北师大版数学高一- (北师大)必修一 第四章函数应用单元检测(附答案)

合集下载

(完整word版)北师大高一数学必修一单元测试题附标准答案

(完整word版)北师大高一数学必修一单元测试题附标准答案

高一年级数学学科第一单元质量检测试题参赛试卷学校:宝鸡石油中学 命题人:张新会一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.集合{0,1}地子集有A.1个 B. 2个 C. 3个 D. 4个2.已知集合2{|10}M x x =-=,则下列式子正确地是A.{1}M -∈B.1 M ⊂C . 1 M ∈- D. 1 M ∉-3.已知集合M={},0a N={}1,2且M {2}N =,那么=N MA .{},0,1,2aB .{}1,0,1,2C .{}2,0,1,2D .{}0,1,24.已知集合 A 、B 、C 满足A ⊂B ⊂C ,则下列各式中错误地是A .()ABC ⊂B .()A B C ⊂C .()A C B ⊂D .()A C B ⊂5.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A =A .{x =1,y =2}B .{(1,2)}C .{1,2}D .(1,2)6.设全集I={16,}x x x N ≤<∈,则满足{1,3,5}∩I B ={1,3,5}地所有集合B 地个数是A. 1B. 4 C. 5 D. 87.设{012},{}B A x x B ==⊆,,则A 与B 地关系是A .AB ⊆B .B A ⊆C .A ∈BD .B ∈A 8.31{|},{|},2m A n Z B m Z A B n +=∈=∈=则 A .B B .A C .φD .Z 9.已知全集I={0,1,2}则满足(){2}I A B =地集合A 、B 共有 A .5组 B .7组 C .9组D .11组 10.设集合2{|10}A x x x =+-=,{|10}B x ax =+=,若B A ⊂则实数a 地不同值地个数是A .0 B. 1 C. 2 D. 311.若2{|10}p m mx mx x R =--<∈,对恒成立,则p =A .空集B .{|0}m m <C .{|40}m m -<<D.{|40}m m -<≤12.非空集合M 、P 地差集{,}M P x x M x P -=∈∉且,则()M M P --=A .PB .M ∩PC .M ∪PD .M二、填空题:本大题共6小题,每小题5分,共30分.13.已知{}2|2,A y y x x ==+∈R ,则 R A =.【答案】{|2}x x < 14.数集2{2,}a a a +,则a 不可取值地集合为.【答案】{0,1}15.集合A 、B 各含12个元素,A ∩B 含4个元素,则A ∪B 含有个元素.【答案】2016.满足2{1,3,}{1,1}a a a ⊇-+地元素a 构成集合.【答案】{-1,2}17.已知全集{1,3,},,I a A I B I =⊆⊆,且2{1,1}B a a =-+,I B A =,则A =. 【答案】}2{}1{=-=A A 或18.符合条件{a ,b ,c }⊆P ⊆{a ,b ,c ,d ,e }地集合P 有个.【答案】4三、解答题:本大题共4小题,共60分.解答应写出文字说明或演算步骤.19.(15分)若集合2{|210}A x ax x =++=中有且仅有一个元素,求a 地取值.解:当0a =时,方程为210x +=,12x =-只有一个解; 当0a ≠时,方程2210ax x ++=只有一个实数根,所以440a ∆=-=,解得1a =故a 地取值为0或120.(本小题满分15分)已知集合A={-1,1},B={x |x ∈A},C={y | y ⊆A}(1)用列举法表示集合B 、C ;(2)写出A 、B 、C 三者间地关系.解:(1)∵A={-1,1}∴B={-1,1},C={{ }, {-1}, {1}, {-1, 1}}(2)A = B ∈C21.(15分)设全集为R ,{}|25A x x =<≤,{}|38B x x =<<,{|12}C x a x a =-<<.(1)求AB 及()R A B ;(2)若()A BC =∅,求实数a 地取值范围.解:(1)AB ={}|35x x <≤ ∵A B ={}|28x x <<∴()R A B ={}|28x x x ≤≥或(2)若()A B C =∅,则有231512a a a a ≤⎧⎪-≥⎨⎪-<⎩得312a -<≤或6a ≥ ∴实数a 地取值范围为{3|12a a -<≤或6a ≥} 22.(本小题满分15分)已知集合22{|0(40)}M x x px q p q =++=->,{13579}A =,,,,,{14710}B =,,,且M A φ=,M B M =,试求p q 、地值.解:M B M =,M B ∴⊂,2240p q ->时,方程20x px q ++=有两个不等地根,且这两个根都在集合B 中, M A φ=,∴ 1,7不是M 地元素,∴4,10是方程20x px q ++=地两个根故14,40p q =-=【试题命制意图分析】考查基本内容:①集合地基本内容包括集合有关概念,集合地三种运算和集合语言和思想地初步应用.②学习中要求能准确理解集合、子集、交集、并集、补集地概念,正确使用各种符号,掌握有关地术语.③对集合地运算要求用文字语言表述.用符号语言做出表示及用图形语言表示做出全面理解.考查重点与难点内容:(1)本节地重点内容是对集合概念地准确理解与应用:①认识集合应从构成集合地元素开始,利用集合中元素地特性(确定性、互异性、无序性)可指导集合地表示.②对集合地三种表示方法(列举、描述、图示法)不仅要求了解不同表示方法地不同要求,还要求能根据不同情况对表示方法进行选择.③求有限集合地子集,应正确运用分类讨论地思想确定子集中元素地选取规律.(2)本节地难点是各种符号地正确理解和使用.正确理解和熟练运用数学符号是提高抽象思维能力地重要途径.数学符号是符号化了地数学概念.以前接触地符号都是有关数、或数与数地关系地,本节中学习地抽象符号是表示元素、集合或集合间关系地,如“∈”,“∉”,“⊆”,“=”等,是全新地一套.对符号地使用不仅要明确其意义,而且还要注意各类符号间不能混用,并能识别和处理用集合中有关符号表述地数学命题.(3)对于集合地应用重点是交并思想在解不等式中地应用,不做过多延伸.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

2024-2025年北师大版数学必修第一册4.3.1对数函数的概念2(带答案)

2024-2025年北师大版数学必修第一册4.3.1对数函数的概念2(带答案)

3.1 对数函数的概念3.2 对数函数y =log 2x 的图象和性质必备知识基础练知识点一 对数函数的概念1.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =2log 4x ;⑦y =log 2(2x ).A .1个B .2个C .3个D .4个 知识点二 反函数的概念2.若函数y =f (x )是函数y =3x的反函数,则f (12 )的值为( )A .-log 23B .-log 32C .19D .33.若点P (4,2)在函数f (x )=log a x 的图象上,点Q ⎝ ⎛⎭⎪⎫m ,14 在f (x )的反函数图象上,则m =________.知识点三 对数函数y =log 2x 的图象与性质4.下列图象是函数y =|log 2x |的大致图象的是( )5.设a =log 12 13 ,b =log 12 23 ,c =log 243 ,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a6.已知f (x )=log 2(1+x )+log 2(1-x ). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明; (3)求f (22)的值.关键能力综合练1.若对数函数的图象过点M (16,4),则此对数函数的解析式为( ) A .y =log 4x B .y =log 14xC .y =log 12x D .y =log 2x2.函数f (x )=(a 2+a -5)log a x 为对数函数,则f (18 )=( )A .3B .-3C .-log 36D .-log 383.设函数f (x )=log 2x ,若f (a +1)<2,则a 的取值范围为( ) A .(-1,3) B .(-∞,3) C .(-∞,1) D .(-1,1)4.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B.[0,+∞) C .(1,+∞) D.[1,+∞) 5.函数f (x )=1+log 2x 和g (x )=21+x在同一平面直角坐标系中的图象大致是( )6.(探究题)已知函数f (x )=⎩⎪⎨⎪⎧log 2(-x ),x <0log 12x ,x >0 ,若f (m )<f (-m ),则实数m 的取值范围是( )A.(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞) D .(-∞,-1)∪(0,1)7.比较两个值的大小:log 132________log 152(填“>”“<”或“=”).8.(易错题)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0, 直线y =a 与函数f (x )的图象恒有两个不同的交点,则a 的取值范围是________.9.已知f (x )为定义在区间(-∞,0)∪(0,+∞)上的偶函数,当x ∈(0,+∞)时,f (x )=log 2x .(1)当x ∈(-∞,0)时,求函数f (x )的解析式;(2)在给出的坐标系中画出函数f (x )的图象,写出函数f (x )的单调区间,并指出单调性.核心素养升级练1.(多选题)给出下列三个等式:①f(xy)=f(x)+f(y),②f(x+y)=f(x)f(y),③f(x +y)=f(x)+f(y),下列函数中至少满足一个等式的是( )A.f(x)=3x B.f(x)=log2xC.f(x)=x2 D.f(x)=kx(k≠0)2.(学科素养—直观想象)根据函数f(x)=log2x的图象和性质解决以下问题.(1)若f(a)>f(2),求a的取值范围;(2)求y=log2(2x-1)在x∈[2,14]上的最值.3.2 对数函数y=log2x的图象和性质必备知识基础练1.答案:B解析:由于①中自变量出现在底数上,∴①不是对数函数;由于②中底数a∈R不能保证a>0,且a≠1,∴②不是对数函数;由于⑤的真数为(x+2),底数为x,∴⑤也不是对数函数;由于⑥中log4x的系数为2,∴⑥也不是对数函数;由于⑦中真数为2x,∴⑦不是对数函数,只有③④符合对数函数的定义.2.答案:B解析:由题意知f (x )=log 3x ,则f (12 )=log 312 =-log 32.故选B.3.答案:-2解析:因为点P (4,2)在函数f (x )=log a x 的图象上, 所以2=log a 4,计算得a 2=4, 又a >0且a ≠1,所以a =2, 所以f (x )=log 2x ,所以f (x )的反函数为y =2x ,又因为点Q ⎝ ⎛⎭⎪⎫m ,14 在y =2x 图象上,所以14 =2m,得m =-2.4.答案:A解析:y =|log 2x |=⎩⎪⎨⎪⎧-log 2x ,0<x ≤1log 2x ,x >1 ,所以由对数函数的图象,可知A 正确.5.答案:B解析:a =log 12 13 =log 23,b =log 12 23 =log 232 ,c =log 243 ,∵函数y =log 2x 在(0,+∞)为增函数,且3>32 >43 ,∴log 23>log 232 >log 243,即a >b >c .故选B.6.解析:(1)由⎩⎪⎨⎪⎧1+x >0,1-x >0, 得-1<x <1,所以函数f (x )的定义域为{x |-1<x <1}. (2)因为函数f (x )的定义域为{x |-1<x <1},又f (-x )=log 2[1+(-x )]+log 2[1-(-x )]=log 2(1-x )+log 2(1+x )=f (x ), 所以函数f (x )=log 2(1+x )+log 2(1-x )为偶函数. (3)f (22 )=log 2(1+22 )+log 2(1-22 )=log 2⎣⎢⎡⎦⎥⎤(1+22)(1-22) =log 212 =-1.关键能力综合练1.答案:D解析:由于对数函数的图象过点M (16,4),所以4=log a 16,得a =2.所以对数函数的解析式为y =log 2x ,故选D.2.答案:B解析:因为函数f (x )为对数函数,所以a 2+a -5=1,解得a =2或-3,因为对数函数的底数大于0,所以a =2,即f (x )=log 2x ,则f (18)=-3.3.答案:A解析:∵函数f (x )=log 2x 在定义域内单调递增,且f (4)=log 24=2,∴不等式f (a +1)<2可化为f (a +1)<f (4),即0<a +1<4,解得-1<a <3,故选A.4.答案:A解析:∵3x >0,∴3x +1>1.∴log 2(3x+1)>0.∴函数f (x )的值域为(0,+∞). 5.答案:D解析:因为f (x )=1+log 2x 的图象过点(1,1),而g (x )=21+x的图象过点(-1,1),结合图象,知D 符合要求.6.答案:C解析:当m >0时,-m <0,f (m )<f (-m )⇒log 12m <log 2m ⇒log 21m <log 2m ⇒1m<m ,可得m >1;当m <0时,-m >0,f (m )<f (-m )⇒log 2(-m )<log 12 (-m )⇒log 2(-m )<log 2(-1m )⇒-m <-1m ,可得-1<m <0.故实数m 的取值范围是(-1,0)∪(1,+∞).7.答案:<解析:∵对数函数y =log 2x 在(0,+∞)上是增函数,且15 <13 <1,∴log 215 <log 213 <0,∴1log 215 >1log 213.又log 132=1log 213,log 152=1log 215,∴log 132<log 152.8.答案:0<a ≤1解析:函数f (x )的图象如图所示,要使直线y =a 与f (x )的图象有两个不同的交点,则0<a ≤1.9.解析:(1)设x ∈(-∞,0),则-x ∈(0,+∞), 所以f (-x )=log 2(-x ),又f(x)为定义在区间(-∞,0)∪(0,+∞)上的偶函数,得f(-x)=f(x),所以f(x)=log2(-x)(x∈(-∞,0)).(2)函数图象如图.f(x)的单调增区间是(0,+∞),单调减区间是(-∞,0).核心素养升级练1.答案:ABD解析:对A:f(x+y)=3x+y=3x·3y=f(x)·f(y),符合②;对B:f(xy)=log2(xy)=log2x+log2y=f(x)+f(y),符合①;对C:不满足任何一个等式;对D:f(x+y)=k(x+y)=kx+ky=f(x)+f(y),符合③.故选ABD.2.解析:函数y=log2x的图象如图.(1)∵y=log2x是增函数,若f(a)>f(2),即log2a>log22,则a>2.∴a的取值范围为(2,+∞).(2)∵2≤x≤14,∴3≤2x-1≤27,∴log23≤log2(2x-1)≤log227.∴函数y=log2(2x-1)在x∈[2,14]上的最小值为log23,最大值为log227.。

北师大版高一数学必修1第四章函数应用测试题及答案

北师大版高一数学必修1第四章函数应用测试题及答案

高一年级数学学科必修1第四章质量检测试题参赛试卷第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分)1. ()f x 函数在[a,b]上为单调函数,则 ( )A 、()f x 在[a,b]上不可能有零点B 、()f x 在[a,b]上若有零点,则必有()()0f a f b ⨯>C 、()f x 在[a,b]上若有零点,则必有()()0f a f b ⨯≤D 、以上都不对2.某商场对顾客实行购物优惠活动,规定一次购物付款总额: ( )(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是A.413.7元B.513.7元C.546.6元D.548.7元3.已知函数f (n )=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f (8)等于 ( )A.2B.4C.6D.74.设()33-8x f x x =+, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间 ( ).A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能5.函数21()322⎛⎫=+- ⎪⎝⎭xf x x 的零点有( )个。

( )A .0B .1C .2D .36.方程3log 280x x +-=的解所在区间是 ( ) A .(5,6) B.(3,4) C .(2,3) D.(1,2)7.不论m 为何值,函数2()1f x x mx =+-,x R ∈的零点有 ( ) A. 2个 B.1个 C.0个 D.都有可能8.对于函数2()f x x mx n =++,若()0,()0f a f b >>,则函数()f x 在区间(a,b)内( ) A.一定有零点 B.一定没有零点 C.至多有一个零点 D.可能有两个零点 9.若关于x 的方程2210x ax --=在区间[0,2]上有解,则实数a 的取值范围是 ( ) A.34a >-B.34a <C.34a ≥- D 34a ≤. 10.将1个单位长度厚的纸对折x 次后,厚度y 与x 的函数关系是 ( )A.2x y =B.2y x =C.2y x =D.12x y +=二、填空题(本大题共5小题,每小题5分,共25分)把答案填第Ⅱ卷题中横线上11.函数2()2f x x x m =--的零点有两个,则实数m 的取值范围是_________________ 12.某电脑公司计划在2010年10月1日将500台电脑投放市场,经市场调研范县,该批电脑每隔10天平均日销售量减少2台,现准备用38天销售完该批电脑,则预计该公司在10月1日至10月10日的平均销售量是_______________台 13.已知函数()y f x =的图像是连续不断的,x,y 有如下对应值表:14.已知函数()1kf x x x=++在其定义域内有两个零点,则k ∈______________ 15.已知函数2()log 26f x x =+-在区间(n, n+1)()n N +∈内有唯一零点,则n=_______金台区高一年级数学学科必修1第四章质量检测试题参赛试卷第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.________________________ 12._______________________13._________________________ 14.______________________15._________________________三、解答题(本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(15分)已知函数2()(3)4,()f x ax a x f x =-++若的两个零点为,αβ,且满足024αβ<<<<,求实数a 的取值范围17. (15分)一种放射性元素,其最初的质量为500g,按每年10%的速度衰减,(1)求t 年后,这种放射性元素的质量m 的表达式;(2)求这种放射性元素的半衰期(精确到0.1年,0.9log 0.5 6.5788≈)18.(15分)某商店如果将进货为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,问应该将售价定为多少时,才能使所赚利润最大,并求出最大利润.19.(15分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数()21 4002 80000 {R xx x=-(0400)(400)xx≤≤>.其中x表示仪器的月产量(单位:台).试问该公司的利润与月产量x有什么样的函数关系?写出其函数关系式. 20.(15分)某市电力公司在电力供大于求时期为了鼓励居民用电,采用分段计费方法计算电费,每月用电不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度仍按原标准收费,超过部分按每度0.5元计费.(1)设每月用电x度,应交电费y元,写出y关于x的函数关系.(2)小王家第一季度共用了多少度电?问:小王家第一季度共用了多少度电?金台区高一年级数学学科必修1第四章质量检测试题参赛试卷试卷说明学校:卧龙寺中学命题人吴亮李丰明一、命题意图函数与方程是新课标中函数部分的新增内容,其中既有一些基本概念,也蕴含了丰富的数学思想方法,新课程标准要求重视数学的应用,培养和发展数学应用意识,所以应用题型必将成为高考的核心考点。

北师大版高中数学必修一第四单元《函数应用》测试(含答案解析)

北师大版高中数学必修一第四单元《函数应用》测试(含答案解析)

一、选择题1.已知函数()()2log 1,1212,1x x x f x x ⎧-<-⎪=⎨-+≥-⎪⎩,若函数()()F x f x k =- 恰有3个零点,则实数k 的取值范围是( ) A .52,2⎛⎤ ⎥⎝⎦B .()2,3C .(]3,4D .()2,+∞2.设,m n R ∈,定义在区间[],m n 上的函数()()2log 4f x x =-的值域是[]0,2,若关于t 的方程||1102t m ⎛⎫++= ⎪⎝⎭()t R ∈有实数解,则m n +的取值范围是( )A .[]0,3B .(]3,2--C .[]3,1--D .[)1,23.已知函数24,?0()7,?0x f x xx x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a 的取值范围是( ) A .(﹣4,0] B .(-∞,﹣9) C .(-∞,﹣9)(﹣4,0]D .(﹣9,0]4.已知函数22,2,()3, 2.x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的函数()y f x k =-有且只有三个不同的零点,则实数k 的取值范围是( ) A .()3,1-B .()0,1C .(]3,0-D .()0,∞+5.已知偶函数()f x 在[0,)+∞上为增函数,若关于x 的方程()()21xf b f =-有且只有一个实根,则实数b 的取值范围是( ) A .2b ≥B .0b ≥C .1b ≤-或0b =D .1b ≥或1b ≤-或0b =6.激光多普勒测速仪(LaserDopplerVelocimetry ,LDV )的工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚后反射,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光发生频移,频移()2sin 1/h p v f ϕλ=,其中v 为被测物体的横向速度,ϕ为两束探测光线夹角的一半,λ为激光波长.如图,用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,激光测速仪安装在距离高铁1m 处,发出的激光波长为()91560nm 1nm 10m -=,测得这时刻的频移为()98.72101/h ⨯,则该时刻高铁的速度约为( )A .320km/hB .330km/hC .340km/hD .350km/h7.设函数()f x 是定义在R 上的偶函数,对任意x ∈R ,都有()()4f x f x +=,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则a的取值范围是( )A .312⎡⎣B .()2,+∞C .()1,2D .(3128.设函数11,(,2)(){1(2),[2,)2x x f x f x x --∈-∞=-∈+∞,则函数()()1F x xf x =-的零点的个数为( ) A .4 B .5 C .6 D .79.已知一元二次方程210x mx ++=的两根都在()0,2内,则实数m 的取值范围是( ) A .5,22⎛⎤-- ⎥⎝⎦[)2,⋃+∞ B .5,22⎛⎫-- ⎪⎝⎭()2,⋃+∞ C .5,22⎛⎤-- ⎥⎝⎦D .5,22⎛⎫-- ⎪⎝⎭10.若函数()af x x x=+ (a ∈R)在区间(1,2)上有零点,则a 的值可能是( ) A .-2 B .0 C .1D .311.设一元二次方程22210mx x m -++=的两个实根为1x ,2x ,则2212x x +的最小值为( ) A .178-B .154C .1D .412.下列方程在区间()1,1-内存在实数解的是( ) A .230x x +-=B .10x e x --=C .()3ln 10x x -++=D .2lg 0x x -=二、填空题13.设方程240x mx -+=的两根为α,β,其中[1,3]α∈,则实数m 的取值范围是________.14.2019年1月1日起新的个人所得税法开始实施,依据《中华人民共和国个人所得税法》可知纳税人实际取得工资、薪金(扣除专项、专项附加及依法确定的其他)所得不超过5000元(俗称“起征点”)的部分不征税,超出5000元部分为全月纳税所得额.新的税率表如表:2019年1月1日后个人所得税税率表个人所得税专项附加扣除是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息、住房租金和赡养老人等六项专项附加扣除.其中赡养老人一项指纳税人赡养60岁(含)以上父母及其他法定赡养人的赡养支出,可按照以下标准扣除:纳税人为独生子女的,按照每月2000元的标准定额扣除;纳税人为非独生子女的,由其与兄弟姐妹分摊每月2000元的扣除额度,每人分摊的额度不能超过每月1000元.某纳税人只有一个姐姐,且两人仅符合规定中的赡养老人的条件,如果他在2020年5月份应缴纳个人所得税款为180元,那么他当月的工资、薪金税后所得是_____元.15.已知函数()()()[)21,,12,1,x x x f x x ⎧+∈-∞⎪=⎨∈+∞⎪⎩,若存在实数1x ,2x ,3x ,当123x x x <<时,有()()()123f x f x f x ==成立,则()()123x x f x +⋅的取值范围是________.16.若函数()23xf x x --+=的零点为0x ,满足()01x k k ∈+,且k ∈Z ,则k =_____.17.函数2()23f x x x a =---有四个零点,则a 的取值范围为_______.18.若关于x 的方程()4230x x f x k k =-⋅++=只有一个实数解,则实数k 的取值范围是______.19.已知定义域为R 的奇函数()f x 满足()()2f x f x -=+,且当01x ≤≤时,()3f x x x =+.若函数()()th x f x x=-在[)(]4,00,4-⋃上有4个不同的零点,则实数t的取值范围是_____________.20.关于x 的方程()2310xx x e b -+-=恰好有3个实数根,则实数b 的取值范围是__________.三、解答题21.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100x v x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km/min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?22.某药物研究所开发的一种新药,据监测,成人按规定剂量服药一次后,每毫升血液中含药量y (微克)与时间t (小时)之间的关系可由函数112,01()12,1t t t y f t a t -<≤⎧==⎨>⎩拟合(01a <<).(1)当0.25a =时,求使得3y ≥的t 的取值范围;(2)研究人员按照yq t=的值来评估该药的疗效,并测定2q ≥时此药有效,若某次服药后测得3t =时每毫升血液中的含药量为6微克,求此次服药产生疗效的时长.23.2009年淘宝开始做“双十一”活动,历经11载,每年双十一成交额都会出现惊人的增长,极大拉动消费内需,促进经济发展.已知今年小明在网上买了一部华为手机,据了解手机是从150千米处的地方发出,运货卡车以每小时x 千米的速度匀速行驶,中途不停车.按交通法规限制60120x ≤≤(单位:千米/时).假设汽油的价格是每升5元,而卡车运输过程中每小时耗油25400x ⎛⎫+ ⎪⎝⎭升,司机的工资是每小时20元. (1)求这次行车总费用y (单位:元)关于x 的表达式; (2)当x 为何值时,这次行车的总费用最低?并求出最低费用.24.经研究发现,学生的注意力与老师的授课时间有关,开始授课时,学生的注意力逐渐集中,到达理想的状态后保持一段时间,随后开始逐渐分散,用()f x 表示学生的注意力,x 表示授课时间(单位:分),实验结果表明()f x 与x 有如下的关系:()59,01059,10163107,1630x x f x x x x +<<⎧⎪=≤≤⎨⎪-+<≤⎩.(1)开始授课后多少分钟,学生的注意力最集中?能维持多长时间?(2)若讲解某一道数学题需要55的注意力以及10分钟的时间,老师能否及时在学生一直达到所需注意力的状态下讲完这道题?25.已知函数()21x f x ax b+=+是定义域上的奇函数,且()12f -=-.(1)求函数()f x 的解析式,判断函数()f x 在0,上的单调性并证明; (2)令()()g x f x m =-,若函数()g x 在0,上有两个零点,求实数m 的取值范围;(3)令()()()22120h x x tf x t x =+-<,若对1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12154h x h x -≤,求实数t 的取值范围. 26.已知函数()2()log 41xf x mx =++. (1)若()f x 是偶函数,求实数m 的值;(2)当0m >时,关于x 的方程()242148log 2log 41f x x m ⎡⎤++-=⎢⎥⎣⎦在区间[1,上恰有两个不同的实数解,求m 的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,画两个函数的图象,观察图象即得结果. 【详解】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,分别画出()y f x =与()h x k =的图象,如图所示,5(1)2f -=,观察图象可得,当522k <≤时,两图象有3个交点,即函数()()F x f x k =-恰有3个零点. 故选:A. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.D解析:D 【分析】首先利用函数值域确定自变量范围,再初步确定m ,n 的关系,然后结合指数函数的性质整理计算即可求得最终结果. 【详解】函数2()log (4||)f x x =-的值域是[0,2],14||4x ∴-, 0||3x ∴,3m ∴=-,03n ,或30m -,3n =;又关于t 的方程||1()10()2t m t R ++=∈ 有实数解,∴||1()12t m =--有解,||11()122t <+,21m ∴-<-, 则3n =, 则12m n +<,故选:D 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.C解析:C 【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解. 【详解】令()()0g x f x x a =+-=,得24,?06,?0x x a x x x x ⎧+<⎪=⎨⎪-≥⎩,令24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩,在同一坐标系中,作出两个函数的图象,如图所示:因为()g x 存在两个零点, 由图象可得:a <﹣9或﹣4<a ≤0, 故选:C 【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.4.B解析:B 【分析】函数()y f x k =-零点的个数,即为函数()y f x =与函数y k =图象交点个数,结合函数图象可得实数k 的取值范围. 【详解】因为关于x 的函数()y f x k =-有且只有三个不同的零点,所以函数()y f x =与函数y k =图象有三个不同的交点,画出图象,如图:由图可知,当01k <<时,函数()y f x =与函数y k =图象有三个不同的交点, 所以实数k 的取值范围是(0,1). 故选:B 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.D解析:D 【分析】由题意有|21|xb =±-,令20x t =>,即可得22210t t b -+-=有且只有一个实根,22()21f t t t b =-+-问题转化为()f t 在(0,)t ∈+∞上有且仅有一个零点,结合二次函数零点分布即可求b 的取值范围. 【详解】由()f x 是偶函数且在[0,)+∞上为增函数知:|21|xb =±-,∴22(21)x b =-,令20x t =>,则22210t t b -+-=,令22()21f t t t b =-+-,即()f t 在(0,)t ∈+∞上有且仅有一个零点,而2244(1)4b b ∆=--=且对称轴为直线1t =,∴当0∆=,0b =时,在(0,)t ∈+∞上有且仅有一个零点;当0∆>时,22(0)10b f b ⎧>⎨=-≤⎩,解得1b ≤-或1b ≥,在(0,)t ∈+∞上有且仅有一个零点;∴综上,有1b ≤-或1b ≥或0b =, 故选:D. 【点睛】本题考查函数与方程,将方程的根的个数问题转化为对应函数零点个数问题,注意换元法的应用、定义域范围,属于中档题.6.C解析:C 【分析】先根据图象,求出sin ϕ的值,再根据公式即可计算出v 的值. 【详解】解:3sin ϕ-==98.7210∴⨯=,即8.72=340148.009v ∴=≈米/小时340/km h ≈,故该时刻高铁的速度约为340/km h . 故选:C . 【点评】本题主要考查了函数的实际应用,考查了三角函数的实际应用,也考查了学生的计算能力,关键在于将生活中的数据转化为数学公式中的数据,属于中档题.7.A解析:A 【分析】作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象,根据题意可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】对任意x ∈R ,都有()()4f x f x +=,则函数()f x 是周期为4的周期函数,当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭, 作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象如下图所示:由于在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则()()log 623log 10231a a a ⎧+≤⎪+>⎨⎪>⎩,解得3212a ≤< 因此,实数a 的取值范围是312⎡⎣.故选:A. 【点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.8.C解析:C 【分析】分别画出函数()y f x =和()1g ?x x=的图像,根据图像得出结论. 【详解】因为()()10F x xf x =-=,所以()1xf x =,转化为()1f x x=如图,画出函数()y f x =和()1g ?x x=的图像,当x <0时,有一个交点,当x >0时,(1)1,(1)1f g ==,此时()()1g 11f ==,1x =是函数的一个零点,111(3)(1),(3)223f fg ===,满足(3)(3)f g >,所以在(2,4)有两个交点, 同理(5)(5)f g >,所以在(4,6)有两个交点, (7)(7)f g >,所以在(6,8)内没有交点,当n >7时,恒有()()f x g x >,所以两个函数没有交点 所以,共有6个. 故选:C. 【点睛】本题考查分段函数的知识点,涉及到函数的零点的知识点,考查了数形结合的思想,属于基础题型.9.C解析:C 【分析】设()21f x x mx =++,根据二次函数零点分布可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】设()21f x x mx =++,则二次函数()21f x x mx =++的两个零点都在区间()0,2内,由题意()()2400220102250m m f f m ⎧∆=-≥⎪⎪<-<⎪⎨⎪=>⎪=+>⎪⎩,解得522m -<≤-. 因此,实数m 的取值范围是5,22⎛⎤-- ⎥⎝⎦. 故选:C. 【点睛】本题考查利用二次方程根的分布求参数,一般分析对应二次函数图象的开口方向、判别式、对称轴以及端点函数值符号,考查分析问题和解决问题的能力,属于中等题.10.A解析:A 【分析】利用零点存在性定理逐个选项代入验证,即可得到答案. 【详解】 函数()af x x x=+()a R ∈的图象在()12,上是连续不断的,逐个选项代入验证,当2a =-时,()()112022110f f =-<,=-=>,.故()f x 在区间()12,上有零点,同理,其他选项不符合, 故选A. 【点睛】本题考查了函数的零点与方程的根的应用,属于基础题.11.C解析:C 【分析】由一元二次方程有两个实根,可知0m ≠且0∆≥,可求出m 的取值范围,然后结合韦达定理可得到2212x x +的表达式,结合m 的取值范围可求出答案.【详解】∵一元二次方程210mx m -++=有两个实根,∴(()20410m m m ≠⎧⎪⎨∆=--+≥⎪⎩,解得21m -≤≤且0m ≠.又12x x +=121m x x m +⋅=,则()2221212122x x x x x x +=+-⋅212m m m ⎛⎫+-⨯ ⎪⎪= ⎝⎭2822m m =-- 令1t m=,因为21m -≤≤且0m ≠,所以12t ≤-或1t ≥,则221222117822888t t t x x ⎛⎫=--=-- ⎪⎝⎭+,当12t =-时,2212x x +取得最小值2111781288⎛⎫---= ⎪⎝⎭.故选:C. 【点睛】本题考查了一元二次方程根的判别式的应用,考查韦达定理的应用,考查学生的计算能力与推理能力,属于中档题.12.B解析:B 【分析】利用方程和函数之间的关系分别进行判断即可得到结论. 【详解】A :令2()3f x x x =+-,因为抛物线开口向上,()()1010f f -<<,,所以在区间()1,1-内无实数解;B :令()10xf x e x =--=,解得0x =,所以在区间()1,1-内有实数解;C :令()()3ln 1f x x x =-++,则1()101f x x '=+>+在()1,1-成立,所以函数在()1,1-上单调递增,又(1)0f <,故在区间()1,1-内无实数解;D :当(0,1)x ∈时,()20,1x ∈,lg (,0)x ∈-∞,则2lg 0x x ->,此时方程在()1,1-内无解. 故选:B. 【点睛】本题主要考查函数与方程以及零点存在定理,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】由题意利用韦达定理不等式的性质求出实数的取值范围【详解】解:方程的两根其中故即解得或令①解得;②解得综上可得故答案为:【点睛】本题考查二次函数根的分布问题属于中档题 解析:[]4,5【分析】由题意利用韦达定理,不等式的性质,求出实数m 的取值范围. 【详解】 解:方程240x mx -+=的两根α,β,其中[1,3]α∈, 故0∆,即()2440m --⨯≥,解得4m ≥或4m ≤-,令()24f x x mx =-+①()()0130f f ∆⎧⎨≤⎩,解得1353m ≤≤; ②()()01030132f f m ∆⎧⎪>⎪⎪⎨>⎪⎪≤≤⎪⎩解得134,3m ⎡⎤∈⎢⎥⎣⎦综上可得[]4,5m ∈ 故答案为:[]4,5. 【点睛】本题考查二次函数根的分布问题,属于中档题.14.9720【分析】按题意从最低纳税额开始计算最高纳税同时考虑到专项附加扣除后可得【详解】设他的工资是元工资是8000元时纳税为由于他有专项附加扣1000元因此他工资是9000元时纳税90元纳税后收入为解析:9720 【分析】按题意从最低纳税额开始计算最高纳税,同时考虑到专项附加扣除后可得. 【详解】设他的工资是x 元,工资是8000元时纳税为30003%90⨯=,由于他有专项附加扣1000元,因此他工资是9000元时,纳税90元,(9000)10%18090x -⨯=-,9900x =,纳税后收入为9900-180=9720(元). 故答案为:9720. 【点睛】本题考查函数的应用,解题时根据分段函数的意义分段计算纳税额即可得.解题关键是正确理解题意,弄懂工资收入与纳税额之间的关系.15.【分析】由函数解析式得到函数图象根据已知条件结合图象知即可求的取值范围【详解】由解析式可得如下图象:如图知:当时有成立则且即∴故答案为:【点睛】关键点点睛:由函数解析式画出函数图象由已知条件知的范围 解析:(]8,4--【分析】由函数解析式得到函数图象,根据已知条件结合图象知()()()123[2,4)f x f x f x ==∈,1212x x +=-,即可求()()123x x f x +⋅的取值范围. 【详解】由解析式可得如下图象:如图知:123,,x x x R ∃∈,当123x x x <<时,有()()()123f x f x f x ==成立,则()()()123[2,4)f x f x f x ==∈,且1212x x +=-,即122x x +=-, ∴()()123(8,4]x x f x +⋅∈--, 故答案为:(]8,4--. 【点睛】关键点点睛:由函数解析式画出函数图象,由已知条件知()3f x 的范围以及()12x x +的值,进而求出对应函数式的范围.16.【分析】根据题意得到函数为减函数进而求得的值利用零点的存在定理即可求解【详解】由题意函数分析可得函数为减函数又由则根据零点的存在定理可得函数的零点在区间上所以故答案为【点睛】本题主要考查了函数与方程 解析:3【分析】根据题意,得到函数()f x 为减函数,进而求得()()3,4f f 的值,利用零点的存在定理,即可求解. 【详解】由题意,函数()23xf x x --+=,分析可得函数()f x 为减函数,又由()31323308f -=+=>-,()4154243016f --=+=-<, 则()()340f f ⋅<,根据零点的存在定理,可得函数()f x 的零点在区间()3,4上, 所以3k =. 故答案为3. 【点睛】本题主要考查了函数与方程的应用,其中解答中熟记函数零点的概念,以及熟练应用零点的存在定理进行判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.17.【分析】函数零点转化为的解即函数与直线的交点的横坐标由数形结合思想可得解【详解】由得作函数的图象和直线如图函数在和上递减在和上递增由图象知当时的图象和直线有四个交点即有4个零点故答案为:【点睛】本题 解析:(0,4)【分析】函数零点转化为223x x a --=的解,即函数2()23g x x x =--与直线y a =的交点的横坐标,由数形结合思想可得解. 【详解】由()0f x =得223x x a --=,作函数2()23g x x x =--的图象和直线y a =,如图,函数()g x 在(,1)-∞-和(1,3)上递减,在(1,3)-和(3,)+∞上递增,(1)4f =,由图象知当04a <<时,2()23g x x x =--的图象和直线y a =有四个交点.即()f x 有4个零点.故答案为:(0,4).【点睛】本题考查函数的零点个数,解题时把问题转化为函数图象与直线交点个数,通过数形结合思想求解.18.【分析】换元令再根据二次函数在区间上只有一个实数解求解即可【详解】令则在区间上只有一个实数解故=0在上有两个等根或有一个正根和一个负根①故②故实数的取值范围是故答案为:【点睛】本题主要考查了根据根的 解析:(,3){6}-∞-⋃【分析】换元令2x t =,()0,t ∈+∞,再根据二次函数2()30g t t k t k =-⋅++=在区间()0,t ∈+∞上只有一个实数解求解即可. 【详解】令2x t =,()0,t ∈+∞,则2()30g t t k t k =-⋅++=在区间()0,t ∈+∞上只有一个实数解. 故2()3g t t k t k =-⋅++=0在()0,t ∈+∞上有两个等根或有一个正根和一个负根.①()()()()2430620002k k k k k k ⎧--+=⎧-+=⎪⇒⎨⎨->->⎩⎪⎩ .故6k =②(0)303g k k =+<⇒<- 故实数k 的取值范围是(,3){6}-∞-⋃ 故答案为:(,3){6}-∞-⋃ 【点睛】本题主要考查了根据根的分布求解参数范围的问题.需要根据题意换元再分两种情况讨论.属于中档题.19.【分析】推导出函数的周期和对称轴方程并作出函数在上的图象数形结合可得出关于的不等式进而可求得实数的取值范围【详解】由得:所以函数的周期为由得所以函数关于直线对称所以函数在上单调递增在上的图象如下:函 解析:()6,2-【分析】推导出函数()y f x =的周期和对称轴方程,并作出函数()y f x =在[]4,4-上的图象,数形结合可得出关于t 的不等式,进而可求得实数t 的取值范围. 【详解】由()()()()2f x f x f x f x ⎧-=+⎪⎨-=-⎪⎩得:()()4f x f x +=,所以,函数()y f x =的周期为4,由()()2f x f x -=+得()()11f x f x -=+,所以,函数()y f x =关于直线1x =对称,()3f x x x =+,[]0,1x ∈,()2310f x x '=+>,所以,函数()y f x =在[]0,1x ∈上单调递增,()y f x =在[]4,4x ∈-上的图象如下:函数()()t h x f x x =-的零点,即()y f x =与()tg x x=的图象的交点. ①当0t >时,要有四个交点,则需满足()()11g f <,即2t <,此时02t <<; ②当0t <时,要有四个交点,则需满足()()33g f >,即23t>-,即60t -<<; ③当0t =时,()0g x =,即()y f x =在[)(]4,00,4-⋃上的零点,有4个,分别是4x =-、2-、2、4,满足题意.综上:()6,2t ∈-. 故答案为:()6,2-. 【点睛】本题利用函数的零点个数求参数,一般转化为两个函数的交点个数,考查分类讨论思想与数形结合思想的应用,属于中等题.20.【分析】将方程转化为两个函数与的交点问题通过求导分析函数的单调性和极值画出的图形则问题即可迎刃而解【详解】由题意有:设∴问题转化为与有三个交点∴对进行分析可知:∴令有:或者当有:当有:或者∴在单调递解析:50,e ⎛⎫⎪⎝⎭【分析】将方程转化为两个函数2()(31)x f x x x e =-+与()g x b =的交点问题,通过求导分析函数()f x 的单调性和极值,画出()f x 的图形,则问题即可迎刃而解.【详解】由题意有:设2()(31)x f x x x e =-+,()g x b =, ∴问题转化为()f x 与()g x 有三个交点 ∴对()f x 进行分析可知: 2()(3123)x f x x x x e '=-++- 2(2)x x x e =-- (2)(1)x x x e =-+∴令()0f x '=有:1x =-或者2x =, 当()0f x '<有:12x -<<, 当()0f x '>有:1x <-或者2x >∴()f x 在(,1)-∞-单调递增,在(1,2)-单调递减,在(2,)+∞单调递增; ∴()f x 有极大值5(1)f e'-=,极小值2(2)f e '=-,又∵当x →-∞时,()0f x →, ∴()f x 的图像如下图,故答案为:50,e ⎛⎫ ⎪⎝⎭【点睛】本题通过求方程中参数的范围,考查了学生运用导数工具处理函数中交点个数问题,也考验了学生用导数作复合函数图像的能力,以及用数形结合思想处理函数交点个数引起的参量的范围问题,对学生要求较高,为中等难度题目.三、解答题21.(1)466;(2)3倍. 【分析】(1)将05x =,0v =代入函数解析式,计算得到答案.(2)根据题意得到方程组13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减化简即可求出答案.【详解】(1)将05x =,0v =代入函数301log lg 2100x v x =-,得:31log lg502100x-=, 即()3log 2lg521lg 2 1.40100x==-=, 所以1.403 4.66100x==, 所以466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟耗氧量为2x ,由题意可得:13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩, 两式相减可得:13211log 22x x =, 所以132log 1x x =,即123x x =, 故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍. 【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答. 22.(1)1,24⎡⎤⎢⎥⎣⎦;(2)3小时.【分析】(1)当0.25a =时,求出函数()f t 的解析式,分段讨论当3y ≥时t 的取值范围,再求并集即可;(2)由题可求出a =q 关于t 的函数关系时,再令2q 求出t 的值,结合单调性可求出. 【详解】(1)当0.25a =时,112,01()120.25,1t t t y f t t -<≤⎧==⎨⨯>⎩, 当01t <≤时,123y t =≥,解得14t ≥,114t ∴≤≤, 当1t >,1120.235t y -⨯=≥,解得2t ≤,12t ∴<≤,综上,使得3y ≥的t 的取值范围为1,24⎡⎤⎢⎥⎣⎦;(2)当3t =,2126y a ==,解得a =112,01()12,12t t t y f t t -<≤⎧⎪∴==⎛⎫⎨⨯> ⎪⎪ ⎪⎝⎭⎩,112,01112,1t t y q t t t -<≤⎧⎪∴==⎨⨯⨯>⎪⎝⎭⎩.令11122(1)t t t -⨯⨯=>⎝⎭,解得3t =, 01t <≤时,12q =,当1t >时,1112t q t -=⨯⨯⎝⎭单调递减, 故可知2q ≥的解集为(0,3]t ∈,所以此次服药产生疗效的时长为3小时.【点睛】本题考查利用给定函数模型解决实际问题,解题的关键是正确理解函数关系,会利用单调性解不等式,考查学生的计算能力. 23.(1)y 6750158x x =+,[]60,120x ∈;(2)当x 为60时,这次行车的总费用最低,最低费用是225元.【分析】(1)总费用由油耗、司机工资费用组成,分别用x 表示两部分费用加总即可; (2)由(1)所得函数表达式,利用基本不等式求最小值即可.【详解】 解:(1)货车行驶的时间为150x小时,由题意得: 21501505520400x y x x ⎛⎫=⨯+⨯+⨯ ⎪⎝⎭6750158x x =+,[]60,120x ∈; (2)6750152258x y x =+≥=当且仅当6750158x x =,即60x =时取等号 所以当x 为60时,这次行车的总费用最低,最低费用是225元.【点睛】易错点睛:利用基本不等式求最值时,必须满足的三个条件--“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件.24.(1)开始授课后10分钟,学生的注意力最集中,能维持6分钟;(2)不能在学生一直达到所需注意力的状态下讲完这道题【分析】(1)根据函数()f x 的解析式,判断其单调性,可求出答案;(2)分010x <<,1016x ≤≤和1630x <≤三种情况,分别解不等式()55f x ≥,进而可求出集中注意力的时间总和,然后和10分钟比较大小,可得出答案.【详解】(1)由题意,当010x <<时,()59f x x =+,此时函数单调递增;当1016x ≤≤时,函数()f x 取得最大值,此时()59f x =;当1630x <≤时,()3107f x x =-+,此时函数单调递减.所以,开始授课后10分钟,学生的注意力最集中,能维持6分钟.(2)当010x <<时,令()55f x ≥,即5955x +≥,解得9.210x ≤<,集中注意力时间共109.20.8-=分钟;当1016x ≤≤时,()5955f x =≥,集中注意力时间共6分钟;当1630x <≤时,令()55f x ≥,即310755x -+≥,解得52163x <≤,则集中注意力时间共5241633-=分钟, 因为41220.8610315++=<,所以不能在学生一直达到所需注意力的状态下讲完这道题. 【点睛】关键点点睛:本题考查分段函数的应用,解题关键是利用函数的解析式,判断函数在各个分段上的单调性,及解不等式()55f x ≥.考查学生的逻辑推理能力,计算求解能力,属于中档题.25.(1)()1f x x x=+;函数()f x 在0,1上单调递减,在1,上单调递增,证明见解析;(2)2m >;(3)302t -≤< 【分析】 (1)由()f x 是奇函数,可知()12f -=-,()12f =,进而列出关系式,求出,a b ,即可得到函数()f x 的解析式,然后利用定义法,可判断并证明函数()f x 在0,上的单调性;(2)由函数()g x 在0,上有两个零点,整理得方程210x mx -+=在0,上有两个不相等的实数根,进而可得到24002m m ⎧∆=->⎪⎨>⎪⎩,求解即可; (3)由对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12154h x h x -≤恒成立,可得()()max min 154h x h x -≤,求出()()max min ,h x h x ,进而可求出t 的取值范围. 【详解】(1)()12f -=-,且()f x 是奇函数,()12f ∴=,2222a b a b⎧=-⎪⎪-+∴⎨⎪=⎪+⎩,解得10a b =⎧⎨=⎩, ()1xf x x ∴=+. 函数()f x 在0,1上单调递减,在1,上单调递增, 证明如下:任取1x ,()20,1x ∈,且12x x <,则()()()121212*********x x f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()12,0,1x x ∈,且12x x <,120x x ∴-<,1201x x <<,∴1210x x -<,()()120f x f x ∴->,即()()12f x f x >,∴函数()f x 在0,1上单调递减.同理可证明函数()f x 在1,上单调递增. (2)函数()g x 在0,上有两个零点,即方程10x m x +-=在0,上有两个不相等的实数根,所以210x mx -+=在0,上有两个不相等的实数根, 则24002m m ⎧∆=->⎪⎨>⎪⎩,解得2m >.(3)由题意知()22112h x x t x x x ⎛⎫ ⎪⎝=+-⎭+, 令1z x x=+,222y z tz =--, 由(1)可知函数1z x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增, 52,2z ⎡⎤∴∈⎢⎥⎣⎦, 函数222y z tz =--的对称轴方程为0z t =<, ∴函数222y z tz =--在52,2⎡⎤⎢⎥⎣⎦上单调递增, 当2z =时,222y z tz =--取得最小值,min 42y t =-+;。

第四章 对数运算和对数函数 章末检测试卷(四)(含解析)高中数学 北师大版(2019)必修 第一册

第四章 对数运算和对数函数 章末检测试卷(四)(含解析)高中数学 北师大版(2019)必修 第一册

章末检测试卷(四) [时间:120分钟 分值:150分]一、单项选择题(本题共8小题,每小题5分,共40分)1.下列函数中,随着x的增大而增加速度最快的是( )A.y=1e x B.y=100x100C.y=x100D.y=100×2x2.计算:log225·log522等于( )A.3B.4C.5D.63.函数y=log a(3x-2)(a>0,a≠1)的图象过定点( )A.(0,23)B.(1,0)C.(0,1)D.(23,0)4.函数y=lg x+lg(5-3x)的定义域是( )A.[0,53)B.[0,53]C.[1,53)D.[1,53]5.函数f(x)与g(x)=a x互为反函数,且g(x)过点(-2,4),则f(1)+f(2)等于( )A.-1B.0C.1D.146.设a=log0.14,b=log504,则( )A.2ab<2(a+b)<abB.2ab<a+b<4abC.ab<a+b<2abD.2ab<a+b<ab7.某引进的外来水生植物在水面的蔓延速度极快,对当地的生态造成极大的破坏.某科研部门在水域中投放一定面积的该植物研究发现,该植物在水面的覆盖面积y(单位:m2)与经过的时间t(单位:月,t∈N)的关系为y=8×)t,则该植物在水域中的面积达到刚开始投放时的1000倍需要的时间为(43(参考数据:lg 4≈0.125)( )3A.20个月B.22个月C.24个月D.26个月8.若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是( )二、多项选择题(本题共3小题,每小题6分,共18分.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.函数f (x )=log a (bx )的图象如图,其中a ,b 为常数.下列结论正确的是( )A.0<a <1B.a >1C.b >1D.0<b <110.若ab >0,给出的下列四个等式,不一定成立的有( )A.lg(ab )=lg a +lg bB.lg ab =lg a -lg b C.12lg (a b)2=lg a b D.lg(ab )=1log ab 1011.关于函数f (x )=|ln|2-x ||,下列描述正确的有( )A.函数f (x )在区间(1,2)上单调递增B.函数y =f (x )的图象关于直线x =2对称C.若x 1≠x 2,但f (x 1)=f (x 2),则x 1+x 2=4D.函数f (x )有且仅有两个零点三、填空题(本题共3小题,每小题5分,共15分)12.不等式log 2x <1的解集是 .13.若a =log 23,b =log 32,则ab = ,lg a +lg b = .14.已知f (x )={(3a ―1)x +4a ,x <1,log a x ,x ≥1是R 上的减函数,则实数a 的取值范围是 .四、解答题(本题共5小题,共77分)15.(13分)求值:(1)log89·log2732-(3―1)lg1+log535-log57;(6分)(2)[(1-log63)2+log62·log618]÷log64.(7分)16.(15分)画出函数f(x)=|log3x|的图象,并求出其值域、单调区间以及在区间[19,6]上的最大值.17.(15分)已知函数f(x)是定义在R上的奇函数,当x∈[0,+∞)时,f(x)=x-lo g12(x+1).(1)求函数f(x)在(-∞,0)上的解析式;(6分)(2)求不等式f(log12x)+f(log2(2x-1))<0的解集.(9分)18.(17分)已知函数f(x)=log3(4x―1)+16―2x的定义域为A.(1)求集合A;(7分)(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.(10分)19.(17分)设f(x)=lo g121―axx―1为奇函数,a为常数.(1)求a的值;(5分)(2)证明:f(x)在区间(1,+∞)上单调递增;(6分)(3)若在区间[3,4]上的每一个x,不等式f(x)>(12)x+m恒成立,求实数m的取值范围.(6分)答案精析1.A2.A3.B4.C5.A6.D [因为a=log0.14,b=log504,所以a<0,b>0,所以ab<0,1 a +1b=log40.1+log450=log45∈(1,2),即1<1a +1b<2,所以2ab<a+b<ab.]7.C [刚投放时的面积为y=8×(43)0=8,设经过t个月该植物在水域中的面积是刚开始投放时的1000倍,则8×(43)t=8×1000,即t=lo g431000=3lg 43≈30.125=24.]8.B [由函数y=log a x的图象过点(3,1),得a=3.选项A中的函数为y=(13)x,则其函数图象错误;选项B中的函数为y=x3,则其函数图象正确;选项C中的函数为y=(-x)3,则其函数图象错误;选项D中的函数为y=log3(-x),则其函数图象错误.]9.BC [∵函数单调递增,∴a>1,又f(1)>0,即log a b>0=log a1,∴b>1.]10.ABD [∵ab>0,∴a>0,b>0或a<0,b<0,∴AB中的等式不一定成立;∵ab>0,∴ab >0,12lg(ab)2=12×2lg a b =lg ab ,∴C 中等式成立;当ab =1时,lg (ab )=0,但log ab 10无意义,∴D 中等式不一定成立.]11.ABD [函数f (x )=|ln|2-x ||的图象如图所示.由图可得,函数f (x )在区间(1,2)上单调递增,A 正确;函数y =f (x )的图象关于直线x =2对称,B 正确;若取f (x 1)=f (x 2)=1,则存在x 1∈(2,3),x 2>3,所以x 1+x 2≠4,C 错误;函数f (x )有且仅有两个零点,D 正确.]12.{x |0<x <2} 13.1 014.[17,13)解析 ∵f (x )=log a x (x ≥1)是减函数,∴0<a <1,且f (1)=0.∵f (x )=(3a -1)x +4a (x <1)为减函数,∴3a -1<0,解得a <13.又∵f (x )={(3a ―1)x +4a,x <1,log a x,x ≥1是R 上的减函数,∴(3a -1)×1+4a ≥0,解得a ≥17,综上可得17≤a <13,即实数a 的取值范围是[17,13).15.解 (1)原式=lg9lg8×lg32lg27-1+log 5357=2lg33lg2×5lg23lg3-1+1=109.(2)原式=[(log 66-log 63)2+log 62·log 6(2×32)]÷log 64=[(log 663)2+log 62·(log 62+log 632)]÷log 622=[(log 62)2+(log 62)2+2log 62·log 63]÷2log 62=log62+log63=log6(2×3)=1.16.解 因为f(x)=|log3x|={log3x,x≥1,―log3x,0<x<1,所以在[1,+∞)上,f(x)的图象与y=log3x的图象相同,在(0,1)上,f(x)的图象与y=log3x的图象关于x轴对称,据此可画出其图象,如图所示,由图象可知,函数f(x)的值域为[0,+∞),单调递增区间是(1,+∞),单调递减区间是(0,1).当x∈[19,6]时,f(x)在区间[19,1)上单调递减,在(1,6]上单调递增,又f(19)=2,f(6)=log36<2,故f(x)在区间[19,6]上的最大值为2.17.解 (1)当x<0时,-x>0,又f(x)为R上的奇函数,所以f(x)=-f(-x)=-[-x-lo g12(-x+1)]=x+lo g12(-x+1).所以函数f(x)在(-∞,0)上的解析式为f(x)=x+lo g12(-x+1).(2)当x≥0时,f(x)=x+log2(x+1)为增函数,所以f(x)在R上为增函数.由f(lo g12x)+f(log2(2x-1))<0得f(log2(2x-1))<-f(lo g12x)=f(-lo g12x)=f(log2x),所以log2(2x-1)<log2x,所以{0<2x―1,2x―1<x,所以{x>12,x<1,所以12<x<1,所以不等式f(log12x)+f(log2(2x-1))<0的解集为(12,1).18.解 (1)由题意得{4x―1≥1,16―2x≥0,解得12≤x≤4,所以集合A={x|12≤x≤4}.(2)设t=log2x,因为x∈[12,4],所以t∈[-1,2],所以y=t2-2t-1=(t-1)2-2,t∈[-1,2].所以当t=1,即x=2时,g(x)取最小值-2,当t=-1,即x=12时,g(x)取最大值2.19.(1)解 ∵f(x)是奇函数,∴定义域关于原点对称,由1―axx―1>0,得(x-1)(1-ax)>0.令(x-1)(1-ax)=0,得x1=1,x2=1a,∴1a=-1,解得a=-1.经验证,a=-1满足题意.(2)证明 由(1)可知f(x)=lo g12x+1 x―1=lo g12(1+2x―1)(x>1),令u(x)=1+2x―1(x>1),对任意1<x1<x2,有u(x1)-u(x2)=(1+2x1―1)-(1+2x2―1)=2(x2―1)―2(x1―1)(x1―1)(x2―1)=2(x2―x1)(x1―1)(x2―1).因为1<x1<x2,所以x1-1>0,x2-1>0,x2-x1>0,所以2(x2―x1)(x1―1)(x2―1)>0,即u(x1)-u(x2)>0.在(1,+∞)上单调递减.所以u(x)=1+2x―1又因为y=lo g1u(x)在(0,+∞)上单调递减,2所以f(x)在(1,+∞)上单调递增.(3)解 f(x)>(12)x+m在[3,4]上恒成立,即m<f(x)-(12)x在[3,4]上恒成立,令g(x)=f(x)-(12)x.由(2)知f(x)在(1,+∞)上单调递增,所以g(x)在[3,4]上单调递增.所以g(x)min=g(3)=f(3)-(12)3=-98,所以m<-9,8即实数m的取值范围为(―∞,―98).。

北师大版高中数学必修一第四单元《函数应用》测试卷(含答案解析)

北师大版高中数学必修一第四单元《函数应用》测试卷(含答案解析)

一、选择题1.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞ B .(],2-∞- C .(),2-∞-D .()2,+∞ 2.已知函数()22020,0,,0,x x f x x x x <⎧=⎨-≥⎩若关于x 的方程()()21610f x kf x ++=有四个不同的实数根,则k 的取值范围为( )A .(4,)+∞B .(8,)+∞C .(,4)-∞-D .(,8)-∞- 3.已知函数()f x 满足(2)()f x f x +=,且其图像关于直线1x =对称,若()0f x =在[0,1] 内有且只有一个根12x =,则()0f x =在区间[0,2017] 内根的个数为( ) A .1006 B .1007 C .2016 D .2017 4.已知定义在[﹣2,2]上的函数y =f (x )和y =g (x ),其图象如图所示:给出下列四个命题:①方程f [g (x )]=0有且仅有6个根; ②方程f [f (x )]=0有且仅有5个根方程;③g [g (x )]=0有且仅有3个根 ;④方程g [f (x )]=0有且仅有4个根,其中正确命题的序号( )A .①②③B .②③④C .①②④D .①③④5.已知函数24,?0()7,?0x f x x x x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a的取值范围是( )A .(﹣4,0]B .(-∞,﹣9)C .(-∞,﹣9)(﹣4,0]D .(﹣9,0] 6.对任意实数a ,b 定义运算“”:,1,1b a b a b a a b -≥⎧=⎨-<⎩,设()()()214f x x x k =-++,若函数()f x 的图象与x 轴恰有三个交点,则k 的取值范围是( )A .[)2,1-B .[]0,1C .(]0,1D .()2,1-7.函数1,(0)()0,(0)x x f x x x ⎧+≠⎪=⎨⎪=⎩,关于x 的方程2()()0f x bf x c ++=有5个不等的实数根的充分必要条件是( )A .2b <-且0c >B .2b >-且0c <C .2b <-且0cD .2b ≥-且0c 8.已知一元二次方程210x mx ++=的两根都在()0,2内,则实数m 的取值范围是( ) A .5,22⎛⎤-- ⎥⎝⎦[)2,⋃+∞ B .5,22⎛⎫-- ⎪⎝⎭()2,⋃+∞ C .5,22⎛⎤-- ⎥⎝⎦ D .5,22⎛⎫-- ⎪⎝⎭9.若函数()f x 的图象是连续不断的,且(0)0f >,(1)(2)(4)0f f f <,则下列命题正确的是( ).A .函数()f x 在区间(0 , 1)内有零点B .函数()f x 在区间(1 , 2)内有零点C .函数()f x 在区间(0 , 2)内有零点D .函数()f x 在区间(0 , 4)内有零点10.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是( ) A .a<0 B .0<a< C . <a<1 D .a≤0或a>1 11.已知函数()f x 是定义在(,0)(0,)-∞+∞上的偶函数,当(0,)x ∈+∞时,2(1),02()1(2),22x x f x f x x ⎧-<≤⎪=⎨->⎪⎩,则函数2()8()6()1g x f x f x =-+的零点个数为( ) A .20 B .18 C .16 D .1412.用d (A )表示集合A 中的元素个数,若集合A ={0,1},B ={x |(x 2-ax )(x 2-ax +1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( ) A .3 B .2 C .1 D .4二、填空题13.已知函数()1,0ln ,0x x f x x x +≤⎧=⎨>⎩,则函数()1y f f x ⎡⎤=-⎣⎦的零点个数为______. 14.2018年8月31日,十三届全国人大常委会第五次会议表决通过了关于修改个人所得税法的决定,这是我国个人所得税法自1980年出台以来第七次大修.为了让纳税人尽早享受减税红利,在过渡期对纳税个人按照下表计算个人所得税,值得注意的是起征点变为5000元,即如表中“全月应纳税所得额”是纳税者的月薪金收入减去5000元后的余额.级数全月应纳税所得额 税率 1不超过3000元的部分 3% 2超过3000元至12000元的部分 10% 3 超过12000元至25000元的部分 20%⋯ ⋯⋯ 某企业员工今年10月份的月工资为15000元,则应缴纳的个人所得税为______元. 15.已知函数f(x)=若关于x 的方程f(x)=k 有三个不同的实根,则实数k的取值范围是________.16.若关于x 的方程2220x x m ---=有三个不相等的实数根,则实数m 的值为_______.17.函数()[]f x x =的函数值表示不超过x 的最大整数,如[1.6]=1,[2]=2,()[]g x x x =-.若方程1()log ()0(02a g x x a --=>,且1)a ≠有一个实根,则a 的取值范围为________.18.已知()14f x x=-,若存在区间[]()0a b ⊆+∞,,,使得()[]{}[]|y y f x x a b ma mb =∈=,,,.则实数m 的取值范围是__________.19.已知函数()3cos f x x x =-,若不等式()12f x kx b kx b +≤≤+对一切实数x 恒成立,则21b b -的最小值为__________.20.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________. 三、解答题21.设函数2()2||3f x x x =-+;(1)判断函数()f x 的奇偶性,并用定义证明你的结论;(2)画出()y f x =的图象;若方程()f x m =有3个不同的实数根,试写出这3个根.22.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数. (1)求(())f f e 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.23.已知函数(2),()(1),x x a x a f x a x x a -≥⎧=⎨-<⎩,其中a 为实数,且0a ≠. (1)当1a =-时,求函数()f x 的单调区间;(2)若方程()0f x =仅有一个实数根,求实数a 的取值范围.24.如图所示,ABCD 是一个矩形花坛,其中6AB =米,4=AD 米.现将矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求:B 在AM 上,D 在AN 上,对角线MN 过C 点,且矩形AMPN 的面积小于150平方米.(1)设AN 长为x 米,矩形AMPN 的面积为S 平方米,试用解析式将S 表示成x 的函数,并确定函数的定义域;(2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积.25.已知函数()y f x =为二次函数,()04f =,且关于x 的不等式()20f x -<的解集为{}12x x <<(1)求函数()f x 的解析式(2)若关于x 的方程()0f x m -=有一实根大于1,一实根小于1,求实数m 的取值范围 (3)已知()1g x x =+,若存在x 使()y f x =的图象在()y g x =图象的上方,求满足条件的实数x 的取值范围26.某企业生产一种机器的固定成本(即固定投入)为1万元,但每生产1百台又需可变成本(即需另增加投入)0.5万元,市场对此产品的年需求量为6百台(即一年最多卖出6百台),销售的收入(单位:万元)函数为21()43R x x x =-,其中x (单位:百台)是产品的年产量.(1)把利润表示为年产量的函数;(2)求年产量为多少时,企业所得利润最大;(3)求年产量为多少时,企业至少盈利3.5万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x =--,数形结合即可求解. 【详解】由2||10x a x ++=可得22111||||x x a x x x x ----===--, 令()1g x x x=-- , 若关于x 的方程2||10x a x ++=有4个不同的解,则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=,()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减, 所以()1g x x x =+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点, 由图知2a <-,故选:C【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.B解析:B【分析】设()f x t =,可得方程21610t kt ++=有两个不同的实数根214t <-,1104t -<<,再利用一元二次方程根的分布列不等式求解即可.【详解】作出()f x 的图象如图所示,设()f x t =,要使方程()()21610f x kf x ++=有四个不同的实数根,则方程()21610g t t kt =++=有两个不同的实数根1t ,2t .且()1f x t =有三个根,方程()2f x t =有一个根,由图可知,214t<- 1104t -<<. 设2()161g t t kt =++,则()10,400,g g ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪>⎩,解得8k >.故选:B.【点睛】函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.3.D解析:D【分析】由(2)()f x f x +=,以及()(2)f x f x -=+,进而推出()f x 为偶函数,且()f x 是周期等于2的周期函数,根据1()02f =,求出3()02f =,从而得到函数()f x 在一个周期的零点个数,且函数()f x 在每两个整数之间都有一个零点,从而得到()0f x =在区间[0,2017]内根的个数.【详解】解:函数()f x 满足(2)()f x f x +=,故函数()f x 是周期等于2的周期函数,其图象关于直线1x =对称,可得()(2)f x f x -=+,即有()()f x f x -=, 1()02f =, 1()02f ∴-=, 再由周期性得13(2)()022f f -+==, 故函数()f x 在一个周期[0,2]上有2个零点,即函数()f x 在每两个整数之间都有一个零点,()0f x ∴=在区间[0,2017]内根的个数为2017.故选:D .【点睛】利用函数的奇偶性与周期性相结合,求出函数在指定区间的零点个数,求解的关键在于周期性的应用.4.C解析:C【分析】函数y =f (x )的零点就是方程f (x )=0的根,借助函数的零点,结合函数的图象采用数形结合思想逐一判断即可.【详解】由图象可得﹣2≤g (x )≤2,﹣2≤f (x )≤2,①由于满足方程f [g (x )]=0 的g (x )有三个不同值,由于每个值g (x )对应了2个x 值,故满足f [g (x )]=0的x 值有6个,即方程f [g (x )]=0有且仅有6个根,故①正确;②由于满足方程f [f (x )]=0的f (x )有3个不同的值,从图中可知,一个f (x )等于0,一个f (x )∈(﹣2,﹣1),一个f (x )∈(1,2),而当f (x )=0对应了3个不同的x 值;当f (x )∈(﹣2,﹣1)时,只对应一个x 值;当f (x )∈(1,2)时,也只对应一个x 值.故满足方程f [f (x )]=0的x 值共有5个,故②正确;③由于满足方程g [g (x )]=0 的g (x )值有2个,而结合图象可得,每个g (x )值对应2个不同的x 值,故满足方程g [g (x )]=0 的x 值有4个,即方程g [g (x )]=0有且仅有4个根,故③不正确;④由于满足方程g [f (x )]=0的f (x )有2个不同的值,从图中可知,每一个值f (x ), 一个f (x )的值在(﹣2,﹣1)上,令一个f (x )的值在(0,1)上,当f (x )的值在(﹣2,﹣1)上时,原方程有一个解,f (x )的值在(0,1)上,原方程有3个解. 故满足方程g [f (x )]=0的x 值有4个,故④正确;故选:C .由于函数y =f (x )的零点就是方程f (x )=0的根,所以在研究方程的有关问题时,如比较方程根的大小、确定方程根的分布、证明根的存在性等,都可以将方程问题转化为函数问题解决,此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决. 5.C解析:C【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解.【详解】令()()0g x f x x a =+-=,得24,? 06,?0x x a xx x x ⎧+<⎪=⎨⎪-≥⎩, 令24,? 0,6,?0x x y a y xx x x ⎧+<⎪==⎨⎪-≥⎩, 在同一坐标系中,作出两个函数的图象,如图所示:因为()g x 存在两个零点,由图象可得:a <﹣9或﹣4<a ≤0,故选:C【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.6.A【分析】利用新定义化简()f x 解析式,做出()g x 的函数图象,根据图象即可得出k 的范围.【详解】解:有题意:21(4)1x x --+,解得:2x -或3x ,所以()24,(,2][3,)1,(2,3)x k x f x x k x ++∈-∞-⋃+∞⎧=⎨-+∈-⎩, 令()24,(,2][3,)1,(2,3)x x g x x x +∈-∞-⋃+∞⎧=⎨-∈-⎩画出()g x 的函数图象,如图:因为函数()f x 的图象与x 轴恰有三个交点,所以()y g x k =+有三个零点,由图可得:21k -<.故选:A .【点睛】本题考查根据零点个数求参数的范围,求解一元二次不等式,是中档题. 7.C解析:C【分析】首先根据题中所给的方程的根进行分析,得到五个根的情况,从而判断出0c ,之后利用()f x b =-有四个根,结合函数图象求得结果.【详解】 当0x =时()0f x =,当0x =为()()20f x bf x c ++=的一个根时可得0c.所以()()20f x bf x c ++=即()()20f x bf x +=有4个不同的根,()0f x ≠,()f x b ∴=-有4个根. 0x ≠时()11122f x x x x x x x =+=+≥=,图象如图所示:由图可知22b b ->⇒<-. 综上可得2,0b c <-=. 故选:C. 【点睛】该题考查的是有关根据函数零点的个数判断参数的取值范围的问题,充要条件的判断,在解题的过程中,注意数形结合思想的应用,属于中档题目.8.C解析:C 【分析】设()21f x x mx =++,根据二次函数零点分布可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】设()21f x x mx =++,则二次函数()21f x x mx =++的两个零点都在区间()0,2内,由题意()()2400220102250m m f f m ⎧∆=-≥⎪⎪<-<⎪⎨⎪=>⎪=+>⎪⎩,解得522m -<≤-. 因此,实数m 的取值范围是5,22⎛⎤-- ⎥⎝⎦.故选:C. 【点睛】本题考查利用二次方程根的分布求参数,一般分析对应二次函数图象的开口方向、判别式、对称轴以及端点函数值符号,考查分析问题和解决问题的能力,属于中等题.9.D解析:D 【解析】解:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,结合图象可得函数f (x )必在区间(0,4)内有零点因为f (0)>0,f (1)f (2)f (4)<0,则f(1),f (2),f (4)恰有一负两正或三个都是负的, 函数的图象与x 轴相交有多种可能,如图所示:所以函数f (x )必在区间(0,4)内有零点, 故选D .10.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2xx a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1 又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.11.C解析:C 【分析】解方程()0g x =,得1()2f x =或1()4f x =,作出()f x 的图象,由对称性只要作0x >的部分,观察()f x 的图象与直线12y =和直线14y =的交点的个数即得. 【详解】2()8()6()10g x f x f x =-+=,1()2f x ∴=或1()4f x = 根据函数解析式以及偶函数性质作()f x 图象, 当02x <≤时,()()21f x x =-.,是抛物线的一段, 当(]()()12,2,22,1,2,3,,22时,>∈+=⋯=-x x k k k f x f x ,是由(]22,2,∈-x k k 的图象向右平移2个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出y 轴右侧的图象,根据对称轴可得y 左侧的结论,6x >时,1()8f x ≤,()y f x =的图象与直线12y =和14y =的交点个数,分别有3个和5个,∴函数g(x)的零点个数为2(35)16⨯+=, 故选:C .【点睛】本题考查函数零点个数,解题方法是数形结合思想方法,把函数零点个数转化为函数图象与直线交点个数,由图象易得结论.12.A解析:A 【分析】根据题设条件,可判断出d (B )的值为1或3,然后研究(x 2﹣ax )(x 2﹣ax +1)=0的根的情况,分类讨论出a 可能的取值. 【详解】解:由题意,|d (A )-d (B )|=1,d (A )=2,可得d (B )的值为1或3若d (B )=1,则x 2-ax=0仅有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,符合题意 若d (B )=3,则x 2-ax=0有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,不合题意 故x 2-ax=0有二根,一根是0,另一根是a ,所以x 2-ax+1=0必仅有一根,所以△=a 2-4=0,解得a=±2此时x 2-ax+1=0为1或-1,符合题意综上实数a 的所有可能取值构成集合M={0,-2,2},故d (M )=3. 故选:A . 【点睛】本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.二、填空题13.【分析】先由可求得的值再由和两种情况结合的值可求得的值即可得解【详解】下面先解方程得出的值(1)当时可得可得;(2)当时可得可得或下面解方程和①当时由可得由可得(舍去)由可得;②当时由可得由可得或由 解析:7【分析】先由()10f f x ⎡⎤-=⎣⎦可求得()f x 的值,再由0x ≤和0x >两种情况结合()f x 的值,可求得x 的值,即可得解. 【详解】下面先解方程()10f f x ⎡⎤-=⎣⎦得出()f x 的值.(1)当()0f x ≤时,可得()()1110f f x f x -=+-=⎡⎤⎣⎦,可得()0f x =; (2)当()0f x >时,可得()()1ln 10f f x f x -=-=⎡⎤⎣⎦,可得()f x e =或()1f x e=. 下面解方程()0f x =、()f x e =和()1f x e=. ①当0x ≤时,由()10f x x =+=可得1x =-,由()1f x x e =+=可得1x e =-(舍去),由()11f x x e =+=可得11x e=-; ②当0x >时,由()ln 0f x x ==可得1x =,由()1ln f x x e==可得1e x e =或1e x e-=,由()ln f x x e ==可得e x e =或e x e -=.综上所述,函数()1y f f x =-⎡⎤⎣⎦的零点个数为7. 故答案为:7. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.14.790【分析】结合题意可得企业员工今年10月份的月工资为15000元个人所得税属于2级可得应缴纳的个人所得税为计算即可【详解】结合题意可得企业员工今年10月份的月工资为15000元个人所得税属于2级解析:790 【分析】结合题意可得企业员工今年10月份的月工资为15000元,个人所得税属于2级,可得应缴纳的个人所得税为()150005000300010%30003%--⨯+⨯,计算即可. 【详解】结合题意可得企业员工今年10月份的月工资为15000元,个人所得税属于2级, 则应缴纳的个人所得税为()150005000300010%30003%70090790--⨯+⨯=+=元故答案为790 【点睛】本题考查了函数模型的选择与应用,属于基础题.15.【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点画出函数的图象然后结合图象求解即可【详解】关于x 的方程f(x)=k 有三个不同的实根等价于函数y=f(x)的图象与函数y =k 的图象有三个 解析:()1,0-【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点,画出函数()y f x =的图象,然后结合图象求解即可. 【详解】关于x 的方程f(x)=k 有三个不同的实根,等价于函数y=f(x)的图象与函数y =k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0). 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.16.3【解析】令则由题意可得函数与函数的图象有三个公共点画出函数的图象如图所示结合图象可得要使两函数的图象有三个公共点则答案:3解析:3 【解析】令()222f x x x =--,则由题意可得函数()y f x =与函数y m =的图象有三个公共点.画出函数()222f x x x =--的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则3m =. 答案:317.1)∪(1)∪(【分析】方程且有一个实根等价于函数的图象有一个交点画出函数的图象根据函数的性质分类讨论进行求解即可【详解】方程且有一个实根等价于函数的图象有一个交点画出函数的图象如下图所示:函数的定解析:[12,1) ∪(1,32)∪ (52,72] 【分析】方程1()log ()0(02a g x x a --=>,且1)a ≠有一个实根等价于函数1(),log ()2a y g x y x ==-的图象有一个交点,画出函数()y g x =的图象,根据函数1log ()2a y x =-的性质分类讨论进行求解即可.【详解】方程1()log ()0(02a g x x a --=>,且1)a ≠有一个实根等价于函数1(),()log ()2a y g x y h x x ===-的图象有一个交点,画出函数()y g x =的图象,如下图所示:函数1()log ()2a y h x x ==-的定义域为1(,)2+∞,且恒过定点3(,0)2.当01a <<时,当(1)1h ≥时,函数1(),()log ()2a y g x y h x x ===-的图象有一个交点,解得12a ≥,所以有112a ≤<;当1a >时,要想函数1(),()log ()2a y g x y h x x ===-的图象有一个交点,只需满足:(2)1h ≥或(3)1(4)1h h <⎧⎨≥⎩,解得(1,32)或 (52,72],综上所述:a 的取值范围为[12,1) ∪(1,32)∪ (52,72]. 故答案为:[12,1) ∪(1,32)∪ (52,72] 【点睛】本题考查了已知方程根的情况求参数取值范围问题,考查了数形结合思想和转化思想,考查了数学运算能力.18.【分析】依题意在上单调增则(a )(b )从而可得必须有两个不相等的正根利用该方程有二异正根的条件即可求得实数的取值范围【详解】在是增函数在上值域为(a )(b )所以(a )且(b )即且所以且所以必须有两个 解析:(0,4)【分析】 依题意,1()4f x x=-在[a ,]b 上单调增,则f (a )ma =,f (b )mb =,从而可得210mx x -+=必须有两个不相等的正根,利用该方程有二异正根的条件即可求得实数m 的取值范围.【详解】 1()4f x x=-在(0,)+∞是增函数, ()f x ∴在[x a ∈,]b 上值域为[f (a ),f (b )]所以f (a )ma =且f (b )mb =, 即14ma a-=且14mb b -=,所以2410ma a -+=且2410mb b -+=,所以2410mx x -+=必须有两个不相等的正根,故0m ≠,∴40101640m mm ⎧>⎪⎪⎪>⎨⎪=->⎪⎪⎩,解得04m <<. ∴实数m 的取值范围是(0,4).故答案为:(0,4). 【点睛】本题主要考查函数单调性的性质,着重考查二次函数根的分布问题,将所求的问题转化为210mx x -+=必须有两个不相等的正根是关键,属于中档题.19.2【分析】根据恒成立可知同理得出故的最小值为2【详解】由恒成立可得即恒成立而且为周期函数故且同理可得的最小值为故答案为:2【点睛】本题主要考查函数的性质考查不等式恒成立考查分析问题和解决问题的能力考解析:2 【分析】根据23cos x x kx b ≤+-恒成立可知21b ≥,同理得出11b ≤-,故21b b -的最小值为2. 【详解】由2()f x kx b ≤+恒成立,可得23cos x x kx b ≤+-,即2cos 3)(k x x b --≤+恒成立, 而1cos 1x -≤-≤,且cos y x =-为周期函数,故30k -=,且21b ≥,同理可得11b ≤-,∴21b b -的最小值为1(1)2--=.故答案为:2. 【点睛】本题主要考查函数的性质,考查不等式恒成立,考查分析问题和解决问题的能力,考查学生的逻辑推理能力.20.(-∞-)【分析】方程有两个大于的根据此可以列出不等式组求得m 的取值范围即可【详解】解:根据题意m 应当满足条件即:解得:实数m 的取值范围:(-∞-)故答案为:(-∞-)【点睛】本题考查根的判别式及根解析:(-∞,-12) 【分析】方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可. 【详解】解:根据题意,m 应当满足条件2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-, 实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题.三、解答题21.(1)偶函数,证明见解析;(2)画图见解析;2-,0,2. 【分析】(1)根据偶函数的定义计算()f x -与()f x 比较即可判断证明()f x 的奇偶性; (2)作出()y f x =在()0,∞+上的图象,利用奇偶性即可得(),0-∞的图象,由图能判断3m =,再解方程即可. 【详解】(1)()f x 为偶函数,证明如下: ()f x 的定义域为R 关于原点对称;22()()2||32||3()f x x x x x f x -=---+=-+=,所以()f x 为偶函数.(2)22223,0()2323,0x x x f x x x x x x ⎧--≥=-+=⎨+-<⎩,图象如图所示:若方程()f x m =有3个不同的实数根,由图知:3m =; 当0x ≥时,2233x x -+=,解得120,2x x ==; 当0x <时,2233x x ++=,解得32x =-, 所以()f x m =的解为2-,0,2 【点睛】关键点点睛:本题的关键点是根据函数是偶函数结合二次函数的性质正确作出函数图象,由图能判断3m =,再解方程即可.22.(1)(())1f f e =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(11e >,所以1()2f e ln e ==,所以1(())()12f f e f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e . (3)根据题意,012x ,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x 时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x .当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个.【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.23.(1)函数()f x 的单调减区间为(],1-∞-,增区间()1,-+∞;(2)1a ≤且0a ≠.【分析】(1)当1a =-时,(2),1()(1),1x x x f x x x +≥-⎧=⎨--<-⎩,进而可得函数的单调区间; (2)令()0f x =,分别解出x ,由方程()0f x =仅有一个实数根,列出不等式解出实数a 的取值范围.【详解】(1)当1a =-时,(2),1()(1),1x x x f x x x +≥-⎧=⎨--<-⎩, 则函数()f x 的单调减区间为(],1-∞-,增区间()1,-+∞;(2)令()0f x =,当x a ≥时,解得0x =或2x a =;当x a <时,解得1x =;方程()0f x =仅有一个实数根,则021a a a a ≤⎧⎪<⎨⎪≤⎩或021a a a a >⎧⎪≥⎨⎪≤⎩或021a a a a >⎧⎪<⎨⎪>⎩,解得1a ≤且0a ≠.【点睛】方法点睛:本题考查分段函数的单调性,考查函数与方程思想,关于分段函数的理解,需要有:分段函数是指自变量在两个或两个以上不同的范围,有不同的对应法则的函数; 分段函数是一个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集.24.(1)264x S x =-,()5,20x ∈;(2)8AN =,96. 【详解】(1)由NDC NAM ∆~∆可得,466,4x x AM x AM x -=⇒=-,∴264x S x =-. 由4x >,且261504x S x =<-,解得520x <<, ∴函数的定义域为()5,20.(2)令4x t -=,则()1,16t ∈,()22646166868964t x S t x t t ⎛⎫+⎛⎫===++≥= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当且仅当4t =时,S 取最小值96,故当AN 的长度为8米时,矩形花坛AMPN 的面积最小,最小面积为96平方米.考点:1.分式不等式;2.均值不等式.25.(1)2()34f x x x =-+;(2)(2,)+∞;(3)(,1)(3,)-∞+∞【分析】(1)根据题意,设出()f x 的解析式,根据题中条件,求得对应的参数,得到结果; (2)利用一元二次方程根的分布,列出对应的不等式,求得结果;(3)根据题中所给的条件,列出对应的不等式,求得结果.【详解】(1)由已知可设2()(0)f x ax bx c a =++≠,因为()04f =,所以4c =,因为()20f x -<,即220ax bx ++<的解集为{}12x x <<,所以1x =与2x =是方程220ax bx ++=的两根, 则由韦达定理可知12212b a a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩,解得13a b =⎧⎨=-⎩, 所以2()34f x x x =-+;(2)令234()()h x f x m x x m --=+=-, 若()0h x =有一实根大于1,一实根小于1,则(1)20h m =-<,解得2m >,故实数m 的取值范围是:(2,)+∞;(3)若存在x 使()y f x =的图象在()y g x =图象的上方,则存在x 使()()f x g x >,即2341x x x -+>+,即2430x x -+>,所以(1)(3)0x x -->,解得1x <或3x >,故满足条件的实数x 的取值范围是:(,1)(3,)-∞+∞.【点睛】该题考查的是有关二次函数以及一元二次不等式的问题,在解题的过程中,涉及到的知识点有二次函数解析式的求法,一元二次方程根的分布,一元二次不等式的解法,属于简单题目. 26.(1)21 3.51(06)3110.5(6)x x x y xx ⎧-+-≤≤⎪=⎨⎪->⎩;(2)生产525台;(3)年产量在150台到1500台时,企业至少盈利3.5万元.【分析】(1)用收入减去可变成本0.5x 万元和固定成本1万元即得利润函数,注意6x >时,只能卖了同6百台;(2)分段求出最大值,比较后可得;(3)解不等式 3.5y ≥可得.【详解】解:(1)设利润为y 万元.生产这种机器的固定成本为1万元,每生产1百台,需另增加投入0.5万元, ∴当产量为x 百台时,成本为10.5x +,市场对此产品的年需求量为6百台,∴当6x ≤时,产品能售出x 百台,6x >时,只能售出6百台,故利润函数为()10.5(06)(6)10.5(6)R x x x y R x x --≤≤⎧=⎨-->⎩, 整理可得21 3.51(06)3110.5(6)x x x y xx ⎧-+-≤≤⎪=⎨⎪->⎩. (2)当06x ≤≤时,21 3.513y x x =-+-, 即 3.5 5.25123x =-=⎛⎫⨯- ⎪⎝⎭时,max 8.1875y =万元; 当6x >时,110.5y x =-,利润在110.568-⨯=万元以下,故生产525台时,企业所得利润最大,最大利润为8.1875万元.(3)要使企业至少盈利3.5万元,则 3.5y ≥,当06x ≤≤时,21 3.51 3.53y x x =-+-≥, 即210.513.50x x -+≥,解得1.59x ≤≤,故1.56x ≤≤;当6x >时,110.5 3.5y x =-≥,解得15x ≤,即615x <≤,综上可知1.515x ≤≤,即年产量在150台到1500台时,企业至少盈利3.5万元.【点睛】本题考查函数的应用,根据已知条件,由利润=收入-成本得利润函数,在此基础上可求解其他问题.本题属于基础题.。

2024-2025年北师大版数学必修第一册第一章单元质量评估卷(带答案)

2024-2025年北师大版数学必修第一册第一章单元质量评估卷(带答案)

第一章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|x 2-1=0},则下列结论错误..的是( ) A .1∈A B .{-1} A C .∅⊇A D .{-1,1}=A2.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”.其名篇“但使龙城飞将在,不教胡马度阴山”(人在阵地在,人不在阵地在不在不知道),由此推断,胡马度过阴山是龙城飞将不在的什么条件?( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知集合M ={x|x(x -2)<0},N ={x|x -1<0},则下列Venn 图中阴影部分可以表示集合{x|1≤x<2}的是( )4.已知命题p :∃x ,y ∈Z ,2x +4y =3,则( ) A.p 是假命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 B.p 是假命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 C.p 是真命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 D.p 是真命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 5.已知a <0,-1<b <0,则( ) A.-a <ab <0 B .-a >ab >0C.a >ab >ab 2 D .ab >a >ab 26.已知集合A ={x |x 2+x -2≤0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +1x -2≥0 ,则A ∩(∁R B )=( ) A.(-1,2) B .(-1,1) C.(-1,2] D .(-1,1]7.“关于x 的不等式x 2-2ax +a >0的解集为R ”的一个必要不充分条件是( )A.0<a <1 B .0<a <13C.0≤a ≤1 D.a <0或a >138.若正数a ,b 满足2a +1b =1,则2a+b 的最小值为( )A.42 B .82 C.8 D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.有下列命题中,真命题有( )A.∃x ∈N *,使x 为29的约数B.∀x ∈R ,x 2+x +2>0C.存在锐角α,sin α=1.5D.已知A ={a |a =2n },B ={b |b =3m },则对于任意的n ,m ∈N *,都有A ∩B =∅10.已知1a <1b<0,下列结论中正确的是( )A.a <b B .a +b <ab C.|a |>|b | D .ab <b 211.若对任意x ∈A ,1x∈A ,则称A 为“影子关系”集合,下列集合为“影子关系”集合的是( )A.{-1,1} B .⎩⎨⎧⎭⎬⎫12,2 C.{}x |x 2>1 D .{x |x >0}12.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为x =1,点B 坐标为(-1,0),则下面结论中正确的是( )A.2a +b =0B.4a -2b +c <0C.b 2-4ac >0D.当y <0时,x <-1或x >4第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.不等式-x 2+6x -8>0的解集为________.14.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7 000万元,则x 的最小值为________.15.若1a +1b =12(a >0,b >0),则4a +b +1的最小值为________.16.已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对(A ,B )叫作有序集合对,则有序集合对(A ,B )的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |1<x <2},B ={x |m -2<x <2m }. (1)当m =2时,求A ∩B ;(2)若________,求实数m 的取值范围.请从①∀x ∈A 且x ∉B ;②“x ∈B ”是“x ∈A ”的必要条件;这两个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)已知p :x 2-3x -4≤0;q :x 2-6x +9-m 2≤0,若p 是q 的充分条件,求m 的取值范围.19.(本小题满分12分)已知函数f (x )=ax 2+bx ,a ∈(0,1).(1)若f (1)=2,求1a +4b的最小值;(2)若f (1)=-1,求关于x 的不等式f (x )+1>0的解集.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为y =x 2-40x +1 600,x ∈[30,50],已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合A ={x |x 2+2x -8<0},B ={x ||x +2|>3},C ={x |x2-2mx +m 2-1<0,m ∈R }.(1)若A ∩C =∅,求实数m 的取值范围. (2)若(A ∩B )⊆C ,求实数m 的取值范围.22.(本小题满分12分)已知x >0,y >0,2xy =x +4y +a . (1)当a =16时,求xy 的最小值;(2)当a =0时,求x +y +2x +12y的最小值.第一章 单元质量评估卷1.答案:C解析:因为A ={x |x 2-1=0}={-1,1},所以选项A ,B ,D 均正确,C 不正确. 2.答案:A解析:因为人在阵地在,所以胡马度过阴山说明龙城飞将不在,因为人不在阵地在不在不知道,所以龙城飞将不在,不能确定胡马是否度过阴山,所以胡马度过阴山是龙城飞将不在的充分条件,结合选项,可得A 正确.3.答案:B解析:x (x -2)<0⇒0<x <2,x -1<0⇒x <1,选项A 中Venn 图中阴影部分表示M ∩N =(0,1),不符合题意;选项B 中Venn 图中阴影部分表示∁M (M ∩N )=[1,2),符合题意;选项C 中Venn 图中阴影部分表示∁N (M ∩N )=(-∞,0],不符合题意;选项D 中Venn 图中阴影部分表示M ∪N =(-∞,2),不符合题意.故选B.4.答案:A解析:由于x ,y 是整数,2x +4y 是偶数,所以p 是假命题.原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以p 的否定是“∀x ,y ∈Z ,2x +4y ≠3”.故选A.5.答案:B解析:∵a <0,-1<b <0,∴ab >0,a <ab 2<0,故A ,C ,D 都不正确,正确答案为B.6.答案:D解析:由x 2+x -2≤0,得-2≤x ≤1,∴A =[-2,1].由x +1x -2≥0,得x ≤-1或x >2,∴B =(-∞,-1]∪(2,+∞).则∁R B =(-1,2],∴A ∩(∁R B )=(-1,1].故选D.7.答案:C解析:因为关于x 的不等式x 2-2ax +a >0的解集为R ,所以函数f (x )=x 2-2ax +a 的图象始终落在x 轴的上方,即Δ=4a 2-4a <0,解得0<a <1,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,故选C.8.答案:D解析:∵a >0,b >0,且2a +1b =1,则2a+b =⎝ ⎛⎭⎪⎫2a +b ⎝ ⎛⎭⎪⎫2a +1b =5+2ab+2ab ≥5+4=9,当且仅当2ab =2ab 即a =13,b =3时取等号,故选D.9.答案:AB解析:A 中命题为真命题.当x =1时,x 为29的约数成立;B 中命题是真命题.x 2+x +2=⎝ ⎛⎭⎪⎫x +12 2+74 >0恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0<sin α<1;D 中命题为假命题.易知6∈A ,6∈B ,故A ∩B ≠∅.10.答案:BD解析:因为1a <1b<0,所以b <a <0,故A 错误;因为b <a <0,所以a +b <0,ab >0,所以a +b <ab ,故B 正确;因为b <a <0,所以|a |>|b |不成立,故C 错误;ab -b 2=b (a -b ),因为b <a <0,所以a -b >0,即ab -b 2=b (a -b )<0,所以ab <b 2成立,故D正确.故选BD.11.答案:ABD解析:根据“影子关系”集合的定义,可知{-1,1},⎩⎨⎧⎭⎬⎫12,2 ,{x |x >0}为“影子关系”集合,由{x |x 2>1},得{x |x <-1或x >1},当x =2时,12 ∉{x |x 2>1},故不是“影子关系”集合.故选ABD.12.答案:ABC解析:∵二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为x =1,∴-b2a =1,得2a +b=0,故A 正确;当x =-2时,y =4a -2b +c <0,故B 正确;该函数图象与x 轴有两个交点,则b 2-4ac >0,故C 正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴为x =1,点B 的坐标为(-1,0),∴点A 的坐标为(3,0),∴当y <0时,x <-1或x >3,故D 错误.故选ABC.13.答案:(2,4)(或写成{x |2<x <4}) 解析:原不等式等价于x 2-6x +8<0, 即(x -2)(x -4)<0,得2<x <4. 14.答案:20解析:把一月份至十月份的销售额相加求和,列出不等式,求解. 七月份:500(1+x %),八月份:500(1+x %)2. 所以一月份至十月份的销售总额为:3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-2.2(舍)或1+x %≥1.2,所以x min =20. 15.答案:19解析:由1a +1b =12 ,得2a +2b=1,4a +b +1=(4a +b )⎝ ⎛⎭⎪⎫2a +2b +1=8+2+8a b +2b a+1≥11+28a b ·2ba=19.当且仅当8a b =2ba,即a =3,b =6时,4a +b +1取得最小值19.16.答案:(1){6} (2)32解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6∉B ,故A ={6}. (2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个;当集合A 中有2个元素时,5∉B ,2∉A ,此时有序集合对(A ,B )有5个;当集合A中有3个元素时,4∉B ,3∉A ,此时有序集合对(A ,B )有10个;当集合A 中有4个元素时,3∉B ,4∉A ,此时有序集合对(A ,B )有10个;当集合A 中有5个元素时,2∉B ,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个.综上,可知有序集合对(A ,B )的个数是1+5+10+10+5+1=32.17.解析:(1)当m =2时,B ={x |0<x <4}, 所以A ∩B ={x |1<x <2}. (2)若选择条件①,由∀x ∈A 且x ∉B 得:A ∩B =∅, 当B =∅时,m -2≥2m ,即m ≤-2; 当B ≠∅时,m -2<2m ,即m >-2m -2≥2或2m ≤1,即m ≥4或m ≤12 , 所以m ≥4或-2<m ≤12,综上所述:m 的取值范围为:m ≥4或m ≤12.若选择条件②,由“x ∈B ”是“x ∈A ”的必要条件得:A ⊆B,即⎩⎪⎨⎪⎧m -2≤12m ≥2 ,所以1≤m ≤3. 18.解析:由x 2-3x -4≤0,解得-1≤x ≤4, 由x 2-6x +9-m 2≤0,可得[x -(3+m )][x -(3-m )]≤0,① 当m =0时,①式的解集为{x |x =3};当m <0时,①式的解集为{x |3+m ≤x ≤3-m }; 当m >0时,①式的解集为{x |3-m ≤x ≤3+m };若p 是q 的充分条件,则集合{x |-1≤x ≤4}是①式解集的子集.可得⎩⎪⎨⎪⎧m <0,3+m ≤-1,3-m ≥4 或⎩⎪⎨⎪⎧m >0,3-m ≤-1,3+m ≥4,解得m ≤-4或m ≥4.故m 的取值范围是(-∞,-4]∪[4,+∞). 19.解析:(1)由f (1)=2可得:a +b =2, 因为a ∈(0,1),所以2-b ∈(0,1)⇒1<b <2,所以1a +4b =12 ×(a +b )⎝ ⎛⎭⎪⎫1a +4b =12 ×⎝ ⎛⎭⎪⎫1+4+b a +4a b ≥12 ×⎝ ⎛⎭⎪⎫5+2b a ·4a b =92,当且仅当b a =4a b 时取等号,即当且仅当a =23 ,b =43 时取得最小值为92.(2)由f (1)=-1可得:a +b =-1, 则f (x )+1>0化为:ax 2-(a +1)x +1=(ax -1)(x -1)>0,因为0<a <1,所以1a>1,则解不等式可得x >1a或x <1,则不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1a或x <1 .20.解析:(1)当x ∈[30,50]时,设该工厂获利为S 万元,则S =20x -(x 2-40x +1 600)=-(x -30)2-700,所以当x ∈[30,50]时,S 的最大值为-700,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题知,二氧化碳的平均处理成本P =y x=x +1 600x-40,x ∈[30,50],当x ∈[30,50]时,P =x +1 600x-40≥2x ·1 600x-40=40,当且仅当x =1 600x,即x =40时等号成立,所以当处理量为40吨时,每吨的平均处理成本最少.21.解析:(1)由已知可得A ={x |-4<x <2},B ={x |x <-5或x >1},C ={x |m -1<x <m +1}.若A ∩C =∅,则m -1≥2或m +1≤-4, 解得m ≥3或m ≤-5.所以实数m 的取值范围为{m |m ≤-5或m ≥3}. (2)结合(1)可得A ∩B ={x |1<x <2}.若(A ∩B )⊆C ,即{x |1<x <2}⊆{x |m -1<x <m +1}, 则⎩⎪⎨⎪⎧m -1≤1m +1≥2,解得1≤m ≤2.所以实数m 的取值范围为{m |1≤m ≤2}.22.解析:(1)当a =16时,2xy =x +4y +16≥2x ·4y +16=4xy +16, 即2xy ≥4xy +16, 即(xy +2)(xy -4)≥0, 所以xy ≥4,即xy ≥16,当且仅当x =4y =8时等号成立, 所以xy 的最小值为16.(2)当a =0时,2xy =x +4y ,即12y +2x=1,所以x+y+2x+12y=x+y+1=(x+y)⎝⎛⎭⎪⎫2x+12y+1=72+2yx+x2y≥72+22yx·x2y=112,当且仅当2yx=x2y,即x=3,y=32时等号成立,所以x+y+2x+12y的最小值为112.。

北师大版高中数学必修一第四单元《函数应用》测试卷(包含答案解析)

北师大版高中数学必修一第四单元《函数应用》测试卷(包含答案解析)

一、选择题1.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞B .(],2-∞-C .(),2-∞-D .()2,+∞2.已知1,0()1,0ax x f x x x x +≤⎧⎪=⎨->⎪⎩,则下列关于[()]1y f f x =+的零点的判断正确的是( ) A .当0a >时,有4个零点,当0a <时,有1个零点; B .当0a >时,有3个零点,当0a <时,有2个零点; C .无论a 为何值,均有2个零点; D .无论a 为何值,均有4个零点.3.已知函数()102xx f x =+-的零点为a ,()()lg 13g x x x =-+-的零点为b ,则a b +=( )A .1B .2C .3D .44.已知方程923310x x k -⋅+-=有两个实根,则实数k 的取值范围为( ) A .2,13⎡⎤⎢⎥⎣⎦B .12,33⎛⎤ ⎥⎝⎦C .2,3⎡⎫+∞⎪⎢⎣⎭D .[1,)+∞5.渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上船后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼会很快失去新鲜度.已知某种鱼失去的新鲜度h 与其出水后时间t (分)满足的函数关系式为t h m a =⋅.若出水后10分钟,这种鱼失去的新鲜度为10%,出水后20分钟,这种鱼失去的新鲜度为20%.那么若不及时处理,打上来的这种鱼在多长时间后开始失去全部新鲜度(已知lg 20.3≈,结果取整数)( )A .33分钟B .43分钟C .50分钟D .56分钟6.定义在R 上的奇函数f (x )满足条件(1)(1)f x f x +=-,当x ∈[0,1]时,f (x )=x ,若函数g (x )=()f x -a e -在区间2018,[]2018-上有4 032个零点,则实数a 的取值范围是 A .(0,1) B .(e ,e 3) C .(e ,e 2)D .(1,e 3)7.设函数11,(,2)(){1(2),[2,)2x x f x f x x --∈-∞=-∈+∞,则函数()()1F x xf x =-的零点的个数为( ) A .4 B .5 C .6 D .78.已知方程2mx e x =在(]0,8上有两个不等的实数根,则实数m 的取值范围为( )A .1ln 2,84⎛⎫ ⎪⎝⎭B .1ln 2,164⎡⎫⎪⎢⎣⎭C .3ln 22,4e ⎡⎫⎪⎢⎣⎭ D .122,4n e ⎡⎫⎪⎢⎣⎭9.若直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数()y f x =的图象上;②P 、Q 关于原点对称,则称点对[]P Q 、是函数()y f x =的一对“友好点对”(点对[]P Q 、与[]Q P 、看作同一对“友好点对”).已知函数22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,则此函数的“友好点对”有( ) A .4对 B .3对 C .2对 D .1对10.设一元二次方程210mx m -++=的两个实根为1x ,2x ,则2212x x +的最小值为( ) A .178-B .154C .1D .411.某高校为提升科研能力,计划逐年加大科研经费投人.若该高校2018年全年投入科研经费1300万元,在此基础上,每年投人的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.120.05≈,lg1.30.11≈,lg 20.30≈)( )A .2020年B .2021年C .2022年D .2023年12.用d (A )表示集合A 中的元素个数,若集合A ={0,1},B ={x |(x 2-ax )(x 2-ax +1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( ) A .3B .2C .1D .4二、填空题13.在用二分法求方程3210x x --=的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________.14.已知函数()y f x =,x ∈R 满足:对任意的x ∈R ,()()22f x f x +=-,且当[]0,2x ∈时,()1|1|f x x =--.函数()()4g x k x =+,x ∈R .若函数()()y f x g x =-在区间[]6,8-上共有5个不同的零点,则实数k 的取值范围是________.15.若关于x 的方程()4230x x f x k k =-⋅++=只有一个实数解,则实数k 的取值范围是______.16.已知函数()21f x ax =-+有两个零点,则实数a 的取值范围是________.17.关于x 的方程()142650xx k k k +⋅-⋅+-=在区间[0]1,上有解,则实数k 的取值范围是________.18.若关于x 的方程2220x x m ---=有三个不相等的实数根,则实数m 的值为_______.19.已知函数(),0ln ,0x e x f x x x ⎧≤⎪=⎨>⎪⎩,若方程()f x x m =+有两个不同根,则实数m 的最小值为______.20.若函数()231f x x x a x =+--恰有4个零点,则实数a 的取值范围为______.三、解答题21.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本()f x (元)与月处理量x (吨)之间的函数关系可近似地表示为()21100400004f x x x =-+. (1)写出自变量x 的取值范围;(2)为使每吨平均处理成本最低(如处理400吨垃圾时每吨垃圾平均处理成本为()400400f ),该厂每月处理量垃圾应为多少吨? 22.随着科技的发展,智能手机已经开始逐步取代传统PC 渗透进入了人们娱乐生活的各个方面,我们的生活已经步入移动互联网时代.2020年,某手机企业计划将某项新技术应用到手机生产中去,为了研究市场的反应,计划用一年时间进行试产、试销.通过市场分析,生产此款手机全年需投入固定成本280万,每生产x (千部)手机,需另投入成本()C x 万元,且210200,050()100008019450,50.x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?23.科学家发现一种可与污染液体发生化学反应的药剂,实验表明每投a (14a ≤≤且a R ∈)个单位的药剂,它在水中释放的浓度y (克/升)随着时间x (小时)化的函数关系式近似为()y a f x =⋅,其中()161,04815,4102x xf x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间能持续多久?(2)若第一次投放2个单位的药剂,6小时后再投放1个单位的药剂,则在接下来的4小时内,什么时刻,水中药剂的浓度达到最小值?最小值为多少?24.宜城市流水镇是全国闻名的西瓜基地,流水西瓜含糖量高,口感好,多次入选全国农博会并获金奖,畅销全国12省百余个大中城市.实践证明西瓜的产量和品质与施肥关系极大,现研究发现该镇礼品瓜“金皇后”的每亩产量L (单位:百斤)与施用肥料x (单位:百斤)满足如下关系:238(2),02()603,312x x L x x x x ⎧+<≤⎪⎪=⎨⎪<≤⎪+⎩,肥料成本投入为5x (单位:百元),其它成本投入为10x (单位:百元).已知“金皇后”的市场批发价为2元/斤,且销路畅通供不应求,记每亩“金皇后”的利润为()f x (单位:百元). (1)求()f x 的函数关系式;(2)当施用肥料为多少斤时,每亩“金皇后”的利润最大,最大利润是多少元?1.414≈).25.已知二次函数()2441f x kx kx k =-++.(1)若12,x x 是()f x 的两个不同零点,是否存在实数k ,使()()121211224x x x x ++=成立?若存在,求k 的值;若不存在,请说明理由.(2)设1k =-,函数()()28,048,0f x x t x g x x x t x ⎧--<=⎨--≥⎩,存在3个零点.(i)求t 的取值范围;(ii)设,m n 分别是这3个零点中的最小值与最大值,求n m -的最大值.26.定义在R 上的函数()f x 满足()00f ≠,且当0x >时,()1f x >,对任意a b ,∈R ,均有()()()f a b f a f b +=⋅.(1)求证:()01f =;(2)求证:对任意x ∈R ,恒有()0f x >; (3)求证:()f x 是R 上的增函数;(4)若()()221f x f x x ⋅->,求x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x=--,数形结合即可求解. 【详解】由2||10x a x ++=可得22111||||x x a x x x x----===--,令()1g x x x=--, 若关于x 的方程2||10x a x ++=有4个不同的解, 则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=, ()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减, 所以()1g x x x=+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点, 由图知2a <-, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.A解析:A 【分析】按0a >和0a <分类讨论[()]1y f f x =+的零点个数,即确定[()]10f f x +=的解的个数,可得正确选项. 【详解】0x >时,1()f x x x=-是增函数,()(,)f x ∈-∞+∞,此时()f x m =对任意m R ∈均有一解.0x ≤时,若0a >,()1f x ax =+是增函数,()(,1]f x ∈-∞,此时()f x m =在1m 时有一解,1m 时无解,若0a <,()1f x ax =+是减函数,()[1,)f x ∈+∞,此时()f x m =在m 1≥时有一解,1m <时无解,由[())10f f x +=得[()]1f f x =-,设()1f t =-,则0a >时,()1f t =-的解为2t a =-和t =,20a-<,01<<,因此2()f x a =-有两解,()f x =4解.0a <时,()1f t =-只有一解112t =<,1()2f x =只有一解, ∴函数[()]1y f f x =+在0a >时,有4个零点,当0a <时,有1个零点. 故选:A . 【点睛】关键点点睛:本题考查函数的零点,解题方法是转化与化归思想,转化为方程[()]10f f x +=的解.通过换元法,先求得()1f t =-的解,若0t 是其解,再求0()f x t =的解,从而得出结论.3.C解析:C 【分析】设()()1lg 2h x g x x x =+=+-,可知函数()h x 的零点为1b -,令()0f x =,可得出102x x =-,令()0h x =可得出lg 2x x =-,在同一平面直角坐标系中作出函数10x y =、lg y x =、y x =、2y x =-的图象,利用函数10x y =、lg y x =的图象关于直线y x =的对称,并求出直线y x =、2y x =-的交点坐标,进而可求得+a b 的值. 【详解】设()()1lg 2h x g x x x =+=+-,由于函数()()lg 13g x x x =-+-的零点为b ,则函数()h x 的零点为1b -.令()0f x =,可得102x x =-,令()0h x =,可得出lg 2x x =-,在同一平面直角坐标系中作出函数10xy =、lg y x =、y x =、2y x =-的图象,如下图所示:由于函数10xy =、lg y x =的图象关于直线y x =的对称,直线2y x =-与直线y x =垂直,设直线2y x =-与函数10xy =的交点为点A ,直线2y x =-与函数lg y x =的图象的交点为点B ,易知点A 、B 关于直线y x =对称,直线2y x =-与直线y x =的交点为点()1,1C ,且C 为线段AB 的中点,所以12a b +-=,因此,3a b +=. 故选:C. 【点睛】易错点点睛:本题考查函数零点之和,解题的关键在于利用函数10xy =、lg y x =互为反函数,这两个函数的图象关于直线y x =对称,结合对称性来求解.4.B解析:B 【分析】先将指数型方程的解的问题转化为二次方程的根的问题,再利用判别式和韦达定理即可求出实数k 的取值范围. 【详解】设3x t =,则0t >,则方程923310x x k -⋅+-=有两个实根可转化为方程22310t t k -+-=有两个正根,则利用判别式和韦达定理得()()22431020310k k ⎧∆=---≥⎪>⎨⎪->⎩,解得:1233k <≤; 所以实数k 的取值范围为12,33⎛⎤⎥⎝⎦. 故选:B. 【点睛】关键点睛:将指数型方程的解的问题转化为二次方程的根的问题是解决本题的关键.5.B解析:B 【分析】根据已知条件可得出10200.10.2m a m a ⎧⋅=⎨⋅=⎩,可求得m 、a 的值,可得出h 关于t 的函数关系式,然后令1h =求出t 的值,即可得解. 【详解】由题意可得10200.10.2m a m a ⎧⋅=⎨⋅=⎩,可得1101202m a ⎧=⎪⎨⎪=⎩,所以,101220t h =⨯, 令1012120th =⨯=,可得10220t =, 所以,()()210lg10lg 2101lg 210lg 2010 1.310log 2043lg 2lg 2lg 20.3t ++⨯====≈≈(分钟). 因此,打上来的这种鱼在43分钟后开始失去全部新鲜度. 故选:B. 【点睛】关键点点睛:求解本题的关键在于理解题中的条件,结合给定的函数模型以及题中的数据求解函数模型的解析式,即可求解.6.B解析:B 【分析】根据满足条件(1)(1)f x f x +=-且为奇函数,可周期为4,当[0,1]x ∈时,()f x x =,根据()()m x f x =与()xn x ae -=图像,判断在一个周期内的焦点情况即可求解.【详解】因为()f x 满足条件(1)(1)f x f x +=-且为奇函数, 函数()(2)()f x f x f x =-=--,∴()f x 周期为4, ∵当[0,1]x ∈时,()f x x =,作()()m x f x =与()xn x ae -=图像,函数()()xg x f x ae-=-在区间2018,[]2018-上有4032个零点,即()()m x f x =与()xn x ae -=在[0,4]且仅有两个交点,∴(1)(1)(3)(3)m n m n <⎧⎨>⎩即3e a e <<.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.7.C解析:C 【分析】分别画出函数()y f x =和()1g ?x x=的图像,根据图像得出结论. 【详解】因为()()10F x xf x =-=,所以()1xf x =,转化为()1f x x=如图,画出函数()y f x =和()1g ?x x=的图像,当x <0时,有一个交点,当x >0时,(1)1,(1)1f g ==,此时()()1g 11f ==,1x =是函数的一个零点,111(3)(1),(3)223f fg ===,满足(3)(3)f g >,所以在(2,4)有两个交点, 同理(5)(5)f g >,所以在(4,6)有两个交点, (7)(7)f g >,所以在(6,8)内没有交点,当n >7时,恒有()()f x g x >,所以两个函数没有交点 所以,共有6个. 故选:C. 【点睛】本题考查分段函数的知识点,涉及到函数的零点的知识点,考查了数形结合的思想,属于基础题型.8.C解析:C 【分析】由题意可得方程2mx e x =在(]0,8上有两个不等的实数根,设()(]ln ,0,8xf x x x=∈,求得函数的导数和单调性,可得极值和最值,画出()y f x =的图象,可得m 的不等式,即可求解. 【详解】由题意,方程2mx e x =在(]0,8上有两个不等的实数根, 即为2ln mx x =在(]0,8上有两个不等的实数根, 即1ln 2x m x=在(]0,8上有两个不等的实数根, 设()(]ln ,0,8x f x x x =∈,则()21ln xf x x -'=, 当(,8)x e ∈时,()0f x '<,函数()f x 递减, 当(0,)x e ∈时,()0f x '>,函数()f x 递增, 所以当x e =时,函数()f x 取得最大值1e,且()ln83ln 2888f ==, 所以3ln 2182m e ≤<,解得3ln 224m e≤<,故选C.【点睛】本题主要考查了函数与方程,以及导数在函数中的综合应用,其中解答中把方程的根转化为1ln 2x m x =在(]0,8上有两个不等的实数根,利用导数求得函数()ln x f x x=的单调性与最值是解答的关键,着重考查了转化思想,以及推理与运算能力. 9.C解析:C【分析】由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,结合22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,转化为此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数,从而作图解答【详解】解:由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,因为22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩, 所以此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数, 作2x y -=-与22y x x =-的图像如图所示,两函数图像有两个交点,所以此函数的“友好点对”有2对故选:C【点睛】此题考查学生对新定义的理解能力及作图能力,属于中档题10.C解析:C【分析】由一元二次方程有两个实根,可知0m ≠且0∆≥,可求出m 的取值范围,然后结合韦达定理可得到2212x x +的表达式,结合m 的取值范围可求出答案.【详解】∵一元二次方程210mx m -++=有两个实根,∴(()20410m m m ≠⎧⎪⎨∆=--+≥⎪⎩,解得21m -≤≤且0m ≠.又12x x m+=,121m x x m +⋅=, 则()2221212122x x x x x x +=+-⋅212m m m ⎛⎫+-⨯ ⎪⎪= ⎝⎭2822m m =-- 令1t m=,因为21m -≤≤且0m ≠,所以12t ≤-或1t ≥, 则221222117822888t t t x x ⎛⎫=--=-- ⎪⎝⎭+, 当12t =-时,2212x x +取得最小值2111781288⎛⎫---= ⎪⎝⎭. 故选:C.【点睛】本题考查了一元二次方程根的判别式的应用,考查韦达定理的应用,考查学生的计算能力与推理能力,属于中档题. 11.C解析:C【分析】由题意知,2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元,然后解不等式1300 1.122000n ⨯>,将指数式化为对数式,得出n 的取值范围,即可得出答案.【详解】若2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元,由1300 1.122000n ⨯>可得1.3 1.122n ⨯>,lg1.3lg1.12lg 2n ∴+>,所以0.050.19n ⨯>, 得 3.8n >,则正整数n 的最小值为4,所以第4年,即2022年全年投入的科研经费开始超过2000万元,故选:C.【点睛】本题考查指数函数模型的应用,解题的关键就是列出指数不等式,考查函数思想的应用与计算能力,属于中等题.12.A解析:A【分析】根据题设条件,可判断出d(B)的值为1或3,然后研究(x2﹣ax)(x2﹣ax+1)=0的根的情况,分类讨论出a可能的取值.【详解】解:由题意,|d(A)-d(B)|=1,d(A)=2,可得d(B)的值为1或3若d(B)=1,则x2-ax=0仅有一根,必为0,此时a=0,则x2-ax+1=x2+1=0无根,符合题意若d(B)=3,则x2-ax=0有一根,必为0,此时a=0,则x2-ax+1=x2+1=0无根,不合题意故x2-ax=0有二根,一根是0,另一根是a,所以x2-ax+1=0必仅有一根,所以△=a2-4=0,解得a=±2此时x2-ax+1=0为1或-1,符合题意综上实数a的所有可能取值构成集合M={0,-2,2},故d(M)=3.故选:A.【点睛】本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.二、填空题13.【解析】试题分析:根据二分法取区间中点值而所以故判定根在区间考点:二分法【方法点睛】本题主要考察了二分法属于基础题型对于零点所在区间的问题不管怎么考察基本都要判断端点函数值的正负如果异号那零点必在此解析:3 (,2) 2【解析】试题分析:根据二分法,取区间中点值,而,,所以,故判定根在区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间.14.【分析】将问题转化为与在上有个不同的交点求解出分段函数在区间上的解析式进而得到函数图象;根据恒过采用数形结合的方式即可确定临界值进而得到结果【详解】在上共有个不同的零点与在上有个不同的交点当时同理可 解析:211,765⎛⎫⎧⎫--⋃⎨⎬ ⎪⎝⎭⎩⎭【分析】将问题转化为()f x 与()g x 在[]6,8-上有5个不同的交点,求解出分段函数()f x 在区间[]6,8-上的解析式,进而得到函数图象;根据()g x 恒过()4,0-,采用数形结合的方式即可确定临界值,进而得到结果.【详解】()()y f x g x =-在[]6,8-上共有5个不同的零点,()f x ∴与()g x 在[]6,8-上有5个不同的交点,当[]2,0x ∈-时,[]20,2x +∈,()()2112f x x f x ∴+=-+=-,()11122f x x ∴=-++, 同理可得:()[][][][][][][]115,6,488113,4,244111,2,02211,0,2223,2,4445,4,6887,6,8x x x x x x f x x x x x x x x x ⎧-++∈--⎪⎪⎪-+∈--⎪⎪⎪-++∈-=⎨⎪--∈⎪⎪-+-∈⎪--∈⎪⎪-+-∈⎩,由此可得()f x 在[]6,8-上图象如下图:,()()4g x k x =-,()g x ∴过定点()4,0-.由图象可知:当()12,k k k ∈或3k k =时,()f x 与()g x 在[]6,8-上有5个不同的交点 又()1,1A ,11,2B ⎛⎫-- ⎪⎝⎭,()3,2C -, 122347k -∴==-+,2112146k -==--+,311145k ==+, 211,765k ⎛⎫⎧⎫∴∈--⎨⎬ ⎪⎝⎭⎩⎭, 故答案为:211,765⎛⎫⎧⎫--⋃⎨⎬ ⎪⎝⎭⎩⎭. 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将零点个数的问题转化为两个函数交点个数的问题,进而通过数形结合的方式,利用函数图象来求解结果;易错点是函数解析式的求解. 15.【分析】换元令再根据二次函数在区间上只有一个实数解求解即可【详解】令则在区间上只有一个实数解故=0在上有两个等根或有一个正根和一个负根①故②故实数的取值范围是故答案为:【点睛】本题主要考查了根据根的 解析:(,3){6}-∞-⋃【分析】换元令2x t =,()0,t ∈+∞,再根据二次函数2()30g t t k t k =-⋅++=在区间()0,t ∈+∞上只有一个实数解求解即可.【详解】令2x t =,()0,t ∈+∞,则2()30g t t k t k =-⋅++=在区间()0,t ∈+∞上只有一个实数解. 故2()3g t t k t k =-⋅++=0在()0,t ∈+∞上有两个等根或有一个正根和一个负根. ①()()()()2430620002k k k k k k ⎧--+=⎧-+=⎪⇒⎨⎨->->⎩⎪⎩ .故6k = ②(0)303g k k =+<⇒<-故实数k 的取值范围是(,3){6}-∞-⋃故答案为:(,3){6}-∞-⋃【点睛】本题主要考查了根据根的分布求解参数范围的问题.需要根据题意换元再分两种情况讨论.属于中档题.16.【分析】由函数有两个零点等价于且再求解即可【详解】解:令两边平方整理可得又由已知有且则解得或又方程有两不等实根则解得即综上可得实数a 的取值范围是故答案为:【点睛】本题考查了二次方程的解的个数问题重点 解析:11,43⎛⎫ ⎪⎝⎭【分析】由函数()21f x ax =+有两个零点等价于240a a ->且2244(4)0a a a ∆=-->,再求解即可.【详解】21ax =-,两边平方整理可得22(4)210a a x ax --+=,又由已知有210ax -≥且2(4)0a a -≠,则240a a ->,解得14a >或0a <, 又方程22(4)210a a x ax --+=有两不等实根, 则2244(4)0a a a ∆=-->,解得103a <<, 即1143a <<, 综上可得实数a 的取值范围是11,43⎛⎫⎪⎝⎭,故答案为:11,43⎛⎫⎪⎝⎭. 【点睛】 本题考查了二次方程的解的个数问题,重点考查了运算能力,属中档题.17.【分析】换元:令则原方程化为根据题意问题转化为此方程在上有零点根据二次函数零点的判定方法即可求得结论【详解】解:令则∴方程化为:根据题意此关于t 的一元二次方程在上有零点整理得:方程当时存在实数解∴当解析:[5]6,【分析】换元:令2x t =,则[12]t ∈,,原方程化为()22650k t k t k ⋅-⋅+-=,根据题意,问题转化为此方程在[1]2,上有零点,根据二次函数零点的判定方法即可求得结论. 【详解】解:令2x t =,则[12]t ∈,, ∴方程()142650x x k k k +⋅-⋅+-=,化为:()22650k t k t k ⋅-⋅+-=,根据题意,此关于t 的一元二次方程在[1]2,上有零点, 整理,得:方程22630()k t t -+=,当[12]t ∈,时存在实数解 ∴23026k t t =-+,当[12]t ∈,时存在实数解 ∵()22261556[]t t t -+=-+∈, ∴2303030,[5,6]2665k t t ⎡⎤=∈=⎢⎥-+⎣⎦ 故答案为:[5]6,【点睛】本题以指数型二次方程为例,考查了根的存在性及函数零点的知识点,属于中档题.请同学们注意解题过程中变量分离思路的应用,它可以化繁为简、化难为易.18.3【解析】令则由题意可得函数与函数的图象有三个公共点画出函数的图象如图所示结合图象可得要使两函数的图象有三个公共点则答案:3解析:3【解析】令()222f x x x =--,则由题意可得函数()y f x =与函数y m =的图象有三个公共点.画出函数()222f x x x =--的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则3m =.答案:319.1【分析】画出函数的图象利用数形结合转化求解即可【详解】解:先作出函数的图象再结合图象平移直线由图象知有两个零点时须故的最小值为1故答案为:1【点睛】本题考查函数的零点与方程的根的关系考查转化思想以 解析:1【分析】画出函数的图象,利用数形结合转化求解即可.【详解】解:先作出函数(),0ln ,0x e x f x x x ⎧⎪=⎨>⎪⎩的图象,再结合图象平移直线y x m =+,由图象知()f x x m =+有两个零点时,须1m ,故m 的最小值为1.故答案为:1.【点睛】本题考查函数的零点与方程的根的关系,考查转化思想以及计算能力,是中档题. 20.【分析】函数恰有四个不同的零点即方程恰有四个互异的实数根即可判断从而或原方程恰有四个不同的实数根当且仅当两个方程各有两个不同的实数根列出不等式组解得即可;【详解】解:函数恰有四个不同的零点即方程恰有 解析:()()0,19,⋃+∞【分析】函数2()|3||1|f x x x a x =+--恰有四个不同的零点,即方程2|3||1|x x a x +=-恰有四个互异的实数根,即可判断0a >,从而()231x x a x +=-或()231x x a x +=--,原方程恰有四个不同的实数根,当且仅当两个方程各有两个不同的实数根,列出不等式组解得即可;【详解】 解:函数2()|3||1|f x x x a x =+--恰有四个不同的零点,即方程2|3||1|x x a x +=-恰有四个互异的实数根,显然0a >,否则若0a =方程只有两个实数根0和3-,若0a <时,方程无解; 因此()231x x a x +=-,所以()231x x a x +=-或()231x x a x +=--,原方程恰有四个不同的实数根,当且仅当两个方程各有两个不同的实数根,即2122010901090a a a a a >⎧⎪∆=-+>⎨⎪∆=++>⎩,解得01a <<或9a >,即()()0,19,a ∈+∞故答案为:()()0,19,⋃+∞.【点睛】本题考查函数方程思想,转化化归思想,属于中档题.三、解答题21.(Ⅰ)300600x ≤≤;(Ⅱ)400吨.【分析】(1)根据已知可得答案;(2)根据已知可得每吨平均处理成本()()1400001003006004f x y x x x x==+-≤≤,然后利用基本不等式可得答案. 【详解】(1)300600x ≤≤(2)依题意,每吨平均处理成本()()1400001003006004f x y x x x x ==+-≤≤元,因为1400002004x x +≥=, 当且仅当1400004x x=即400x =时,等号成立 所以200100100y ≥-=, 所以该厂每月处理量垃圾为400吨时,每吨平均处理成本最低为100元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)210600280,050()100009170,50x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)2020年产量为100(千部)时,企业所获利润最大最大利润是8970万元.【分析】(1)分050x <<与50x ≥写出分段函数的解析式即可;(2)分两段分别求函数的最大值,比较两个值的大小,即可求出函数的最大值.【详解】(1)当050x <<时,()22()8001020028010600280W x x x x x x =-+-=-+- 当50x ≥时,1000010000()80080194502809170W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭ 210600280,050()100009170,50x x x W x x x x ⎧-+-<<⎪∴=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩(2)若050x <<,2()10(30)8720W x x =--+,当30x =时,max ()8720W x =万元若50x ≥,10000()917091708970W x x x ⎛⎫=-++≤-= ⎪⎝⎭, 当且仅当10000x x=时,即100x =时,max ()8970W x =万元. 因为89708720>.所以2020年产量为100(千部)时,企业所获利润最大,最大利润是8970万元.答(1)210600280,050()100009170,50x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩ (2)2020年产量为100(千部)时,企业所获利润最大最大利润是8970万元.【点睛】关键点点睛:在实际问题中分类讨论求出函数的解析式,求最大值时,要分别求自变量在不同区域的最值,然后比较大小,得出函数的最值.23.(1)8小时;(2)10小时时浓度达到最小值3【分析】(1)根据题意列出不等式()44f x ≥,求解出不等式解集,即可得到有效治污的持续时间;(2)根据条件求解出药剂在水中释放的浓度y 的解析式,然后利用基本不等式求解出对应的最小值,并计算出取最小值时对应的时间.【详解】(1)因为()644,0448202,410x y f x x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,令64448x-≥-,解得04x ≤≤, 当410x <≤时,令2024x -≥,解得48x <≤,所以有效治污时间能持续8小时;(2)设在第x 个小时达到最小值,则610x ≤≤, 所以()116162511928614y x x x x ⎡⎤⎛⎫=-+⋅-=-+⎢⎥ ⎪---⎝⎭⎣⎦, 所以()161455314y x x =-+-≥=-, 取等号时161414x x-=-,即10x =, 所以10小时的时候浓度达到最小值,最小值为3.【点睛】易错点睛:实际问题中求解函数解析式以及采用基本不等式求最值需要注意的事项: (1)函数应用类型的问题,写函数解析式时一定要注意函数的定义域不能丢; (2)利用基本不等式求解最值的时候,注意“一正、二定、三相等”,缺一不可.24.(1)()f x 23161532,02120315,312x x x x x x x⎧-+<≤⎪⎪=⎨⎪-<≤⎪+⎩;(2)182.8斤,最大利润为5016元. 【分析】(1)由()()215f x L x x =-以及()L x 的解析式可得结果;(2)分段求出最大值,再取更大的函数值即可得解.【详解】(1)()()215f x L x x =-23161532,02120315,312x x x x x x x⎧-+<≤⎪⎪=⎨⎪-<≤⎪+⎩, (2)①当302x <≤时,对称轴3015323224x +=<=,∴当32x =时,()max 45.5f x =百元, ②当332x <≤时,()()12013515113513550.161f x x x ⎡⎤=-++≤-=-≈⎢⎥+⎣⎦百元,当且仅当()1201511x x =++即1 1.828x =≈百斤, 由①②可知: 1.828x =时,()max 50.16f x ≈百元.∴当施用肥料为182.8斤时,每亩“金皇后”的利润最大,最大利润为5016元.【点睛】本题考查了分段函数的最值,考查了基本不等式求最值,考查了二次函数求最值,属于中档题.25.(1) 不存在.理由见解析;(2) (i) 41t <<- 【分析】(1) .假设存在实数k 满足题意,由韦达定理可得:()()()21212121212 2224k x x x x x x x x k +++=++=+911144k k +==,解得12k =,又()216 161 160k k k k ∆=-+=->,即k 0<,综合可得假设不成立;(2) (i)作出函数()h x 的图象,观察图像即可求出t 的取值范围;(ii)设直线()41y t t =-<<与此图象的最左边和最右边的交点分别为,A B .即3 2B A n m x x -=-=,因为25+=+510≤+=,代入运算可得解. 【详解】解:(1)依题意可知,0k ≠.假设存在实数k ,使()()121211224x x x x ++=成立. 因为()f x 有两个不同零点,.所以()216 161 160k k k k ∆=-+=->,解得k 0<. 由韦达定理得121211,4k x x x x k++== 所以()()()21212121212 2224k x x x x x x x x k +++=++=+911144k k +==解得12k =,而k 0<,故不存在. (2)因为1k =-,设()()h x g x t =+,则()2244,0,48,0x x x h x x x x ⎧--<=⎨-≥⎩, 当0x <时,()214112()h x x =-++≤;当0x ≥时,()()24144h x x =--≥-. (i)作出函数()h x 的图象,如图所示,所以41t <<-.(ii)设直线()41y t t =-<<与此图象的最左边和最右边的交点分别为,A B .由244x x t --=,得11A t m x ---==由248x x t -=,得242B t n x ++==所以314 2B A t t n m x x +-++-=-=因为223251452)(24()t t t -++=+-++2552104≤+=, 所以当32t =-时,1 4t t -++取得最大值10. 故n m -的最大值为310+.【点睛】本题考查了函数的零点与函数图像的交点之间的关系,重点考查了重要不等式及数形结合的数学思想方法,属中档题.26.(1)见解析; (2)见解析; (3)见解析; (4)(0,3) .【分析】(1)利用赋值法,令a =b =0,求解f (0)的值即可;(2)分类讨论x < 0和0x ≥两种情况证明题中的不等式即可;(3)由函数的性质可证得当12x x <时,f (x 2) > f (x 1),则f (x )是R 上的增函数.(4)由题意结合函数的单调性和函数在特殊点的函数值可得x 的取值范围是(0,3).【详解】(1)证明:令a =b =0,得f (0)=f 2 (0),又因为f (0) ≠ 0,所以f (0)=1.(2)当x < 0时,-x >0,所以f (0) =f (x ) f (-x ) =1,即()()10f x f x =>-, 又因为0x ≥时,()10f x ≥>,所以对任意x ∈R ,恒有f (x ) >0.(3)证明:设12x x <,则210x x ->,所以f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1) f (x 1). 因为x 2-x 1>0,所以f (x 2-x 1)>1,又f (x 1) > 0,则f (x 2-x 1) f (x 1) > f (x 1),即f (x 2) > f (x 1),所以f (x )是R 上的增函数.(4)由f (x )·f (2x -x 2) >1, f (0)=1得f (3x -x 2) > f (0), 又由f (x ) 为增函数,所以3x -x 2 > 0 ⇒0 < x < 3.故x 的取值范围是(0,3). 【点睛】抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法.。

高一数学-函数应用 培优专练-北师大版(含答案)

高一数学-函数应用 培优专练-北师大版(含答案)

函数应用一、选择题1.已知函数f(x)满足:①定义域为R;②对于任意的x∈R,有f(x+2)=2f(x);③当x∈[0,2]时,f(x)=2-|2x-2|.记φ(x)=f(x)-|U(x∈[-8,8]).根据以上信息,可以得到函数φ(x)的零点个数为()A.15B.10C.9D.82.[2020全国Ⅲ卷理]Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=1+e−0.23(K53),其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln19≈3)()A.60B.63C.66D.693.已知函数y=f(x)和y=g(x)的定义域及值域均为[-a,a](a>0),它们的图象如图所示,则函数y=f(g(x))的零点的个数为()A.2B.3C.5D.64.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T 近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天5.函数f(x)=1|U−1的图象类似于汉字“囧”,故被称为“囧函数”,则下列关于函数f(x)的说法中正确的个数为()①函数f(x)的定义域为{x|x≠1};②f(f(2022))=-20212020;③函数f(x)的图象关于直线x=1对称;④当x∈(-1,1)时,f(x)max=-1;⑤函数g(x)=f(x)-x2+4有四个零点.A.2B.3C.4D.56.对于定义在R上的函数y=f(x),若f(m)·f(n)>0(m,n∈R,且m<n),则函数y=f(x)在(m,n)上()A.只有一个零点B.至少有一个零点C.无零点D.无法确定有无零点7.已知函数f(x)在区间[a,b]上单调,且图象是连续不断的,若f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上()A.至少有一个实数根B.至多有一个实数根C.没有实数根D.必有唯一的实数根8.定义运算:x⊗y=|U,≥s<,已知函数f(x)=(x2-3)⊗(x-1),若函数y=f(x)-c恰有两个零点,则实数c 的取值范围是()A.[-3,-2)B.[-3,-2]∪[2,+∞)C.[-2,2]D.(-3,-2)∪[2,+∞)9.[2022辽宁重点高中协作体高一上期末考试]已知函数f(x)=−2−6−5,<0|(12)−1|,≥0,若关于x 的方程[f(x)]2+(2a-1)f(x)+a2-a=0有5个不同的实数根,则实数a的取值范围为()A.(-1,1]B.(-1,0]C.[0,1]D.[-1,1]二、非选择题10.如图,有一块矩形空地ABCD,要在这块空地上开辟一个内接四边形EFGH为绿地,使其四个顶点分别落在矩形ABCD的四条边上.已知|AB|=a(a>2),|BC|=2,且|AE|=|AH|=|CF|=|CG|,设|AE|=x,绿地EFGH的面积为y.(1)写出y关于x的函数解析式,并求出它的定义域.(2)当|AE|为何值时,绿地面积y最大?并求出最大值.11.已知函数f(x)=ax2-2x+1.(1)当a=34时,求f(x)在区间[1,2]上的值域.(2)当a≤12时,是否存在这样的实数a,使得关于x的方程f(x)-log24=0在区间[1,2]上有且只有一个根?若存在,求出实数a的取值范围;若不存在,请说明理由.12.已知函数f(x)=2x2-8x+m+3(m∈R)为R上的连续函数.(1)若函数f(x)在区间[-1,1]上存在零点,求实数m的取值范围.(2)若m=-4,判断函数f(x)在区间(-1,1)上是否存在零点.若存在,请在精确度为0.2的条件下,用二分法求出该零点x0存在的区间;若不存在,请说明理由.参考答案一、选择题1.B2.C3.D4.B5.B6.D7.D 8.D 9.A 二、非选择题10.(1)由题意,得S △AEH =S △CFG =12x 2,S △BEF =S △DGH =12(a -x )(2-x ),所以y =S 矩形ABCD -2S △AEH -2S △BEF =-2x 2+(a +2)x .由>0−>02−≥0>2,得0<x ≤2.故y =-2x 2+(a +2)x ,定义域为(0,2].(2)y =-2x 2+(a +2)x =-2(x -r24)2+(r2)28.当r24<2且a >2,即2<a <6时,当x =r24时,y max =(r2)28;当r24≥2,即a ≥6时,y =-2x 2+(a +2)x 在(0,2]上单调递增,则当x =2时,y max =2a -4.综上所述,当2<a <6时,|AE |=r24时绿地面积最大,最大值为(r2)28;当a ≥6时,|AE |=2时绿地面积最大,最大值为2a -4.11.(1)当a =34时,f (x )=34x 2-2x +1,f (x )图象的对称轴方程为x =43,易知43∈[1,2],又f (43)=-13,f (1)=-14<f (2)=0,所以f (x )在区间[1,2]上的值域为[-13,0].(2)存在实数a ∈[-1,12],使方程f (x )-log 24=0在区间[1,2]上有且只有一个根.当a =0时,函数f (x )=-2x +1在区间[1,2]上单调递减;当0<a ≤12时,1≥2,函数f (x )=ax 2-2x +1在区间[1,2]上单调递减;当a <0时,1<0,函数f (x )=ax 2-2x +1在区间[1,2]上单调递减.综上所述,当a ≤12时,函数f (x )在区间[1,2]上单调递减.令h (x )=log 24,x ∈[1,2],则h (x )在区间[1,2]上单调递增,原命题等价于函数f (x )与h (x )的图象在区间[1,2]上有唯一交点,则o1)≥ℎ(1)o2)≤ℎ(2),即−1≥log2144−3≤log224,解得a∈[-1,12].所以存在实数a∈[-1,12],使得关于x的方程f(x)-log24=0在区间[1,2]上有且只有一个根.12.(1)易知函数f(x)在区间[-1,1]上单调递减,∵f(x)在区间[-1,1]上存在零点,∴o−1)≥0o1)≤0,即2+8++3≥02−8++3≤0,∴-13≤m≤3.∴实数m的取值范围是[-13,3].(2)当m=-4时,f(x)=2x2-8x-1,易求出f(-1)=9,f(1)=-7.∵f(-1)·f(1)<0,f(x)在区间(-1,1)上单调递减,∴函数f(x)在区间(-1,1)上存在唯一零点x0.∵f(0)=-1<0,∴f(-1)·f(0)<0,∴x0∈(-1,0).∵f(-12)=72>0,∴f(-12)·f(0)<0,∴x0∈(-12,0).∵f(-14)=98>0,∴f(-14)·f(0)<0,∴x0∈(-14,0).∵f(-18)=132>0,∴f(-18)·f(0)<0,∴x0∈(-18,0).∵|-18-0|=18<15=0.2,∴所求区间为(-18,0).。

2024-2025年北师大版数学必修第一册4.3.3.2对数函数的综合应用(带答案)

2024-2025年北师大版数学必修第一册4.3.3.2对数函数的综合应用(带答案)

第2课时 对数函数的综合应用必备知识基础练知识点一 利用单调性求范围问题 1.若log a 23 <1,则a 的取值范围是( )A .(0,23 )B .(23 ,+∞)C .(23 ,1)D .(0,23)∪(1,+∞)2.不等式log 2(2x +3)>log 2(5x -6)的解集为( ) A .(-∞,3) B .(-32 ,3)C .(-32 ,65 )D .(65,3)3.已知a >0且a ≠1,若函数y =log a (4-ax )在[1,2]上是减函数,则实数a 的取值范围是( )A .(0,1)B .(1,2)C .(1,2]D .(1,4) 知识点二 对数函数的实际应用4.某种动物繁殖数量y (只)与时间x (年)的关系为y =m log 2(x +1),设这种动物第一年有200只,到第7年它们发展到( )A .300只B .400只C .500只D .600只5.某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13 ,则使产品达到市场要求的最少过滤次数为(参考数据:lg 2≈0.301,lg 3≈0.477)( )A .10B .9C .8D .7知识点三 对数函数的综合应用6.已知函数y =log 2(x 2-2kx +k )的值域为R ,则k 的取值范围是( ) A .0<k <1 B .0≤k <1C .k ≤0或k ≥1 D.k =0或k ≥17.若函数f (x )=log a (x +x 2+2a 2)是奇函数,则a =________. 8.已知奇函数f (x )=ln ax +1x -1. (1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并利用函数单调性的定义证明; (3)当x ∈[2,5]时,ln (1+x )>m +ln (x -1)恒成立,求实数m 的取值范围.关键能力综合练1.已知实数a =log 45,b =(12 )0,c =log 30.4,则a ,b ,c 的大小关系为( )A .b <c <aB .b <a <cC .c <a <bD .c <b <a2.已知函数f (x )=lg 1-x1+x ,f (a )=b ,则f (-a )=( )A .bB .-bC .1bD .-1b3.函数f (x )=|log 12x |的单调递增区间是( )A .(0,12] B .(0,1] C .(0,+∞) D.[1,+∞)4.若f (x )=⎩⎪⎨⎪⎧ax -2a ,x ≤2,log a (x 2-ax ),x >2 在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫34,1B .⎝ ⎛⎦⎥⎤1,32 C .(1,2) D .(1,2]5.(探究题)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(1,2] D .(0,12 )6.(易错题)函数f (x )=log 0.6(2-x ) 的定义域为________.7.已知函数f (x )=ln (x +x 2+1 )+1,若实数a 满足f (-a )=2,则f (a )=________. 8.写出一个同时满足下列两个条件的函数f (x )=________. ①对∀x 1,x 2∈(0,+∞),有f (x 1x 2)=f (x 1)+f (x 2); ②当x ∈(4,+∞)时,f (x )>1恒成立.9.已知a >0,a ≠1且log a 3>log a 2,若函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为1.(1)求a 的值;(2)解不等式log 13(x -1)>log 13(a -x );(3)求函数g (x )=|log a x -1|的单调区间.核心素养升级练1.(多选题)若定义域为[0,1]的函数f (x )同时满足以下三个条件:①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2).就称f (x )为“A 函数”,下列定义在[0,1]上的函数中,是“A 函数”的有( ) A .f (x )=log 12(x +1)B .f (x )=log 2(x +1)C .f (x )=xD .f (x )=2x-12.(学科素养—逻辑推理)若函数f (x )=log a x (a >0且a ≠1)在⎣⎢⎡⎦⎥⎤12,4 上的最大值为2,最小值为m ,函数g (x )=(3+2m )x 在[0,+∞)上是增函数,则a -m 的值是________.第2课时 对数函数的综合应用必备知识基础练1.答案:D解析:由log a 23 <1,得log a 23<log a a ,若a >1,由函数y =log a x 为增函数,得a >23 ,所以a >1;若0<a <1,由函数y =log a x 为减函数,得0<a <23 ,所以0<a <23 .综上所述,0<a <23 或a >1.故选D.2.答案:D解析:由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,得65<x <3.3.答案:B解析:y =4-ax 在[1,2]上是减函数,y =log a (4-ax )在[1,2]上是减函数,故a >1, 考虑定义域:4-2a >0,故a <2, 综上所述:1<a <2.故选B. 4.答案:D解析:由已知第一年有200只,得m =200.将m =200,x =7代入y =m log 2(x +1),得y =600.5.答案:C解析:设经过n 次过滤,产品达到市场要求,则2100 ×(23 )n ≤11000 ,即(23 )n ≤120 ,由n lg 23 ≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2 ≈7.4,所以选C.6.答案:C解析:令t =x 2-2kx +k ,由y =log 2(x 2-2kx +k )的值域为R ,得函数t =x 2-2kx +k 的图象一定恒与x 轴有交点,所以Δ=4k 2-4k ≥0,即k ≤0或k ≥1.7.答案:22解析:∵x +x 2+2a 2>0恒成立,∴函数f (x )的定义域为R ,又∵f (x )是奇函数,∴f (0)=0,即log a 2a 2=0, ∴2a 2=1,∴a =22. 综验证,此时函数y =log a (x +x 2+1 )为奇函数,满足题意,故a =22. 8.解析:(1)∵f (x )是奇函数, ∴f (-x )=-f (x ),即ln -ax +1-x -1 =-ln ax +1x -1,∴ax -1x +1 =x -1ax +1即(a 2-1)x 2=0,解得a =±1, 经检验,a =-1时不符合题意,∴a =1.(2)f (x )在(1,+∞)上为减函数.证明如下:由(1)知,f (x )=ln x +1x -1,任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=lnx 1+1x 1-1 -ln x 2+1x 2-1 =ln (x 1+1x 1-1 ·x 2-1x 2+1 )=ln (x 1x 2+x 2-x 1-1x 1x 2+x 1-x 2-1),∵x 1<x 2,∴x 2-x 1>0,x 1x 2+x 2-x 1-1x 1x 2+x 1-x 2-1>1,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(1,+∞)上为减函数.(3)由已知得m <ln (1+x )-ln (x -1),即m <ln x +1x -1. 由(2)知f (x )=lnx +1x -1在[2,5]上为减函数, ∴当x =5时,(lnx +1x -1 )min =ln 32 ,∴m <ln 32. 关键能力综合练1.答案:D解析:由题意知,a =log 45>1,b =(12 )0=1,c =log 30.4<0,故c <b <a .2.答案:B解析:由1-x1+x >0,得f (x )的定义域为(-1,1).因为f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),所以f (x )是奇函数,所以f (-a )=-f (a )=-b . 3.答案:D解析:f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.答案:B解析:若f (x )=⎩⎪⎨⎪⎧ax -2a ,x ≤2,log a (x 2-ax ),x >2 在(-∞,+∞)上单调递增, 则⎩⎪⎨⎪⎧a >0a >122-2a ≥0a2≤22a -2a ≤log a(22-2a ),解得1<a ≤32 ,即实数a 的取值范围为⎝ ⎛⎦⎥⎤1,32 .故选B. 5.答案:C解析:设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,显然不成立.当a >1时,如图所示,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,∴log a 2≥1,∴1<a ≤2.6.答案:[1,2)解析:要使函数f (x )有意义,则需满足⎩⎪⎨⎪⎧log 0.6(2-x )≥0,2-x >0, 解得1≤x <2.7.答案:0解析:设g (x )=ln (x +x 2+1 ),则g (-x )=ln (-x +(-x )2+1 )=ln 1x +x 2+1=-ln (x +x 2+1 )=-g (x ),又g (x )的定义域关于原点对称,所以g (x )为奇函数.因此f (-a )=g (-a )+1=2,所以g (-a )=1,从而g (a )=-1,所以f (a )=g (a )+1=-1+1=0.8.答案:log 2x (答案不唯一)解析:因为由f (x )满足的两个条件可以联想到对数函数,当f (x )=log 2x 时,对∀x 1,x 2∈(0,+∞),f (x 1x 2)=log 2(x 1x 2)=log 2x 1+log 2x 2=f (x 1)+f (x 2),满足条件①;当x ∈(4,+∞)时,f (x )>log 24=2>1,满足条件②. 9.解析:(1)∵log a 3>log a 2,∴a >1, ∴y =log a x 在[a ,2a ]上为增函数, ∴log a (2a )-log a a =1,∴a =2.(2)依题意可知⎩⎪⎨⎪⎧x -1<2-x ,x -1>0,2-x >0,解得1<x <32,∴所求不等式的解集为(1,32 ).(3)∵g (x )=|log 2x -1|,∴g (x )=⎩⎪⎨⎪⎧log 2x -1,x ≥2,1-log 2x ,0<x <2.∴函数g (x )在(0,2)上为减函数,在[2,+∞)上为增函数, 即g (x )的单调递减区间为(0,2),单调递增区间为[2,+∞).核心素养升级练1.答案:CD解析:选项A 中,f (1)=log 12(1+1)=-1,f (x )=log 12(x +1)不是“A 函数”.选项B 中,若x 1≥0,x 2≥0,x 1+x 2≤1,则f (x 1)+f (x 2)=log 2(x 1+1)+log 2(x 2+1)=log 2(x 1x 2+x 1+x 2+1)≥log 2(x 1+x 2+1)=f (x 1+x 2),不满足③,因此,f (x )=log 2(x +1)不是“A 函数”.选项C 中,f (x )显然满足①②,又f (x 1+x 2)=x 1+x 2=f (x 1)+f (x 2),因此,f (x )=x 是“A 函数”.选项D 中,f (x )显然满足①②.∵f (x 1+x 2)=2x 1+x 2-1,f (x 1)+f (x 2)=2x 1+2x 2-2,∴f (x 1+x 2)-[f (x 1)+f (x 2)]=2x 1+x 2-2x 1-2x 2+1=(2x 1-1)( 2x 2-1).又x 1,x 2∈[0,1],∴2x 1-1≥0,2x 2-1≥0.从而f (x 1+x 2)≥f (x 1)+f (x 2).因此,f (x )=2x-1是“A 函数”.故选CD.2.答案:3解析:当a >1时,函数f (x )=log a x 是正实数集上的增函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4 上的最大值为2,因此有f (4)=log a 4=2,解得a =2,所以m =log 212 =-1,此时g (x )=x 在[0,+∞)上是增函数,符合题意,因此a -m =2-(-1)=3;当0<a <1时,函数f (x )=log a x 是正实数集上的减函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f ⎝ ⎛⎭⎪⎫12 =log a 12 =2,a =22 ,所以m =log 22 4=-4,此时g (x )=-5x 在[0,+∞)上是减函数,不符合题意.综上所述,a =2,m =-1,a -m =3.。

第1-4单元 期中常考检测卷(试题)(含答案)-2024-2025学年四年级上册数学北师大版

第1-4单元 期中常考检测卷(试题)(含答案)-2024-2025学年四年级上册数学北师大版

第1-4单元 期中常考检测卷(试题)-2024-2025学年四年级上册数学北师大版一、单选题(共5题;共10分)1.(2分)下边的图形是由( )条线段围成的。

A .7B .8C .92.(2分)下列各数中,一个零也不读的是( )。

A .10800000B .100800000C .10080003.(2分)图中点A 表示的数可能是下面算式( )的积。

A .199×49B .201×51C .203×994.(2分)9时整的时候,时针与分针所组成的角是( )A .直角B .锐角C .钝角5.(2分)将一张圆形纸对折三次,得到的角是( )度。

A .30B .45C .60二、判断题(共5题;共10分)6.(2分)亿级上的计数单位有千亿位、百亿位、十亿位和亿位。

( )7.(2分)从一点引出的两条直线所组成的图形叫做角。

( )8.(2分)两条直线相交,如果有一个角直角,那么这两条直线垂直。

( )9.(2分)(253+92)+47=(253+47)+92运用了加法交换律和结合律。

( )10.(2分)三位数乘两位数的积一定是四位数。

( )三、填空题(共6题;共20分)11.(4分) 350×66 的末尾有 个0,57的309倍是 。

12.(6分) 下图中一共有 个直角, 个锐角, 个钝角。

13.(2分)已知线段 , 点 为直线 上一点, 且 ,点 为线段 的中点, 则线段 的长为  。

15cm AB =C AB 7cm AC =D BC AD14.(2分)把37+24=61,61×2=122合并成一道综合算式 。

15.(2分)师徒两人加工零件,徒弟工作5小时,师傅工作3小时。

两人共加工了372个零件,已知师傅每小时比徒弟多加工12个零件,徒弟每小时加工 个零件。

16.(4分)一个数“四舍五入”后约等于364万,这个数最大是 ,最小是 。

四、计算题(共2题;共17分)17.(8分)脱式计算。

北师大版高中数学必修一第四单元《函数应用》检测卷(含答案解析)

北师大版高中数学必修一第四单元《函数应用》检测卷(含答案解析)

一、选择题1.已知函数()22020,0,,0,x x f x x x x <⎧=⎨-≥⎩若关于x 的方程()()21610f x kf x ++=有四个不同的实数根,则k 的取值范围为( ) A .(4,)+∞B .(8,)+∞C .(,4)-∞-D .(,8)-∞-2.关于x 的方程x x a a -=有三个不同的实根,则实数a 的取值范围是( ) A .(0,4) B .(4,0)-C .(4,4)-D .(,4)(4,)-∞-⋃+∞3.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .3 4.已知关于x 的方程|2|1x m -=有两个不等实根,则实数m 的取值范围是( ) A .(-∞,1]-B .(,1)-∞-C .[1,)+∞D .(1,)+∞5.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==->其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①6.若对任意[]0,1m ∈,总存在唯一[]1,1x ∈-使得2e 0x m x a +-=成立,则实数a 的取值范围是( ) A .[]1,eB .11,e e ⎛⎤+⎥⎝⎦C .(]0,e D .11,e e ⎡⎤+⎢⎥⎣⎦7.已知函数()21,04,0x x f x x x ⎧+≤=⎨>⎩,若函数()y f x a =-有3个不同的零点1x ,2x ,3x (123x x x <<),则123ax x x ++的取值范围是( ) A .()2,0-B .[]2,0-C .[]2,0-D .(]2,0-8.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是( )A .a<0B .0<a<C . <a<1D .a≤0或a>19.已知()11xf x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)10.函数121()()2x f x x =-的零点个数为 ( ) A .0B .1C .2D .311.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-12.下列方程在区间()1,1-内存在实数解的是( ) A .230x x +-=B .10x e x --=C .()3ln 10x x -++=D .2lg 0x x -=二、填空题13.已知函数()f x 定义域为D ,若存在0x D ∈,使()()()0011f x f x f +=+成立,则称()f x 具有性质P .现给出下列四个函数: ① ()1f x x=; ②()2xf x =; ③()()2log 2f x x =+; ④()sin f x x π= 其中具有性质P 的函数为_____________(注:填上你认为正确的所有函数序号)14.已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.15.函数()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,,如果方程()f x b =有四个不同的实数解1x ,2x ,3x ,4x ,则1234x x x x +++=______.16.已知函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,则实数k 的取值范围是______.17.已知函数21,0()(1),0x x f x f x x ⎧-≥=⎨+<⎩,若方程()f x x a =--有两个不同实根,则实数a的取值范围为________.18.已知函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,若关于x 方程()f x ax =有三个不相等的实数根,则实数a 的取值范围是_______________.19.已知当0,4x π⎡⎤∈⎢⎥⎣⎦时,函数()2sin 16f x x πω⎛⎫=+- ⎪⎝⎭(0>ω)有且仅有5个零点,则ω的取值范围是______.20.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.三、解答题21.已知函数()()222f x ax a x =-++,()a R ∈.(1)()32f x x <-恒成立,求实数a 的取值范围; (2)当0a >时,求不等式()0f x ≥的解集; (3)若存在0m >使关于x 的方程()11f x m m=++有四个不同的实根,求实数a 的取值范围.22.已知函数()91xf x =-,()31xg x a =-.(1)若函数()()()h x f x g x =-有两个零点,求实数a 的取值范围; (2)当R x ∈时,不等式()()f x g x ≥恒成立,求实数a 的取值范围; (3)当0a >时,求函数()()()x f x g x ϕ=+在区间[]1,1-上的最值.23.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资80万元,根据行业规定,每个城市至少要投资20万元,由前期市场调研可知:甲城市收益1y 与投入x (单位:万元)满足145040,2040{25,4060x y x x -+≤<=≤≤,乙城市收益2y 与投入x (单位:万元)满足21202y x =+(1)当甲项目的投入为25万元时,求甲乙两个项目的总收益; (2)试问如何安排甲、乙两个城市的投资,才能使总收益最大? 24.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数.(1)求(f f 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.25.某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为0.5万元,每件珠宝售价(万元)与加工时间t (单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间t (天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.(1)如果每件珠宝加工天数分别为5,13,预计销量分别会有多少件?(2)设工厂生产这批珠宝产生的纯利润为S (万元),请写出纯利润S (万元)关于加工时间t (天)之间的函数关系式,并求纯利润S (万元)最大时的预计销量. 注:毛利润=总销售额 — 原材料成本,纯利润=毛利润 — 工人报酬.26.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年:当420x ≤≤时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设()f x t =,可得方程21610t kt ++=有两个不同的实数根214t <- ,1104t -<<,再利用一元二次方程根的分布列不等式求解即可. 【详解】作出()f x 的图象如图所示,设()f x t =, 要使方程()()21610fx kf x ++=有四个不同的实数根,则方程()21610g t t kt =++=有两个不同的实数根1t ,2t .且()1f x t =有三个根,方程()2f x t =有一个根, 由图可知,214t<-1104t -<<. 设2()161g t t kt =++,则()10,400,g g ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪>⎩,解得8k >. 故选:B.【点睛】函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.2.D解析:D 【分析】画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得【详解】数形结合法:画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得由图可得:204a a <<解得4a > 或204a a >>-解得4a故选:D 【点睛】数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.3.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论.【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-,当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C 【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.4.D解析:D 【分析】分离参数,再根据指数函数性质求出. 【详解】解:21x m -=或21x m -=-,即21x m =-,或者21x m =+, 当211x m =->-时,有一个解, 当211x m =+>时,有一个解,所以1m 时,方程|2|1x m -=有两个不等实根, 故选:D . 【点睛】考查方程根的个数问题,利用了分类讨论法,分离参数法,属于中档题.5.C解析:C 【解析】①1ln 1x y x -=+;1111()ln ln ()111x x f f x x x x--==≠-++所以不符合题意;②2211x y x -=+;22221111()()111x x f f x x x x --===-++所以符合题意;③,01,{0,1,1, 1.x x y x x x<<==->当01x <<时11x >,故1()()f x f x x =-=-,当1,x =时11x =显然满足题意,当1x >时,101x <<,故11()()f f x x x==-符合题意,综合得选C 点睛:新定义倒负函数,根据题意逐一验证()1f f x x ⎛⎫=-⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论6.B解析:B 【解析】分析:由m+x 2e x ﹣a=0成立,解得x 2e x =a ﹣m ,根据题意可得:a ﹣1≥(﹣1)2e ﹣1,且a ﹣0≤12×e 1,解出并且验证等号是否成立即可得出. 详解::由m+x 2e x ﹣a=0成立,得x 2e x =a ﹣m ,∴对任意的m ∈[0,1],总存在唯一的x ∈[﹣1,1],使得m+x 2e x ﹣a=0成立, ∴a ﹣1≥(﹣1)2e ﹣1,且a ﹣0≤12×e 1, 解得1+1e≤a≤e , 其中a=1+1e时,x 存在两个不同的实数,因此舍去, a 的取值范围是(1+1e,e]. 故选B .点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.7.D解析:D 【分析】作出函数()f x 的图象,由函数()f x 的图象与直线y a =的交点得123,,x x x 的范围与关系,从而可求得123ax x x ++的取值范围. 【详解】函数()y f x a =-的零点就是函数()y f x =的图象与直线y a =的交点的横坐标,作出函数()y f x =的图象,作出直线y a =,如图,由图可知122x x +=-,由241x =得12x =(12x =-舍去),∴3102x <≤,234x a =,∴23123334224(2,0]x ax x x x x ++=-+=-+∈-. 故选:D .【点睛】本题考查函数的零点,解题关键是掌握转化与化归思想,函数零点转化为函数图象与直线的交点,由数形结合思想确定零点的性质,得出结论.8.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2xx a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1 又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.9.A解析:A 【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可. 【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点, 即()[()2][()]0g x f x f x a =-+=有三个根, 即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-, 即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解, 则()f x a =-.有两个不同的根, 作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-, 即实数a 的取值范围是(2,1)--, 故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.10.B解析:B 【解析】 函数()12(12)f x xx =-的零点,即令()0f x =,根据此题可得12(12)xx=,在平面直角坐标系中分别画出幂函数12y x=和指数函数(12)y x=的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数11.A解析:A 【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.12.B解析:B 【分析】利用方程和函数之间的关系分别进行判断即可得到结论. 【详解】A :令2()3f x x x =+-,因为抛物线开口向上,()()1010f f -<<,,所以在区间()1,1-内无实数解;B :令()10xf x e x =--=,解得0x =,所以在区间()1,1-内有实数解;C :令()()3ln 1f x x x =-++,则1()101f x x '=+>+在()1,1-成立,所以函数在()1,1-上单调递增,又(1)0f <,故在区间()1,1-内无实数解;D :当(0,1)x ∈时,()20,1x ∈,lg (,0)x ∈-∞,则2lg 0x x ->,此时方程在()1,1-内无解. 故选:B. 【点睛】本题主要考查函数与方程以及零点存在定理,还考查了运算求解的能力,属于中档题.二、填空题13.②④【分析】构造函数解方程即可得出结论【详解】构造函数对于①令得整理得方程无实解①中的函数不具备性质;对于②令得解得②中的函数具备性质;对于③③中的函数不具备性质;对于④令得得解得④中的函数具备性质解析:②④ 【分析】构造函数()()()()11g x f x f x f =+--,解方程()0g x =,即可得出结论. 【详解】构造函数()()()()11g x f x f x f =+--. 对于①,()1111g x x x =--+,令()0g x =,得111x x x+=+,整理得210x x ++=, 1430,方程210x x ++=无实解,①中的函数不具备性质P ;对于②,()122222x x x g x +=--=-,令()0g x =,得22x =,解得1x =.②中的函数具备性质P ;对于③,()()()()()22222log 3log 2log 1log 3log 20g x x x x x =+-+-=+-+≠, ③中的函数不具备性质P ;对于④,()()()sin sin sin sin sin 2sin g x x x x x x ππππππππ=+--=+-=-, 令()0g x =,得sin 0x π=,得()x k k Z ππ=∈,解得()x k k Z =∈, ④中的函数具备性质P . 故答案为:②④. 【点睛】本题考查函数新定义“性质P ”,本质上就是函数的零点问题或方程根的问题,考查化归与转化思想的应用,属于中等题.14.4【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查了分段函数解析:4 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得2x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=,解得2x =-±120,423,-<-+<-<--0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.15.【分析】作出的图象可得和的图象有四个不同的交点不妨设交点横坐标由关于原点对称关于点对称即可得到所求的和【详解】作出的图象方程有四个不同的实数解等价为和的图象有四个不同的交点不妨设交点横坐标为且由关于 解析:4【分析】作出()f x 的图象,可得()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标1234x x x x <<<,由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称,即可得到所求的和.【详解】作出()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,的图象,方程()f x b =有四个不同的实数解,等价为()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标为1x ,2x ,3x ,4x 且1234x x x x <<<, 由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称, 可得12=0x x +,344x x +=, 则12344x x x x +++=, 故答案为:4 【点睛】本题主要考查了函数方程的转化思想,考查数形结合的思想以及对称性的运用,属于中档题.16.且【分析】先化简函数再由过定点(02)在同一坐标系中作出两个函数的图象利用数形结合法求解【详解】在同一坐标系中作出两个函数的图象如图所示:因为函数的图像与函数的图像恰有两个交点所以且故答案为:且【点解析:04k <≤ 且1k ≠ 【分析】 先化简函数()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,再由()2g x kx =+过定点(0,2),在同一坐标系中作出两个函数的图象,利用数形结合法求解. 【详解】()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,()2g x kx =+, 在同一坐标系中作出两个函数的图象,如图所示:因为函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,所以04k <≤ 且1k ≠,故答案为:04k <≤ 且1k ≠,【点睛】本题主要考查函数的零点与方程的根,还考查了数形结合的思想方法,属于中档题.17.【分析】先画出当时函数的图象当时利用周期性画出函数的图象在同一直角坐标系内画出直线的图象利用数形结合进行求解即可【详解】当时画出函数的图象当时当时画出函数的图象如下图所示:Failedtodownl 解析:(1,)-+∞【分析】先画出当0x ≥时函数()f x 的图象,当0x <时,利用周期性画出函数()f x 的图象,在同一直角坐标系内画出直线y x a =--的图象,利用数形结合进行求解即可. 【详解】当0x ≥时,画出函数()f x 的图象, 当10x -≤<时,1()21x f x +=-,当21x -≤<-时,2()21x f x +=-,画出函数()f x 的图象如下图所示: [Failed to download image :http://192.168.0.10:8086/QBM/2020/4/16/2442971918139392/2444041550692352/EXPLANATION /d0eaa7b33ddc4636b9cc52164f3abcc4.png]因为方程()f x x a =--有两个不同实根,所以函数()f x 和函数y x a =--的图象有两个不同的交点.由直线y x a =--过(0,1),得1a =-; 由直线y x a =--过(0,0),得0a =;由直线y x a =--过(1,0)-,得1a =;而函数()f x 不过(0,1),(1,1),(2,1)--因此有当1a >-时,函数()f x 和函数y x a =--的图象有两个不同的交点.,即方程()f x x a =--有两个不同实根.故答案为:(1,)-+∞ 【点睛】本题考查了已知方程根的个数求参数取值范围问题,考查了数形结合思想,考查了函数的周期性,考查了数学运算能力.18.【分析】作出函数图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点数形结合即可得解【详解】作出函数的图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点由图可得:【点睛】此题考解析:1[,1)2.【分析】作出函数图象,关于x 方程()f x ax =有三个不相等的实数根,即()f x 图象与直线y ax =有三个不同的公共点,数形结合即可得解. 【详解】作出函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,,的图象,关于x 方程()f x ax =有三个不相等的实数根,即()f x 图象与直线y ax =有三个不同的公共点由图可得:1[,1)2a ∈ 【点睛】此题考查方程的根的问题,根据函数图象,数形结合求解,需要熟练掌握常见基本初等函数的图象和性质,准确作出函数图象求解.19.【分析】令利用正弦函数的性质解方程得出非负根中较小的六个根根据题意得出且整理即可得出答案【详解】令得则或整理得或则非负根中较小的有则且解得:故答案为:【点睛】本题主要考查了根据函数零点的个数求参数范 解析:56163ω≤<【分析】令()0f x =,利用正弦函数的性质解方程1sin 62x πω⎛⎫+= ⎪⎝⎭,得出非负根中较小的六个根,根据题意,得出44ππω≤且2434πππωω+>,整理即可得出答案. 【详解】令()0f x =,得1sin 62x πω⎛⎫+= ⎪⎝⎭ 则266x k ππωπ+=+或52,66x k k Z ππωπ+=+∈ 整理得2k x πω=或22,3k x k Z ππωω=+∈ 则非负根中较小的有22224240,,,,,333πππππππωωωωωωω++ 则44ππω≤且2434πππωω+> 解得:56163ω≤<故答案为:56163ω≤< 【点睛】本题主要考查了根据函数零点的个数求参数范围,属于中档题.20.【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实数的取值 解析:[)1,0-【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.三、解答题21.(1)(] 4,0-;(2)答案见解析;(3)(,423-∞--. 【分析】(1)将()32f x x <-,x ∈R 恒成立,转化为210ax ax --<,x ∈R 恒成立求解. (2)由()()120x ax --≥,分02a <<,2a =, 2a >讨论求解. (3)由0m >时,得到11213t m m=+++=≥,令x s =,将问题转化为存在3t ≥,()2220as a s t -++-=有两个不等正根求解.【详解】(1)因为()32f x x <-,x ∈R 恒成立, 所以210ax ax --<,x ∈R 恒成立;0a =时,10-<恒成立,满足题意;0a ≠时,只需0a <,∆<0,即40a ;综上,实数a 的取值范围是(] 4,0-; (2)()0f x ≥即()()120x ax --≥,当02a <<时,21>a ,不等式解集为(]2,1,a ⎡⎫-∞+∞⎪⎢⎣⎭;当2a =时,21a,不等式解集为R ;当2a >时,21a <,不等式解集为[)2,1,a ⎛⎤-∞+∞⎥⎝⎦;(3)0m >时,令11213t m m=+++=≥, 则存在3t ≥,()fx t =有四个不等实根,即()2220a x a x t -++-=有四个不等实根,令x s =,0s >时一个s 对应两个x ;0s =时一个x 对应一个x ;0s <时无x 与之对应;则存在3t ≥,()2220as a s t -++-=有两个不等正根,则0a ≠,存在3t ≥,2020a at a+⎧>⎪⎪⎨-⎪>⎪⎩,即存在3t ≥,()()224202a a t a ⎧+-->⎪⎨<-⎪⎩,即2a <-,且存在3t ≥,24440a a at -++>, 0a <时,3t ≥时22441284a a a a a -++=++最大值为22441284a a a a a -++=++,则2840a a ++>,由2a <-可得4a <--所以实数a的取值范围是(,4-∞--. 【点睛】方法点睛:含有参数的不等式的解法:,往往需要比较(相应方程)根的大小,对参数进行分类讨论:(1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便写出解集.22.(1)(1,2)(2,)⋃+∞;(2)(,2]-∞-;(3)最大值为28a +,最小值为0 【分析】(1)由()()3131xxh x a =-⋅+-,易知0x =是函数()h x 的一个零点,可知31=-x a ()0x ≠有解,进而可求出a 的范围;(2)原不等式可化为()()313131+-≥-xxxa ,分0x =,0x >和0x <两种情况,分别讨论,可求出实数a 的取值范围;(3)()9131=-+-xxx a ϕ,当01x ≤≤时,令3(13)xt t =≤≤,可将()ϕx 转化为二次函数,可求出最大值与最小值;当10x -≤<时,令1313xk k ⎛⎫=≤< ⎪⎝⎭,可将()ϕx 转化为二次函数,进而可求()ϕx 的取值范围,综合两种情况,可求得()ϕx 的最大值与最小值. 【详解】(1)由()()()()3131313131=+---=-⋅+-xxx xxh x a a , 由(0)0h =,可知0x =是函数()h x 的一个零点, 若函数()f x 有两个零点,只需要31=-x a (0x ≠)有解,因为30x>,所以1011a a ->⎧⎨-≠⎩,可得1a >且2a ≠.故若函数()h x 有两个零点,则实数a 的取值范围为(1,2)(2,)⋃+∞.(2)若不等式()()f x g x ≥恒成立,有9131-≥-x xa ,可化为()()313131+-≥-xx x a .①当0x =时,显然原不等式恒成立;②当0x >时,31x >,原不等式可化为31+≥x a , 因为312x +>,所以2a ≤;③当0x <时,031x <<,原不等式可化为31--≥x a , 因为2311x -<--<-,所以2a ≤-.由上知,当x ∈R 时,不等式()()f x g x ≥恒成立,则实数a 的取值范围为(,2]-∞-. (3)()9131=-+-xxx a ϕ,①当01x ≤≤时,令3(13)x t t =≤≤,则()ϕx 可化为()221(1)1y t a t t at a =-+-=+--,令2()1=+--t t at a μ(13)t ≤≤,二次函数()t μ的对称轴为2a t =-, 故()t μ在区间[1,3]上单调递增,可得()ϕx 的最小值为(1)110a a μ=+--=,()ϕx 的最大值为(3)93128a a a μ=+--=+; ②当10x -≤<时,令1313xk k ⎛⎫=≤<⎪⎝⎭,则()ϕx 可化为()221(1)1y k a k k ak a =--+-=--++,令21()113k k ak a k σ⎛⎫=--++≤<⎪⎝⎭,二次函数()k σ的对称轴为02=-<a k ,故函数()k σ在区间1,13⎡⎫⎪⎢⎣⎭单调递减,由211128()133339a a a σ⎛⎫=--++=+ ⎪⎝⎭,(1)110a a σ=--++=,得280()39k a σ<≤+. 因为282839+>+a a ,所以函数()ϕx 在[1,1]-上的最大值为28a +,最小值为0. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 23.(1)1392万元 (2)甲城市的投入为30万元,乙城市的投入为50万元 【分析】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元,直接分别代入对应的收益表达式中,得出答案.(2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元,分2040x ≤<和4060x ≤≤分别求出甲、乙两个城市的投资的总收益,再分别求出其最大值,再比较得出答案. 【详解】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元 则甲城市收益1450402225y =-+=万元 乙城市收益2195552022y =⨯+= 所以甲、乙两个城市的投资的总收益为951392222+=万元 (2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元 当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+即4501100100702y x x⎛⎫=-+≤-= ⎪⎝⎭,当且仅当45012x x =即30x =时,取等号.当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+ 即()112580208522y x x =+⨯-+=- 当40x =时,1852y x =-有最小值65 综上,当30x =时,甲、乙两个城市的投资的总收益最大.所以甲城市的投入为30万元,乙城市的投入为50万元,甲、乙两个城市的投资的总收益最大 【点睛】关键点睛:本题考查函数的实际应用问题,解答的关键是分段得出甲、乙两个城市的投资的总收益的表达式,当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+,当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+,分别求出最大值,从而可解,属于中档题. 24.(1)(())1f f e =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(1)因为1e >,所以1()2f e ln e ==,所以1(())()12f f e f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)根据题意,012x,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x . 当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个. 【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.25.(1)分别为25件,42件;(2)s (t )=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩;26件. 【分析】(1)先求出预计订单函数()()f t t N ∈为45,010,()55,1055.t t f t t t +⎧=⎨-+<⎩再求解;(2)先求出利润函数为2(1.55 3.5)(45),010,3()2(1.55 3.5)(55),1055.3t t t S t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩再分段求函数的最大值即得解. 【详解】解:(1)预计订单函数()()f t t N ∈为45,010()55,1055t t f t t t +≤≤⎧=⎨-+<≤⎩;f (5)=20+5=25;f (13)=-13+55=42;∴每件珠宝加工天数分别为5,13,预计订单数分别为25件,42件. (2)售价函数为() 1.55g t t =+;∴利润函数为2(1.550.5)(45),0103()2(1.550.5)(55),10553t t t s t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩,s (t )=(3)(45),010(3)(55),1055t t t t t t ++⎧⎨-+-<⎩=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩; 当010t ≤≤时,2()41715s t t t =++的最大值为(10)585s =;当1055t <≤时,2()(52t 165)s t t =---的最大值为(26)841585s =>;故利润最大时,26t =,此时预计的销量为26件 【点睛】关键点睛:解题得关键在于根据题目条件,分段列出函数表达式,计算时,注意分段成立的条件,难度属于中档题26.(1)()()2,04,15,420,82x x N v x x x N**⎧≤<∈⎪=⎨-+≤≤∈⎪⎩;(2)当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大为252千克/立方米. 【分析】(1)由题意:当04x ≤<时,()2v x =.当420x ≤时,设()v x ax b =+,()v x ax b =+在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩,能求出函数()v x .(2)依题意并由(1),22,04,*()12,420,*85x x x N f x x x x x N ≤<∈⎧⎪=⎨-+≤≤∈⎪⎩,根据分段函数的性质求出各段的最大值,再取两者中较大的即可,由此能求出结果. 【详解】解:(1)由题意:当04x ≤<时,()2v x =.当420x ≤≤时,设()v x ax b =+,显然()v x ax b =+在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩,解得18a =-,52b =,故函数**2,04,()15.420,82x x N v x x x x N ⎧≤<∈⎪=⎨-+≤≤∈⎪⎩ (2)依题意并由(1)得22,04,*()12,420,*85x x x N f x x x x x N ≤<∈⎧⎪=⎨-+≤≤∈⎪⎩,当04x ≤<时,()f x 为增函数, 且()4428f =⨯=.当420x ≤≤时,22121()(10)12.5858f x x x x =-+=--+,()(10)12.5max f x f ==.所以,当020x ≤≤时,()f x 的最大值为12.5. 当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米. 【点睛】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型. (2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.。

新北师大版高中数学必修一第四单元《函数应用》测试(包含答案解析)

新北师大版高中数学必修一第四单元《函数应用》测试(包含答案解析)

一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭,B .()0,2C .()0,1D .(]0,12.若函数2()f x x x a =--有四个零点,则关于x 的方程210ax x ++=的实根个数为( ) A .0B .1C .2D .不确定3.关于x 的方程x x a a -=有三个不同的实根,则实数a 的取值范围是( ) A .(0,4) B .(4,0)-C .(4,4)-D .(,4)(4,)-∞-⋃+∞4.设函数()243,023,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x 、2x 、3x ,满足()()()123f x f x f x ==,则123x x x ++的取值范围是( )A .5,62⎛⎫ ⎪⎝⎭B .5,42⎛⎤⎥⎝⎦C .()2,4D .()2,65.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .36.定义在R 上的奇函数f (x )满足条件(1)(1)f x f x +=-,当x ∈[0,1]时,f (x )=x ,若函数g (x )=()f x -a e -在区间2018,[]2018-上有4 032个零点,则实数a 的取值范围是A .(0,1)B .(e ,e 3)C .(e ,e 2)D .(1,e 3)7.函数()32xy x x =-的图象大致是( )A .B .C .D .8.对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()31xf x m =+-(m ∈R ,0m ≠)是定义在[]1,1-上的“倒戈函数”,则实数m 的取值范围是( ) A .2,03⎡⎫-⎪⎢⎣⎭B .21,33⎡⎤--⎢⎥⎣⎦ C .2,03⎡⎤-⎢⎥⎣⎦D .(),0-∞9.已知一元二次方程210x mx ++=的两根都在()0,2内,则实数m 的取值范围是( ) A .5,22⎛⎤-- ⎥⎝⎦[)2,⋃+∞ B .5,22⎛⎫-- ⎪⎝⎭()2,⋃+∞ C .5,22⎛⎤-- ⎥⎝⎦D .5,22⎛⎫-- ⎪⎝⎭10.已知定义在R 上的奇函数()f x 满足()()20f x f x +--=,且当[]0,1x ∈时,()()2log 1f x x =+,则下列结论正确的是( )①()f x 的图象关于直线1x =对称;②()f x 是周期函数,且2是其一个周期;③16132f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;④关于x 的方程()0f x t -=(01t <<)在区间()2,7-上的所有实根之和是12. A .①④B .①②④C .③④D .①②③11.用d (A )表示集合A 中的元素个数,若集合A ={0,1},B ={x |(x 2-ax )(x 2-ax +1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( ) A .3B .2C .1D .412.把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kt e θθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变). A .2B .4C .6D .8二、填空题13.已知()f x 是定义在[)1,+∞上的函数,且()123,1211,222x x f x f x x ⎧--≤<⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,则函数2()3y xf x =-在区间()1,2015上零点的个数为 .14.已知函数()2,0lg ,0xx f x x x -⎧≤⎪=⎨>⎪⎩,则方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是__________.15.已知函数2()log (2)f x x =+与2()()1g x x a =-+,若对任意的1[2,6)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,则实数a 的取值范围是______.16.已知函数()21f x x =-+,().g x kx =若方程()()f x g x =有两个不等实数根,则实数k 的取值范围是______.17.已知()f x 是以2e 为周期的R 上的奇函数,当()0,x e ∈,()ln f x x =,若在区间[],2e e -,关于x 的方程()1f x kx =+恰好有4个不同的解,则k 的取值集合是__________.18.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为________ 19.函数13()3log 1xf x x =-的零点个数为______20.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________.三、解答题21.已知函数()f x 为偶函数,当0x ≥时,()11x x e f x e -=+.(1)求当0x <时,函数()f x 的解析式; (2)判断函数()f x 在(),0-∞上的单调性并证明;(3)设函数()()()2g x f ax f x a =--+,使函数()g x 有唯一零点的所有a 构成的集合记为M,求集合M.22.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资80万元,根据行业规定,每个城市至少要投资20万元,由前期市场调研可知:甲城市收益1y与投入x(单位:万元)满足145040,2040{25,4060xy xx-+≤<=≤≤,乙城市收益2y与投入x(单位:万元)满足21202y x=+(1)当甲项目的投入为25万元时,求甲乙两个项目的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?23.已知()f x是定义在R上的偶函数,且当0x≤时,1()21xf x.(1)求()f x的解析式.(2)在所给的坐标系内画出函数()f x的图象,(不需列表),并直接找出方程()f x m=没有实根时,实数m的取值范围.24.某蔬菜基地种植西红柿,由历年市场行情知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图①的一条折线表示;西红柿的种植成本与上市时间的关系用图②的抛物线段表示.(Ⅰ)写出图①表示的市场售价与时间的函数关系式()f t;写出图②表示的种植成本与时间的函数关系式()g t;(Ⅱ)若记市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/100kg ,时间单位:天).25.科学家发现一种可与污染液体发生化学反应的药剂,实验表明每投a (14a ≤≤且a R ∈)个单位的药剂,它在水中释放的浓度y (克/升)随着时间x (小时)化的函数关系式近似为()y a f x =⋅,其中()161,04815,4102x xf x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间能持续多久?(2)若第一次投放2个单位的药剂,6小时后再投放1个单位的药剂,则在接下来的4小时内,什么时刻,水中药剂的浓度达到最小值?最小值为多少?26.某创业投资公司拟投资开发某种新能源产品,估计能获得25万元1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()75f x ≤恒成立;③()5xf x ≤恒成立.) (1)判断函数() 1030xf x =+是否符合公司奖励方案函数模型的要求,并说明理由; (2)已知函数()()51g x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围.(参考结论:函数()()0af x x a x=+>的增区间为(,-∞、)+∞,减区间为()、()【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.C解析:C 【分析】由()0f x =可得出2x x a =-,将问题转化为曲线2yx 与曲线y x a =-有4个交点,数形结合可求得实数a 的取值范围,进而结合判别式可判断出方程210ax x ++=的实数根个数. 【详解】由()0f x =可得出2x x a =-,作出函数2yx 与函数y x a =-的图象如下图所示:,,x a x a y x a x a x a-≥⎧=-=⎨-+<⎩,若使得函数()2f x x x a =--有4个零点,则直线y x a =-与y x a =-+均与函数2y x 的图象有两个交点,联立2y x a y x =-⎧⎨=⎩可得20x x a -+=,1140a ∆=->,解得14a <, 联立2y x a y x =-+⎧⎨=⎩可得20x x a +-=,2140a ∆=+>,解得14a >-, 当0a =时,则()()21f x x x xx =-=-,令()0f x =,可得0x =或1x =±,此时,函数()y f x =只有3个零点,不合乎题意. 综上所述,实数a 的取值范围是11,00,44⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭. 对于二次方程210ax x ++=,140a ∆=->, 因此,关于x 的二次方程210ax x ++=有两个实根. 故选:C. 【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.3.D解析:D 【分析】画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得【详解】数形结合法:画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得由图可得:204a a <<解得4a > 或204a a >>-解得4a故选:D 【点睛】数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.4.C解析:C 【分析】设123x x x <<,作出函数()f x 的图象,结合图象可得出1x 的取值范围,结合二次函数图象的对称性可得出234x x +=,进而可求得123x x x ++的取值范围. 【详解】设123x x x <<,作出函数()f x 的图象如下图所示:设()()()123f x f x f x m ===,当0x ≥时,()()2243211f x x x x =-+=--≥-,由图象可知,13m -<<,则()()11231,3f x x =+∈-,可得120x -<<, 由于二次函数243y x x =-+的图象的对称轴为直线2x =,所以,234x x +=,因此,12324x x x <++<. 故选:C. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(或取值范围),常用方法如下: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数的取值范围; (2)分离常数法:先将参数分离,转化为求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论. 【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.6.B解析:B 【分析】根据满足条件(1)(1)f x f x +=-且为奇函数,可周期为4,当[0,1]x ∈时,()f x x =,根据()()m x f x =与()xn x ae -=图像,判断在一个周期内的焦点情况即可求解.【详解】因为()f x 满足条件(1)(1)f x f x +=-且为奇函数, 函数()(2)()f x f x f x =-=--,∴()f x 周期为4, ∵当[0,1]x ∈时,()f x x =,作()()m x f x =与()xn x ae -=图像,函数()()xg x f x ae-=-在区间2018,[]2018-上有4032个零点,即()()m x f x =与()xn x ae -=在[0,4]且仅有两个交点,∴(1)(1)(3)(3)m n m n <⎧⎨>⎩即3e a e <<.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.7.B解析:B 【分析】先根据函数的奇偶性排除部分选项,然后令y =0,结合图象分析求解. 【详解】因为函数()32xy x x =-定义域为R ,且()()()()()()3322xxf x x x x x f x --=---=--=-,所以函数是奇函数,故排除C ,由()()()32112xxy x x x x x =-=-+,令y =0得x =-1,x =0,x =1,当01x <<时,0y <,当1x >时,0y >,排除AD故选:B 【点睛】本题主要考查函数图象的识别以及函数的奇偶性和零点的应用,还考查了数形结合的思想和分析求解问题的能力,属于中档题.8.A解析:A 【分析】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,即存在0[1,1]x ∈-,满足00()()f x f x -=-,即02332x x m -=--+有根,即可求出答案.【详解】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,∴存在0[1,1]x ∈-满足00()()f x f x -=-,003131x x m m -∴+-=--+, 002332x x m -∴=--+,构造函数00332x x y -=--+,0[1,1]x ∈-,令03x t =,1[,3]3t ∈,1122()y t t t t=--+=-+在1[,1]3单调递增,在(1,3]单调递减,所以1t =取得最大值0,13t =或3t =取得最小值43-,4[,0]3y ∴∈-,4203m ∴-<,032m ∴-<, 故选:A . 【点睛】本题考查的知识点是指数函数的性质、函数的值域,新定义“倒戈函数”,正确理解新定义“倒戈函数”的含义,是解答的关键.9.C解析:C 【分析】设()21f x x mx =++,根据二次函数零点分布可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】设()21f x x mx =++,则二次函数()21f x x mx =++的两个零点都在区间()0,2内,由题意()()2400220102250m m f f m ⎧∆=-≥⎪⎪<-<⎪⎨⎪=>⎪=+>⎪⎩,解得522m -<≤-. 因此,实数m 的取值范围是5,22⎛⎤-- ⎥⎝⎦. 故选:C. 【点睛】本题考查利用二次方程根的分布求参数,一般分析对应二次函数图象的开口方向、判别式、对称轴以及端点函数值符号,考查分析问题和解决问题的能力,属于中等题.10.A解析:A 【分析】由对称性判断①,由周期性判断②,周期性与奇偶性、单调性判断③,作出函数()y f x =的大致图象与直线y t =,由它们交点的性质判断④.【详解】由()()20f x f x +--=可知()f x 的图象关于直线1x =对称,①正确; 因为()f x 是奇函数,所以()()()2f x f x f x +=-=-,所以()()()42f x f x f x +=-+=,所以()f x 是周期函数,其一个周期为4,但不能说明2是()f x 的周期,故②错误; 由()f x 的周期性和对称性可得1644243333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.又当[]0,1x ∈时,()()2log 1f x x =+,所以()f x 在[]0,1x ∈时单调递增,所以1223f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即16132f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,③错误; 又[]0,1x ∈时,()()2log 1f x x =+,则可画出()f x 在区间[]2,8-上对应的函数图象变化趋势,如图易得()0f x t -=(01t <<)即()f x t =(01t <<)在区间()2,7-上的根分别关于1,5对称,故零点之和为()21512⨯+=,④正确. 故选:A. 【点睛】本题考查函数的奇偶性、对称性、单调性,考查函数的零点,掌握函数的基本性质是解题基础.函数零点问题常用转化为函数图象与直线的交点问题,利用数形结合思想求解.11.A解析:A 【分析】根据题设条件,可判断出d (B )的值为1或3,然后研究(x 2﹣ax )(x 2﹣ax +1)=0的根的情况,分类讨论出a 可能的取值. 【详解】解:由题意,|d (A )-d (B )|=1,d (A )=2,可得d (B )的值为1或3若d (B )=1,则x 2-ax=0仅有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,符合题意 若d (B )=3,则x 2-ax=0有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,不合题意 故x 2-ax=0有二根,一根是0,另一根是a ,所以x 2-ax+1=0必仅有一根,所以△=a 2-4=0,解得a=±2此时x 2-ax+1=0为1或-1,符合题意综上实数a 的所有可能取值构成集合M={0,-2,2},故d (M )=3. 故选:A . 【点睛】本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.12.B解析:B 【分析】根据题意将数据120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-,可得1412k e -⎛⎫= ⎪⎝⎭,再将40θ代入即可得8t =,即可得答案.【详解】由题意知:120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-得:()4602010020ke-=+-,解得1412k e -⎛⎫= ⎪⎝⎭所以当40θ时,()1440201002012t ⎛⎫ -⎪⎭=+⎝,解得:124114212t ⎛⎫== ⎛⎫ ⎝⎪⎭⎪⎭⎝, 所以8t =,所以再经过4分钟物体的温度是40C , 故选:B 【点睛】本题主要考查了指数函数的综合题,关键是弄清楚每个字母的含义,属于中档题.二、填空题13.11【分析】令函数得到方程从而化函数的零点为方程的根再转化为两个函数的交点问题从而解得【详解】解:令函数得到方程当时函先增后减在时取得最大值1而在时也有;当时在处函数取得最大值而在时也有;当时在处函解析:11 【分析】令函数2()30y xf x =-=,得到方程3()2f x x=,从而化函数的零点为方程的根,再转化为两个函数的交点问题,从而解得. 【详解】解:令函数2()30y xf x =-=,得到方程3()2f x x=, 当[)1,2x ∈时,函()f x 先增后减,在32x =时取得最大值1, 而32y x =在32x =时也有1y =; 当)22,2x ⎡∈⎣时,11()22f x f x ⎛⎫= ⎪⎝⎭,在3x =处函数()f x 取得最大值12,而32y x =在3x =时也有12y =; 当)232,2x ⎡∈⎣时,11()22f x f x ⎛⎫=⎪⎝⎭,在6x =处函数()f x 取得最大值14, 而32y x =在6x =时也有14y =; …,当)10112,2x ⎡∈⎣时,11()22f x f x ⎛⎫=⎪⎝⎭,在1536x =处函数()f x 取得最大值1012, 而32y x =在1536x =时也有1012y =; 综合以上分析,将区间()1,2015分成11段,每段恰有一个交点,所以共有11个交点,即有11个零点. 故答案为:11. 【点睛】本题考查函数的零点,对于较为复杂的函数的零点,可以转化为常见函数的图象的交点来考虑,本题属于中档题.14.【分析】解方程可得或然后分和解方程或由此可得出结论【详解】解方程可得或当时由可得解得由可得解得(舍);当时由可得则解得或由可得则解得或综上所述方程实根的个数是故答案为:【点睛】方法点睛:判定函数的零 解析:5【分析】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =,然后分0x ≤和0x >解方程()2f x =或()12f x =,由此可得出结论. 【详解】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =. 当0x ≤时,由()2f x =可得22x -=,解得1x =-,由()12f x =可得122x-=,解得1x =(舍);当0x >时,由()2f x =可得lg 2x =,则lg 2x =±,解得100x =或1100x =,由()12f x =可得1lg 2x =,则1lg 2x =±,解得x =或10x =. 综上所述,方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是5.故答案为:5. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15.【分析】由对数函数的性质可得转化条件为由二次函数的图象与性质即可得解【详解】因为所以即函数的图象开口朝上对称轴为①当函数在上单调递增所以即所以解得;②当时函数在上单调递减所以即所以解得;③当时所以解解析:1,22,3⎡⎡⎤-⎣⎣⎦【分析】由对数函数的性质可得()123f x ≤<,转化条件为()2max 3g x ≥、()2min 2g x ≤,由二次函数的图象与性质即可得解. 【详解】因为1[2,6)x ∈,所以()()()126f f x f ≤<即()123f x ≤<,函数2()()1g x x a =-+的图象开口朝上,对称轴为x a =,①当0a ≤,函数()g x 在[0,2]上单调递增,所以()()()202g g x g ≤≤, 即()2221,45g x a a a ⎡⎤∈+-+⎣⎦,所以22124530a a a a ⎧+≤⎪-+≥⎨⎪≤⎩,解得10a -≤≤;②当2a ≥时,函数()g x 在[0,2]上单调递减,所以()()()220g g x g ≤≤, 即()22245,1g x a a a ⎡⎤∈-++⎣⎦,所以22452132a a a a ⎧-+≤⎪+≥⎨⎪≥⎩,解得23a ≤≤;③当01a <≤时,()()22max 245g x g a a ==-+,()()2min 12g x g a ==<,所以245301a a a ⎧-+≥⎨<≤⎩,解得02a <≤④当12a <<时,()()22max 01g x g a ==+,()()2min 12g x g a ==<,所以21312a a ⎧+≥⎨<<⎩2a ≤<;综上,实数a 的取值范围是1,222,3⎡⎤⎡⎤--⎣⎦⎣⎦. 故答案为:1,222,3⎡⎤⎡⎤--⎣⎦⎣⎦.【点睛】解决本题的关键是将条件转化为()2max 3g x ≥、()2min 2g x ≤,结合二次函数的图象与性质讨论即可得解.16.【解析】试题分析:当时当时函数在上递减在上递增所以在处取得最小值且所以最小值点的坐标为若方程有两个不相等的实根则函数与有两个不同交点而是过原点的直线则应大于点与原点连线的斜率且小于直线的斜率即故答案解析:1,12⎛⎫⎪⎝⎭【解析】试题分析:当2x ≥时,()1f x x =-,当2x <时,()3f x x =-+,函数()f x 在(),2-∞上递减,在2,上递增,所以在2x =处取得最小值,且()21f =,所以最小值点的坐标为()2,1,若方程()()f x g x =有两个不相等的实根,则函数()f x 与()g x 有两个不同交点,而()g x kx =是过原点的直线,则k 应大于点()2,1与原点连线的斜率,且小于直线1y x =-的斜率,即112k <<,故答案为1,12⎛⎫⎪⎝⎭.考点:分段函数的图象与性质、数形结合判断方程根的个数.【方法点睛】本题主要考查分段函数的图象与性质、数形结合判断方程根的个数,属于难题.已知函数有零点(方程有根)求参数取值范围的三种常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.17.【分析】先根据函数奇偶性作出一个周期上图象再根据周期得区间上图象最后结合图象确定与动直线恰有4个交点的情况再求出对应数值【详解】因为是以为周期的上的奇函数所以当所以当作出区间上图象如图则直线过或时恰 解析:11,2e e ⎧⎫--⎨⎬⎩⎭【分析】先根据函数奇偶性作出一个周期上图象,再根据周期得区间[],2e e -上图象,最后结合图象确定与动直线1y kx =+恰有4个交点的情况,再求出对应数值. 【详解】因为()f x 是以2e 为周期的R 上的奇函数,所以(0)0,()()()()()0f f e f e f e f e f e ==-=-∴=-=,当()0,x e ∈,()ln f x x =,所以当(),0x e ∈-,()()ln(-)f x f x x =--=-,作出区间[],2e e -上图象如图,则直线1y kx =+过(,0)A e 或(2,0)B e 时恰有4个交点,此时11,2k k e e=-=-故答案为:11,2e e ⎧⎫--⎨⎬⎩⎭【点睛】本题考查函数奇偶性、周期性以及根据图象研究函数零点,考查数形结合思想以及综合分析求解能力,属中档题.18.3【分析】根据题意求得的周期;画出的图象数形结合根据函数图象交点个数即可求得零点个数【详解】当时则此时有∵∴∴函数是周期为2的周期函数令则由题意得函数的零点个数即为函数的图象与函数的图象交点的个数在解析:3 【分析】根据题意,求得()f x 的周期;画出(),ln y f x y x ==的图象,数形结合,根据函数图象交点个数即可求得零点个数. 【详解】当10x -<时,则011x +<, 此时有()(1)1f x f x x =-+=--, ∵()()1f x f x +=-,∴()()21[()]()f x f x f x f x +=-+=--=,∴函数()y f x =是周期为2的周期函数. 令()()ln 0g x f x x =-=,则()ln f x x =, 由题意得函数()()ln g x f x x =-的零点个数即为函数()y f x =的图象与函数y ln x =的图象交点的个数.在同一坐标系内画出函数()y f x =和函数y ln x =的图象(如图所示),结合图象可得两函数的图象有三个交点, ∴函数()()ln g x f x x =-的零点个数为3. 故答案为:3. 【点睛】本题考查数形结合判断函数零点个数的问题,涉及函数周期性的求解,属综合中档题.19.2【分析】化简得到画出函数图像根据图像得到答案【详解】取则即画出函数图像如图所示:根据图像知有两个交点故函数有两个零点故答案为:【点睛】本题考查了函数零点问题画出函数图像是解题的关键解析:2 【分析】化简得到131log =3xx ⎛⎫⎪⎝⎭,画出函数图像,根据图像得到答案.【详解】取13()3log 1=0x f xx =-,则133log =1x x ,即131log =3xx ⎛⎫ ⎪⎝⎭, 画出函数图像,如图所示:根据图像知有两个交点,故函数有两个零点.故答案为:2.【点睛】本题考查了函数零点问题,画出函数图像是解题的关键. 20.(-∞-)【分析】方程有两个大于的根据此可以列出不等式组求得m 的取值范围即可【详解】解:根据题意m 应当满足条件即:解得:实数m 的取值范围:(-∞-)故答案为:(-∞-)【点睛】本题考查根的判别式及根 解析:(-∞,-12) 【分析】方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可. 【详解】解:根据题意,m 应当满足条件 2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-, 实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题.三、解答题21.(1)()11xx e f x e-=+;(2)函数()f x 在(),0-∞上单调递减,证明见详解;(3){}1,0,1,2M =-.【分析】(1)当0x <时,0x ->,()1111x xx x e e f x e e-----==++,利用函数的奇偶性求解即可;(2)函数()f x 在(),0-∞上单调递减,利用定义证明函数的单调性即可;(3)把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题,利用函数的奇偶性和单调性得到2ax x a =-+,两边平方,利用方程有唯一的解即可得出结果.【详解】(1)当0x <时,0x ->,又函数()f x 为偶函数,则()()1111x xx xe ef x f x e e -----===++, 所以函数()f x 的解析式为()11xxe f x e -=+; (2)函数()f x 在(),0-∞上单调递减,设任意120x x <<,则()()()()()12212112212111111x x x x x x x x e e e e f x f x e e e e ----=-=++++, 因为xy e =在R 上单调递增,所以12x x e e <,即120x x e e -<,所以()()21f x f x <,所以函数()f x 在(),0-∞上单调递减;(3)因为函数()f x 为偶函数,所以函数()f x 在()0,∞+上单调递减,函数()()()2g x f ax f x a =--+的零点就是方程()()20f ax f x a --+=的解, 因为函数()g x 有唯一零点,所以方程()()20f ax f x a --+=有唯一的解,因为函数()f x 为偶函数,所以方程变形为:()()2f ax f x a =-+,因为函数()f x 在()0,∞+上单调递减, 所以2ax x a =-+,平方得:()()()22212220a x a x a -+-+-=,当210a -=时,即1a =±,经检验方程有唯一解; 当210a -≠时,()()()222424120a aa ∆=----=, 得()22200a a a -=⇒=或2a =,综上可得:集合{}1,0,1,2M =-.【点睛】关键点睛:把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题是解决本题的关键.22.(1)1392万元 (2)甲城市的投入为30万元,乙城市的投入为50万元 【分析】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元,直接分别代入对应的收益表达式中,得出答案.(2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元,分2040x ≤<和4060x ≤≤分别求出甲、乙两个城市的投资的总收益,再分别求出其最大值,再比较得出答案.【详解】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元 则甲城市收益1450402225y =-+=万元 乙城市收益2195552022y =⨯+= 所以甲、乙两个城市的投资的总收益为951392222+=万元 (2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元 当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+即4501100100702y x x⎛⎫=-+≤-=⎪⎝⎭,当且仅当45012x x =即30x =时,取等号.当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+ 即()112580208522y x x =+⨯-+=- 当40x =时,1852y x =-有最小值65 综上,当30x =时,甲、乙两个城市的投资的总收益最大.所以甲城市的投入为30万元,乙城市的投入为50万元,甲、乙两个城市的投资的总收益最大【点睛】关键点睛:本题考查函数的实际应用问题,解答的关键是分段得出甲、乙两个城市的投资的总收益的表达式,当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+,当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+,分别求出最大值,从而可解,属于中档题. 23.(1)1121,0()21,0x x x f x x +-+⎧+=⎨+>⎩;(2)函数图象见解析,1m 或3m > 【分析】(1)根据函数奇偶性的性质利用对称性进行转化求解即可.(2)作出函数()f x 的图象,利用指数函数的性质,结合数形结合进行求解即可.【详解】解:(1)若0x >,则0x -<,当0x 时,1()21x f x .且()f x 是定义在R 上的偶函数,1()21()x f x f x -+∴-=+=.即当0x >时,1()21x f x -+=+.即1121,0()21,0x x x f x x +-+⎧+=⎨+>⎩ (2)作出函数()f x 的图象如图:当0x 时,1()21(1x f x +=+∈,3].∴要使方程()f x m =没有实根,即函数()y f x =与y m =没有交点,则满足1m 或3m >.【点睛】本题主要考查函数解析式的求解以及函数与方程的应用,根据函数奇偶性的对称性的性质进行转化求解是解决本题的关键.24.(Ⅰ)300,0200()2300,200300t t f t t t -≤≤⎧=⎨-<≤⎩,()21()150100,0300200g t t t =-+≤≤;(Ⅱ)从二月一日开始的第50天上市的西红柿收益最大.【分析】(Ⅰ)根据图①的图象可知:是由一次函数构成的分段函数由点()()()0,300,200,100,300,300写出函数解析式;根据图②的图象是二次函数;由顶点()150,100和过点()250,150,写出函数解析式;(Ⅱ)设纯收益为h ,市场售价减去种植成本为纯收益,得到()()2211175+,020020022171025+,20030020022t t t h f t g t t t t ⎧-+≤≤⎪⎪=-=⎨⎪--<≤⎪⎩求解. 【详解】(Ⅰ)当0200t ≤≤时,设()111()0f t k t b k =+≠,则111300200100b k b =⎧⎨+=⎩,解得113001b k =⎧⎨=-⎩, 所以()300f t t =-.当200300t <≤时,设()222()0f t k t b k =+≠,则2222300300200100k b k b +=⎧⎨+=⎩,解得223002b k =-⎧⎨=⎩, 所以()2300f t t =-.综上市场售价与时间的函数关系式300,0200()2300,200300t t f t t t -≤≤⎧=⎨-<≤⎩; 设()2()150100g t a t =-+,则()2150250150100a =-+,解得1200a =, 所以种植成本与时间的函数关系式()21()150100,0300200g t t t =-+≤≤; (Ⅱ)设纯收益为h ,因为 若记市场售价减去种植成本为纯收益,所以()()2211175+,020020022171025+,20030020022t t t h f t g t t t t ⎧-+≤≤⎪⎪=-=⎨⎪--<≤⎪⎩, 当0200t ≤≤时,()22111751+50+10020022200h t t t =-+=--, 所以当50t =时,纯收益h 取得最大值100; 当200300t <≤时,()221710251+350+10020022200h t t t =-+=-- 当300t =时,纯收益h 取得最大值87.5,因为10087.5>,所以当50t =即从二月一日开始的第50天上市的西红柿收益最大.【点睛】结论点睛:函数模型的应用一般分为三类:(1)已知函数的图象,可根据图象得到函数类型利用待定系数法建立模型;(2)已知函数有关数表,可根据数据分析函数类型利用待定系数法建立模型; (3)已知函数模型的定义,可根据其定义建立模型.25.(1)8小时;(2)10小时时浓度达到最小值3【分析】(1)根据题意列出不等式()44f x ≥,求解出不等式解集,即可得到有效治污的持续时间;(2)根据条件求解出药剂在水中释放的浓度y 的解析式,然后利用基本不等式求解出对应的最小值,并计算出取最小值时对应的时间.【详解】(1)因为()644,0448202,410x y f x x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,令64448x-≥-,解得04x ≤≤, 当410x <≤时,令2024x -≥,解得48x <≤, 所以有效治污时间能持续8小时;。

【北师大版】高中数学必修四全册学案(全册共340页 附答案)

【北师大版】高中数学必修四全册学案(全册共340页 附答案)

【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。

北师大版高中数学必修一第四单元《函数应用》检测(答案解析)(1)

北师大版高中数学必修一第四单元《函数应用》检测(答案解析)(1)
【详解】
解:由题意,设点 ,则 的坐标为 ,
因为 ,
所以此函数的“友好点对”的个数即方程 在 时的解的个数,
作 与 的图像如图所示,
两函数图像有两个交点,所以此函数的“友好点对”有2对
故选:C
【点睛】
此题考查学生对新定义的理解能力及作图能力,属于中档题
7.B
解析:B
【分析】
由函数的奇偶性和周期性作 的图象,将方程的根的问题转化为两函数图象交点的问题,从而得 ,进而可求出实数a的取值范围.
故选:C.
【点睛】
方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.
A.(1,2)B.( ,2)C. (2,+∞)D.(2,+∞)
8.函数 的零点个数为()
A.0B.1C.2D.3
9.已知定义在 上的奇函数 满足 ,当 时, ,则函数 在区间 上所有零点之和为( )
A. B. C. D.
10.用d(A)表示集合A中的元素个数,若集合A={0,1},B={x|(x2-ax)(x2-ax+1)=0},且|d(A)-d(B)|=1.设实数a的所有可能取值构成集合M,则d(M)=( )
19.函数 有四个零点,则 的取值范围为_______.
20.已知函数 ,若方程 有两个不同实根,则实数 的取值范围为________.
三、解答题
21.2009年淘宝开始做“双十一”活动,历经11载,每年双十一成交额都会出现惊人的增长,极大拉动消费内需,促进经济发展.已知今年小明在网上买了一部华为手机,据了解手机是从150千米处的地方发出,运货卡车以每小时 千米的速度匀速行驶,中途不停车.按交通法规限制 (单位:千米/时).假设汽油的价格是每升5元,而卡车运输过程中每小时耗油 升,司机的工资是每小时20元.

2022版高中数学第四章函数应用本章复习提升北师大版必修1

2022版高中数学第四章函数应用本章复习提升北师大版必修1

第四章函数应用本章复习提升易混易错练易错点1忽视对参数取值范围的讨论导致错误1.()若函数f(x)=ax2-x-1的负零点有且仅有一个,求实数a的取值范围.2.(2020北京首都师范大学附属中学高一下期中,)已知a是实数, 关于x的方程2ax2+2x-3-a=0在区间[-1,1]上有实数根, 求a的取值范围.易错点2忽视实际问题中函数的定义域导致错误3.(2021四川泸州泸县一中高一上月考,)某商品在近30天内每件的销售价格P(单位:元)和时间t(t∈N)(单位:天)的关系如图所示:(1)请确定销售价格P(元)和时间t(天)的函数解析式;(2)该商品的日销售量Q(单位:件)与时间t(天)的关系:Q=-t+40(0≤t≤30,t∈N),求该商品的日销售金额y(单位:元)与时间t(天)的函数解析式;(3)求该商品的日销售金额y(元)的最大值,并指出日销售金额最大的一天是30天中的哪一天?易错点3忽视分段函数的计算方法导致错误4.()某购物站在2019年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”的优惠.小淘在11日当天欲购入原价48元(单价)的商品42件,为使花钱总数最少(不能多买),他最少需要下的订单张数为()A.1B.2C.3D.45.(2021河南洛阳高一上期中,)已知函数f (x )={x +1,x ≤0,lg x ,x >0,若存在互不相等的实数a ,b ,c ,d 满足|f (a )|=|f (b )|=|f (c )|=|f (d )|,则a +b +c +d 的取值范围为 ( )A.(0,+∞)B.(-2,+∞)C.(2,8110)D.(0,8110]6.()某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购1个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)设一次订购量为x ,零件的实际出厂单价为P 元,写出函数P =f (x )的表达式;(2)当销售商一次订购500个零件时,该厂获得的利润是多少?如果订购1000个,利润又是多少?(工厂售出一个零件的利润=实际出厂单价-成本)7.(2019四川成都石室中学高一上期末检测,)目前,某市出租车的计价标准是:路程2km以内(含2km)按起步价8元收取,超过2km后的路程按1.9元/km收取,但超过10km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元/km).(1)若0<x≤20,将乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(单位:km)的分段函数;(2)某乘客行程为16km,他准备先乘一辆出租车行驶8km,然后换乘另一辆出租车完成余下路程,请问:他这样做是否比只乘一辆出租车完成全程更省钱?思想方法练一、函数与方程思想在解决函数问题中的应用1.()原有一片面积为a的森林,计划每年砍伐一些树,且每年砍伐面积的百分比相等.经计算,当砍伐到原,已知到今年为止,森林的面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14.剩余面积为原面积的√22(1)求每年砍伐面积的百分比;(2)到今年为止,已经砍伐了多少年?(3)今后最多还能砍伐多少年?二、数形结合思想在解决函数问题中的应用2.(2019浙江温州十五校联合体高一上期中联考,)函数f(x)=|log2x|-e-x的所有零点的积为m,则有()A.m=1B.m∈(0,1)C.m∈(1,2)D.m∈(2,+∞)3.()函数f(x)=(12)x-x2的零点个数为()A.1B.2C.3D.44.(2021重庆缙云教育联盟高一上月考,)已知函数f(x)=|log3(x-1)|-(13)x-1有2个不同的零点x1,x2,则()A.x1x2<1B.x1x2=x1+x2C.x1x2>x1+x2D.x1x2<x1+x2三、分类与整合思想在解决函数零点问题中的应用5.(2021四川成都外国语学校高一上月考,)已知函数f(x)={-(x-1)2+1,x<2,12x(x-2),x≥2,若函数F(x)=f(x)-mx有4个零点,则实数m的取值范围是()A.(52-√6,16) B.(52-√6,3-2√2)C.(120,3-2√2) D.(120,16)6.(2019湖南明德中学高一上期中,)函数f(x)=|x2-1|+x2+kx.(1)若k=2,求函数f(x)的零点;(2)若函数f(x)在(0,2)上有两个不同的零点x1,x2,求k的取值范围,并证明:1x1+1x2<4.四、转化与化归思想在解决函数零点问题中的应用 7.()已知函数f (x )={log x x ,x >0,|x +3|,-4≤x <0,若函数f (x )的图像上有且仅有两个点关于y 轴对称,则a 的取值范围是( ) A.(0,1)B.(1,4)C.(0,1)∪(1,+∞)D.(0,1)∪(1,4)8.()若函数f (x )=2ax 2-x -1在(0,1)上恰有一个零点,则a 的取值范围是 .答案全解全析 第四章 函数应用本章复习提升 易混易错练4.C5.D1.解析 当a =0时,f (x )=-x -1,令f (x )=0,得x =-1,符合题意;当a >0时,此函数图像开口向上,f (0)=-1<0,结合二次函数图像知符合题意;当a <0时,此函数图像开口向下,f (0)=-1<0,由图像(图略)得{x =1+4x =0,--12x<0,即a =-14.综上可知,实数a 的取值范围为{-14}∪[0,+∞).2.解析 当a =0时,f (x )=2x -3, 令2x -3=0,得x =32∉[-1,1],∴f (x )在[-1,1]上没有实数根, 故a ≠0.函数f (x )=2ax 2+2x -3-a 的图像的对称轴为直线x =-12x . 当a >0时,①当-12x ≤-1,即0<a ≤12时,需使{x (-1)≤0,x (1)≥0,即{x ≤5,x ≥1,无解,∴a ∈⌀;②当-1<-12x<0,即a >12时,需使{x (-12x )≤0,x (1)≥0,即{-12x-3-x ≤0,x ≥1,解得a ≥1,∴a 的取值范围是[1,+∞). 当a <0时,① 当0<-12x≤1,即a ≤-12时,需使{x (-1)≤0,x (-12x )≥0,即{x ≤5,-12x -3-x ≥0,解得a ≤-3-√72或-3+√72≤a ≤5,又a ≤-12,∴a 的取值范围是(-∞,-3-√72);②当-12x >1时,即-12<a <0时, 需使{x (-1)≤0,x (1)≥0,即{x ≤5,x ≥1,∴a ∈⌀. 综上所述 ,a 的取值范围是(-∞,-3-√72)∪[1,+∞).易错警示本题考查的是由二次函数零点的分布求参数范围的问题,当二次函数(方程)的二次项系数含有参数时,需要对参数进行分类讨论.3.解析 (1)当0≤t <25,t ∈N 时,设P =at +b (a ≠0),将点(0,19),(25,44)代入,得{19=x ,44=25x +x ,解得{x =1,x =19,∴P =t +19(0≤t <25,t ∈N),当25≤t ≤30,t ∈N 时,同理可得P =-t +100,综上所述,销售价格P (元)和时间t (天)的函数解析式为P ={x +19,0≤x <25,x ∈x ,-x +100,25≤x ≤30,x ∈N.(2)由题意得,y =P ·Q , 由(1)得y ={(x +19)(-x +40),0≤x <25,x ∈x ,(-x +100)(-x +40),25≤x ≤30,x ∈N,即y ={-x 2+21x +760,0≤x <25,x ∈x ,x 2-140x +4000,25≤x ≤30,x ∈N.(3)由y ={-x 2+21x +760,0≤x <25,x ∈x ,x 2-140x +4000,25≤x ≤30,x ∈N,当0≤t <25,t ∈N 时,由二次函数的图像和性质,知当t =10或t =11时,y 取最大值,为870. 当25≤t ≤30,t ∈N 时,由二次函数的图像和性质,知当t =25时,y 取最大值,为1125.综上所述,在第25天,该商品的日销售金额最大为1125元.4.C 要使6折后的价格满300元,则原价应满500元,因为每张订单金额必须是48的整数倍,所以每张订单中的商品数不小于11,若每张订单购买的商品数分别为11,11,11,9,则应下4张订单,但最后一张订单金额不满500元,不能参加“满减”活动,可将最后一个订单中的9件商品分到前3个订单中,此时只需下3张订单,所以他最少需要下3张订单.5.D f (x )={x +1,x ≤0,lg x ,x >0,则|f (x )|={-x -1,x ∈(-∞,-1),x +1,x ∈[-1,0],-lg x ,x ∈(0,1),lg x ,x ∈[1,+∞),画出函数|f (x )|的图像,如图所示:设|f (a )|=|f (b )|=|f (c )|=|f (d )|=k ,则k ∈(0,1],不妨取a <b <0<c <1<d ,根据对称性知a +b =-2,-lg c =lg d ,即cd =1,c +d =d +1x ,d ∈(1,10],故d +1x ∈(2,10110],故a +b +c +d ∈(0,8110]. 故选D . 易错警示对于分段函数,需特别注意以下几点:(1)分段函数是指自变量在两个或两个以上不同的范围,有不同的对应法则的函数; (2)分段函数是一个函数;(3)分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集. 6.解析 (1)若实际出厂单价为51元,则订购量为100+60-510.02=550,当0<x ≤100时,P =60;当100<x <550时,P =60-0.02(x -100)=62-x50;当x ≥550时,P =51.因此,P ={60,0<x ≤100,62-x50,100<x <550,51,x ≥550.(2)设工厂获得的利润为L 元,当订购500个时,L =(62-50050-40)×500=6000;当订购1000个时,L =(51-40)×1000 =11000.故当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元. 7.解析 (1)由题意得车费f (x )关于路程x 的函数为 f (x )={8(0<x ≤2),8+1.9(x -2)(2<x ≤10),8+1.9×8+2.85×(x -10)(10<x ≤20),即f (x )={8(0<x ≤2),4.2+1.9x (2<x ≤10),2.85x -5.3(10<x ≤20).(2)只乘一辆车的车费为f (16)=2.85×16-5.3=40.3(元), 乘两辆车的车费为2f (8)=2×(4.2+1.9×8)=38.8(元). ∵40.3>38.8,∴该乘客换乘比只乘一辆车更省钱.思想方法练2.B3.C4.D5.B 7.D1.解析 (1)设每年砍伐面积的百分比为x (0<x <34), 则a (1-x )10=12a ,根据题设构造方程,体现了方程思想. 即(1-x )10=12,解得x =1-(12)110,所以所求百分比为1-(12)110. (2)设经过n年的砍伐,森林的剩余面积为原面积的√22,则a (12)x10=√22a ,即(12)x 10=(12)12,解得n =5,再次构造方程,利用方程思想求解. 所以到今年为止,已经砍伐了5年. (3)设该片森林一共可砍伐m 年,则a (12)x10=14a ,即(12)x10=(12)2,解得m=20,所以该片森林一共可砍伐20年,故今后最多还能砍伐20-5=15年.2.B由f(x)=0得|log2x|=e-x=(1e )x,在同一坐标系中,作出函数y=|log2x|与y=(1e)x的图像,如图所示:以形助数,借助函数图像解决零点问题.由图像知,f(x)=0有两实数解,且0<x1<1<x2, ∴-log2x1=e-x1,log2x2=e-x2,∴log2x1+log2x2=e-x2-e-x1,∴log2(x1·x2)=(1e )x2-(1e)x1<0,从而0<x1x2<1,即0<m<1,故选B.3.C由f(x)=0得(12)x=x2.在同一坐标系中作出函数y=(12)x与y=x2的图像,如图所示:同时作出两个函数的图像,数形结合,由图像交点个数得到函数零点个数.由图像知f(x)有3个零点,故选C.4.D函数f(x)=|log3(x-1)|-(13)x-1有2个不同的零点x1,x2, 即y=|log3(x-1)|与y=3-x+1的图像有2个不同的交点.分别画出y=3-x+1和y=|log3(x-1)|的图像,如图所示:以形助数,借助函数图像直观得出图像的交点个数.发现两函数的图像在(1,2)和(2,+∞)有两个交点.不妨设x1∈(1,2),x2∈(2,+∞),那么在(1,2)上有1+3-x1=-log3(x1-1),①在(2,+∞)上有1+3-x2=log3(x2-1),②①+②,得3-x2-3-x1=log3[(x1-1)(x2-1)].∵x2>x1,∴3-x2<3-x1,即3-x2-3-x1<0,∴log3[(x1-1)(x2-1)]<0,∴0<(x1-1)(x2-1)<1,∴x1x2<x1+x2,利用对数函数的单调性去掉对数符号.故选D.思想方法判断方程是否有解、解的个数及解所在的区间,判断函数零点的个数及零点所在区间等问题,往往通过构造函数,利用函数的图像求解,体现了数形结合思想.5.B函数f(x)={-(x-1)2+1,x<2, 12x(x-2),x≥2,函数F(x)=f(x)-mx有4个零点,即f(x)=mx有4个不同的交点.画出函数f(x)的图像,如图所示:以形助数,借助函数图像研究问题.由图可知,当2≤x <4时,设对应二次函数顶点为A ,则A (3,12),k OA =123=16,对x 的范围分类讨论,体现分类讨论的思想.当4≤x <6时,设对应二次函数的顶点为B ,则B (5,14),k OB =145=120, 所以120<m <16.当直线y =mx 与2≤x <4时所对应的二次函数图像相切时,直线y =mx 与函数f (x )的图像有3个交点,此时{x =xx ,x =-12(x -3)2+12,化简,得x 2+(2m -6)x +8=0,Δ=(2m -6)2-4×8=0,解得m 1=3-2√2,m 2=3+2√2(舍);将直线与二次函数图像相切转化为根的 判别式为0.当直线y =mx 与4≤x <6时所对应的二次函数图像相切时,直线y =mx 与函数f (x )的图像有5个交点,此时{x =xx ,x =-14(x -5)2+14,相切时也有两种情形,故继续分类讨论. 化简,得x 2+(4m -10)x +24=0,Δ=(4m -10)2-4×24=0,解得m 3=52-√6,m 4=52+√6(舍);故当f (x )=mx 有4个不同的交点时,m ∈(52-√6,3-2√2).故选B .思想方法本题考查函数零点与方程根的关系,依题意,函数y =f (x )的图像与直线y =mx 有4个交点,作出函数图像,通过图像分析找到临界情况,画图时要考虑自变量取值不同时.对应的函数不同.考查分类与整合的思想方法. 6.解析 (1)若k =2,则f (x )=|x 2-1|+x 2+2x. 对绝对值内的代数式分类,从而去掉绝对值.当x ≥1或x ≤-1时,f (x )=0可化为x 2-1+x 2+2x =0,即2x 2+2x -1=0, 解得x =-1-√32或x =-1+√32(舍去).当-1<x <1时,f (x )=0可化为2x +1=0, 解得x =-12.针对另一种情形求函数的零点. 综上所述,f (x )的零点为-1-√32,-12.(2)当0<x <2时,f (x )={xx +1,0<x ≤1,2x 2+xx -1,1<x <2.若f (x )的两个零点x 1,x 2都在(1,2)内,将零点所在的范围转化到更具体的范围中. 则x 1·x 2=-12,与x 1,x 2∈(1,2)不符合,因此,两个零点分别在(0,1]和(1,2)内. 不妨设x 1∈(0,1],x 2∈(1,2),由x 1∈(0,1]得f (x 1)=kx 1+1=0,k =-1x 1≤-1.由x 2∈(1,2),且f (x )=2x 2+kx -1,得f (1)·f (2)<0⇒(k +1)(2k +7)<0⇒-72<k <-1.综上所述,-72<k <-1.证明:设g (k )=1x 1+1x 2, ∵x 1=-1x ,x 2=-x +√x 2+84或x 2=-x -√x 2+84(舍去), ∴g (k )=1x 1+1x 2=-k +√=√x 2+8-x2=√,∴g (k )在(-72,-1)上单调递减, ∴g (k )=1x 1+1x 2<g (-72)=√(-72)2+8+722=4,即1x 1+1x 2<4.7.D 函数y =log a x (x >0)的图像与函数h (x )=log a (-x )(x <0)的图像关于y 轴对称,则函数f (x )图像上有且仅有两个点关于y 轴对称的问题可转化为函数y =log a (-x )-|x +3|在-4≤x <0上有唯一零点的问题. 将对称问题转化为函数零点的个数问题.当0<a <1时,作出h (x )=log a (-x )(x <0),f (x )=|x +3|(-4≤x <0)的图像(图略),显然两图像有唯一交点,符合题意;将函数零点个数问题转化为函数图像交点的 个数问题.当a >1时,由函数h (x )=log a (-x )与f (x )=|x +3|(-4≤x <0)的图像有唯一交点,得log a 4>1,又a >1,所以1<a <4. 综上所述,a 的取值范围是(0,1)∪(1,4).所以D 选项是正确的. 8.答案 (1,+∞)解析 f (x )在(0,1)上恰有一个零点可转化为2a =1x +1x 2在(0,1)内有唯一解.将函数恰有一个零点转化为方程恰有一个解.设t =1x (x ∈(0,1)),则t ∈(1,+∞),2a =t +t 2,2a =1x +1x 2在(0,1)内有唯一解,即2a =t +t 2在(1,+∞)上有唯一解. 继续转化为另一个方程仅有唯一解的问题.设h(t)=t+t2,易知函数h(t)=t+t2在(1,+∞)上单调递增, 依题意得2a>h(1)=2,即a>1,故a的取值范围是(1,+∞).将不等式恒成立转化为参数与函数的最值关系问题.。

新北师大版高中数学必修一第四单元《函数应用》检测题(包含答案解析)

新北师大版高中数学必修一第四单元《函数应用》检测题(包含答案解析)

一、选择题1.已知函数,01()11,10(1)x x f x x f x ≤<⎧⎪=⎨--<<⎪+⎩,()()4g x f x mx m =--,其中m 是非零的实数,若函数()g x 在区间(1,1)-内有且仅有两个零点,则实数m 的取值范围是( ) A .1,(0,1)5⎛⎫-∞-⋃ ⎪⎝⎭B .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭D .1,(1,)5⎛⎫-∞-⋃+∞ ⎪⎝⎭2.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( )A .80,11⎛⎫⎪⎝⎭B .110,8⎛⎫⎪⎝⎭C .80,19⎛⎫⎪⎝⎭D .190,8⎛⎫⎪⎝⎭3.已知函数()223,021,0x x x f x x -+≤⎧⎪=⎨->⎪⎩,若存在三个实数m n q ≠≠,使得()()()f m f n f q ==成立,则111222m n q++的取值范围是( ) A .[]0,1B .51,2222⎛⎫+ ⎪⎝⎭C .()2,22D .()0,14.已知函数21,1()1,1x x x f x x x⎧-+<⎪=⎨⎪⎩,若函数()y f x a =-有三个零点,则实数a 的取值范围为( ) A .3[4,1]B .3(4,1)C .(0,1)D .3(4,)+∞5.已知关于x 的方程|2|1x m -=有两个不等实根,则实数m 的取值范围是( ) A .(-∞,1]-B .(,1)-∞-C .[1,)+∞D .(1,)+∞6.定义在R 上的奇函数f (x )满足条件(1)(1)f x f x +=-,当x ∈[0,1]时,f (x )=x ,若函数g (x )=()f x -a e -在区间2018,[]2018-上有4 032个零点,则实数a 的取值范围是 A .(0,1) B .(e ,e 3) C .(e ,e 2)D .(1,e 3)7.已知方程2mx e x =在(]0,8上有两个不等的实数根,则实数m 的取值范围为( )A .1ln 2,84⎛⎫ ⎪⎝⎭B .1ln 2,164⎡⎫⎪⎢⎣⎭C .3ln 22,4e ⎡⎫⎪⎢⎣⎭ D .122,4n e ⎡⎫⎪⎢⎣⎭8.若函数()f x 的图象是连续不断的,且(0)0f >,(1)(2)(4)0f f f <,则下列命题正确的是( ).A .函数()f x 在区间(0 , 1)内有零点B .函数()f x 在区间(1 , 2)内有零点C .函数()f x 在区间(0 , 2)内有零点D .函数()f x 在区间(0 , 4)内有零点9.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是( )A .a<0B .0<a<C . <a<1D .a≤0或a>110.统计学家克利夫兰对人体的眼睛详细研究后发现;我们的眼睛看到图形面积的大小与此图形实际面积的0.7次方成正比.例如:大图形是小图形的3倍,眼睛感觉到的只有0.73(约2.16)倍.观察某个国家地图,感觉全国面积约为某县面积的10倍,那么这国家的实际面积大约是该县面积的(lg 20.3010≈,lg30.4771=,lg70.8451≈)( ) A .l 8倍B .21倍C .24倍D .27倍11.已知函数f (x )=1,01,0x x x ⎧⎪⎨>⎪⎩则使方程x +f (x )=m 有解的实数m 的取值范围是( ) A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞)12.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .πB .2πC .3πD .4π二、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元. 14.2019年1月1日起新的个人所得税法开始实施,依据《中华人民共和国个人所得税法》可知纳税人实际取得工资、薪金(扣除专项、专项附加及依法确定的其他)所得不超过5000元(俗称“起征点”)的部分不征税,超出5000元部分为全月纳税所得额.新的税率表如表:2019年1月1日后个人所得税税率表个人所得税专项附加扣除是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息、住房租金和赡养老人等六项专项附加扣除.其中赡养老人一项指纳税人赡养60岁(含)以上父母及其他法定赡养人的赡养支出,可按照以下标准扣除:纳税人为独生子女的,按照每月2000元的标准定额扣除;纳税人为非独生子女的,由其与兄弟姐妹分摊每月2000元的扣除额度,每人分摊的额度不能超过每月1000元.某纳税人只有一个姐姐,且两人仅符合规定中的赡养老人的条件,如果他在2020年5月份应缴纳个人所得税款为180元,那么他当月的工资、薪金税后所得是_____元.15.已知函数2()log (2)f x x =+与2()()1g x x a =-+,若对任意的1[2,6)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,则实数a 的取值范围是______.16.函数()e |ln |2x f x x =-的零点个数为______________.17.对于函数sin ,[0,2]()1(2),(2,)2x x f x f x x π∈⎧⎪=⎨-∈+∞⎪⎩现有下列结论:①任取12[2,,)x x ∈+∞,都有()()121f x f x -≤; ②函数()y f x =在[]4,5上先增后减 ③函数()()ln 1y f x x =--有3个零点:④若关于x 的方程()()0f x m m =<有且只有两个不同的实根1x ,2x ,则123x x += 其中,正确结论的序号为_______________(写出所有正确命题的序号)18.已知f (x )=23,123,1x x x x x +≤⎧⎨-++>⎩,则函数g (x )=f (x )-e x 的零点个数为________.19.函数()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,,如果方程()f x b =有四个不同的实数解1x ,2x ,3x ,4x ,则1234x x x x +++=______.20.对于实数a b ,,定义运算“*”:22*a ab a b a b b ab a b ⎧-≤=⎨->⎩,,,设()()2*1f x x x =+,且关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根,则m 的取值范围是________.三、解答题21.已知函数()()222f x ax a x =-++,()a R ∈.(1)()32f x x <-恒成立,求实数a 的取值范围; (2)当0a >时,求不等式()0f x ≥的解集; (3)若存在0m >使关于x 的方程()11f x m m=++有四个不同的实根,求实数a 的取值范围.22.已知函数()11f x x=-,实数a 、b 满足a b <. (1)在下面平面直角坐标系中画出函数()f x 的图象;(2)若函数在区间[],a b 上的值域为1,33⎡⎤⎢⎥⎣⎦,求+a b 的值;(3)若函数()f x 的定义域是[],a b ,值域是[](),0ma mb m >,求实数m 的取值范围. 23.某产品拟在2020年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)m 万件与年促销费用x (0x a ≤≤)万元满足141m x =-+.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要投入25万元.厂家将每件产品的销售价格定为每件产品年平均成本的2倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2020年该产品的利润y 万元表示为年促销费用x 万元的函数; (2)该服装厂2020年的促销费用投入多少万元时,利润最大?24.已知a R ∈,函数21()log f x a x ⎛⎫=+⎪⎝⎭. (1)当5a =时,解不等式()0f x >;(2)若函数()()22log g x f x x =+只有一个零点,求实数a 的取值范围;25.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目,经测算该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:[)[)3221805040,120,1443120080000,144,5002x x x x y x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元.(1)当[]200,300x ∈时,判断该项目能否获利?如果获利,求出最大利润:如果不获利,则月处理量x 为多少吨时可使亏损量最小?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?26.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出()*x x N ∈名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫-⎪⎝⎭万元()0a >,剩下的员工平均每人每年创造的利润可以提高0.2%x . (1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求得分段函数的解析式,函数()g x 零点等价于函数()y f x =的图象与直线4y mx m =+公共点,做出图像,数形结合,即可求得答案.【详解】当10x -<<时,011x <+<,满足上支范围,所以()11f x x +=+,所以,01()11,101x x f x x x ≤<⎧⎪=⎨--<<⎪+⎩,作函数()y f x =的图象,如图所示.函数()g x 零点的个数等价于函数()y f x =的图象与直线4y mx m =+公共点的个数. 当直线4y mx m =+过点(1,1)时,15m =, 所以当105m <<时, 直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(10x -<<)相交时, 联立4111y mx m y x =+⎧⎪⎨=-⎪+⎩消去y 得,24(51)0mx m x m -++=, 因此22(51)160m m ∆=+->且510m +<时,解得1m <-.综上知,实数m 的取值范围是1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭. 故选:C 【点睛】本题的关键是根据x 的范围,先求得函数解析式,做出图像,再将零点问题转化为图像交点问题,易错点为,4y mx m =+可以与函数两支都有交点,也可以与函数111y x =-+单支产生交点,需分别检验和计算,属中档题.2.A解析:A 【分析】先由条件①②,得到函数()f x 是周期为4的周期函数;根据③求出函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,根据④得到()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象,结合图象,即可求出结果. 【详解】因为函数()f x 是偶函数,由()()220f x f x +--=得()()()222f x f x f x +=-=-,即()()4f x f x +=,所以函数()f x 是周期为4的周期函数; 若[]2,0x ∈-,则[]0,2x ∈;因为当[]0,2x ∈时,()f x x =, 所以[]0,2x -∈时,()f x x -=-,因为函数()f x 是偶函数,所以()()f x x f x -=-=, 即()f x x =-,[]2,0x ∈-,则函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,因为()()()12n n f x f x -=⋅,*n N ∈,所以函数()()()48f x f x =,*n N ∈,故()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象如图:易知过()1,0M -的直线l 斜率存在,设过点()1,0-的直线l 的方程为()1y k x =+, 则要使直线l 与()()4f x 的图象在[]0,2x ∈上恰有8个交点,则0MA k k <<,因为7,24A ⎛⎫⎪⎝⎭,所以20871114MA k -==+,故8011k <<.故选:A. 【点睛】 关键点点睛:求解本题的关键在于,根据条件,由函数基本性质,得到()()4f x 的图象,再由函数交点个数,利用数形结合的方法,即可求解.3.B解析:B 【分析】作出函数()f x 的示意图,令()()()f m f n f q t ===,m n q <<,由图象及指数运算得到1222nq --+=和3(,1)2m ∈--,再利用不等式的性质即可得到答案. 【详解】令()()()f m f n f q t ===,不妨设m n q <<,作出函数()f x 的图象如图所示, 则(0,1)t ∈,23m t +=,所以33(,1)22t m -=∈--,2(2,22)m -∈ 又22|21||21|nq ---=-,所以222112n q ---=-,即1222n q --+=所以1111512(,22)222222mm n q -++=+∈+ 故选:B【点睛】关键点睛:本题解题关键是准确作出函数图象,令()()()f m f n f q t ===,m n q <<得到1222nq --+=以及m 及2m -的范围,从而使问题得到解决. 4.B解析:B 【分析】画出函数21,1 ()1,1x x xf xxx⎧-+<⎪=⎨⎪⎩的图象,函数()y f x a=-有三个零点等价于()y f x=与y a=的图象有3个不同交点,数形结合得答案.【详解】作出函数21,1()1,1x x xf xxx⎧-+<⎪=⎨⎪⎩的图象如图,函数()y f x a=-有三个零点,即()y f x=与y a=的图象有3个不同交点,由图可知,实数a的取值范围为3(4,1).故选:B.【点睛】方法点睛:由零点求参数范围:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.5.D解析:D【分析】分离参数,再根据指数函数性质求出.【详解】解:21x m-=或21x m-=-,即21xm=-,或者21xm=+,当211xm=->-时,有一个解,当211xm=+>时,有一个解,所以1m时,方程|2|1x m-=有两个不等实根,故选:D.【点睛】考查方程根的个数问题,利用了分类讨论法,分离参数法,属于中档题.6.B解析:B【分析】根据满足条件(1)(1)f x f x +=-且为奇函数,可周期为4,当[0,1]x ∈时,()f x x =,根据()()m x f x =与()xn x ae -=图像,判断在一个周期内的焦点情况即可求解.【详解】因为()f x 满足条件(1)(1)f x f x +=-且为奇函数, 函数()(2)()f x f x f x =-=--,∴()f x 周期为4, ∵当[0,1]x ∈时,()f x x =,作()()m x f x =与()xn x ae -=图像,函数()()xg x f x ae-=-在区间2018,[]2018-上有4032个零点,即()()m x f x =与()xn x ae -=在[0,4]且仅有两个交点,∴(1)(1)(3)(3)m n m n <⎧⎨>⎩即3e a e <<.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.7.C解析:C 【分析】由题意可得方程2mx e x =在(]0,8上有两个不等的实数根,设()(]ln ,0,8xf x x x=∈,求得函数的导数和单调性,可得极值和最值,画出()y f x =的图象,可得m 的不等式,即可求解. 【详解】由题意,方程2mx e x =在(]0,8上有两个不等的实数根, 即为2ln mx x =在(]0,8上有两个不等的实数根, 即1ln 2x m x=在(]0,8上有两个不等的实数根, 设()(]ln ,0,8x f x x x =∈,则()21ln xf x x -'=, 当(,8)x e ∈时,()0f x '<,函数()f x 递减,当(0,)x e ∈时,()0f x '>,函数()f x 递增, 所以当x e =时,函数()f x 取得最大值1e,且()ln83ln 2888f ==, 所以3ln 2182m e ≤<,解得3ln 224m e≤<,故选C.【点睛】本题主要考查了函数与方程,以及导数在函数中的综合应用,其中解答中把方程的根转化为1ln 2x m x =在(]0,8上有两个不等的实数根,利用导数求得函数()ln x f x x =的单调性与最值是解答的关键,着重考查了转化思想,以及推理与运算能力.8.D解析:D 【解析】解:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,结合图象可得函数f (x )必在区间(0,4)内有零点因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的, 函数的图象与x 轴相交有多种可能,如图所示:所以函数f (x )必在区间(0,4)内有零点, 故选D .9.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2xx a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1 又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.10.D解析:D 【分析】根据已知条件可构造出函数关系式,进而得到0.710x =,根据对数运算法则可解方程求得近似值. 【详解】由题意可知,看到图形面积大小y 与图形实际面积x 之间满足0.7y x=∴若看到全国面积约为某县面积的10倍,则0.710x =,解得:10lg 1.437x =≈ lg 273lg3 1.43=≈ 27x ∴≈故选:D 【点睛】本题考查利用函数模型求解实际问题,关键是能够根据已知条件构造出合适的函数模型,结合对数运算性质求得结果.11.D解析:D 【分析】分别讨论x ≤0和x >0,方程有解时,m 的取值. 【详解】当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即1x m x+=,解得m ≥2, 即实数m 的取值范围是(,1][2,)-∞⋃+∞故选:D 【点睛】本题考查了方程有解求参数的取值问题,考查了计算求解能力和逻辑推理能力,属于一般题目.12.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称.函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.二、填空题13.1120【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =30>2解析:1120 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元. 【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.14.9720【分析】按题意从最低纳税额开始计算最高纳税同时考虑到专项附加扣除后可得【详解】设他的工资是元工资是8000元时纳税为由于他有专项附加扣1000元因此他工资是9000元时纳税90元纳税后收入为解析:9720 【分析】按题意从最低纳税额开始计算最高纳税,同时考虑到专项附加扣除后可得. 【详解】设他的工资是x 元,工资是8000元时纳税为30003%90⨯=,由于他有专项附加扣1000元,因此他工资是9000元时,纳税90元,(9000)10%18090x -⨯=-,9900x =,纳税后收入为9900-180=9720(元). 故答案为:9720. 【点睛】本题考查函数的应用,解题时根据分段函数的意义分段计算纳税额即可得.解题关键是正确理解题意,弄懂工资收入与纳税额之间的关系.15.【分析】由对数函数的性质可得转化条件为由二次函数的图象与性质即可得解【详解】因为所以即函数的图象开口朝上对称轴为①当函数在上单调递增所以即所以解得;②当时函数在上单调递减所以即所以解得;③当时所以解解析:1,22,3⎡⎡⎤-⎣⎣⎦【分析】由对数函数的性质可得()123f x ≤<,转化条件为()2max 3g x ≥、()2min 2g x ≤,由二次函数的图象与性质即可得解. 【详解】因为1[2,6)x ∈,所以()()()126f f x f ≤<即()123f x ≤<,函数2()()1g x x a =-+的图象开口朝上,对称轴为x a =,①当0a ≤,函数()g x 在[0,2]上单调递增,所以()()()202g g x g ≤≤, 即()2221,45g x a a a ⎡⎤∈+-+⎣⎦,所以22124530a a a a ⎧+≤⎪-+≥⎨⎪≤⎩,解得10a -≤≤;②当2a ≥时,函数()g x 在[0,2]上单调递减,所以()()()220g g x g ≤≤, 即()22245,1g x a a a ⎡⎤∈-++⎣⎦,所以22452132a a a a ⎧-+≤⎪+≥⎨⎪≥⎩,解得23a ≤≤;③当01a <≤时,()()22max 245g x g a a ==-+,()()2min 12g x g a ==<,所以245301a a a ⎧-+≥⎨<≤⎩,解得02a <≤④当12a <<时,()()22max 01g x g a ==+,()()2min 12g x g a ==<,所以21312a a ⎧+≥⎨<<⎩2a ≤<;综上,实数a 的取值范围是1,22,3⎡⎡⎤-⎣⎣⎦.故答案为:1,22,3⎡⎡⎤-⎣⎣⎦.【点睛】解决本题的关键是将条件转化为()2max 3g x ≥、()2min 2g x ≤,结合二次函数的图象与性质讨论即可得解.16.2【分析】令可得可将函数的零点可以转化为:函数和的图象的交点问题进而画出函数的图象可得出答案【详解】令可得所以函数的零点可以转化为:函数和的图象的交点问题函数和的图象如下图所示:根据图象可得有两个交解析:2 【分析】令()e |ln |20xf x x =-=,可得2ln ex x =,可将函数()f x 的零点可以转化为:函数ln y x =和2ex y =的图象的交点问题,进而画出函数的图象,可得出答案. 【详解】令()e |ln |20xf x x =-=,可得2ln ex x =, 所以函数()f x 的零点可以转化为:函数ln y x =和2ex y =的图象的交点问题. 函数ln y x =和2e xy =的图象,如下图所示:根据图象可得有两个交点,故原函数有两个零点. 故答案为:2. 【点睛】方法点睛:本题考查求函数零点的个数(方程解的个数)问题.常用的方法:(1)直接解方程()0f x =,求出方程的解的个数,也就是函数()y f x =的零点个数; (2)作出函数()y f x =的图象,其图象与x 轴交点的个数就是函数()y f x =的零点的个数;(3)化函数零点个数问题为方程()()=g x h x 的解的个数问题,在同一平面直角坐标系中画出两个函数的图象,两函数图象的交点个数就是函数()y f x =的零点的个数.17.①②③④【分析】当时函数的最大值为最小值为所以任取都有恒成立故①正确;函数先增后减故②正确;根据图象知函数有3个零点故③正确;根据图象知根据对称性知故④正确【详解】函数当时函数的最大值为最小值为所以解析:①②③④ 【分析】当[2,)x ∈+∞时,函数()f x 的最大值为12,最小值为12-,所以任取12[2,,)x x ∈+∞,都有()()121f x f x -≤恒成立,故①正确;()1sin 4f x x π=,函数先增后减,故②正确;根据图象知,函数有3个零点,故③正确;根据图象知112m -<<-,根据对称性知123x x +=,故④正确.【详解】函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,当[2,)x ∈+∞时,函数()f x 的最大值为12,最小值为12-,所以任取12[2,,)x x ∈+∞,都有()()121f x f x -≤恒成立,故①正确; 当[]4,5x ∈,[]40,1x -∈,故()()()1114sin 4sin 444f x f x x x ππ=-=-=,函数先增后减,故②正确;令()()ln 10y f x x =--=,即()()ln 1f x x =-,同②,计算得到()[](](]sin ,0,21sin ,2,421sin ,4,64x x f x x x x x πππ⎧⎪∈⎪⎪=∈⎨⎪⎪∈⎪⎩,画出函数图象,如图所示:根据图象知,函数有3个零点,故③正确;()()0f x m m =<有且只有两个不同的实根12,x x ,根据图象知112m -<<-,根据对称性知123x x +=,故④正确;故答案为:①②③④. 【点睛】方法点睛:函数零点问题的处理常用的方法有:(1)方程法:直接解方程得到函数的零点;(2)图像法:直接画出函数的图象得解;(3)方程+图像法:令()0f x =重新构造两个函数,数形结合分析得解.18.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2 【详解】 把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.19.【分析】作出的图象可得和的图象有四个不同的交点不妨设交点横坐标由关于原点对称关于点对称即可得到所求的和【详解】作出的图象方程有四个不同的实数解等价为和的图象有四个不同的交点不妨设交点横坐标为且由关于 解析:4【分析】作出()f x 的图象,可得()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标1234x x x x <<<,由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称,即可得到所求的和.【详解】作出()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,的图象,方程()f x b =有四个不同的实数解,等价为()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标为1x ,2x ,3x ,4x 且1234x x x x <<<,由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称, 可得12=0x x +,344x x +=, 则12344x x x x +++=, 故答案为:4 【点睛】本题主要考查了函数方程的转化思想,考查数形结合的思想以及对称性的运用,属于中档题.20.【分析】根据对运算的定义将写成分段函数画出该函数的图像将问题转化为直线与函数的图像有3个交点求参数的范围问题【详解】根据题意在直角坐标系中画出该函数的图像如下所示:由图可知当时由最小值故数形结合可知解析:1,02⎛⎫- ⎪⎝⎭【分析】根据对运算的定义,将()f x 写成分段函数,画出该函数的图像,将问题转化为直线y m =与函数()f x 的图像有3个交点求参数的范围问题.【详解】 根据题意()()221,11,1x x x f x x x ⎧-≤=⎨-+>⎩在直角坐标系中画出该函数的图像如下所示:由图可知,当()0,1x ∈时,由最小值1122f ⎛⎫=- ⎪⎝⎭,故数形结合可知,当1,02m ⎛⎫∈-⎪⎝⎭时,直线y m =与函数()f x 的图像有3个交点, 即()()f x m m R =∈恰有三个互不相等的实数根. 故答案为:1,02⎛⎫- ⎪⎝⎭【点睛】本题考查由函数的零点个数求参数的取值范围,本题中采用数形结合的方法,将问题转化为函数图像交点的问题进行处理.三、解答题21.(1)(] 4,0-;(2)答案见解析;(3)(,4-∞--. 【分析】(1)将()32f x x <-,x ∈R 恒成立,转化为210ax ax --<,x ∈R 恒成立求解. (2)由()()120x ax --≥,分02a <<,2a =, 2a >讨论求解. (3)由0m >时,得到11213t m m=+++=≥,令x s =,将问题转化为存在3t ≥,()2220as a s t -++-=有两个不等正根求解.【详解】(1)因为()32f x x <-,x ∈R 恒成立, 所以210ax ax --<,x ∈R 恒成立;0a =时,10-<恒成立,满足题意;0a ≠时,只需0a <,∆<0,即40a ;综上,实数a 的取值范围是(] 4,0-; (2)()0f x ≥即()()120x ax --≥, 当02a <<时,21>a ,不等式解集为(]2,1,a ⎡⎫-∞+∞⎪⎢⎣⎭; 当2a =时,21a,不等式解集为R ;当2a >时,21a <,不等式解集为[)2,1,a ⎛⎤-∞+∞⎥⎝⎦;(3)0m >时,令11213t m m=+++=≥, 则存在3t ≥,()fx t =有四个不等实根,即()2220a x a x t -++-=有四个不等实根,令x s =,0s >时一个s 对应两个x ;0s =时一个x 对应一个x ;0s <时无x 与之对应;则存在3t ≥,()2220as a s t -++-=有两个不等正根,则0a ≠,存在3t ≥,2020a at a+⎧>⎪⎪⎨-⎪>⎪⎩,即存在3t ≥,()()224202a a t a ⎧+-->⎪⎨<-⎪⎩,即2a <-,且存在3t ≥,24440a a at -++>, 0a <时,3t ≥时22441284a a a a a -++=++最大值为22441284a a a a a -++=++,则2840a a ++>,由2a <-可得4a <--所以实数a的取值范围是(,4-∞--. 【点睛】方法点睛:含有参数的不等式的解法:,往往需要比较(相应方程)根的大小,对参数进行分类讨论:(1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便写出解集. 22.(1)图象见解析;(2)1;(3)10,4⎛⎫ ⎪⎝⎭. 【分析】(1)化简函数()f x 的解析式,进而可作出函数()f x 的图象; (2)分别解方程()13f x =和()3f x =,结合图象可得出a 、b 的值,进而可求得结果; (3)由题意可知函数()f x 在区间[],a b 上单调递增,分析得出方程210mx x -+=在[)1,+∞上有两个不等的实根,利用二次函数的零点分布可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】(1)由题意可得()(]()()11,0,11111,,01,x xf x x x x⎧-∈⎪⎪=-=⎨⎪-∈-∞⋃+∞⎪⎩,则由图形变换可画出函数图象,如图:(2)当()13f x =时,此时1113x -=,解得32x =或34x =;当()3f x =时,此时113x -=,解得12x =-或14x =.由(1)中的图象可知,若使得函数()f x 在区间[],a b 上的值域为1,33⎡⎤⎢⎥⎣⎦,则[](),0,a b ⊆+∞,由图象可得1344a b ==,,所以1a b +=; (3)因为函数()f x 的定义域是[],a b ,值域是[](),0ma mb m >,分以下几种情况讨论:①若0a b <<,则0ma mb <<,由图象可知,函数()f x 在[],a b 上单调递增,函数()f x 在[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,由图象可知()()00f a f b ⎧>⎪⎨>⎪⎩,不合乎题意;②若01a b <<<,则函数()f x 在[],a b 上单调递减,所以函数()11f x x =-在[],a b 上的值域为()(),f b f a ⎡⎤⎣⎦,则()()1111f b ma bf a mba ⎧=-=⎪⎪⎨⎪=-=⎪⎩, 上述两个等式相减得1m ab =,将1m ab =代入11ma b-=可得10,矛盾; ③若01a b <<≤,则[]0,ma mb ∈,而0ma >,0mb >,矛盾; ④若1b a >≥,函数()f x 在[],a b 上单调递增,又函数()f x 在[)1,+∞上单调递增,所以()()f a ma fb mb ⎧=⎪⎨=⎪⎩,即1111ma a mbb⎧-=⎪⎪⎨⎪-=⎪⎩,则a 、b 为方程11mx x-=的两个根,即210mx x -+=在[)1,+∞上有两个不等实根, 可设()21g x mx x =-+,则有()14010112m g m m ⎧⎪∆=->⎪=≥⎨⎪⎪>⎩,解得104m <<,所以实数m 的取值范围为10,4⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:本题考查利用二次函数的零点分布求参数,一般要分析以下几个要素: (1)二次项系数的符号; (2)判别式; (3)对称轴的位置; (4)区间端点函数值的符号. 结合图象得出关于参数的不等式组求解.23.(1)251081y x x =--+((0,]x a ∈);(2)当4a ≥时,该服装厂2020年的促销费用投入4万元时,利润最大;当04a <<时,该服装厂2020年的促销费用投入a 万元时,利润最大. 【分析】(1)根据题意,结合已知条件,列出函数关系即可;(2)对函数进行配凑,使之可用基本不等式,即可求得利润的最大值. 【详解】(1)由题意知:每件产品的销售价格为8252mm+⨯ 所以()8252825my m m x m+=⋅-++825m x =+-. 182541x x ⎛⎫=+-- ⎪+⎝⎭251081x x =--+((0,]x a ∈) 所以251081y x x =--+((0,]x a ∈). (2)当4a ≥时,由251081y x x =--+()2510911x x ⎡⎤=-++⎢⎥+⎣⎦10999≤-=当且仅当2511x x =++,即4x =时取等号.又(0,]x a ∈ 当4x =时,y 有最大值;当04a <<时,令()251091f x x x =--+ 在(]0,a 上任取12,x x 使得12x x <()()()()()121221121225252510910911111f x f x x x x x x x x x ⎛⎫-=---++=--⎪ ⎪++++⎝⎭(]()()()()122112121225,0,,401125,1011x x x x x x a a x x x x ∴-∈<∴<++<∴+<<>-+()()()120f x f x f x ∴-<∴是(]0,a 上的增函数..所以x a =时,y 有最大值;答:当4a ≥时,该服装厂2020年的促销费用投入4万元时,利润最大; 当04a <<时,该服装厂2020年的促销费用投入a 万元时,利润最大.. 【点睛】关键点睛:解题关键在于,当4a ≥时,利用均值不等式得到,251081y x x =--+()2510911x x ⎡⎤=-++⎢⎥+⎣⎦10999≤-=;当04a <<时,令()251091f x x x =--+,利用定义法判断()f x 的单调性,进而求出x a =时,y 有最大值,最后得到答案,难度属于中档题24.(1)1(,)(0,)4-∞-+∞;(2)1{}[0,)4-+∞.【分析】(1)当5a =时,得到21()log (5)f x x=+,根据()0f x >,得出不等式151x+>,即可求解;(2)化简()221log ()g x a x x=+⋅(其中0x >),根据函数()g x 只有一个零点,得到方程210ax x +-=在(0,)+∞上只有一个解,结合二次函数的性质,即可求解.【详解】(1)当5a =时,21()log (5)f x x=+, 由()0f x >,即21log (5)0x +>,可得151x+>,解得14x <-或0x >,即不等式()0f x >的解集为1(,)(0,)4-∞-+∞.。

北师大版高中数学必修一目录

北师大版高中数学必修一目录

必修(第一册)(共计72 课时)第一章集合与常用逻辑用语(10课时)1.1 集合的概念1.2 集合间的基本关系1.3 集合的基本运算阅读与思考集合中元素的个数1.4 充分条件与必要条件阅读与思考几何命题与充分条件、必要条件1.5 全称量词与存在量词第二章一元二次函数、方程和不等式(8课时)2.1 等式性质与不等式性质2.2 基本不等式2.3 二次函数与一元二次方程,不等式第三章函数的概念与性质(12课时)3.1 函数的概念及其表示阅读与思考函数概念的发展历程3.2 函数的基本性质信息技术应用用计算机绘制函数图象3.3 幂函数探究与发现探究函数的图象与性质3.4 函数的应用(一)文献阅读与数学写作* 函数的形成与发展第四章指数函数与对数函数(16课时)4.1 指数4.2 指数函数阅读与思考放射性物质的衰减信息技术应用探究指数函数的性质4.3 对数阅读与思考对数的发明4.4 对数函数探究与发现互为反函数的两个函数图象间的关系4.5 函数的应用(二)阅读与思考中外历史上的方程求解文献阅读与数学写作* 对数概念的形成与发展数学建模(3课时)建立函数模型解决实际问题第五章三角函数(23课时)5.1 任意角和弧度制5.2 三角函数的概念阅读与思考三角学与天文学5.3 诱导公式5.4 三角函数的图象与性质探究与发现函数及函数的周期探究与发现利用单位圆的性质研究正弦函数、余弦函数的性质5.5 三角恒等变换信息技术应用利用信息技术制作三角函数表5.6 函数5.7 三角函数的应用阅读与思考振幅、周期、频率、相位必修(第二册)(共计69 课时)第六章平面向量及其应用(18课时)6.1 平面向量的概念6.2 平面向量的运算阅读与思考向量及向量符号的由来6.3 平面向量基本定理及坐标表示6.4 平面向量的应用阅读与思考海伦和秦九韶数学探究(2课时)用向量法研究三角形的性质第七章复数(8课时)7.1 复数的概念7.2 复数的四则运算阅读与思考代数基本定理7.3*复数的三角表示探究与发现的次方根第八章立体几何初步(19课时)8.1 基本立体图形8.2 立体图形的直观图阅读与思考画法几何与蒙日8.3 简单几何体的表面积与体积探究与发现祖暅原理与柱体、锥体的体积8.4 空间点、直线、平面之间的位置关系8.5 空间直线、平面的平行8.6 空间直线、平面的垂直阅读与思考欧几里得《原本》与公理化方法文献阅读与数学写作*几何学的发展第九章统计(13课时)9.1 随机抽样阅读与思考如何得到敏感性问题的诚实反应信息技术应用统计软件的应用9.2 用样本估计总体阅读与思考统计学在军事中的应用——二战时德国坦克总量的估计问题阅读与思考大数据9.3 案例统计公司员工的肥胖情况调查分析第十章概率(9课时)10.1 随机事件与概率10.2 事件的相互独立性10.3 频率与概率阅读与思考孟德尔遗传规律选择性必修(第一册)(共计43 课时)第一章空间向量与立体几何(15课时)1.1 空间向量及其运算1.2 空间向量基本定理1.3 空间向量及其运算的坐标表示阅读与思考向量概念的推广与应用1.4 空间向量的应用第二章直线和圆的方程(16课时)2.1 直线的倾斜角与斜率2.2 直线的方程探究与发现方向向量与直线的参数方程2.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何2.4 圆的方程阅读与思考坐标法与数学机械化2.5 直线与圆、圆与圆的位置关系第三章圆锥曲线的方程(12课时)3.1 椭圆信息技术应用用信息技术探究点的轨迹:椭圆3.2 双曲线探究与发现为什么是双曲线的渐近线3.3 抛物线探究与发现为什么二次函数的图象是抛物线阅读与思考圆锥曲线的关学性质及其应用文献阅读与数学写作* 解析几何的形成与发展选择性必修(第二册)(共计30 课时)第四章数列(14课时)4.1 数列的概念阅读与思考斐波那契数列4.2 等差数列4.3 等比数列阅读与思考中国古代数学家求数列和的方法4.4*数学归纳法第五章一元函数的导数及其应用(16课时)5.1 导数的概念及其意义5.2 导数的运算探究与发现牛顿法——用导数方法求方程的近似解5.3 导数在研究函数中的应用信息技术应用图形技术与函数性质文献阅读与数学写作* 微积分的创立与发展选择性必修(第三册)(共计35 课时)第六章计数原理(11课时)6.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少6.2 排列与组合探究与发现组合数的两个性质6.3 二项式定理数学探究(2课时)杨辉三角的性质与应用第七章随机变量及其分布(10课时)7.1 条件概率与全概率公式阅读与思考贝叶斯公式与人工智能7.2 离散型随机变量及其分布列7.3 离散型随机变量的数字特征7.4 二项分布与超几何分布探究与发现二项分布的性质7.5 正态分布信息技术应用概率分布图及概率计算第八章成对数据的统计分析(9课时)8.1 成对数据的统计相关性8.2 一元线性回归模型及其应用阅读与思考回归与相关8.3 列联表与独立性检验数学建模(3课时)建立统计模型进行预测。

高中数学 第四章 函数的应用单元测试题(含解析)北师大版必修1(2021年最新整理)

高中数学 第四章 函数的应用单元测试题(含解析)北师大版必修1(2021年最新整理)

高中数学第四章函数的应用单元测试题(含解析)北师大版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第四章函数的应用单元测试题(含解析)北师大版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第四章函数的应用单元测试题(含解析)北师大版必修1的全部内容。

第四章函数的应用 单元测试题学号:________ 班级:________姓名:________得分:________(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求的)1。

下列函数中,随着x 的增长,增长速度最快的是( )A 。

y=50 B. x y 1000= C 。

124.0-⨯=x y D.x e y 10001= 2.设2()2x f x x =-,则在下列区间中使函数()f x 有零点的区间是 ( )A. []0,1 B 。

[)1,2 C 。

[]2,1-- D. []1,0-3。

a,b ,c ,d 四个物体沿同一方向同时开始运动,假设其经过的路程和时间x 的函数关系分别是x x f x x f x x f x x f 2)(,log )(,)(,)(42321221====,如果运动的时间足够长,则运动在最前面的物体一定是( ) A .a B .b C .c D .d 4。

下表显示出函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型是( ).x4 5 6 7 8 9 10 y 15 17 19 21 23 25 27A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型5。

北师大版高中数学必修一第四单元《函数应用》检测卷(包含答案解析)

北师大版高中数学必修一第四单元《函数应用》检测卷(包含答案解析)

一、选择题1.关于x 的方程x x a a -=有三个不同的实根,则实数a 的取值范围是( )A .(0,4)B .(4,0)-C .(4,4)-D .(,4)(4,)-∞-⋃+∞2.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 3.设,m n R ∈,定义在区间[],m n 上的函数()()2log 4f x x =-的值域是[]0,2,若关于t 的方程||1102t m ⎛⎫++= ⎪⎝⎭()t R ∈有实数解,则m n +的取值范围是( )A .[]0,3B .(]3,2--C .[]3,1--D .[)1,24.已知函数24,?0()7,?0x f x x x x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a的取值范围是( ) A .(﹣4,0] B .(-∞,﹣9) C .(-∞,﹣9)(﹣4,0]D .(﹣9,0]5.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .36.若函数32232,01()5,1x x m x f x mx x ⎧-+<≤=⎨->⎩,恰有2个零点,则m 的取值范围是( )A .()5,0-B .()0,5C .1[,5)2D .1(0,]27.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==->其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①8.蔬菜价格随着季节的变化而有所变化.根据对农贸市场蔬菜价格的调查得知,购买2千克甲种蔬菜与1千克乙种蔬菜所需费用之和大于8元,而购买4千克甲种蔬菜与5千克乙种蔬菜所需费用之和小于22元.设购买2千克甲种蔬菜所需费用为A 元,购买3千克乙种蔬菜所需费用为B 元,则( ). A .A B < B .A B =C .A B >D .A ,B 大小不确定9.若直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数()y f x =的图象上;②P 、Q 关于原点对称,则称点对[]P Q 、是函数()y f x =的一对“友好点对”(点对[]P Q 、与[]Q P 、看作同一对“友好点对”).已知函数22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,则此函数的“友好点对”有( ) A .4对 B .3对 C .2对 D .1对10.已知函数()()f x x R ∈是奇函数且当(0,)x ∈+∞时是减函数,若(1)0f =,则函数2(2||)y f x x =-的零点共有( )A .4个B .5个C .6个D .7个11.已知函数,0()ln ,0x e x f x x x ⎧≤=⎨>⎩,若函数g (x )=f (x )+2x +ln a (a >0)有2个零点,则数a 的最小值是( )A .1eB .12C .1D .e12.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,22)2⎛⎫-∞-⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞二、填空题13.对于函数()f x ,若在定义域存在实数x ,满足()()f x f x -=-,则称()f x 为“局部奇函数”.若函数()423xxf x m =-⋅-是定义在R 上的“局部奇函数”,则实数m 的取值范围为______.14.已知函数()2,0lg ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,则方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是__________.15.函数()22|cos |cos 3x x f x =+-在区间[0,2]π内的零点个数是_____. 16.函数()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,,如果方程()f x b =有四个不同的实数解1x ,2x ,3x ,4x ,则1234x x x x +++=______.17.函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同的实数解,则正数m 的取值范围为______.18.已知函数24()ln(1)x f x e -=+,()2g x x a =+-.若存在[](),1a n n n Z ∈+∈,使得关于x 的方程()()f x g x =有四个不相等的实数解,则n 的最大值为_______.19.已知函数22()1()x xf x x e a x e a R =++∈有四个零点,则实数a 的取值范围是________.20.若关于x 的方程1xa k -=(0a >且1a ≠)恰有两个解,则k 的取值范围是______.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少?22.已知关于x 的方程()2320,,,0ax bx c a b c R a ++=∈≠,其中0a b c ++=,且()320a b c c ++>.(1)求证:关于x 的方程2320ax bx c ++=有两个不等的实根; (2)若21ba-<<-,且1x ,2x 是方程2320ax bx c ++=的两个实根,求12x x -的取值范围.23.某化工厂一种溶液的成品,生产过程的最后工序是过滤溶液中的杂质,过滤初期溶液含杂质为2%,每经过一次过滤均可使溶液杂质含量减少一半,记过滤次数为*()x x N ∈时溶液杂质含量为y(1)分别求出1次过滤、2次过滤以后的溶液杂质含量1y ,2y 的值. (2)写出y 与x 的函数关系式(要求写出定义域)(3)按市场要求,出厂成品杂质含量不能超过0.02%,问至少经过几次过滤才能使产品达到市场要求?(参考数据:lg2=0.301)24.经研究发现,学生的注意力与老师的授课时间有关,开始授课时,学生的注意力逐渐集中,到达理想的状态后保持一段时间,随后开始逐渐分散,用()f x 表示学生的注意力,x 表示授课时间(单位:分),实验结果表明()f x 与x 有如下的关系:()59,01059,10163107,1630x x f x x x x +<<⎧⎪=≤≤⎨⎪-+<≤⎩.(1)开始授课后多少分钟,学生的注意力最集中?能维持多长时间?(2)若讲解某一道数学题需要55的注意力以及10分钟的时间,老师能否及时在学生一直达到所需注意力的状态下讲完这道题? 25.已知函数f (x )=x +11x +,g (x )=ax +5-2a (a >0). (1)判断函数f (x )在[0,1]上的单调性,并用定义加以证明;(2)若对任意m ∈[0,1],总存在m 0∈[0,1],使得g (m 0)=f (m )成立,求实数a 的取值范围.26.已知()y f x =(x D ∈,D 为此函数的定义域)同时满足下列两个条件:①函数()f x 在D 内单调递增或单调递减;②如果存在区间[,]a b D ⊆,使函数()f x 在区间[,]a b 上的值域为[,]a b ,那么称()y f x =,x D ∈为闭函数(1)判断函数2()1((0,))f x x x x =+-∈+∞是否为闭函数?并说明理由; (2)求证:函数3y x =-([1,1]x ∈-)为闭函数;(3)若0)y k k =+<是闭函数,求实数k 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得【详解】数形结合法:画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得由图可得:204a a <<解得4a > 或204a a >>-解得4a故选:D 【点睛】数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.2.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误. 由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.3.D解析:D 【分析】首先利用函数值域确定自变量范围,再初步确定m ,n 的关系,然后结合指数函数的性质整理计算即可求得最终结果. 【详解】函数2()log (4||)f x x =-的值域是[0,2],14||4x ∴-, 0||3x ∴,3m ∴=-,03n ,或30m -,3n =;又关于t 的方程||1()10()2t m t R ++=∈ 有实数解,∴||1()12t m =--有解,||11()122t <+,21m ∴-<-,则3n =, 则12m n +<, 故选:D 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解4.C解析:C 【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解. 【详解】令()()0g x f x x a =+-=,得24,?06,?0x x a x x x x ⎧+<⎪=⎨⎪-≥⎩,令24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩,在同一坐标系中,作出两个函数的图象,如图所示:因为()g x 存在两个零点, 由图象可得:a <﹣9或﹣4<a ≤0, 故选:C 【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.5.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论. 【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C 【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.6.D解析:D 【分析】先求出()g x 的单调性,然后根据题意,得到满足条件时有(0)0(1)0g g >⎧⎨≤⎩,求出m 的范围,然后再根据m 的范围,求出满足前述条件时,()5h x mx =-有零点的情况,进而可求解【详解】令32()232g x x x m =-+,'()6(1)g x x x =-,故()g x 在(]0,1处单调递减,所以,()g x 在(]0,1上至多有一个零点,而对于()5h x mx =-,在(1,)+∞上至多有一个零点,由题意得,()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,故有(0)0(1)0g g >⎧⎨≤⎩,求出102m ≥>,此时,()5h x mx =-,在(1,)+∞上单调递增,所以,(1)0h <即可满足题意,解得5m <,根据125m m ⎧≥>⎪⎨⎪>⎩,得102m ≥>故选:D 【点睛】关键点睛:解题关键在于先求出32()232g x x x m =-+的单调性,并根据()g x 的单调性得出()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,然后进行求解,难度属于中档题7.C解析:C 【解析】①1ln 1x y x -=+;1111()ln ln ()111x x f f x x x x--==≠-++所以不符合题意;②2211x y x -=+;22221111()()111x x f f x x x x --===-++所以符合题意;③,01,{0,1,1, 1.x x y x x x<<==->当01x <<时11x >,故1()()f x f x x =-=-,当1,x =时11x =显然满足题意,当1x >时,101x <<,故11()()f f x x x==-符合题意,综合得选C 点睛:新定义倒负函数,根据题意逐一验证()1f f x x ⎛⎫=-⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论8.C解析:C 【解析】设甲、乙两种蔬菜的价格分别为x ,y 元,则284522x y x y +>⎧⎨+<⎩,2A x =,3B y =, 两式分别乘以22,8, 整理得12180x y ->,即230x y ->, 所以A B >. 故选C .9.C解析:C 【分析】由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,结合22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,转化为此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数,从而作图解答 【详解】解:由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,因为22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,所以此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数, 作2x y -=-与22y x x =-的图像如图所示,两函数图像有两个交点,所以此函数的“友好点对”有2对 故选:C 【点睛】此题考查学生对新定义的理解能力及作图能力,属于中档题10.D解析:D 【解析】根据题意,函数y=f (x )是定义域为R 的奇函数,则f (0)=0,当x ∈(0,+∞)时是减函数,且f (1)=0,则函数在(0,+∞)上只有一个零点, 若函数y=f (x )是奇函数且当x ∈(0,+∞)时是减函数,则f (x )在(-∞,0)为减函数,又由f (1)=0,则f (-1)=-f (1)=0,则函数在(-∞,0)上只有一个零点, 故函数y=f (x )共有3个零点,依次为-1、0、1, 对于函数()22y f x x =-, 当221x x -=-时,解得1x =±, 当220x x -=时,解得2x =±或0x =,当221x x -=时,解得12x =+或12x =--. 故函数()22y f x x =-的零点共有7个. 故选D点睛:本题考查函数的零点的判断,涉及函数的奇偶性与单调性的综合运用,关键是分析得到函数y=f (x )的零点,注意计算的准确性.11.A解析:A 【分析】令()0g x =,将问题转化为函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点来求解. 【详解】令()0g x =得()2ln f x x a =--,若()g x 有两个零点,则函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点.画出函数()f x 与函数()2ln 0y x a a =-->的图象如下图所示,当直线过点()0,1时,两个函数图象有两个交点,此时1120ln a a e=-⨯-⇒=.由图可知,当直线向下平移时,可使两个函数图象有两个交点,所以1ln 1a a e -≤⇒≥,所以a 的最小值为1e. 故选:A【点睛】本小题主要考查函数零点问题的求解,考查数形结合的数学思想方法,属于中档题.12.D解析:D 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.二、填空题13.【分析】根据局部奇函数的定义便知若函数是定义在上的局部奇函数只需方程有解可设从而得出方程在时有解从而设由二次函数的性质分析可得答案【详解】根据题意由局部奇函数的定义可知:若函数是定义在上的局部奇函数 解析:[)2,-+∞【分析】根据“局部奇函数”的定义便知,若函数()f x 是定义在R 上的“局部奇函数”,只需方程()()2222280x x x x m --+-+-=有解.可设()222x x t t -+=≥,从而得出方程280t mt --=在2t ≥时有解,从而设()28g x t mt =--,由二次函数的性质分析可得答案. 【详解】根据题意,由“局部奇函数”的定义可知:若函数()423xxf x m =-⋅-是定义在R 上的“局部奇函数”,则方程()()f x f x -=-有解,即()423423xx x x m m ---⋅-=--⋅-有解;变形可得()442260xxx x m --+-+-=,即()()2222280x xx x m --+-+-=有解即可.设22x x t -+=,则222222x x x x t --=+≥⋅=,当且仅当0x =时,等号成立. 则方程()()f x f x -=-等价为280t mt --=在2t ≥时有解.设()28g t t mt =--,若方程280t mt --=的两根分别为1t 、2t ,则1280t t =-<,所以,()2428240g m m =--=--≤, 解可得:2m ≥-,即m 的取值范围为[)2,-+∞.故答案为:[)2,-+∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】解方程可得或然后分和解方程或由此可得出结论【详解】解方程可得或当时由可得解得由可得解得(舍);当时由可得则解得或由可得则解得或综上所述方程实根的个数是故答案为:【点睛】方法点睛:判定函数的零 解析:5【分析】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =,然后分0x ≤和0x >解方程()2f x =或()12f x =,由此可得出结论. 【详解】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =. 当0x ≤时,由()2f x =可得22x -=,解得1x =-,由()12f x =可得122x-=,解得1x =(舍);当0x >时,由()2f x =可得lg 2x =,则lg 2x =±,解得100x =或1100x =,由()12f x =可得1lg 2x =,则1lg 2x =±,解得x =或x =综上所述,方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是5. 故答案为:5. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15.4【分析】根据角的范围确定余弦函数的符号去掉绝对值作函数图象利用数形结合求解函数的零点个数即可【详解】令则设则当时当时画出函数的图象易知函数的图象与直线有4个不同的交点故答案为:4【点睛】本题考查三解析:4 【分析】根据角的范围确定余弦函数的符号,去掉绝对值,作函数图象,利用数形结合求解函数的零点个数即可. 【详解】令()0f x =,则22|cos |cos 3x x +=, 设()2|cos |cos g x x x =+, 则当30,,222x πππ⎡⎤⎡⎤∈⋃⎢⎥⎢⎥⎣⎦⎣⎦时,()3cos g x x =, 当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()cos g x x =-, 画出函数()y g x =的图象,,易知函数()y g x =的图象与直线23y =有4个不同的交点, 故答案为:4 【点睛】本题考查三角函数的求值,函数的零点个数的求法,考查转化思想以及计算能力,属于中档题.16.【分析】作出的图象可得和的图象有四个不同的交点不妨设交点横坐标由关于原点对称关于点对称即可得到所求的和【详解】作出的图象方程有四个不同的实数解等价为和的图象有四个不同的交点不妨设交点横坐标为且由关于 解析:4【分析】作出()f x 的图象,可得()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标1234x x x x <<<,由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称,即可得到所求的和.【详解】作出()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,的图象,方程()f x b =有四个不同的实数解,等价为()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标为1x ,2x ,3x ,4x 且1234x x x x <<<, 由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称, 可得12=0x x +,344x x +=, 则12344x x x x +++=, 故答案为:4 【点睛】本题主要考查了函数方程的转化思想,考查数形结合的思想以及对称性的运用,属于中档题.17.【分析】先利用导数求出函数的单调区间和极值令由题意可知方程有两个不同的实数根根据数形结合和韦达定理可知一个根在内一个根在内再令因为所以只需由此即可求出的取值范围【详解】解:令得或1当时函数在上单调递解析:3366e m e >+【分析】先利用导数求出函数()f x 的单调区间和极值,令()f x t =,由题意可知,方程210t mt -+=有两个不同的实数根1t ,2t ,根据数形结合和韦达定理可知,一个根在36,e ⎛⎫∞ ⎪⎝⎭内,一个根在36,e ⎛⎫∞ ⎪⎝⎭内,再令()21g t t mt =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,由此即可求出m 的取值范围.【详解】解:()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=得,3x =-或1,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >, 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减, 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增, 所以()()363f x f e=-=极大值,()()12f x f e ==-极小值, 令()f x t =, 因为关于x 的方程()()210fx mf x -+=恰有四个不同的实数解,所以方程210t mt -+=有两个不同的实数根1t ,2t ,且一个根在360,e ⎛⎫⎪⎝⎭内,一个根在36,e ⎛⎫+∞ ⎪⎝⎭内,或者两个根都在()2,0e -内,或者一根为36e ,另一根在()2,0e -内;因为m 为正数,所以121t t =,120t t m +=>,所以1t ,2t 都为正根,所以两个根不可能在()2,0e -内,也不可能一根为36e ,另一根在()2,0e -内;所以实数根1t ,2t ,且一个根在360,e ⎛⎫ ⎪⎝⎭内,一个根在36,e ⎛⎫+∞ ⎪⎝⎭内,令()21g t t mt =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e>+,即m 的取值范围为:336,6e e ⎛⎫++∞ ⎪⎝⎭.故答案为:336,6e e ⎛⎫++∞ ⎪⎝⎭. 【点睛】本题主要考查了利用导数研究函数的单调性和极值,考查了函数的零点与方程根的关系,是中档题.18.2【分析】由题意得令显然为偶函数则方程有四个实根函数x >0有两个零点令x >0则关于t 的方程即在内有两个不相等的实根结合函数的图象可得由此可求出答案【详解】解:方程令则显然为偶函数∴方程有四个实根函数解析:2 【分析】由题意得242()()10x x a f x g x ee-+-=⇔+-=,令242()1x x a h x ee-+-=+-,x ∈R ,显然()h x 为偶函数,则方程()()f x g x =有四个实根⇔函数242()1x x a h x ee -+-=+-,x >0有两个零点,令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根,结合函数1y t t =+的图象可得4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,由此可求出答案. 【详解】解:方程()()f x g x =⇔24ln(1)2x e x a -+=+-24210x x a e e -+-⇔+-=,令242()1x x a h x ee-+-=+-,x ∈R ,则显然()h x 为偶函数,∴方程()()f x g x =有四个实根⇔函数242()1x x a h x e e -+-=+-,x >0有两个零点, 令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根, 结合函数1y t t=+,2t e ->的图象,得222a e e e -<<+, 即4ln 2ln(1)2a e <<+-,∵存在[],1a n n ∈+,使得4ln 2ln(1)2a e <<+-,∴4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,结合n Z ∈,得max 2n =, 故答案为:2. 【点睛】本题主要考查函数与方程,考查方程的实数解个数问题,考查转化与化归思想,属于中档题.19.【分析】由题意可得有四个不等实根设求得导数和单调性可得极值画出图象即可得到所求范围【详解】函数有四个零点由不为零点即即有有四个不等实根设①当时令在区间上单调递增且使得则函数在区间上单调递减在区间上单 解析:1a e e -<--【分析】由题意可得1(||)||xx a x e x e -=+有四个不等实根,设1()(||)||xxg x x e x e =+,求得导数和单调性,可得极值,画出图象,即可得到所求范围. 【详解】函数22()1()x xf x x e a x e a R =++∈有四个零点由(0)1f =,0x =不为零点即()0f x =即有1xxa x e x e -=+有四个不等实根 设1()xxg x x e x e =+①当0x >时,1()xx g x xe xe =+,()2222(1)11()(1)xx x xx x e x g x x e x e x e +-+'=+-=令22()1xh x x e=-,222()220x x h x xe x e '=+>()h x ∴在区间(0,)+∞上单调递增,且2(0)10,(1)10h h e =-<=-> ∴0(0,1)x ∈,使得()0220010x h x x e =-=()0g x '∴<⇒00x x <<,0()0g x x x '>⇒>则函数()g x 在区间()00,x 上单调递减,在区间()0,x +∞上单调递增,且()min 0()2g x g x ==②当0x <时,1()xx g x xe xe =--导数为()2222(1)11()(1)x x x x x x e x g x x e x e x e+-+'=-++= 令22()1x x x e ϕ=-,2()2(1)xx x x e ϕ'=-+()010x x ϕ'>⇒-<<,()01x x ϕ'<⇒<-所以函数()x ϕ在区间(),1-∞-上单调递减,在区间(1,0)-上单调递增()min 21()110x eϕϕ=-=->,即22()01x x x e ϕ->=在区间(,0)-∞上成立 即()010g x x '>⇒-<<,()01g x x '<⇒<-则函数()g x 在区间(),1-∞-上单调递减,在区间(1,0)-上单调递增 且1x =-时,()g x 取得极小值1e e -+ 画出函数()g x 的图象,可得1a e e -->+即1a e e -<--时,1(||)||xxa x e x e -=+有四个不等实根,即函数()f x 有四个零点 故答案为:1a e e -<--【点睛】本题考查函数的零点个数问题解法,注意运用数形结合思想方法和导数判断单调性、极值,考查运算能力,属于中档题.20.【分析】根据函数与方程之间的关系转化为函数图象交点个数问题结合指数函数的性质利用数形结合进行求解即可【详解】解:不妨设则作出函数的图象如图:要使方程(且)恰有两个解则即实数k 的取值范围是故答案为:【 解析:0,1【分析】根据函数与方程之间的关系,转化为函数图象交点个数问题,结合指数函数的性质,利用数形结合进行求解即可. 【详解】解:不妨设1a >,则1,0()11,0x xxa x f x a a x ⎧-≥=-=⎨-+<⎩, 作出函数()f x 的图象如图:要使方程|1|xa k -=(0a >且1a ≠)恰有两个解, 则01k <<,即实数k 的取值范围是()0,1, 故答案为:()0,1【点睛】本题主要考查函数与方程的应用,利用指数函数的性质转化为两个函数的交点个数问题,利用数形结合是解决本题的关键.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件, 月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大. 【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值.22.(1)证明见解析;(2)23⎫⎪⎣⎭. 【分析】(1)将c a b =--代入方程2320ax bx c ++=的判别式计算即可证明;(2)由题知12122,33b cx x x x a a+=-=,代入12||x x -=21ba -<<-转化为二次函数的最值求解. 【详解】 (1)由0a b c ++=得c a b =--, 对于方程2320ax bx c ++=,0a ≠,所以()2222221412412121241202b ac b a a b a ab b a b b ⎛⎫∆=-=++=++=++> ⎪⎝⎭,所以方程2320ax bx c ++=有两个不等的实根; (2)由题知12122,33b cx x x x a a+=-=,12||x x ∴- 21ba-<<-, 由二次函数()22444431933923f x x x x ⎛⎫=++=++ ⎪⎝⎭在32,2⎛⎫-- ⎪⎝⎭上单调递减,在3,12⎛⎫-- ⎪⎝⎭上单调递增可得12||x x -∈1223x x ⎫-∈⎪∴⎪⎣⎭. 【点睛】本题考查二次不等式的求解,考查二次函数在定区间上的最值,考查学生计算能力,是一道中档题.23.(1)1%,0.5%;(2)211()50x y =⨯,*x ∈N ;(3)7.【分析】 (1)1次过滤后,11502⨯,2次过滤后,1115022⨯⨯,化简即可; (2)由每经过一次过滤均可使溶液杂质含量减少一半得12%(1)2xy =⨯-,*x ∈N ;(3)结合lg20.301=,解不等式11()0020.2%5x ⨯,即可得到x 的范围. 【详解】(1)1次过滤后,溶液杂质含量1110.011%502y =⨯==, 2次过滤后,溶液杂质含量21110.0050.5%5022y =⨯⨯==; (2)因为每经过一次过滤均可使溶液杂质含量减少一半,所以过滤次数为*()x x N ∈时溶液杂质含量111222%(1)()50x x y =⨯-=⨯,*x ∈N .(3)设至少应过滤x 次才能是产品达到市场要求,则11()0020.2%5x ⨯, 即0121()10x ,所以121lg2100 6.7lg 2lgx=≈, 又*x ∈N ,所以7x ,即至少应过滤7次才能使产品达到市场要求. 【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.24.(1)开始授课后10分钟,学生的注意力最集中,能维持6分钟;(2)不能在学生一直达到所需注意力的状态下讲完这道题 【分析】(1)根据函数()f x 的解析式,判断其单调性,可求出答案;(2)分010x <<,1016x ≤≤和1630x <≤三种情况,分别解不等式()55f x ≥,进而可求出集中注意力的时间总和,然后和10分钟比较大小,可得出答案. 【详解】(1)由题意,当010x <<时,()59f x x =+,此时函数单调递增; 当1016x ≤≤时,函数()f x 取得最大值,此时()59f x =; 当1630x <≤时,()3107f x x =-+,此时函数单调递减. 所以,开始授课后10分钟,学生的注意力最集中,能维持6分钟.(2)当010x <<时,令()55f x ≥,即5955x +≥,解得9.210x ≤<,集中注意力时间共109.20.8-=分钟;当1016x ≤≤时,()5955f x =≥,集中注意力时间共6分钟; 当1630x <≤时,令()55f x ≥,即310755x -+≥,解得52163x <≤,则集中注意力时间共5241633-=分钟, 因为41220.8610315++=<,所以不能在学生一直达到所需注意力的状态下讲完这道题. 【点睛】关键点点睛:本题考查分段函数的应用,解题关键是利用函数的解析式,判断函数在各个分段上的单调性,及解不等式()55f x ≥.考查学生的逻辑推理能力,计算求解能力,属于中档题.25.(1)函数f (x )在[0,1]上单调递增,证明见解析;(2)72,2⎡⎤⎢⎥⎣⎦.【分析】(1)任取1201x x ≤<≤,计算()()12f x f x -并判断正负即可判断单调性;(2)可得出f (m )∈31,2⎡⎤⎢⎥⎣⎦,g (m 0)∈[5-2a ,5-a ],由题得31,2⎡⎤⎢⎥⎣⎦⊆[5-2a ,5-a ],即可建立不等式求出. 【详解】(1)函数f (x )在[0,1]上单调递增, 证明如下:设1201x x ≤<≤, 则()()12f x f x -12121111x x x x =+--++ ()()()21121211x x x x x x -=-+++()()()()1212121211x x x x x x x x -++=++,因为120x x -<,()()12110x x ++>,12120x x x x ++>, 所以()()120f x f x -<,即()()12f x f x <, 所以函数f (x )在[0,1]上单调递增;(2)由(1)知,当m ∈[0,1]时,f (m )∈31,2⎡⎤⎢⎥⎣⎦.因为0a >,()52g x ax a =+-在[0,1]上单调递增, 所以m 0∈[0,1]时,g (m 0)∈[5-2a ,5-a ]. 依题意,只需31,2⎡⎤⎢⎥⎣⎦⊆[5-2a ,5-a ],。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学北师版必修1第四章函数应用单元检测
(时间:45分钟,满分:100分)
一、选择题(本大题共8小题,每小题6分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列函数没有零点的是().
A.f(x)=0 B.f(x)=2
C.f(x)=x3-1 D.
1 ()
f x x
x
=-
2.函数
3
()ln
f x x
x
=-的零点所在的大致区间是().
A.(1,2) B.(2,3)
C.(3,4) D.(e,+∞)
3.函数()
f x=().
A.0 B.1 C.2 D.3
4.若函数y=f(x)在区间[0,4]上的图像是连续不断的曲线,且方程f(x)=0在(0,4)内仅有一个实数根,则f(0)·f(4)的值().
A.大于0 B.小于0
C.等于0 D.无法判断
5.在养分充足的情况下,细菌的数量会以指数函数的方式增加.假设细菌A的数量每2小时可以增加为原来的2倍,细菌B的数量每5小时可以增加为原来的4倍.现在若养分充足,且一开始两种细菌的数量相等,要使细菌A的数量是B的数量的两倍,需要的时间为().
A.5 h B.10 h C.15 h D.30 h
6.若一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根,则有().
A.a<0 B.a>0
C.a<-1 D.a>1
7.某厂有许多形状为直角梯形的铁边边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为().
A.x=15,y=12 B.x=12,y=15
C.x=14,y=10 D.x=10,y=14
8.若方程m x-x-m=0(m>0,m≠1)有两个不同的实数根,则m的取值范围是().A.m>1 B.0<m<1
C.m>0 D.m>2
二、填空题(本大题共3小题,每小题6分,共18分.把正确答案填在题中横线上)
9.已知f(x),g(x)均为[-1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间为________.
10.函数f(.
11.若函数f(x)是偶函数,定义域为{x∈R|x≠0}且f(x)在(0,+∞)上是减少的,f(2)=0,则函数f(x)的零点有______个.
三、解答题(本大题共3小题,共34分.解答应写出必要的文字说明、证明过程或演算步骤)
12.(10分)判断下列函数是否存在零点,如果存在,请求出:
(1)f(x)=-8x2+7x+1;(2)f(x)=x2+x+2;
(3)f(x)=x3+1.
13.(12分)已知甲、乙两个工厂在今年的1月份的利润都是6万元,且甲厂在2月份的利润是14万元,乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x 之间的函数关系式分别符合下列函数模型:f(x)=a1x2+b1x+6,g(x)=a23x+b2(a1,a2,b1,b2∈R).
(1)求甲、乙两个工厂今年5月份的利润;
(2)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年甲、乙两个工厂的利润的大小情况.
14.(12分)已知函数f(x)=e x+4x-3.
(1)求证:函数f(x)在[0,1]上有唯一零点;
(2)用二分法求函数取到这个唯一零点时相应的x的近似值.(误差不超过0.2,参考数据:
e≈2.7≈1.6,e0.3≈1.2)的取值范围.
参考答案
1答案:B
2答案:B 解析:由于f (1)=3>0,f (2)=3
2
-ln 2>0,f (3)=1-ln 3<0,f (2)·f (3)<0,所以零点所在区间为(2,3).
3答案:B 解析:由f (x )=0可得(2)0,
10,x x x +=⎧⎨
+>⎩
解得x =0,故函数仅有1个零点.
4答案:D 解析:如图中的(1),(2),(3)均符合题意,故f (0)·f (4)的值不确定.
5答案:B 解析:假设一开始两种细菌数量均为m ,则依题意经过x 小时后,细菌A 的数量是f (x )=m ·2
2x
,细菌B 的数量是g (x )=m ·5
4x ,令m ·2
2x =2·m ·5
4x ,解得x =10.
6答案:A 解析:注意到二次函数y =ax 2+2x +1恒过(0,1)点,因此当a <0时,方程恒有一正根和一负根,符合题意;当a >0时,不合题意.故有a <0.
7答案:A 解析:∵由三角形相似得
2424820y x -=
-,得5
(24)4
x y =-, ∴S =xy =-
5
4
(y -12)2+180. ∴当y =12时,S 有最大值,此时x =15.
8答案:A 解析:方程m x -x -m =0有两个不同的实数根,即函数y =m x 与y =x +m 的图像有两个不同的交点.显然,当m >1时,两图像有两个不同交点,当0<m <1时,只有1个交点,故m 的取值范围是m >1.
9答案:(0,1)(答案不唯一) 解析:由于f (-1)<g (-1),f (0)<g (0),f (1)>g (1),所以f (x )=g (x )的解应在区间(0,1)内.
10答案:(0,1] 解析:设x 1,x 2是函数f (x )的零点,则有
1212
0,
20,0,
x x x x m ∆≥⎧⎪
+=>⎨⎪=>⎩即440,0,m m -≥⎧⎨
>⎩解得0<m ≤1. 11答案:2 解析:由已知条件,得f (-2)=0,画出函数f (x )的大致图像如图所示,可知f (x )有两个零点.
12答案:解:(1)因为f (x )=-8x 2+7x +1 =-(8x +1)(x -1), 令f (x )=0,可解得x =1
8
-或x =1, 所以函数的零点为1
8
-
和1. (2)令x 2+x +2=0,因为Δ=12-4×1×2=-7<0,所以方程无实数解.所以f (x )=x 2
+x +2不存在零点.
(3)因为f (x )=x 3+1=(x +1)(x 2-x +1),
令(x +1)(x 2-x +1)=0,
解得x =-1.所以函数的零点为-1.
13答案:解:(1)依题意知(1)6,
(2)14,f f =⎧⎨=⎩
则有11110,428,a b a b +=⎧⎨
+=⎩解得114,
4,
a b =⎧⎨=-⎩∴f (x )=4x 2-4x +6.
∴f (5)=4×52-4×5+6=86.
又∵(1)6,(2)8,g g =⎧⎨=⎩有2222
36,98,a b a b +=⎧⎨+=⎩
解得a 2=
1
3
,b 2=5, ∴g (x )=
13
·3x +5=3x -1+5. ∴g (5)=34+5=86. (2)作函数图像如下:
从图中可以看出今年甲、乙两个工厂的利润: 当x =1或x =5时,有f (x )=g (x ); 当1<x <5时,有f (x )>g (x ); 当5<x ≤12时,有f (x )<g (x ).
14答案:(1)证明:∵f (0)=e 0-3=-2<0,f (1)=e +1>0,
∴f(0)·f(1)<0.
又函数y=e x,y=4x-3在R上均为增函数,
∴函数f(x)在[0,1]上递增.
∴函数f(x)在[0,1]上存在唯一零点.
(2)解:取区间[0,1]作为起始区间,用二分法逐次计算
如下:
=0.375到区间端点的距
2
离小于0.2,因此可作为误差不超过0.2的一个零点的相应x的近似值.
∴函数y=f(x)取到唯一零点时,相应的x的近似值为0.375.。

相关文档
最新文档