[珕x]及[Z3[珕x]:Z3]=2,知Z3(α)=Z3[珕x].现作映射Z3[x]φZ3(α)=Z3[珕x]=Z3[x]/(x2+x+2)p(x)p(α)这是满同态,且Kerφ=((x2+1)).由同态基本定理得同构Z3[x]/(x2+1)Z3(α)p(珔x)p(α).其中珔x=x+((x2+1)).2畅Z2[x]中不可约多项式如下:一次的:x,x+1,二次的:x2+x+1,三次的:x3+x2+1,x3+x+1,四次的:x4+x+1,x4+x3+1,x4+x3+x2+x+1.Z3[x]中不可约多项式如下:一次的:x,x+1,x+2,二次的:x2+1,x2+x+2,x2+2x+2,三次的:x3+2x+1,x3+2x+2,x3+x2+2,x3+x2+x+2,x3+x2+2x+1,x3+2x2+1,x3+2x2+x+1,x3+2x2+2x+2,四次的:x4+2x3+2,x4+x3+2,x4+x2+2x+1,x4+2x3+x+1,x4+x3+x2+2x+2,x4+2x3+x+1,x4+2x3+x2+1,x4+2x3+x2+2x+1,x4+x3+2x2+2x+1,x4+2x3+x2+x+2,x4+2x2+2x+2,x4+2x+2,x4+x+2,x4+2x2+2,x4+2x+2,x4+x2+2,x4+x2+x+1,x4+x2+2x+1.找寻的步骤:(1)列举出Z2[x](Z3[x])中所有一次,二次,三次及四次多项式.(2)一次多项式皆不可约.(3)检验Z2[x](Z3[x])中哪些二次、三次多项式在Z2(Z3)中没有根,它们是不可约多项式.(4)检验Z2[x](Z3[x])中哪些四次多项式在Z2(Z3)中没有根,又不是Z2[x](Z3[x])中两个二次不可约多项式的乘积,则它们都是不可约多项式.3畅它们都是pm个元的有限域,由定理3知它们同构.4畅取Z3[x]中的四次不可约多项式x4+2x2+2,则Z3[x]/(x4+2x2+2)是··0734个元的域.令珔x=x+((x4+2x2+2)),则珔x4+2珔x2+2=(珔x2+1)2+1=0.即珔x2+1是Z3[x]中二次不可约多项式的根.于是有Z3[x]/(x2+1)碖Z3(珔x2+1)彻Z3(珔x)=Z3[x]/(x4+2x2+2)这表明Z3(珔x2+1)是Z3(珔x)中的32个元的子域.5畅(1)d|m,令m=kd.则pm-1=pkd-1=(pd)k-1=(pd-1)(pd(k-1)+pd(k-2)+…+pd+1).故pd-1|pm-1.(2)令pm-1=l(pd-1).则xpm-1-1=x(pd-1)l-1=(xpd-1-1)(x(pd-1)(l-1)+x(pd-1)(l-2)+…+xpd-1+1).故xpd-1-1|xpm-1-1,即得xpd-x|xpm-x.6畅不一定.例Z3[x]/(x2+1)=F.令珔x=x+((x2+1)),它满足珔x2+1=0,当然有珔x4-1=0,即珔x4=1.但F是32个元的域,F倡=F\{0}是8阶循环乘法群.故珔x不是F倡的生成元.§2 有限域上不可约多项式及其周期,本原多项式及其对纠错码的应用以下习题中打倡者为必作题,其余为选作题. 倡1畅验证Z3[x]/(x2+1)的非零元乘法群是循环群,找出生成元.x2+1是否本原多项式? 倡2畅x3+x+1,x4+x+1是否Z2[x]中的本原多项式? 倡3畅证明映射FpmFpmaap是Fpm的自同构且保持Fpm中的素子域Fp中的元素不动.4畅f(x)是Zp上m次不可约多项式.设α∈Fpm是f(x)的一个根,则α,αp,…,αpm-1是f(x)的全部m个根.5畅设β∈Fpm,β在Zp上的极小多项式f(x)是d次的,则(1)β属于Fpm中的一个pd个元的子域.(2)d|m.6畅证明Fpm中元素β与βp在Zp上有相同的极小多项式.·17· 倡7畅设α是Z3[x]中多项式x4+x+2的一个根.把Z3(α)中全部元素用1,α,α2,α3的线性组合表示出来.并算出1+α+α31+α2+α3+α+α2.8畅把x24-x,x23-x分解成Z2[x]上不可约多项式的乘积,把x33-x,x32-x分解成Z3[x]上不可约多项式的乘积. 倡9畅取Z2[x]中本原多项式x3+x+1.在多项式∑6i=1aix7-i=a1x6+a2x5+…+a6x+a7与向量(a1,a2,…,a7)等同的约定下,作码集合M={(x3+x+1)(b1x3+b2x2+b3x+b4)|bi∈Z2}.(i)取f(x)=x6+x4+c1x2+c2x+c3,试决定c1,c2,c3使f(x)属于码集合M.(ii)设f1(x)=x6+x5+x4+x3+x2+x+1及f2[x]=x6+x4+x3+x2+x+1是接受到的向量,并设传输过程中最多错一位,试进行译码.1畅令珔x=x+((x2+1)).计算珔x+2的各方幂珔x+2,(珔x+2)2=珔x,(珔x+2)3=2珔x+2,(珔x+2)4=2,(珔x+2)5=2珔x+1,(珔x+2)6=2珔x,(珔x+2)7=珔x+1,(珔x+2)8=1.故珔x+2生成了非零元素乘法群,它是8阶循环群.珔x只是4阶元,它不是生成元,从而证明x2+1不是本原多项式.2畅x3+x+1的周期是23-1=7的因子.它不是x-1的因子,故周期不为1,只能是7,所以它是本原多项式.x4+x+1的周期是24-1=15的因子.但x4+x+1嘲x-1,x3-1,x5-1.故它的周期只能是15.因此是本原多项式3畅橙a,b∈Fpm,有(a+b)p=ap+bp及(ab)p=apbp故是φ同态.又由第二章§1习题8知(a-b)p=ap-bp,故这是单射.又上面的映射是有限集Fpm中的单射,必是满射.因此是Fpm的自同构.由于子域Fp是p个元的域,由第二章§5习题5,知这映射是Fp上的恒等变换.4畅设f(x)=amxm+am-1xm-1+…+a1x+a0,ai∈Zp.因此api=ai(第二章§1习题8).·27·设a∈Fpm满足f(a)=0,则f(a)p=(amam+…+a0)p=apmamp+…+ap1ap+ap0=am(ap)m+…+a1ap+a0=f(ap)=0.即ap也是f(x)的根.设a,ap,ap2,…,apk中两两不同,apk+1与前面某apl相同.a1,ap,…,apk是f(x)的k个不同的根,故k≤m.又若1≤l≤k.则apl=(apk+1-l)pl.因aapl是Fpm的自同构(习题3),上式两端元素的原象应相等,得a=apk+1-l.又k+1-l≤k,与a,ap,…,apk中两两不同矛盾.故l=0,即a=apk+1.令g(x)=(x-a)(x-ap)…(x-apk)=xk+b1xk-1+…+bk.则b1=-(a+ap+…+apk),…,bk=(-1)ka·ap…apk,bp1=(-1)p(ap+ap2+…+apk+1)=-(ap+…+apk+a)=b1,…,bpk=(-1)kpap·ap2…apk+1=(-1)kapap2…apka=bk.任意bi=(-1)i[a,ap,…,apk中任取i个的乘积之和],bpi=((-1)i)p[ap,ap2,…,apk+1中任取i个的乘积之和]=(-1)i[ap,ap2,…,apk,a中任取i个的乘积之和]=bi.即所有bi满足xp-x=0,故所有bi属于Fpm的子域Zp之中,因此g(x)是Zp上的多项式.因f(x),g(x)在Fpm[x]中有公因式(x-a),故f(x),g(x)在Zp[x]中不互素,又f(x)是Zp[x]中不可约多项式,且g(x)的次数≤m.故f(x)与g(x)是相伴的.因而k=m,且a,ap,ap2,…,apm是f(x)的全部m个根.5畅因f(x)是β在Zp上的极小多项式,由第二章§2定理4,f(x)在Zp[x]中不可约.由f(β)=0,有Fpm澈Zp(β)碖Zp[x]/(f(x)).又f(x)是d次的,故Zp(β)是pd个元的子域,再由定理4知d|m.6畅设Fpm的元β在Zp上的极小多项式为f(x).由第二章§定理4知它在Zp[x]中不可约.再由第4题,f(βp)=0.这时f(x)不可约,仍由第二章§定理4,它是βp在Zp上的极小多项式.7畅由§1习题2,知x4+x+2是Z3[x]中不可约多项式.α是它的根,故Z3(α)={a0+a1α+a2α2+a3α3|a0,a1,a2,a3∈Z3}.易计算知,α2(α3+α2+1)-(α+1)(α4+α+2)=1,即有α2(α3+α2+1)=1.于是1+α+α31+α2+α3+α+α2=α2(1+α+α3)+α+α2=α3+α2+2α.8畅x23-x=x(x+1)(x3+x+1)(x3+x2+1),x24-x=x(x+1)(x2+x+1)(x4+x+1)(x4+x3+1)(x4+x3+x2+x+1),·37·x32-x=x(x+1)(x+2)(x2+1)(x2+x+2)(x2+2x+2),x33-x=x(x+1)(x+2)(x3+2x+1)(x3+2x+2)(x3+x2+2)(x3+x2+x+2)(x3+x2+2x+1)(x3+2x2+1)(x3+2x2+x+1)(x3+2x2+2x+2).9畅(i)作除法算式,x6+x4=(x3+1)(x3+x+1)+x+1.取C1=0,C2=1,C3=1,f(x)=x6+x4+x+1=(x3+1)(x3+x+1)就属于码集合M.(ii)f1(x)=(x3+x2+1)(x3+x+1),故传输过程中无错误.f2(x)=x3(x3+x+1)+x2+x+1.作计算:x(x2+x+1)=x3+x2+x=(x3+x+1)+x2+1≡x2+1,(modx3+x+1),x2(x2+x+1)=x(x2+1)=(x3+x+1)+1≡1,(modx3+x+1),即x2(x2+x+1)≡1.但x2·x5=x7≡1,故x5≡x2+x+1,(modx3+x+1).这即说明f2(x)错在x5项上,原来输出的码字应为f2(x)+x5=x6+x5+x4+x3+x2+x+1.§3 线性移位寄存器序列以下习题中打倡者为必作题,其余为选作题.1畅Fp(p为素数)上首项系数为1的m次本原多项式的个数为φ(pm-1)/m,这里φ是欧拉函数(参见第二章§5).并算出Z2,Z3上三次、四次本原多项式的数目. 倡2畅作出Z2上两个周期为7的m序列(写出2个周期的长度). 倡3畅设F2上序列a=(a0,a1,a2,…)的周期为e.证明(i)若有e′使ak+e′=ak,k=0,1,2,…,则e|e′.(ii)若令S0=(a0,…,ae-1),S1=(a1,…,ae),…,Se-1=(ae-1,…,a2e-2),则它们两两不同. 倡4畅设f(x)是F2上n次不可约多项式,则(i)G(f)是F2上向量空间.(ii)对任意a∈G(f).令Sa=(a0,a1,…,an-1),称为a的初始状态向量.则橙a,b∈G(f),a=b当且仅当Sa=Sb.(iii)a1,…,ak,a∈G(f),l1,…,lk∈F2,则··47a=l1a1+…+lkak当且仅当Sa=l1Sa1+…+lkSak.于是a1,…,ak线性相关当且仅当Sa1,…,Sak线性相关.(iv)G(f)是F2上n维空间.5畅设f(x)是F2[x]中n次本原多项式,a是G(f)中非零序列,即m序列,则a=a0,La=a1,…,L2n-2a=a2n-2是G(f)中全部非零序列.进一步Sa0,Sa1,…,Sa2n-2全不相同,它们是F2上n元向量空间中全部非零向量.6畅设a=(a0,a1,a2,…)是F2上周期为2n-1的m序列.将a的一个周期(a0,a1,…,a2n-2)中的元依次排在圆周上,并使a2n-2与a0=aan-1相邻,则F2上的任一k元组(1≤k≤n),(b1,b2,…,bk)在上述圆周中出现的次数为2n-k, 若(b1,b2,…,bk)≠(0,0,…,0),2n-k-1, 若(b1,b2,…,bk)=(0,0,…,0).(考察有多少个Sai的前k个元正是b1,b2,…,bk).7畅a为F2上周期为2n-1的m序列,则在a的一个周期中1的数目为2n-1,0的数目为2n-1-1.8畅对习题2中作出的F2上周期为7的两个m序列的一个周期排成圆圈如习题6,数出1,0,01,10,101,110,出现的次数.1畅考虑域Fpm,它由Fp上多项式xpm-x的全部根组成.将xpm-x分解成Fp上不可约多项式的乘积.任一Fp上m次不可约多项式f(x)都是它的因子,·57·故f(x)在Fpm中有m个根.任取一根α,则Fpm=Fp(α)碖Fp[x]/(f(x))=F(珔x).其中珔x=x+(f(x)).由此知f(x)是Fp上m次本原多项式当且仅当珔x是pm-1阶乘法循环群Fp(珔x)\{0}的生成元当且仅当α是乘法循环群Fp(α)\{0}=Fpm\{0}的生成元.反之,任取Fpm\{0}的任一生成元α,则它必为Fp上某不可约多项式f(x)的根,显然Fpm=Fp(α)碖Fp[x]/(f(x)).比较两边元素的数目,知f(x)是m次不可约多项式.又α是乘法循环群Fpm\{0}的生成元,前一段证明了f(x)是Fp上m次本原多项式.m次本原多项式都是xpm-x的因式,后者无重根,故全体m次本原多项式在Fpm中的全体根也各不相重.设共有k个m次本原多项式,它们共有mk个根,前面证明了它们是pm-1阶乘法循环群Fpm\{0}的全部生成元.任取一个生成元α,由第一章§7习题5知αn是生成元当且仅当(n,pm-1)=1.故Fpm\{0}的生成元的数目等于与pm-1互素的且小于pm-1的正整数的数目即φ(pm-1).由于mk=φ(pm-1),得k=1mφ(pm-1).Z2,Z3上3次,4次本原多项式的数目分别是13φ(23-1),14φ(24-1),13φ(33-1),14φ(34-1).用第二章§5中关于φ(n)的公式进行计算,得到13φ(23-1)=13φ(7)=2,14φ(24-1)=14φ(15)=14φ(3)φ(5)=2,13φ(33-1)=13φ(26)=13φ(2)φ(13)=4,14φ(34-1)=14φ(80)=14φ(16)φ(5)=14241-12·4=8.2畅取Z2上的三次本原多项式x3+x+1(Z2上的3次不可约多项式都是本原多项式).作线性递归序列a=(a0,a1,a2…),其递归关系为ak+3=ak+1+ak,k=0,1,2,….因x3+x+1为本原多项式,它的周期,因而上述序列的周期为23-1=7.取a0=1,a1=a2=0.可计算出a取a0=a1=a2=1,可计算出a3畅(i)作除法算式e′=le+e1,e1=0或0<e1<e.若0<e1<e,则对k=0,·67·1,2,…有ak+e1=ak+e1+le=ak+e′=ak.即e1也是a的周期与e是极小周期矛盾.故e1=0,e′=le.(ii)若有0≤i<j≤e-1,使Si=Sj.即(ai,ai+1,…,ai+e-1)=(aj,aj+1,…,aj+e-1).当i≥1,由ai+e-1=ai-1,aj+e-1=aj-1,并把上面两端向量的前e-1个分量都向右移一位,而最后一位分量移至第一位,得到的两向量仍相等,(ai-1,ai,…,a(i-1)+e-1)=(aj-1,aj,…,a(j-1)+e-1).即Si-1=Sj-1.可继续这样做,结果得到S0=Si-i=Sj-i.于是对任意0≤t≤e-1有at=at+(j-i).而对任意k=0,1,2,…,作除法算式,设k=le+s,0≤s≤e-1.则ak=ak-le=as=as+(j-i)=as+le+(j-i)=ak+(j-i).即a有周期j-i.而0<j-i<e,与e为极小周期矛盾.故任意0≤i<j≤e-1,必有Si≠Sj.4畅(i)G(f)={a∈V(F2)|f(L)a=0}.橙ab∈G(f),则f(L)af(L)b=0.于是f(L)(ab)=f(L)a+f(L)bab∈G(f).又设l∈F2,aG(f),f(L)(lal(f(L)ala∈G(f).因此G(f)是V(F2)的子空间.(ii)橙abG(f),显然ab推出Sa=Sb.反之,设Sa=Sb.对k=0,1,2,…,有ak+n=cn-1ak+(n-1)+…+c1ak+1+c0ckbk+n=cn-1bk+(n-1)+…+c1bk+1+c0bk.由Sa=Sb,并在上式中令k=0,则有an=bn.于是SLa=(a1,a2,…,an)=(b1,b2,…,bn)=SLb.但f(L)LaLf(L)a=0,f(L)Lb=Lf(L)b同样可证SL2a=SL2b.归纳地可证,对任意k有SLka=SLkb.就得到对任意k,ak+n=bk+n.加上Sa=(a0,a1,…,an-1)=(b0,b1,…,bn-1)=Sb,就证明了ab(iii)ai有初始向量Sai.于是若al1a1+…+lkak,则显然Sa=l1Sa1+…+lkSak.反之,设Sa=l1Sa1+…+lkSak.因l1a1+…+lkak∈G(f),及Sl1a1+…+lka=l1Sa1+…+lkSak=Sa.由(ii)al1a1+…+lkak.特别地当a时就得到l1a1+…+lkak=0当且仅当l1Sa1+…+lkSak=0.即有a1,…,ak线性相关当且仅当Sa1,Sa2,…,Sak线性相关.(iv)考虑到可取F2上n维向量空间的任一组基作初始向量,由递归关系f(L)a得到G(f)中的一组序列a1,…,an.而初始向量Sa1,…,San是F2上n维向量空间的基.由(iii)a1,…,an也线性无关.橙aG(f),Sa是Sa1,…,San的线性组合,再由(ii),aa1,…,an的线性组合,故a1,…,an是G(f)的一组基,因·77·此G(f)是F2上n维线性空间.5畅f(x)为F2上n次本原多项式,aG(f)中非零序列,则其周期为2n-1.由习题3(ii)知Sa0,Sa1,…,Sa2n-2 互不相同,它们是F2上2n-1个非零的n维向量,但F2上仅有2n-1个非零的n维向量,故Sa1,…,Sa2n-2 是F2上全部非零 是G(f)中全部非零序列.的n维向量.由习题4(ii),a0,…,a2n-26畅设aa0,a1,a2,…)是周期为2n-1的m序列,由习题5知Sa0,Sa1,…,Sa2n-2 是F2上2n-1个不同的,也即全部非零的n元向量.对1≤k≤n,(b1,b2,…,bk)每次出现必有某Sai=(b1,b2,…,bk,…).因此它出现的次数正是这样的Sai的数目.当(b1,b2,…,bk)≠(0,0,…,0)时,后面n-k位分量可任意在F2上取值,故这样的Sa共2n-k个.若(b1,…,bk)=(0,0,…,0),后面n-k位分量除了不能全取零外可任意选取(因Sai不能为零向量),故这样的Sai共有2n-k-1个.7畅在习题6中取k=1.当(b1)=(1)时,它出现的次数是2n-1;当(b1)=(0)时,它出现的次数是2n-1-1.8畅习题2出现的周期为7的两个m序列各取一个周期,分别为1001011及1110010.排成的圆圈是下列同样的圆圈.可见到1出现4(=23-1)次,0出现3(=23-1-1)次,01出现2(=23-2)次,101出现1(=23-3)次,110出现1(=23-3)次.··87第四章 有因式分解唯一性的环1畅基本概念:因子、倍元、相伴、不可约元、素元、因式分解及唯一性、公因子、最大公因子.2畅整环成为唯一因分解环的充要条件.不是唯一因式分解环的例子.3畅欧氏环及例子(Z,域上多项式环,高斯整数环)主理想环及其因式分解唯一性.4畅交换环上的多项式环.唯一因式分解环上的多项式环仍是唯一因式分解环.5畅几个典型环类的包含关系欧氏环主理想环唯一因式分解环整环.1畅在其它抽象代数教材中,由于内容的逻辑体系的需要,都是把本章内容作为主要内容放在域论内容之前.占用了大量教学用时,以致只能讲很少域论内容.为了教材内容现代化,为了写入应用内容和为应用所需的理论内容,我们把域论和域论的应用内容放在前面,而把本章内容放在最后.时间不够,可以少讲和不讲.这是教材内容的重要改革.2畅本章§3的内容是为说明一般域甚至交换环上多项式的存在性.多项式是一类运算系统.必须举出实例才能表明对它的讨论有意义.本书的第二章§6及第三章§1的内容都是以一般域上多项式的存在为前提的.3畅§4中定理1的证明中又采用了将整系数作模p剩余类的方法.这个证明比以前教科书(包括本书第一版)中的证明有所简化.4畅内容要点中第5点中的包含关系是严格的真包含关系,要能用例子说明此关系.·97·§1 整环的因式分解以下习题中打倡者为必作题,其余是选作题. 倡1畅试说明整环中的零元,可逆元不能是不可约元的乘积. 倡2畅R是整环,则它的素元是不可约元. 倡3畅R是整环,则a∈R是素元当且仅当主理想(a)=aR是非零素理想(第二章§7习题2).4畅令整环M={a+b3i|a,b∈Z}.求出M的全部可逆元.证明它没有因式分解唯一性(举反例,有M中非零的不可逆元a,它没有分解唯一性). 倡5畅证明在环Z(-5)中3(2+5i)和9没有最大公因子.6畅R为整环.(1)a,b∈R,a,b不同时为零,a=a1d,b=b1d,则d是a,b的最大公因子当且仅当a1,b1互素.(2)把a,b两个元素推广到任意k个元素的情形.7畅设M是形为m2k(m任意整数,k非负整数)的全部有理数的集合,则它是Q的子环.找出M的全部可逆元和不可约元.8畅R是唯一因式分解环.a,b∈R是互素的,且a|bc,则a|c. 倡9畅R是唯一因式分解环,p为不可约元,则珚R=R/(p)为整环.1畅设在整环R中有0=p1p2…ps,pi是不可约元,于是p1及ps都是零因子,与R是整环矛盾.又设可逆元u=p1…ps,pi是不可约元.并设uv=1,则p1p2…psv=1,得出p1是可逆元,与p1非可逆矛盾.2畅设u是素元,若u可约,则u=v1v2,v1,v2皆非可逆.于是u|v1v2,u又是素元,必有u|v1或u|v2.若u|v1,则v1=uv,某v∈R.因此u=v1v2=u(vv2).R是整环,u≠0,用消去律得1=vv2.与v2非可逆矛盾.同样u|v2也·08·有矛盾.故u不可约.3畅设aR是非零素理想,故a是非零的非可逆元.对b,c∈R,a|bc,则bc∈aR.故b∈aR或c∈aR,即a|b或a|c,所以a是素元.反之,设a是素元.b,c∈R,bc∈aR.于是a|bc,有a|b或a|c.即b∈aR或c∈aR.又a是非零非可逆元,故aR≠0及aR≠R,所以aR是非零素理想.4畅设(a+b3i)(c+d3i)=1,a,b,c,d∈Z.对两端取复数模平方,得(a2+3b2)(c2+3d2)=1.若b≠0或d≠0则3b2≥3或3d2≥3,左端必大于1,不可能,所以b=0,d=0,得到ac=1,a=±1.故a+b3i在M中可逆当且仅当b=0,a=±1.4在M中有两种分解:4=2·2=(1+3i)(1-3i).下证2,1±3i皆为M中不可约元,实际上它们的模平方皆为4.令它们中任一个为α,设α=α1α2,α1,α2皆非可逆.而M中非可逆元a+b3i,必有b≠0,或a≠±1,这时|a+b3i|2=a2+3b2≥3.于是|α1|2|α2|2≥9.而左端|α|2=4,不能相等.故2,1±3i皆为不可约元,4分解成M中的不可约元乘积的方式不唯一.5畅要证明不存在9与3(2+5i)在Z[5i]中的公因子d,使得9与3(2+5i)的任一公因子皆是d的因子.反设d=a+b5i,a,b∈Z满足上述要求.由于3是9与3(2+5i)的公因子.故3|d,即有c,e∈Z使a+b5i=3(c+e5i).于是a=3c,b=3e.但d|9,两边取模平方得(3c)2+5(3e)2|92,则有c2+5e2|32.只有c=±2,e=±1;c=±3;e=0这几种情况适合这条件.故c+e5i的仅有的可能为±2±5i,±3.即d=a+b5i的仅有的可能为±6±35i,±9.若d=±6±35i,d|9,9=dα.取模平方92=|d|2|α|2=92|α|2.得|α|=1故α=±1畅9=±d,这不可能.若d=±9,d|3(2+5i),3(2+5i)=dα.取模平方,92=|d|2|α|2=92|α|2.得|α|=1,α=±1.3(2+5i)=±d也不可能.故9,3(2+5i)在Z[5i]中没有最大公因子.6畅(1)这时d≠0.设a1,b1不互素,则有d1非可逆元是它们的公因子.则dd1是a,b的公因子,而d为最大公因子,故dd1|d.有d2∈R,dd1d2=d.R是整环,用乘法消去律得d1d2=1,即d1是可逆元,矛盾.故a1,b1互素.反之,设a1,b1互素.又设d1是a,b的最大公因子.则d|d1,有d2∈R使d1=dd2.d1是a,b的因子,有a2,b2∈R使a=d1a2=dd2a2=da1,及b=d1b2=dd2b2=db1.用消去律d1a2=a1,d2b2=b1.于是d2是a1,b1的公因··18子.但a1,b1互素故d2为可逆元.由此知d=d1(d2)-1也是a,b的最大公因子.(2)略.7畅由于M中的元具有形式m2k,它们的和,差,积仍为这种形式的元,故M是Q设m2k为M中可逆元,则有n2l使m2kn2l=1.故m必为±2t,t为非负整数.反之,对±2t2k,k,t皆非负整数,则±2k2t属于M,且±2t2k·±2k2t=1,故在M中可逆.因此M中可逆元集=±2t2kt,k皆非负整数.由此易知,M中非可逆元集=m2km是具有奇素数因子的非负整数.下面证明m2k为M中不可约元当且仅当m=±p·2t,其中p为奇素数,t为非负整数.先设m2k,m=±p·2t,p为奇素数.若m2k=m12k1·m22k2,则m1·m2=±p·2t1.因此m1,m2中的一个只是2的非负方幂,于是m12k1·m22k2中有一个是可逆元.因此m2k是不可约元.再设m2k,m=p1p2m1,p1,p2皆为奇素数,可以相同,m1为整数.则m2k=p120·p2m12k,右端是M中两个非可逆元的乘积.因此m2k为M中可约元.故若m2k在M中不可约,必须m=±p·2t,其中p为奇素数,t非负整数,证毕.8畅设bc=ad,将b,c分解成不可约因式的乘积b=p1…ps,c=ps+1…pt.再将a,d分解成不可约因式的乘积a=q1…qr,d=qr+1…ql.由bc=ad,及因式分解唯一性知t=l,及有1,2,…,t的一个排列i1i2…it,使pij与qj相伴.对1≤j≤r,qj是a的不可约因子,则pij不在p1,…,ps之中,否则a与b有公因子pij,与它们互素矛盾.这样pi1…pir必出现在c的分解中,它与a=q1…qr相伴,故a|c.9畅R为唯一因式分解环,由§1定理1及定义2知它的不可约元p为素元.设珋c,珔d是珚R的两个非零元,来证珋c珔d≠0,即珚R是整环.反证法设cd=珋c珔d=0,·28·则p|cd、因p为素元,则或p|c或p|d,即或珋c=0或珔d=0.矛盾.故cd≠0,珚R为整环.§2 欧氏环,主理想整环以下习题中打倡者为必作题,其余为选作题. 倡1畅主理想环的商环是主理想环. 倡2畅R是主理想环,a为R中不可约元,则(i)(a)为极大理想;(ii)a为素元;(iii)每个非0素理想(见第二章§7习题2)是极大理想;(iv)R/(a)是域.3畅证明M={a+b2i|a,b∈Z}是欧氏环(仿例1). 倡4畅p是素数.令R=aba,b∈Z,(b,p)=1.(i)证明R是整环;(ii)求出R的所有可逆元;(iii)证明R的所有非可逆元组成R的唯一极大理想;(iv)上述极大理想是主理想;(v)求出R的全部理想. 倡5畅找出高斯整数环Z{a+bi|a,b∈Z}的全部可逆元. 倡6畅高斯整数环的元素a满足δ(a)=素数,则a为不可约元.7畅R是欧氏环,求证(i)若ε∈R倡=R\{0},则ε是R中可逆元当且仅当橙a∈R倡有δ(ε)≤δ(a).(ii)设a∈R倡,a不可逆.若对所有不可逆元b∈R倡都有δ(a)≤δ(b),则a是R中不可约元.8畅R=12a+12b19ia,b∈Z,则R是主理想环但不是欧氏环(参看Motzkin,TheEuclideanalgorithm,Bull.Amer.Math.Soc.55.1142-1146(1949).或参看张勤海著枟抽象代数枠(科学出版社,2004)中推论2畅4畅14及命题2畅4畅16).9畅R是主理想环.d是R中非零元,则R中只有有限个不同的素理想包含·38·(d)(提示:(d)炒(k)痴k|d).1畅设R为主理想环,珚R=R/I为商环.任取一个理想珡N,令N={r∈R|珋r=r+I∈珡N}.易证它是R的理想并包含I(参见第二章§4习题8).R是主理想环,故有N=aR.于是珡N=珔a珚R,即珚R是主理想环.2畅(i)设有(a)炒M炒R,M为R的理想.故有b∈M使M=(b).a∈(b),有a=br,r∈R.因a不可约,b,r中必有可逆元,若b可逆,则(b)=R;若r可逆,则(a)=(b).故(a)是极大理想.(ii)主理想环是唯一因式分解环,它的不可约元皆为素元.(iii)设(b)是非零素理想,由§1习题3,b为素元.因而是不可约元.由(i),(b)为极大理想.(iv)由(i),(a)为极大理想,故R/(a)为域.3畅仿例1,令δ:M倡Z+(非负整数集)δ(a+b2i)=a2+2b2.当a+b2i≠0,δ(a+b2i)≥1,具有性质(i)δ(αβ)=δ(α)δ(β)≥δ(β),橙α,β∈M倡.(ii)橙α,β∈M,β≠0,我们证明有q,r∈R使得α=qβ+γ,且γ=0或δ(γ)<δ(β).证明 对α∈M及β∈M倡,可写αβ-1=a+b2i,这几a,b∈Q选最接近a,b的整数k,l使a=k+ν,b=l+μ,其中|μ|≤12,|ν|≤12.则α=β[(k+ν)+(l+μ)2i]=β[k+l2i]+β(ν+μ2i).令q=k+l2i,γ=β(ν+μ2i)=α-βq∈M.则α=qβ+γ,且若γ≠0,δ(γ)=|γ|2=|β|2|ν+μ2i|2≤|β|214+24=34|β|2<δ(β).故M={a+b2i|a,b∈Z}是欧氏环.4畅(i)设a1b1,a2b2∈R,(bi,p)=1,i=1,2.于是(b1b2,p)=1,a1a2b1b2∈R,a1b1±a2b2=b2a1±b1a2b1b2∈R.故R是Q的子环,因而是整环.(ii)(b,p)=1.若ab在R中可逆,存在cd∈R使abcd=1.这时(b,p)=(d,p)=1,故(bd,p)=1.由ac=bd,于是(a,p)=1.·48·反之,ab∈R,若(a,p)=1,则ba∈R,ab·ba=1.即ab在R中可逆.故R中可逆元集=aba,b∈Z,(b,p)=(a,p)=1.(iii)由(ii)知ab∈R非可逆当且仅当(b,p)=1及p|a.令M={R中非可逆元}.橙ab,cd∈M,即有p|a,p|c.ab±cd=bc±addb,这时(db,p)=1,p|bc±ad.故ab±cd非可逆,属于M.又橙ab∈M,cd∈R,cd·ab=acdb.这时(db,p)=1及p|ac,故cd·ab是非可逆元,属于M.这就证明了M是R的理想.设M1是R的真理想,则M1中元皆为R中的非可逆元,故M1炒M,即M为R的唯一的极大理想.(iv)易知M=ab(b,p)=1,p|a=pR,故为主理想.(v)设M1是R的任一非零理想,M1炒M.任意0≠ab∈M1,(b,p)=1,p|a.令M1的全体元ab中使pl|a的最小的l值为k,k≥1,则M1彻pkR.又设M1中具有pk因子的元是pkcd,(d,p)=(c,p)=1.则pk=pkcd·dc∈M1,于是pkR彻M1,即有M1=pkR.也易知任一pkR也是R的理想.故R的全部理想是pkR,k=0,1,2,…,及零理想.5畅设a+bi是Z[i]中可逆元,则有c+di∈Z[i]使(a+bi)(c+di)=1.两边取模平方就得(a2+b2)(c2+d2)=1.只能a2+b2=1,有四个可能a=±1,b=0;a=0,b=±1.Z[i]中只有四个可逆元±1,±i.6畅设a∈Z[i],δ(a)=素数.若a=bc,b,c∈Z[i].因δ(a)=|a|2,故δ(a)=δ(b)δ(c).由于δ(a)为素数,δ(b)或δ(c)=1.由习题5,知b或c为可逆元.故a为Z[i]中不可约元.7畅设ε是R中可逆元,则有εr=1.对a∈R倡,有εra=a,由δ的性质知δ(a)≥δ(ε).反之,对ε∈R倡,若橙a∈R倡皆有δ(a)≥δ(ε).用欧氏环的定义,对1,ε有q,r∈R使1=qε+r,r=0或δ(r)<δ(ε).且若r≠0,则δ(r)<δ(ε),这与题设矛盾.故r=0,得1=qε,即ε为可逆元.(ii)设a有题设的性质,若a=bc,b,c皆非可逆.设有q,r使·58·b=qa+r,r=0或δ(r)<δ(a).若r=0,则b=qa=qbc.用消去律有1=qc与c非可逆矛盾.若r≠0,且非可逆,则δ(a)>δ(r)与题设δ(a)≤δ(r)矛盾.故r为可逆元.由b-qa=b-qbc=b(1-qc)=r,可得b为可逆元,与b非可逆矛盾.故a为R的不可约元.8畅不作要求,可参看所列文献.9畅R为主理想环,若某一素理想包含(d),可设该理想为(k).设d=pl11pl22…plss,p1,…,ps是不相伴的不可约元或素元.(k)是素理想,(d)彻(k),则(k)不为零.由习题3知k为素元,又k|d,知k与p1,…,ps之一相伴,故(k)为(pi)之一,1≤i≤s.§3 交换环上多项式环以下习题中打倡者为必作题,其余为选作题. 倡1畅R是整环,则R[x]中可逆元一定是R中可逆元.2畅设R是有限域.令R1={R到R的全部映射的集合}.R1上有加法和乘法:f1,f2∈R1,令橙a∈R,(f1+f2)(a)=f1(a)+f2(a),(f1·f2)(a)=f1(a)f2(a).易知R1在这两个运算下成环.其单位元e为:橙a∈R,e(a)=1.对橙r∈R,作R1中映射f(r):f(r)(a)=r,橙a∈R.它们组成R1的子环,并与R同构.干脆记成R,于是R1是R的扩环,并将f(r)记成r.令u是R的恒等映射:u(a)=a,橙a∈R.证明u不是R上不定元. 倡3畅Z是整数环,则a+bi,a,b∈Z,不是Z上不定元.1畅设f(x)∈R[x],在R[x]中可逆,则有g(x)∈R[x]使f(x)g(x)=1.在整环R[x]中,多项式相乘则次数相加.故必有抄(f(x))=抄(g(x))=0.即f(x)=a0,g(x)=b0,皆为R中元,且a0b0=1.故f(x)=a0是R中可逆元.·68·2畅先证明R1澈R0={f(r)|r∈R}是R1的子环并与R同构.实际上(f(r1)±f(r2))(a)=(r1±r2)=f(r1±r2)(a),(f(r1)·f(r2))(a)=f(r1)(a)f(r2)(a)=r1r2=f(r1r2)(a).即f(r1)±f(r2)=f(r1±r2),f(r1)f(r2)=f(r1r2),R0对加,减,乘是封闭的,故是R1的子环.作映射R0Rf(r)r它显然环同构.把f(r)干脆与r等同.则R1是R的扩环.现设R=Fpn.橙a∈R满足apn-a=0.upn(a)=apn,u(a)=a,即有(upn-u)(a)=0,橙a∈R.故upn-u=0,这即说upn,u在R上线性相关,u不是R上不定元.3畅令u=a+bi,则(u-a)2+b2=0,a,b∈Z.这是u2,u,1在Z上的一个线性关系,故u不是Z上不定元.§4 唯一因式分解环上的多项式环以下习题中打倡者是必作题,其余为选作题.下面的环R都是唯一因式分解环. 倡1畅R[x]的正次数多项式若是不可约元,一定是本原多项式. 倡2畅f(x),g(x)∈R[x].g(x)的首项系数为1,则有q(x),r(x)∈R[x],使f(x)=g(x)q(x)+r(x),其中r(x)或者为零或者抄(r(x))<抄(g(x)). 倡3畅f(x)∈R[x],c∈R是f(x)的一个根,则(x-c)|f(x). 倡4畅R[x]中的n次多项式f(x)在R中最多有n个不同的根.于是f(x)=anxn+…+a0在R中若有多于n+1个根,必是零多项式.1畅设f(x)各系数的最大公因子为d,则f(x)=dg(x).g(x)为正次数必·78·不可逆.因f(x)不可约,故d是R[x]中可逆元.由§3习题1,d是R中可逆元.故f(x)是R[x]中本原多项式.2畅设f(x)=anxn+an-1xn-1+…+a1x+a0,g(x)=xm+bm-1xm-1+…+b1x+b0,m≥0.我们对n作归纳法.当n=0时是显然的.设次数≤n-1时已对.若n<m,f(x)=0g(x)+f(x),f(x)就是要求的r(x).若n≥m.作f(x)-anxn-mg(x),此中两多项式的首项都是anxn,两者相消.这个差多项式若为零,则f(x)=anxn-mg(x)+0,命题已对.若差多项式不为零,其次数已小于n.用归纳假设有q(x),r(x)使f(x)-anxn-mg(x)=q(x)g(x)+r(x),就有f(x)=(anxn-m+q(x))g(x)+r(x),其中r(x)=0或抄(r(x))<抄(g(x)).完成了归纳法.3畅用(x-c)去除f(x),由习题2可得f(x)=(x-c)q(x)+r,这时r∈R.两边用c代入,0=f(c)=(c-c)q(c)+r.故r=0.即得f(x)=(x-c)q(x),(x-c)|f(x).4畅这时R[x]是唯一因式分解环.设f(x)有n+1个不同的根α1,α2,…,αn,αn+1.由习题3,(x-αi)|f(x),i=1,2,…,n+1.先设f(x)=(x-α1)q1(x).用α2代入得0=(α2-α1)q1(α2).因α2≠α1,知q1(α2)=0.仍由习题3,q1(x)=(x-α2)q2(x),于是f(x)=(x-α1)(x-α2)q2(x).同样α3代入,得q2(α3)=0.于是q2(x)=(x-α3)q3(x).这样可得f(x)=(x-α1)q1(x)=(x-α1)(x-α2)q2(x)=…=(x-α1)…(x-αn)qn.因f(x)是n次的,这时qn必为R中非零元.再用αn+1代入,左端为f(αn+1)等于零,右端(αn+1-α1)…(αn+1-αn)qn≠0,矛盾.故f(x)最多有n个不同的根.因此f(x)=anxn+…+a1x+a0若有n+1个不同的根,必为零多项式.·88·。

线性代数(经济数学2)-习题集(含答案)

线性代数(经济数学2)-习题集(含答案)

《线性代数(经济数学2)》课程习题集一、计算题11. 设三阶行列式为231021101--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12,A 13.2. 用范德蒙行列式计算4阶行列式12534327641549916573411114--=D3. 求解下列线性方程组:⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---1111322112132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x其中 ),,2,1,,(n j i j i a a j i =≠≠4. 问λ, μ取何值时, 齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?5. 问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?二、计算题26. 计算6142302151032121----=D 的值。

7. 计算行列式5241421318320521------=D 的值。

8. 计算0111101111011110=D 的值。

9. 计算行列式199119921993199419951996199719981999的值。

10. 计算4124120210520117的值。

11. 求满足下列等式的矩阵X 。

2114332X 311113---⎛⎫⎛⎫-=⎪ ⎪----⎝⎭⎝⎭12. A 为任一方阵,证明T A A +,T AA 均为对称阵。

13. 设矩阵⎪⎪⎭⎫⎝⎛-=212321A ⎪⎪⎪⎭⎫⎝⎛-=103110021B 求AB .14. 已知⎪⎪⎭⎫⎝⎛--=121311A ⎪⎪⎪⎭⎫ ⎝⎛--=212211033211B 求T )(AB 和T T A B15. 用初等变换法解矩阵方程 AX =B 其中⎪⎪⎪⎭⎫ ⎝⎛--=011220111A ⎪⎪⎪⎭⎫⎝⎛-=121111B16. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2100430000350023A求1-A17. 求⎪⎪⎪⎭⎫⎝⎛=311121111A 的逆。

线性代数简明教程-第二版-答案

线性代数简明教程-第二版-答案

1 2 3 1 (1) A 2 4 6 2
1 2 3 1
r2 2r1
r3 r1
1 2 3 1 0 0 0 0
0 0 0 0
3 1 4 2 2
(2) B
1 1 1
0 2 4
1 1 13 3 3
0
4 0
1 0 1 1 0
r2 r1
3
1 1
1 2 4
0 0 0 1
(3)
1 a1 方法一 1
1
1 1 a2
1
1 1 1 an
1 a1 1 1 ri r1 a1 a2 0
a1 0 an
1 1 a1
a1a2 an 1
1
11
a2
an
10
01
n
c1
i2
ci
1 1 1 1
a1 a2
an
a1a2 an
0
0
11
a2
an
10
01
5、已知两个线性变换
x2
x1 2 y1 y3 2 y1 3y2
2 y3
x3 4 y1 y2 5 y3
y1 3z1 z2 y2 2z1 z3
,
y3 z2 3z3
求从 z1, z2 , z3 到 x1, x2 , x3 的 线性变换
分析:X AY ,Y BZ ,
~r3
4r2
0
r4
3r2
0 0
1 0 0
2 1 0 0 0 1
1 2
1 1
3 0
0 1
1 0
4 2
1 2 3 2 1 0 0 0
~r4 2r3
0
0 0
1 0 0

线性代数简明教程,(第二版)科学出版社课后答案第一章矩阵习题答案

线性代数简明教程,(第二版)科学出版社课后答案第一章矩阵习题答案

0

0 0
1 0 0
0 0 0 1 0 1
1 0
0 1
3 6
1 1
1 2
610
1 0 0 0 2 1 1 4


~r1 2r2
0

0 0
1 0 0
0 1 0
0 0 1
0 3 6
1 1 1
0 1 2
1
6 10

(E A1 )
1 2 3 1
r2 2r1
r3 r1
1 2 3 1 0 0 0 0
0 0 0 0
3 1 4 2 2
(2) B


1 1 1
0 2 4
1 1 13 3 3
0
4 0

1 0 1 1 0

X X
11 21
X12 X 22


E


En O
O Es

AX21 En

A X 22 BX11

O O
BX12 Es

X 21 A1 X 22 O
X11 O
X12 B1
方法二:

Ons Bs
AB A 2B
B1 ( A 2E)1 A
方法一:先求 ( A 2E)1, 再求 ( A 2E)1 A
方法二:直接求 ( A 2E)1 A

(( A 2E)A)
(E( A 2E)1 A)
其中
1 0 0
(A

2E)1


2 0

线性代数(经济数学2)_习题集(含答案)

线性代数(经济数学2)_习题集(含答案)

线性代数(经济数学2)_习题集(含答案)《线性代数(经济数学2)》课程习题集西南科技⼤学成⼈、⽹络教育学院版权所有习题【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进⼊。

⼀、计算题11. 设三阶⾏列式为231021101--=D求余⼦式M 11,M 12,M 13及代数余⼦式A 11,A 12,A 13.2. ⽤范德蒙⾏列式计算4阶⾏列式12534327641549916573411114--=D3. 求解下列线性⽅程组:=++++=++++=++++---1111322112132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x其中 ),,2,1,,(n j i j i a a j i =≠≠4. 问λ, µ取何值时, 齐次线性⽅程组12312312300205. 问λ取何值时, 齐次线性⽅程组1231231 23(1)2402(3)0(1)0x x x x x x x x x λλλ--+=??+-+=??++-=?有⾮零解?⼆、计算题26. 计算6142302151032121----=D的值。

7. 计算⾏列式5241421318320521------=D的值。

8. 计算0111101111011110=D的值。

9. 计算⾏列式199119921993 199419951996199719981999的值。

10. 计算412412021052001111. 求满⾜下列等式的矩阵X 。

211432X 311113----=----12. A 为任⼀⽅阵,证明T A A +,TAA 均为对称阵。

13. 设矩阵-=212321A-=103110021B 求AB .14. 已知--=121311A--=212211033211B 求T )(AB 和T T A B15. ⽤初等变换法解矩阵⽅程 AX =B 其中1220111A-=121111B 16. 设矩阵--=210430000350023A 求1-A17. 求=311121111A 的逆。

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)[模版仅供参考,切勿通篇使用]感恩作文线性代数课后习题答案(一):高等数学线性代数,概率统计第二版课后答案姚孟臣版最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议: 线性代数课后习题答案(二): 谁知道《线性代数与解析几何教程》(上册)的课后习题答案在哪下?但一定要真实,这本书是大一要学的,樊恽,刘宏伟编科学出版社出版.急不知道线性代数课后习题答案(三):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值答案书上突然冒出一句“显然R(A)=1”,让我非常困惑, R(A) = R(aaT) 线性代数课后习题答案(四):求线性代数(第三版),高等教育出版社的习题参考答案华中科技大学数学系的线性代数课后习题答案书店都有卖的,尤其是华科附近的小书店,盗版一大堆~ 线性代数课后习题答案(五):线性代数:假如一道题目要求某矩阵,如果我求出的矩阵与答案所给的矩阵是等价的,能算是正确答案么?如果只是某两行或某两列位置调换了一下,也不能算是正确答案吗?线性代数课后习题答案应该不正确吧.以我理解矩阵的等价是说 QAP=B A等价到B 是通过了一系列的初等变化,那你求出的矩阵只有一个,要想变成其他还要再变换,就不是原题目的条件了还是不正确啊.行调换或列调换等于在原矩阵左边或右边乘上个初等矩阵线性代数课后习题答案(六):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;求出来对角阵只有一个非零特征值,为什么0就是A的N-1重特征值了?再问一下当0是特征值时对应的特征向量有什么特点么?所求得的对角阵与A 相似,所以A 与对角阵有相同的特征值,看对角阵,有一个非零特征值和0(N –1)重.所以A 也是这样应该懂了吧线性代数课后习题答案(七):线性代数问题.设A=E-a^Ta,a=[a1,a2,……,an],aa^T=1,则A不能满足的结论是().^T=A ^T=A^-1 ^T=E ^2=A只会证A对,不要用排除法.A²=E由A,知A^T=AAA^T=A²=(E-a^Ta)(E-a^Ta)=E-a^Ta-a^Ta+a^Taa^Ta=E-2a^Ta+a^T(aa^T)a=E-2a^Ta+a^Ta==E-a^Ta=A所以C错. 线性代数课后习题答案(八):线性代数,对称矩阵的证明题如果n阶实对称矩阵A满足A^3=En,证明:A一定是单位矩阵答案是这样的,有点不懂的地方:因为A^3=En所以A的特征值一定是x^3=1的实根(1.是不是因为对应的多项式为f(x)=x^3-1,所以,f(λ)=λ^3-1=0?)所以λ1=λ2=λ3=1A相似于单位矩阵必有A=En(2.我觉得因为A是对称矩阵所以必有正交阵P,使得P^-1*A*P=P"*A*P=∧,∧的对角元为1,1,1,所以相似于E,可是方阵是n阶,λ只是一个特征值,那么就能相似于En吗?相似的对角阵不是应该也是n阶吗,应该有n个特征值啊!)第一问:因为A是实对称矩阵,所以存在正交矩阵PP"AP=∧∧是A的特征值构成的对角阵A=P∧P"A^3=P∧^3P"=E所以∧^3=E所以λ1^3.λn^3都等于1所以λ1=λ2=..=λn=1第二问:因为有n个特征值,且实对称阵必能相似于对角阵(书上的定理)所以A相似于这n个特征值构成的对角阵P"*A*P=E所以 A=PEP"=PP"=E刚才看错题目了,如果还有什么不明白可以发信给我,给你详细讲解线性代数课后习题答案(九):线性代数线性方程组问题公共解和同解方程组大题,遇到过不少次了答案的作法让人晕作法1:分别求出基础解析方程组1的 k1()+k2()方程组2的:k3()+k4()然后对比,综合得出一个k()方法2:先求出方程组1的解,然后代入方程组2..方法3:做一个联合的系数矩阵,很大的,然后说求出来的解就是它们的. 我的问题在于:上面的方法我自己能想到1 2,但是不清楚所谓的公共解和同解的区别在哪里?另外,为什么很错题,这几个方法不论求公共解还是同解都能通用?什么时候用哪个方法啊?两个方程组的公共解,可用方法3.若是两个方程组同解,方法3就不灵了公共解是两个方程组解的交集,包含在两个方程组的解集中同解方程组,两个方程组的解集一样,即基础解系等价(可互相线性表示)这类题目一般综合性强,需根据具体情况来分析使用哪个方法比如:一个方程组可得出明显的基础解系,那么代入另一方程组就方便一些.你可以看看此类的题目,先自己做做看,用什么方法,再与解答比较,最后总结一下,大有好处若有看不透的题目,就拿来问一下,我帮你分析线性代数课后习题答案(十):一道线性代数的题目题目是判断正误若α1,α2,……αs线性相关,则其中每一个向量都是其余向量的线性组合.我知道答案是错误但是请问反例怎么举拿0和一个非零的放到一起,线性相关,0可以写成非零的那个的线性组合,非零的那个不能写成0的线性组合。

经济数学线性代数第二章习题答案

经济数学线性代数第二章习题答案

习题二参考答案(A)1.设⎪⎪⎪⎭⎫ ⎝⎛=543212132131A ,⎪⎪⎪⎭⎫ ⎝⎛------=424222242242B ,求(1) B A 32+;(2) 若X 满足X B X A +=-2,求X .解:(1)⎪⎪⎪⎭⎫ ⎝⎛------+⎪⎪⎪⎭⎫ ⎝⎛=+42422224224254321213213132B A⎪⎪⎪⎭⎫ ⎝⎛----=2221824281828184. (2) 由X B X A +=-2得,B A X -=22,所以B A X 21+=⎪⎪⎪⎭⎫ ⎝⎛-------⎪⎪⎪⎭⎫ ⎝⎛=42422224224221543212132131⎪⎪⎪⎭⎫⎝⎛=351323013012.2.计算解:(1)⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--24317421432231321.(2)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--86164233241121123.(3)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛963642321)321(321.(4)10321)123(=⎪⎪⎪⎭⎫⎝⎛.(5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x()⎪⎪⎪⎭⎫⎝⎛++++++=321333223113323222121313212111x x x x a x a x a x a x a x a x a x a x a 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.3.已知两个线性变换⎪⎩⎪⎨⎧+-=-+=-=3213321231123232y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=-=213212211323zz y z z y z z y ,(1)试把这两个线性变换分别写成矩阵形式;(2)用矩阵乘法求连续施行上述变换的结果. 解:(1) 写成矩阵形式为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321321213121302y y y x x x ,⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛21321311231z z y y y .(2)连续施行上述变换有⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛21213214146155311231213121302z z z z x x x .4.某企业在一月份出口到三个国家的两种货物的数量以及两种货物的积各为多少?解:设矩阵⎪⎪⎭⎫ ⎝⎛=6001300100088012002000A ,⎪⎪⎭⎫ ⎝⎛=2.03.0P ,⎪⎪⎭⎫⎝⎛=05.0012.0W , ⎪⎪⎭⎫⎝⎛=6.012.0V ,则该企业出口到三个地区的货物总价值为()()384720080060013001000880120020002.03.0=⎪⎪⎭⎫⎝⎛=A P T ;总重量为()()6.1354.7974600130010008801200200005.0012.0=⎪⎪⎭⎫⎝⎛=A W T ; 总体积为()()6.46530084060013001000880120020006.012.0=⎪⎪⎭⎫⎝⎛=A V T .5.计算下列矩阵(其中n 为正整数).(1) n ⎪⎪⎭⎫ ⎝⎛0011; (2) n⎪⎪⎭⎫⎝⎛101λ; (3)nc b a ⎪⎪⎪⎭⎫⎝⎛000000; (4)n⎪⎪⎪⎪⎪⎭⎫⎝⎛------------1111111111111111.解: 2=n 时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00110011001100112, 假设当k n =时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛001100110011k成立,则当1+=k n 时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛001100110011k ,有归纳法有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛00110011n. (2) 2=n 时,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10211011011012λλλλ,假设当k n =时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101101λλk k 成立,则 当1+=k n 时,⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+10)1(11011011011λλλλk kk , 有归纳法有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101101λλn n.(3) 2=n 时,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛222200000000000000000000000c b a c b a c b a c b a , 假设当k n =时,⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛k k k kc b a c b a 000000000000成立,则 当1+=k n 时, ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛++++1111000000000000000000000000k k k kk c b ac b a c b a c b a , 有归纳法有⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛n n n nc b a c b a 00000000000. (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=1111111111111111A , 2=n 时,⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=4000040000400004111111111111111111111111111111112AE 22=,3=n 时,A A A A 2232==,于是,当k n 2=(k 为正整数)时,E E A A n k k n 2)2()(22===,当12+=k n (k 为正整数)时,A A E A A A A n k k k n 122122)2(-+====, 因此得⎩⎨⎧=-为奇数)(为偶数)n En EA n n n12(2.6.设0111)(a x a xa x a x f n n nn ++++=-- ,记E a A a A a A a A f n n nn 0111)(++++=-- ,称)(A f 为方阵A 的n 次多项式.现设1)(2+-=x x x f ,⎪⎪⎪⎭⎫ ⎝⎛-=211012113A ,求)(A f .解: E A A A f +-=2)(⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=1000100012110121132110121132⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=100010001211012113527218538⎪⎪⎪⎭⎫ ⎝⎛--=416216426. 7.设矩阵A 、B 是可交换的,试证: (1) 22))((B A B A B A -=-+; (2) 2222)(B AB A B A ++=+.证明:因为矩阵A 、B 是可交换的,所以BA AB =,因此有(1) 22))((B AB BA A B A B A --+=-+22B A -=,(2) 222_)(B AB BA A B A +++=+222B AB A ++=. 8.设A 、B 是同阶矩阵,且)(21E B A +=,证明:A A =2的充分必要条件是E B =2.证明:必要性 如果 A A =2,则)(21)](21[2E B E B +=+, 由于矩阵B 与E 是可交换的,由上式得)(21)2(412E B E B B +=++ 整理得 E B =2.充分性 如果E B =2,则A EB E B B E B A =+=++=+=)(21)2(41)](21[222.9.设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=a bcd b a d c c d a bd c b aA d c b a ,,,(均为实数), (1)计算TAA ;(2)利用(1)的结果,求A .解:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛------⎪⎪⎪⎪⎪⎭⎫⎝⎛------=a b cdb a dc cd a b d c b a a bcd b a d c c d a b d c b aAA T⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++++++++++=2222222222222222000000000000d c b a d c b a d c b a d c b a(2)由(1)有422222)(d c b a A A A AA T T +++===,所以22222)(d c b a A +++=.10. 证明题:(1)对于任意的n m ⨯矩阵A ,则T AA 和A A T 均为对称矩阵. (2) 对于任意的n 阶矩阵A ,则T A A +为对称矩阵;而-A T A 为反对称矩阵.证明:(1) 因为TTTTTTAA A A AA ==)()(,所以T AA 为对称矩阵;又因为A A A A A A TTTTTT==)()(,所以A A T为对称矩阵.(2) 因为TTTTTTA A A A A A +=+=+)()(,所以TA A +为对称矩阵;又因为)()()(TTTTTTTA A A A A A A A --=-=-=-,所以T A A +为反对称矩阵.11.如果A 、B 是同阶对称阵,则AB 是对称阵的充分必要条件是AB BA =.证明:必要性 如果AB 是对称阵,则AB AB T=)(,即AB A B TT =,由已知有 B B A A TT==,,所以BA AB =.充分性 如果BA AB =,则AB BA A B AB T T T ===)(,所以AB 是对称阵.12.设n 阶矩阵A 的伴随矩阵为*A ,证明(1) 若 0=A ,则 0=*A ; (2) 1-*=n AA .证明:(1)假设0≠*A ,则E A A =-**1)(,由此得 O A E A A AA A ===-*-**11)()(,所以 O A =*,这与0≠*A 相矛盾,故0=A 时,有0=*A .(2) 由E A AA =*得,nA A A =*,若0≠A 时,有1-*=n AA ,若0=A 时,由(1)知0=*A ,等式也成立,故有1-*=n AA ,13.设n 阶矩阵A ,B ,C 满足E ABC =,则下列各式中哪一个必定成立?简述理由.(1)E ACB =,(2)E CBA =,(3)E BAC =,(4)E BCA =.解:由E ABC =可改写为E BC A =)(,即BC 是A 的逆矩阵,所以有E A BC =)(,即(4) 必定成立.类似可得(1)、(2)、(3)未必成立. 14.设A ,B 均为n 阶可逆矩阵,下列各式一定成立的有哪些?简述理由.(1) 1111])[(])[(----=TTA A ;(2) T T T A A ])[(])[(111---=;(3) k k A A )()(11--= (k 为正整数);(4) 111)(---+=+B A B A ; (5) T T TB A AB )()(])[(111---=; (6) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---O B A O O B A O 111. 解: (1)由于TTA A =--])[(11,T TA A =--11])[(,所以1111])[(])[(----=T T A A ,即(1)式一定成立.(2) 由于11])[(--=A A T T,T T A A =--])[(11,即(2)式不一定成立.(3) k kk A A A A A AA A )()()(111111------===,(3)式一定成立.(4)设⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛--=1001B ,显然A 、B 都可逆,但是 O B A =+不可逆,故(4)式不成立.(5) 由于T T T T T T T B A B A A B AB )()()())()(])[(111111------===,即(5)式一定成立.(6) 由于⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----1111BA O O AB O BA OO B A O 但是11--BA AB 和不一定等于E ,故(6) 式不一定成立15.设A 是n 阶矩阵,满足O A k=k (是正整数),求证:A E -可逆, 并且121)(--++++=-k A A A E A E .证明:因为))((12-++++-k A A A E A Ek A E -= E =,所以A E -可逆,并且121)(--++++=-k A A A E A E .16.设A 是可逆矩阵,证明:其伴随矩阵*A 也可逆,且*--*=)()(11A A .证明:因为A 是可逆矩阵,所以0≠A ,由于E A AA =*,有E AA A=*1, 因此,伴随矩阵*A 也可逆. 由上述证明可知A AA 1)(1=-*, 又因为 E A A A 111))((-*--=,所以 A AA A A 1)(1)(111==--*-, 故 *--*=)()(11A A .17.设A 、B 和B A +均是可逆矩阵,试证:11--+B A 也可逆,并求其逆矩阵.解:11111-----+=+AB A A B A)(11--+=AB E A )(111---+=AB BB A11)(--+=B A B A ,由于A 、B 和B A +均是可逆矩阵,它们的乘积也可逆,所以有=+---111)(B A 111])([---+B A B A11111)()()(-----+=A A B B A A B B 1)(-+=.18.设A 为三阶矩阵,*A 是矩阵A 的伴随矩阵,已知21=A ,求 *--A A 2)3(1.解:因为21=A ,所以有A 可逆,且有211==--A A .而E A AA =*,于是1121--*==A A A A ,因此有*--A A 2)3(11131---=A A 132--=A 1278--=A 2716-=.19.用分块矩阵的乘法计算.(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1102012124221011110200100001;(2)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--020222202010111101.解:(1) 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---B A O E 1011110200100001, ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---F E D C110201212422, 则⎪⎪⎭⎫⎝⎛B A O E ⎪⎪⎭⎫ ⎝⎛F E D C⎪⎪⎭⎫⎝⎛++=BF AD B AC DC而 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=+4433101112221102B AC , BF AD +⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=+35121011241102BF AS ,于是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---3445332124221102012124221011110200100001. (2)设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--321010111101A A A ,()321020222202B B B =⎪⎪⎪⎭⎫⎝⎛--,则()⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛332313322212312111321321B A B A B A B A B A B A B A B A B A B B B A A A , 而()202210111=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()222010121-=⎪⎪⎪⎭⎫⎝⎛--=B A ,()202210131-=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()002211112=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()422011122=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()402211132-=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()202201013=⎪⎪⎪⎭⎫ ⎝⎛=B A ,()222001023-=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()202201033=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--222440222020222202010111101. 20.求分块矩阵的逆矩阵.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--4300110000110032; (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2000133412121211. 解:(1)记⎪⎪⎭⎫ ⎝⎛=1132A ,⎪⎪⎭⎫ ⎝⎛--=4311B ,则 11132-==A ,14311-=--=B ,所以A 、B 都可逆,且有⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=--2131113211A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--1314431111B ,于是⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛---130014000021003143001100001100321.(2)记⎪⎪⎪⎭⎫ ⎝⎛----=334212211A ,)2(=B ,⎪⎪⎪⎭⎫⎝⎛-=111C ,因为04334212211≠=----=A ,022≠==B ,所以A 、B 均是可逆矩阵,且有 ⎪⎪⎪⎭⎫ ⎝⎛------=-3722524931A,)21(1=-B ,根据例2.17的结论有⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-----11111B O CB A A B OC A , -=---11CB A ⎪⎪⎪⎭⎫ ⎝⎛------372252493⎪⎪⎪⎭⎫ ⎝⎛-111⎪⎪⎪⎪⎭⎫ ⎝⎛-=4255)21(,所以=⎪⎪⎭⎫⎝⎛-1B OC A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------210004372252525493. 21.设A 为三阶矩阵,2-=A ,把A 按列分块为),,(321A A A A =, 其中j A )3,2,1(=j 为A 的第j 列,求(1) 231,2,A A A -; (2) 1213,2,3A A A A -. 解: (1) 231231,,2,2,A A A A A A -=- 321,,2A A A =A 2=4-=.(2) 1213,2,3A A A A -123,2,A A A =3212,,A A A = 1232,,A A A =- 2A =-4=.22.设A 为n 阶矩阵,把A 按列分块为),,,(21n A βββ =,j β),,2,1(n j =为A 的第j 列,试用n βββ,,,21 表示A A T .解:),,,(2121n T N T T T A A ββββββ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n Tn T n T n n TT T n T T T ββββββββββββββββββ21222121211123.设A 为三阶可逆矩阵,若A 按行分块为⎪⎪⎪⎭⎫⎝⎛=321A A A A ,按列分块为),,(321B B B A =,试判断下列分块矩阵是否可逆.(1) ⎪⎪⎪⎭⎫ ⎝⎛+++133221A A A A A A ; (2) ),,(133221B B B B B B ---.解:(1)利用行列式的性质计算分块矩阵的行列式133232113323211332212)(2A A A A A A A A A A A A A A A A A A A A ++++=++++=+++133212A A A A A ++=33212A A A A +=3212A A A =02≠=A ,从而⎪⎪⎪⎭⎫⎝⎛+++133221A A A A A A 可逆.(2) 0,,,,1332133221=--=---B B B B O B B B B B B , 从而),,(133221B B B B B B ---不可逆.24.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B , ⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则下列各式中哪一个必定成立?简述理由.(1)B P AP =21;(2)B P AP =12;(3)B A P P =21;(4)B A P P =12.解:因为A 的第一行加到第三行,再交换的第一行和第二行,从而得得到B ,故用2P 左乘A ,再左乘1P ,即B A P P =21,(3)式必定成立.25.求下列矩阵的等价标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛--021123211; (2)⎪⎪⎪⎭⎫⎝⎛---433221; (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛-34624216311230211111.解:(1)⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--210550001210550211021123211⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---→100010001300010001210110001. (2)⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---201001201021433221⎪⎪⎪⎭⎫ ⎝⎛→001001. (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫⎝⎛-1022010520105201111134624216311230211111⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→0070000000105200000110220105201052000001⎪⎪⎪⎪⎪⎭⎫⎝⎛→00000001000001000001. 26.用初等行变换求下列矩阵的逆矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛--121322011; (2)⎪⎪⎪⎭⎫⎝⎛300420531; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------111111*********1; (4)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000000000000000121nn a a a a ),,2,1(,0n i a i =≠.解:(1)⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--101110012340001011100121010322001011 ⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--→416100101110001011012340101110001011 ⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛--→416100315010314001416100101110001011,所以1121322011-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-----=416315314.(2)⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛3100100010420001531100300010420001531⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→310010032210010350103131001000210210001531 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→31001003221001031231001, 所以=⎪⎪⎪⎭⎫ ⎝⎛-1300420531⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--31003221031231. (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→⎪⎪⎪⎪⎪⎭⎫⎝⎛------1001022001012020001122000001111110001111010011110010111100011111⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------→1111400000112200010120200001111111002200001122000101202000011111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→414141411000414********0414********0414141410001414141411000212121210200212121210020414141430111,所以=⎪⎪⎪⎪⎪⎭⎫⎝⎛-------11111111111111111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------41414141414141414141414141414141. (4) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-0100000000010000000000100000000010000121nn a a a a⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→-01000000000100000000010000100000000121n n a a a a⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-----000100000000001000000000100000000011112111n n a a a a, 所以=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1121000000000000000 nn a a a a ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0000000000000001112111n n a a a a. 27.解下列矩阵方程.(1) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛3211024311X ; (2) ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛120311*********X ;(3) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛--101311122131X ; (4) 设⎪⎪⎪⎭⎫ ⎝⎛---=101110011A ,且AX A X =+2,求X . 解:(1)因为14311=,所以矩阵⎪⎪⎭⎫⎝⎛4311可逆,在方程的两边左乘该矩阵的逆矩阵,得⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-32110243111X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=3211021314 ⎪⎪⎭⎫ ⎝⎛--=025127.(2) 因为1311211401=,所以矩阵⎪⎪⎪⎭⎫ ⎝⎛311211401可逆,在方程的两边右乘该矩阵的逆矩阵,得1311211*********-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫⎝⎛=111211********* ⎪⎪⎭⎫ ⎝⎛--=532100. (3) 设⎪⎪⎭⎫⎝⎛--=2131A ,⎪⎪⎭⎫⎝⎛--=1112B ,则1-=A ,1=B , 故矩阵B A ,都可逆,在方程的两边左乘1-A ,右乘1-B ,得11111210132131--⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=211110131132 ⎪⎪⎭⎫ ⎝⎛----=3345. (4)由AX A X =+2得,A X E A =-)2(,而⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-10111001110001000121011100112E A ,且02≠-E A ,所以E A 2-可逆,在A X E A =-)2(两边左乘1)2(--E A 得,A E A X 1)2(--=,又⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=--212121212121212121)2(1E A , 故⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=101110011212121212121212121X ⎪⎪⎪⎭⎫ ⎝⎛---=011101110. 28.求下列矩阵的秩.(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013;(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030116030242201211.解:(1) ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---443120131211443112112013 ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→000056401211564056401211, 所以该矩阵的秩是2.(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛---1003014030000000121110030116030242201211⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000040001003001211, 所以该矩阵的秩是3.29.已知n 阶矩阵A 满足O E A A =--422,证明:E A +为可逆矩阵;并求1)(-+E A .解:由O E A A =--422得,E E A A =--322,即E E A E A =+-))(3(,所以E A +为可逆矩阵,E A E A 3)(1-=+-.30.已知n 阶矩阵A ,B 满足AB B A =+,(1) 证明:E B -为可逆矩阵;(2) 已知⎪⎪⎪⎭⎫ ⎝⎛-=200012031A ,求矩阵B .证明:(1)由AB B A =+得, )(E B A B -=, 即E E B A E B --=-)(, 整理的E E B E A =--))((, 因此E B -可逆,且E A E B -=--1)(.解:(2)由(1)得,1)(--=-E A E B , 即1)(--+=E A E B1100002030100010001-⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=20001310211.(B)1.若A 、B 是n 阶方阵,且AB E +可逆,则BA E +也可逆,且 A AB E B E BA E 11)()(--+-=+.证明:])()[(1A AB E B E BA E -+-+A AB E BAB A AB E B BA E 11)()(--+-+-+=A AB E E AB E B A AB E B BA E 11))(()(--+-+-+-+=E =,所以BA E +也可逆,且A AB E B E BA E 11)()(--+-=+.2. 设B 为可逆矩阵,A 、B 是同阶方阵,且O B AB A =++22,证明:A 和B A +都为可逆矩阵.证明:由O B AB A =++22得,22B AB A -=+,即2)(B B A A -=+, 由于B 为可逆矩阵,所以0≠B ,因而有 02≠-=+B B A A ,于是00≠+≠B A A ,所以A 和B A +都为可逆矩阵.3.已知实矩阵33)(⨯=ij a A 满足 (1) ij ij A a =)3,2,1,(=j i ,其中ij A 是ij a 的代数余子式;(2)011≠a ,计算A .解:由ij ij A a =)3,2,1,(=j i 得, E A AA AA T==*,于是 32A AAA T==,从而0=A 或1=A , 但由于011≠a 得,0213212211131312121111>++=++=a a a A a A a A a A , 因此 1=A .4.设A 、B 为同阶可逆矩阵,证明:***=A B AB )(. 证明:因为A 、B 为同阶可逆矩阵,所以有0≠=B A AB ,即AB 也可逆,而E AB AB AB =*))((, 于是AB AB AB 1)()(-*=B A A B 11--=))((11A A B B--=**=A B . 5.设矩阵B 的伴随矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8031010100100001B , 且E AB BAB311+=--,求A .解:由题有E B B B =*,4B B B =*,所以 83==*BB ,即2=B .又E AB BAB 311+=--从而E ABE B 3)(1=--,B A E B 3)(=-,即 E A B E 3)(1=--于是 E A B B E 3)1(=-*,E A B E 3)21(=-*,E A B E 6)2(=-*, 故⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-=-*1031060100600006)2(61B E A6.已知⎪⎪⎪⎭⎫ ⎝⎛---=111111111A , 且矩阵X 满足X AX A 21+=-*,其中*A 是A 的伴随矩阵,求矩阵X .解:由E A A A =*,X A X A 21+=-* 有AX E X A 2+=,于是 E X A E A =-)2(,所以 1)2(--=A E A X . 而4111111111=---=A ,于是⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛=-22222222211111111124000400042A E A ,所以⎪⎪⎪⎭⎫⎝⎛=-=-10111001141)2(1A E A X . 7.已知A 、B 都是n 阶矩阵,且满足E B B A 421-=-.其中E 为n 阶单位矩阵.(1) 证明:E A 2-可逆,并求1)2(--E A ;(2) 若⎪⎪⎪⎭⎫ ⎝⎛-=200021021B ,求矩阵A . 证明:(1) 由于E B B A 421-=-,因此A AB B 42-=, 于是E E A B AB 8842=+--, 即E E B E A 8)4)(2(=--,从而E A 2-可逆,且有)4(81)2(1E B E A -=--. 由(1)得1)4(82--=-E B E A ,即1)4(82--+=E B E A , 而11400040004200021021)4(--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-=-E B1200021023-⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=21000838104141, 所以 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=2100083810414181000100012A ⎪⎪⎪⎭⎫ ⎝⎛---=200011020. 8.设n 阶矩阵A 满足A A =2,E 是n 阶单位矩阵,证明:n E A r A r =-+)()(.证明:因为A A =2,因此A A =2,即O E A A =-)(, 从而n E A r A r ≤-+)()(,又)()(A E r E A r -=-, 所以)()()()(A E r A r E A r A r -+=-+ )(A E A r -+≥n =,故 n E A r A r =-+)()(.9.设*A 是)2(≥n n 阶方阵A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1)(01)(1)()(n A r n A r n A r n A r 若若若.证明:(1) 因为n A r =)(,所以A 可逆,于是0≠A .而E A A A =*,因此*A 也可逆,故n A r =*)(.(2) 因为1)(-=n A r ,所以0=A ,于是0==*E A A A ,从而n A r A r ≤+*)()(,又 1)(-=n A r ,所以 1)(≤*A r .又1)(-=n A r 知A 中至少有一个1-n 阶子式不为零,所以1)(≥*A r ,从而1)(=*A r .(3) 因为1)(-<n A r ,所以A 中的任一1-n 阶子式为零,故0=*A ,所以0)(=*A r .10. 设A 为n 阶非奇异矩阵,α为n 维列向量,b 是常数.记分块矩阵⎪⎪⎭⎫ ⎝⎛-=*A A O EP T α,⎪⎪⎭⎫⎝⎛=b A Q T αα, 其中*A 是矩阵A 的伴随矩阵,E 为n 阶单位矩阵. (1)计算并化简PQ ;(2)证明:矩阵Q 可逆的充分必要条件是b A T ≠-αα1. 解:(1) 因为E A A A =*,所以⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=*b A A A O EPQ T T ααα⎪⎪⎭⎫⎝⎛+-+-=**A b A A A A A T T T ααααα⎪⎪⎭⎫⎝⎛+-=-A b A A O A T ααα1 ⎪⎪⎭⎫⎝⎛-=-)(1αααA b A O A T . 证明:(2) 由(1)得 )(1ααα--=A b A OAPQ T ,即 )(12αα--⋅=A b A Q P T,而0≠==-=*A A E AA O E P T α,所以)(1αα--⋅=A b A Q T,由此可知,矩阵0≠Q 的充分必要条件是01≠--ααA b T,即矩阵Q 可逆的充分必要条件是b A T≠-αα1.。

线性代数习题参考答案

线性代数习题参考答案

线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i = ,j = 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3.证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。

4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

经济数学第二版答案

经济数学第二版答案

经济数学第二版答案【篇一:线性代数(经济数学2)_习题集(含答案)】=txt>题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进入。

一、计算题11023?10求余子式21. 设三阶行列式为d?1?1m11,m12,m13及代数余子式a11,a12,a13.2. 用范德蒙行列式计算4阶行列式11392717493431?515?12541664d4?3. 求解下列线性方程组:?x1?a1x2?a12x3???a1n?1xn?1?2n?1?x1?a2x2?a2x3???a21xn?1??????x?ax?a2x???an?1x?1n2n3nn?1其中 ai?aj(i?j,i,j?1,2,?,n)??x1?x2?x3?0?4. 问?? ?取何值时? 齐次线性方程组?x1??x2?x3?0有非零解? ?x?2?x?x?023?1?(1??)x1?2x2?4x3?0?5. 问?取何值时? 齐次线性方程组?2x1?(3??)x2?x3?0有非零解? ?x?x?(1??)x?023?1二、计算题2120?2?41?1101?2314111025365?8?220?14?56. 计算d?31?2的值。

7. 计算行列式d??231的值。

0101111018. 计算d?111的值。

1991199219939. 计算行列式19951996的值。

41251202119984207199910. 计算1100的值。

11. 求满足下列等式的矩阵x。

??2??31?1?2x???1??14?1?3?? ?3?12. a为任一方阵,证明a?13. 设矩阵 ?1a????2?21tta,aa均为对称阵。

?1?3??b??02???3?2100??1? ?1??求ab.14. 已知?1a???1??1?2??1?3??b??3?1??2?1022?113??1? 2??求(ab)t和btat15. 用初等变换法解矩阵方程 ax=b 其中 ?1?a??0?1?12?1?1??1??2?b??1?20????1?16. 设矩阵?3??5a??0??0??2?30000310??0? 4??2??求a?1?1?17. 求a??1?1?1211??1?的逆。

线性代数及其应用习题解答

线性代数及其应用习题解答
同济大学数学系编
《线性代数及其应用 (第二版)》 习题解答
郑 波 (E-mail: zhbo31415926@)
版权所有, 如有错误, 请联系本人!
习题一解答
1. 3(A + C ) = 2(B − C ) =⇒ C = 1 5 1 5 1 (2B − 3A), 即 5 3 2 4 2 3 6 6 4 8 6 9 18 2 − 3 = 1 − 5 1 −3 5 −1 3 5 2 −6 10 −3 9 15 0 −5 −10 0 −1 −2 = . 5 −15 −5 1 −3 −1
2 2 2 2 (A + B )(A − + BA − AB − B = A − B . B ) = A
1 −1 2 1 ,B = , 则 (2) 设 A = 2 0 0 3 4 −2 2 −2 ̸= BA = AB = 4 2 6 0 (A + B )2 = 3 0 2 9 0
3 1 0 3 3 1 0 (2) 0 3 1 = 0 3 1 0 3 1 0 0 0 3 0 0 3 0 0 3 0 27 27 9 = 0 27 27 . 0 0 27 4 1 −1 2 1 2 1 1 0 − 3 + (3) 2 0 0 3 1 3 0 2 −3 −5 . = 1 9 3 1 0 3
2 1 0 1 0 0 1 1 = 1 1 0 1 0 0 1 1 0 0 0 1 0 2 0 0 0 1

1 0 0 0 M = 0 1 0 1 0 1 0 0 于是 0 1 M + M 2 = M (E + M ) = 0 0 0 0 0 0 1 1 0 0 1 = 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档