图像压缩论文
图像压缩毕业设计
XXXXXXX大学毕业设计图像压缩编码系统设计实现(B)Design and Implementation of ImageCompression Encoding System (B)2011 届电气与电子工程学院专业电气工程及其自动化学号 xxxxxoooo学生姓名 xxxxxx指导教师 xxxxxxxx完成日期 2011年 6 月 2 日毕业设计成绩单毕业设计任务书毕业设计开题报告摘要近年来,随着现代通信技术、计算机技术、网络技术和信息处理技术的迅速发展,人们对各种信息的需求也不断增长,尤其是图像和多媒体信息。
未经处理的图像信号的数据量是很大的,使得图像信息的传输,处理和存储都受到一定的限制。
因此,研究高效的图像数据压缩编码方法,即怎样处理,组织图像数据,在应用领域中的作用是至关重要的,图像压缩编码技术已经成为多媒体及通讯领域中很关键的技术之一。
编码技术是图像压缩的基础,利用信息编码对图像进行压缩,使图像便于传输、存储。
本文就是运用编码技术中的游程长度编码对二值图像进行压缩的。
压缩前,先将图像转换成二值图像,然后再进行压缩,这样就达到很好的压缩效果。
最后通过MATLAB 进行仿真,来验证方案的合理性和可行性。
关键词:图像压缩二值图像MATLAB游程长度编码AbstractAlong with the rapid development of modern communication technology, computer technology, the network technology and information processing technology, rising incomes have created sharp growth in demand for some information especially image and multi-media resources, in recent years. Untreated image signal data quantity is big, which makes image information transmission, processing and storage are certain limits. Therefore, the effective image data compression coding method, i.e. how to deal with, the organization image data, the role in applications is of vital importance, image compression technology has become multimedia and communication field a key technical one. Therefore, the effective image data compression coding method, i.e. how to handle, organization the image data, the role in applications is of vital importance, image compression technology is one of key technicals in multimedia and communication field. Encoding technology is the basis of image compression, use the information encoding to do image compression, which make the image facilitate transmission and memory. This paper is to use the run-length encoding technology of length coding binary image compression. before compression, make the image become binary image, thus which can reach good compression effect. Finally through MATLAB, and simulation to verify the rationality and feasibility of schemes.Key words:image compression binary image MATLAB run-length length coding目录第1章绪论 (1)1.1研究背景 (1)1.2图像压缩综述 (2)1.3 图像压缩的必要性 (3)1.4图像压缩的可行性 (3)第2章图像的基本知识 (5)2.1图像与数字图像 (5)2.2图像的采样和量化 (5)2.3采样点数和量化级数的选取 (5)第3章图像压缩编码 (7)3.1概述 (7)3.2熵编码方法 (7)3.2.1基本概念 (7)3.2.2哈夫曼编码方法 (8)3.2.3香农编码法 (9)3.2.4算术编码方法 (9)3.2.4.1算术编码的方法 (9)3.2.4.2算术编码的特点 (10)3.3预测法编码 (10)3.4变换编码 (11)3.5常见的几种变换编码方法 (12)3.5.1离散余弦(DCT)变换 (12)3.5.2小波变换 (12)3.5.2.1二进小波变换 (12)3.5.2.2 离散小波变换(DWT) (13)第4章MATLAB简介 (14)4.1综述MATLAB (14)4.1.1MATLAB语言的功能 (14)4.1.2 MATLAB的特点 (15)4.2MATLAB在信号处理中的应用 (16)4.2.1信号及其表示 (16)4.2.2线性时不变系统的响应 (17)4.2.2.1线性时不变系统的时域响应 (17)4.2.2.2LTI系统的单位冲激响应 (18)4.2.2.3 时域响应的其它函数 (18)第5章图像压缩算法的实现 (19)5.1游程编码原理 (19)5.2游程编码图像压缩算法的实现 (20)5.3主要程序代码 (20)第6章功能验证 (22)第7章结束语 (27)参考文献 (28)致谢 (29)附录A外文资料翻译 (30)A.1英文资料 (30)A.2资料译文 (37)第1章绪论1.1 研究背景随着多媒体技术的迅速发展,静止图像的应用越来越广泛。
图像处理 毕业论文
图像处理毕业论文图像处理是计算机科学领域中的一个重要研究方向,它涉及到对图像的获取、处理、分析和识别等多个方面。
随着科技的不断发展,图像处理在各个领域都扮演着重要的角色,如医学影像、安防监控、虚拟现实等。
本文将从图像处理的基础原理、应用领域以及未来发展方向等方面进行探讨。
首先,图像处理的基础原理是数字图像处理。
数字图像处理是将图像从连续的模拟信号转换为离散的数字信号,通过对数字信号的处理来实现对图像的改变和分析。
其中,最基础的操作包括图像的采集、预处理、增强、压缩和恢复等。
图像采集是指通过摄像头或扫描仪等设备将现实世界中的图像转化为数字信号。
预处理是对采集到的图像进行去噪、去除伪影等操作,以提高后续处理的效果。
增强是通过调整图像的亮度、对比度、色彩等参数,使图像更加清晰、鲜艳。
压缩是为了减小图像文件的大小,方便存储和传输。
恢复是指对经过压缩或传输过程中丢失的信息进行恢复,以还原原始图像。
图像处理的应用领域非常广泛。
在医学影像方面,图像处理可以帮助医生进行疾病的诊断和治疗。
例如,通过对CT扫描图像的处理,可以清晰地显示出患者体内的器官结构,帮助医生准确判断病变部位。
在安防监控方面,图像处理可以用于人脸识别、行为分析等功能,提高监控系统的智能化水平。
在虚拟现实方面,图像处理可以实现对虚拟场景的渲染和交互,为用户带来更加逼真的虚拟体验。
此外,图像处理还应用于图像搜索、图像检索、图像合成等领域,为用户提供更加便捷和高效的图像处理服务。
未来,图像处理领域的发展方向主要包括以下几个方面。
首先,随着人工智能技术的快速发展,图像处理将与机器学习、深度学习等技术相结合,实现更加智能化的图像分析和识别。
其次,虚拟现实技术的兴起将推动图像处理向更加真实和沉浸式的方向发展,为用户带来更加逼真的虚拟体验。
再次,图像处理技术将与物联网、云计算等技术相结合,实现对大规模图像数据的处理和分析,为用户提供更加个性化和精准的图像服务。
图像压缩文献综述
《数字图像处理和模式识别》期末大作业题目:图像压缩文献综述班级:数字媒体学院计算机技术姓名:徐德荣学号:6141603020图像压缩文献综述1 图像压缩编码概述图像信息的压缩编码,是根据图像信号固有的统计特性和人类的视觉特性进行的。
图像信号固有的统计特性表明,其相邻像素之间、相邻行之间或者相邻帧之间,都存在较强的相关特性。
利用某种编码方法在一定程度上消除这些相关特性,便可实现图像信息的数据压缩。
这个过程也就是尽量去除与图像质量无关的冗余信息,属于信息保持(保持有效信息)的压缩编码。
另一种考虑是,图像最终是由人眼或经过观测仪器来观看或判决的。
根据视觉的生理学、心理学特性,可以允许图像经过压缩编码后所得的复原图像有一定的图像失真,只要这种失真是一般观众难以察觉的。
这种压缩编码属于信息非保持编码,因为它使图像信息有一定程度的丢失。
由此可见,图像压缩编码的研究重点是:怎样利用图像固有的统计特性,以及视觉的生理学、心理学特性,或者记录设备和显示设备等的特性,经过压缩编码从原始图像信息中提取有效信息,尽量去除那些无关的冗余信息,并且在保证质量(能从这些数据中恢复出与原图像差不多的图像)的前提下,用最低的数码率或最少的存储容量,实现各类图像的数字存储、数字记录或数字传输。
2 图像编码研究现状图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天己经有五十多年的历史。
五十年代和六十年代的图像压缩技术由于受到电路技术等的制约,仅仅停留在预测编码、亚采样以及内插复原等技术的研究,还很不成熟。
1969年在美国召开的第一届“图像编码会议”标志着图像编码作为一门独立的学科诞生了。
到了70年代和80年代,图像压缩技术的主要成果体现在变换编码技术上;矢量量化编码技术也有较大发展,有关于图像编码技术的科技成果和科技论文与日俱增,图像编码技术开始走向繁荣。
自80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,人们开始突破传统的信源编码理论,例如不再假设图像是平稳的随机场。
基于DCT变换的图像压缩技术的研究
本科毕业设计论文题目:基于DCT变换的图像压缩技术的研究专业名称:学生姓名:指导教师:毕业时间:毕业一、题目基于DCT变换的图像压缩技术的研究二、指导思想和目的要求指导思想:图像信息给人们以直观、生动的形象,成为人们获取外部信息的重要途径。
然而数字图像具有极大的数据量。
在目前的计算机系统条件下,若图像信息不经过压缩,则会占用信道,传输速率变慢,而且传输成本变得昂贵,这对图像的储存、传输及使用都非常不利,同时也阻碍了人们对图像的有效获取和使用。
因此,图像压缩技术的重要性也越来越高,在学习、生产、生活等方面的作用也越来越显著,对图像进行压缩成为图像研究领域的重要课题。
目的要求:基于DCT变换的图像压缩技术,首先介绍图像压缩的基本原理及方法,然后了解离散余弦变换的性质以及JPEG图像压缩算法,最后从DCT 变换、量化以及熵编码三个过程进行详细论述,利用MATLAB仿真软件实现基于DCT变换的图像压缩,去除冗余数据,节约文件所占的码字,降低原始图像数据量,解决图像数据量巨大的问题,以达到对图像进行压缩的目的。
三、主要技术指标图像的质量评价方法主要有两种:一种是主观评价,另一种是客观评价。
主观评价直接反映人眼的视觉感受,主要从亮度、色调、饱和度和细节分辨等方面入手,但因观察者个体差异、人力成本较高等原因而存在许多不足之处。
通常客观评价的方法应用更广泛。
常用的客观评价方法和标准有压缩比(CR)和峰值信噪比(PSNR)两种。
再根据不同的量化系数得到不同的压缩比和峰值信噪比。
x,和标准图像f0()y x,的大小是M⨯N,常用客观评价指标定设待评价图像f()y义如下:x,/f0()y x,不同的量化系数压缩比也不同(量化系数分压缩比:r=f()y别为:1、3、5、10、15等)由于量化系数不同得到的峰值信噪比也不同,根据均方差得出峰值信噪比。
均方差: MSE =()[]()[]}{()[]∑∑∑∑-=-=-=-=-10102010x 10y 20,,,M x N y M N y x f y x f Q y x f Q 式中,运算符Q []∙表示在计算前,为使计算值与人眼视觉感受一致而进行的某种预处理,如对数处理、幂处理等。
图形图像处理毕业论文
图形图像处理毕业论文图形图像处理是计算机科学与技术领域中的一个重要研究方向。
随着数字技术的快速发展,图形图像处理的应用范围也越来越广泛。
在这篇毕业论文中,我将探讨图形图像处理的一些关键技术和应用领域,并提出一种新的方法来改进图像处理的效果。
首先,让我们来了解一下图形图像处理的基本原理。
图形图像处理是指对图形图像进行数字化处理,以改变图像的外观、增强图像的质量或提取有用的信息。
它包括图像采集、图像预处理、图像增强、图像压缩、图像分割、图像识别等一系列步骤。
这些步骤可以通过一系列算法和技术来实现,如滤波、变换、插值等。
在图形图像处理的应用领域中,医学影像处理是一个重要的研究方向。
医学影像处理可以帮助医生更好地观察和分析患者的影像数据,从而提高诊断的准确性和效率。
例如,通过图像分割技术可以将医学影像中的不同组织或器官分离出来,帮助医生更好地定位和诊断疾病。
另外,图像增强技术可以提高医学影像的质量,使医生能够更清晰地观察到患者的病变情况。
除了医学影像处理,图形图像处理还在计算机视觉、图像识别、虚拟现实等领域得到广泛应用。
例如,在自动驾驶技术中,图像处理可以帮助车辆感知周围环境,识别和跟踪道路、车辆和行人等目标。
在电影和游戏制作中,图像处理可以用于特效的制作和场景的渲染,提供更逼真的视觉效果。
在虚拟现实技术中,图像处理可以实现对虚拟世界的实时渲染和交互。
然而,传统的图像处理方法在某些情况下存在一些局限性。
例如,在图像增强领域,传统的滤波方法可能会导致图像细节的损失或者产生一些不自然的伪影。
为了克服这些问题,我提出了一种基于深度学习的图像增强方法。
该方法利用卷积神经网络来学习图像的特征表示,并通过反卷积操作将图像恢复到原始的高质量状态。
实验证明,该方法在提高图像质量的同时保留了更多的细节信息,具有较好的效果。
在本论文中,我还对该方法进行了进一步的改进和优化。
通过引入注意力机制,我提出了一种自适应图像增强方法。
图像压缩技术、传输技术及存储技术的综合优化研究
图像压缩技术、传输技术及存储技术的综合优化研究1.摘要本文旨在研究图像压缩技术、传输技术及存储技术的综合优化。
具体来说,将探讨如何通过适当的压缩方法和传输技术,提高图像传输的效率和质量,同时减少存储空间的占用。
首先,将回顾目前主流的图像压缩算法,包括JPEG、JPEG2000、PNG和WebP等,以及它们的优缺点。
其次,将介绍一些在图像传输方面具有代表性的技术,例如HTTP协议、FTP协议和P2P网络等。
最后,将针对大规模图像数据的存储问题,探讨如何优化存储方案,以确保数据的可靠性和高效性。
在论文的研究方法方面,将采用实验室测试的方式进行评估和对比分析。
具体来说,将基于不同的压缩算法和传输技术,设计并实现一个图像传输系统,通过比较不同方案的数据传输速度、图像质量和存储空间占用等指标,进一步优化综合方案。
此外,将提供详细的实验数据和分析结果,为后续的研究提供借鉴和参考。
最终,期望通过本文的研究,为图像处理和数据存储领域提供一些有益的思路和方案。
2.引言引言是学术论文的开篇之章,目的是为读者介绍研究主题、研究目的和研究意义。
本文旨在进行图像压缩技术、传输技术和存储技术的综合优化研究。
随着网络技术和数字图像的快速发展,图像压缩、传输和存储技术在图像处理中得到广泛应用。
当前,减小图像数据的传输量和存储空间已成为研究的热点。
因此,本文旨在通过优化压缩技术、传输技术和存储技术的综合效率,提高图像处理的效率和质量,为相关领域的研究提供有益的参考。
在本研究中,将重点探讨图像压缩技术、传输技术和存储技术的优缺点,并以基于JPEG和PNG的图像压缩算法为案例进行分析。
同时,将介绍在网络传输过程中引起的数据丢失、延迟和带宽限制等问题,探讨其对图像传输质量的影响。
此外,还将研究一些常用的图像存储方案,如基于磁盘和基于云的存储技术,并比较其在图像存储中的优劣。
最后,本文将提出一种基于图像压缩、传输和存储优化的综合方案,提升图像处理的效率和质量。
图像处理毕业论文
图像处理毕业论文图像处理毕业论文图像处理是计算机科学与技术领域中的一个重要研究方向,随着数字图像的广泛应用,图像处理技术的发展也愈发迅猛。
作为一名即将毕业的学生,我选择了图像处理作为我的毕业论文课题,旨在探索图像处理技术在实际应用中的潜力和挑战。
首先,我将介绍图像处理的基本概念和原理。
图像处理是指对数字图像进行各种算法和方法的处理,以获得更好的图像质量或实现特定的目标。
其中,图像增强、图像分割、图像压缩等是图像处理的基本任务。
图像增强通过改善图像的亮度、对比度和清晰度等方面,使图像更加清晰可见。
图像分割则是将图像划分为不同的区域或物体,以便进一步分析和处理。
而图像压缩则是通过减少图像的数据量,以实现存储和传输的效率提升。
接下来,我将探讨图像处理技术在实际应用中的一些典型案例。
首先是医学影像的图像处理应用。
医学影像是一种重要的诊断工具,通过对医学影像进行图像处理,可以提取出更多的有用信息,辅助医生进行疾病诊断和治疗。
例如,通过图像分割技术可以将医学影像中的肿瘤区域分割出来,帮助医生进行肿瘤的定位和评估。
此外,图像处理技术还可以应用于安防领域,通过对监控摄像头拍摄的图像进行实时分析和处理,实现人脸识别、行为检测等功能,提高安防系统的效率和准确性。
在研究中,我将重点关注图像增强和图像分割这两个方面。
在图像增强方面,我将探索不同的算法和方法,如直方图均衡化、自适应增强等,以提高图像的可视性和质量。
在图像分割方面,我将研究基于区域的分割方法和基于边缘的分割方法,比较它们的优缺点,并根据实际应用需求选择合适的方法。
此外,我还将尝试将深度学习技术应用于图像处理中。
深度学习是近年来兴起的一种机器学习方法,通过构建多层神经网络模型,可以实现对大规模数据的高效处理和分析。
在图像处理中,深度学习可以应用于图像分类、目标检测等任务,通过训练模型,使其具备自动学习和识别图像特征的能力。
我将尝试使用深度学习技术对图像进行分类和识别,以提高图像处理的准确性和效率。
图像压缩毕业论文
图像压缩毕业论文图像压缩毕业论文图像压缩作为计算机图形学中的重要研究方向,在现代社会中具有广泛的应用。
本篇毕业论文旨在探讨图像压缩的原理、方法和应用,并对其在实际应用中的优缺点进行分析和比较。
一、图像压缩的原理图像压缩是通过减少图像数据的冗余性来减小图像文件的大小,从而实现存储和传输的效率提升。
其原理主要包括两个方面:无损压缩和有损压缩。
1. 无损压缩:无损压缩是指在压缩过程中不丢失任何图像信息,即压缩后的图像与原始图像完全一致。
常见的无损压缩算法有Run Length Encoding (RLE)、Lempel-Ziv-Welch (LZW) 等。
无损压缩适用于对图像质量要求较高的场景,如医学图像、卫星图像等。
2. 有损压缩:有损压缩是指在压缩过程中会有一定的信息丢失,但在人眼感知上不明显。
有损压缩可以通过去除图像中的冗余信息、降低色彩精度等方式来实现。
常见的有损压缩算法有JPEG、GIF等。
有损压缩适用于对图像质量要求相对较低的场景,如网页图片、社交媒体图片等。
二、图像压缩的方法图像压缩的方法主要包括基于变换的压缩方法和基于预测的压缩方法。
1. 基于变换的压缩方法:基于变换的压缩方法是将图像转换到另一个表示域,通过对表示域的系数进行编码来实现压缩。
其中最常用的方法是离散余弦变换(Discrete Cosine Transform,DCT)。
DCT将图像从空间域转换到频率域,通过保留重要的低频系数,去除高频噪声,从而实现图像压缩。
2. 基于预测的压缩方法:基于预测的压缩方法是通过对图像的像素进行预测来减小冗余信息。
其中最常用的方法是差分编码(Differential Coding)和运动补偿(Motion Compensation)。
差分编码通过计算像素与其邻域像素之间的差异来进行编码,而运动补偿则是利用图像序列中的运动信息来进行编码,从而实现图像压缩。
三、图像压缩的应用图像压缩在现代社会中有着广泛的应用,涉及到许多领域。
小波变换在图像压缩中应用[论文]
小波变换在图像压缩中的应用【摘要】对图像进行压缩可以在有限带宽下提高图像的传输速度,也可以在有限空间内存储更多的图像数据。
小波变换在图像压缩中得到了重点应用。
本文简要分析了小波变换在图像压缩领域的应用过程,对如何应用小波变换实现图像压缩进行了详细阐述,此外对如何进一步提高经过小波变换的压缩图像的压缩比进行了讨论。
【关键词】图像小波变换图像压缩压缩比数字图像在诸多领域均发挥着重要作用,但是被采集的图像通常较大,不利于传输存储,因而需要对图像进行压缩处理。
对图像的存储数据进行分析可知,一幅图像内包含大量的冗余信息,这些信息虽然能够提升图像的质量,但是也占用了大量的存储空间和带宽,因而,有必要对图像进行适当的压缩处理,以节省图像的传输时间和存储空间。
现有的图像压缩方法很多,如熵编码法、变换编码法、预测编码法等,其中变换编码法可以将图像的能量变换到更为集中的区域,如离散余弦变换和离散小波变换等,可以获得较为满意的压缩效果。
离散余弦变换编码方法虽然可以再较高码率下获得较好的图像质量,但是随着人们对图像压缩速度要求的不断提升,离散余弦变换在码率低于0.25bpp时存在的重构缺陷使得其应用效果大大降低。
相较而言,离散小波变换则因其优良的图像压缩性能得到了重点关注,并被采用为jpeg 2000图像编码的核心技术。
1 小波变换在图像压缩中的发展概述小波变换最早于1989年被应用到多分辨率的图像描述中,其基于某一固定函数进行伸缩和平移来构造一系列的小波基实现图像的压缩编码,这种方法被称为第一代小波。
随着理论研究的深入,在进行小波变换时,人们采用双正交小波的函数特性,通过提升和对偶提升过程来优化小波特性。
其中,小波性能提升的方法在于小波基的构造方式抛弃了傅里叶变换,只按照需要的小波性能进行小波基构造,因而这种小波变换方式具有更大的自由度和执行速度,在整数到整数的变换中性能非常好。
这种小波构造方式被称为第二代小波。
之后嵌入式零树小波编码方法进一步利用了小波系数的特性,改进了小波基的构造方式,提升了小波变换的性能。
JPEG2000图像压缩标准及其应用
� � � � � � � � � � � � . rs[H 45 : 45u , [ fghiLfgNjkfgl3mi,1Q23nop1q rs � � � � � � � � � � � � GH- ,()F \@ o o F{ QtP,23n o’pu vtP,23wVxyOrJ23, � � � � � � � � op1\ !",’ %&&& , F8e %&&& 45jz/{_\|oK },45j z/~ PHQ RPSO^
4516"777
90:,’ $%0;&’--*%+ </:+):&) :+) =;;>*(:/*%+ P7Q’ R=@S. P7Q’ P:> %
.L)F:@S 5= ,?3@38>?; N4=9: =@9 J=@=S:8:@< ?3<B:S: 3D TT C@>K:4;><U F V:@=@ TF:@SHF3C 0/&&&& � %LTF:@SHF3C ,?3@38>?; J=@=S:8:@< (@;><C<: FV:@=@ TF:@SHF3C 0/&&&&
� ?’. @% &)- A !",$% && & 5- N 5P N 4:S> 3@ 3D > @< :4:;< 75M1! "%&a+ (,- ./0001.2%&&& + -34 .2%&&% ()* + (,- ./0001.2%&&& + -34 %2%&&% ()* + (,- ./0001.2%&&& + -5 -34 ()* + (,- ./0001.2%&&& + 789 ()* + (,<>3@=B ?3B34 ;E=?: Aq 2 UVq 6 . -39:;<4:=8 4:;<4>?<>3@;
基于小波变换的静态图像压缩毕业论文
基于小波变换的静态图像压缩毕业论文摘要随着时代的进步,我们的世界变得比以前更加多彩缤纷,我们日常所接触的信息也变得更加多样化,并且都有着数据量大的特点。
图像作为信息的一个主要载体,它变得越来越清晰,这表示我们需要更大的带宽和存储容量来传输和存储数据,为了能够提高传输速度以及减少所占存储空间,所以需要对图像进行压缩。
小波变换由于具有很好时域和频域特性,成为了当今社会图像压缩的主流分析方法,分层小波树集合分割算法(SPIHT)是一种很经典的压缩算法,本文从小波变换着手,介绍了一些关于图像压缩的基本知识,结合小波变换和SPIHT算法做了图像压缩实验,讨论和分析了不同压缩率、不同分解层次、不同大小、不同小波基条件下图像压缩的效果差异,发现压缩率越大,分解层次越高,图像越大其图像压缩的效果也越好,Daubechies小波基适合图像压缩。
关键词:小波变换、图像压缩、分层小波树集合分割算法、SPIHTABSTRCATWith the progress of times, our world has become more colorful than ever, our daily life contacted information has become more diversification, which have characteristics of big data. Image as a major carrier of information, it becomes increasingly clear, which means that we need more bandwidth and storage capacity to transmit and store data. In order to improve transmission speed and reduce the storage space occupied by Image,do image compression is needed.The wavelet transform has a good characteristics in time domain and frequency domain, and it becomes the main ways of image compression. is a very classic compression algorithm. This article begin with the wavelet transform ,and then do image compression experiments, which Combine The Wavelet transform and SPIHT algorithm. Discussion and analysis the effects of image compression between different compression rate, different decomposition level, different sizes, different wavelets. From the experiments result ,found that the bigger compression rate, the higher decomposition level, the larger sizes,the better the effect of image compression.Daubechies wavelet suitable for image compression.Key words:Wavelet Transform,Image Compression,SPIHT目录摘要 (I)ABSTRCAT (II)目录 (III)1 引言 (5)1.1 研究的目的与意义 (6)1.2 研究背景 (6)1.3 国内外研究现状 (7)1.4 论文安排 (7)2 图像压缩 (9)2.1 图像压缩原理 (9)2.1.1 图像压缩原理和系统结构 (9)2.1.2 图像冗余 (10)2.2 离散余弦变换(DCT) (10)2.2.1 DCT变换原理 (10)2.2.2 DCT系数的编码 (11)2.3 小波变换 (11)2.3.1 小波变换原理 (11)2.3.2 嵌入式零树小波(EZW)编码.112.4 图像压缩编码方法 (11)2.4.1 哈夫曼编码 (12)2.5 章节小结 (12)3 等级树集分割编码方法(SPIHT) (13)3.1 SPIHT(Set Partitioning In HierarchicalTrees)的起源 (13)3.2 SPIHT的基本原理 (13)3.2.1 渐进图像传输 (14)3.2.2 传输系数值 (14)3.2.3 设置分区排序算法 (15)3.2.4 空间方向树 (16)3.2.5 编码算法 (17)3.3 设计方案 (19)3.4 章节小结 (22)4 结果分析 (23)4.1 图像压缩率对压缩的影响 (23)4.2 图像大小对压缩的影响 (26)4.3 SPIHT的分解层次(level) (27)4.4 小波基的选取对压缩的影响 (29)4.5 章节小结 (31)5 结论 (32)5.1 总结 (32)5.2 展望 (32)致谢............................................................................ 错误!未定义书签。
图像压缩研究背景意义及现状
图像压缩研究背景意义及现状1图像压缩的可能性与必要性2图像压缩方法的分类3静止图像压缩的发展历史与现状4图像压缩的基本原理图像是对客观事物的一种相似性的、生动的描述,是对客观对像的一种比较直观的表示方式。
它包含了被描述对像的有关信息,是人们最主要的信息源。
据统计,一个人获得的信息大约有75%来自视觉。
进入信息化时代人们将越来越依靠计算机获取和利用信息,而数字化后的多煤体信息具有数据海量性,与当前硬件技术所能提供的计算机存储资源和网络带宽之间有很大的差距。
这样,就对信息的存储和传输造成了很大困难,成为阻碍人们有效获取和利用信息的一个瓶颈问题。
图像信息作为计算机上最重要的资源,对其进行有效的压缩处理无疑将会给人们带来巨大的好处。
静止图像压缩不但是各种动态图像压缩、传输的基础,而且还是影响其效果好坏的重要因素。
1图像压缩的可能性与必要性图像数字化后的数据量是很大的,例如,一幅1024*768的24位BMP图像,其数据量约为2.25MB。
大数据量的图像信息会给存储器的存储容量,通信干线信道的带宽,以及计算机的处理速度增加极大的压力。
单纯靠增加存储器容量,提高信道带宽以及计算机的处理速度等方法来解决这个问题是不现实的,这时就要考虑压缩。
数字图像的冗余主要表现在以下几种形式:(1) 空间冗余。
在一幅图像中,规则物体和规则背景(所谓规则就是指表面有序而不是完全杂乱无章的排列)等所具有的相关性,应用一些算法提取并减少这些图像素之间的相关性就可以达到数据压缩的目的。
(2) 时间冗余。
指序列图像(电视图像,运动图像)所包含的相邻图像之间的相关性。
(3) 结构冗余。
有些图像有着非常强的纹理结构(如草席的图案)或自相似性,称之为结构上的冗余。
(4) 信息熵冗余。
如果图像中平均每个像素使用的比特数大于该图像的信息熵,则图像存在冗余,这种冗余称为信息熵冗余。
(5) 视觉冗余。
人眼接收信息的能力是有限的,对图像的分辨率也是有限的。
基于APIDCT和自适应霍夫曼编码的静态图像压缩算法论文
第一章绪论1.1 课题背景及研究意义通信,是指人与人、人与客观事物之间凭借某种媒介建立的联系进行的信息传递或交流。
人们存储、记录或传输信息的需求随着社会生产力的发展,越来越难以满足。
尤其是近些年复数个摄像头合成的图片像素急剧增加,日常生活中使用的图片存储占用的空间和传输时消耗的时间也急剧增加。
传统媒介主要包括收音机等,不能集声音、图像、动画等各种方式于一身,其传送、储存信息的能力不足。
而随着科技的发展,人们迫切的需要寻求一个能满足自身各类需求的新媒介。
为了能够大量且快速地储存、记录和传输通信所需要的信息,并满足图像质量高、传输速度快和设备稳定可靠的需求,信息需要在传输和存储时进行压缩,在接受和读取时进行解压。
图像是日常生活中最常用的携带信息的重要载体,包含了对象的很多信息,也更容易给人深刻印象。
但图像占的空间原比文字等方式大很多。
为了解决图像的传输问题,可以使图像数字化,以解决图像的传输和存储时占用的空间和耗费的时间。
此种方法把难以直接处理的图像信息转换为便于处理的数字信号,同时在压缩时去除在人的视觉系统对与图像质量影响很小的的高频信息,有损压缩可以缩小需要处理的数据量,进而提高处理、传输和存储的效率,并且能保证传输质量。
正是因为编码压缩技术的日益进步,图像信息的快速传输和低占用存储才得以实现。
图像的数据文件格式有很多,如BMP、TIFF、GIF、PNG、JPEG等。
BMP (位图)几乎不进行压缩,是目前常用的操作系统中的标准图像文件格式,这种格式占用存储空间过大,只在单机上较为流行;TIFF(标签图像文件格式)格式灵活应用广泛,但格式复杂;;PNG是GIF和TIFF文件格式派生的无损压缩格式,增加了二者不具备的特性;JPEG由于其拥有较高的压缩比,被广泛应用于各类场合,但其存在失真的缺点。
1.2 国内外研究现状图像变换是图像压缩的关键技术之一,其本质就是将原处于图像空间的图像由空间域通过某种变换改变为转换域图像,再利用变换后的图像便于分析的特性来进行处理。
图像压缩算法的研究
图像压缩算法的研究图像压缩算法是当前计算机互联网环境中日益普及的数字图像处理技术之一,其目的是将原始数字图像以最小的代价压缩至最佳比例,以减少图像文件大小,提高传输速度和存储量。
由于图像压缩算法具有独特的优势,因此它们在计算机图像处理领域得到了广泛的应用和研究。
在本论文中,我们将讨论图像压缩算法的发展历程,考察现有的压缩技术,以及探讨最新的技术趋势,为图像处理领域提供有价值的指导。
图像压缩算法可以从经典压缩算法和无损压缩算法两个方面进行研究。
经典压缩算法广泛应用于减少图像文件大小的目的,其主要特点是在有限的压缩率下可以显著降低被压缩图像的文件大小。
常用的经典压缩算法包括JPEG和GIF。
经典压缩算法不会损失图像的外观细节,但也不会消除不必要的图像元素,因此只能在有限的压缩率下实现文件大小的减少。
无损压缩算法是另一类图像压缩算法,它可以将图像压缩到更小的文件大小,而不会损失任何外观细节。
常见的无损压缩算法包括JPEG-2000、JPEG-LS和JPEG-XR。
与经典压缩算法相比,无损压缩算法可以在更高的压缩率下实现原图像准确度的提高,但其计算效率较低,且难以在实时背景中得到有效的应用。
此外,也存在一些新的和改进的图像压缩算法,如基于深度学习的编码和解码方案,以及基于非局部约束的图像压缩算法。
深度学习编码和解码方案采用深度卷积神经网络(DCNN)来学习原始图像的特征和模式,使用人工神经网络来完成图像编码和解码过程,大大提高了编码和解码精度。
基于非局部约束的图像压缩算法利用了局部相似性,可以有效地抑制图像破坏,提高图像的压缩效率和质量。
总之,图像压缩算法随着计算机技术的不断发展,已经经历了多个阶段,从经典压缩算法到无损压缩算法,再到基于深度学习和非局部约束的新型技术,都具有自己独特的优势和特性,在图像处理方面发挥重要作用,为图像处理领域提供了有价值的指导。
图像压缩算法是现如今计算机视觉领域中极具价值的一项技术,旨在以最小的代价减少图像文件的大小,提高传输和存储的效率,以及保护图像的数据完整性。
图像压缩 毕业论文
图像压缩毕业论文图像压缩毕业论文引言:图像压缩是一项重要的技术,它在数字图像处理中起着至关重要的作用。
随着互联网的普及和数字图像的广泛应用,图像压缩成为了必不可少的环节。
本篇论文将探讨图像压缩的原理、方法以及应用,并对图像压缩技术的未来发展进行展望。
一、图像压缩的原理图像压缩的原理是通过减少图像数据的冗余性来实现的。
图像数据中存在着很多冗余信息,如空间冗余、频域冗余和视觉冗余等。
通过对这些冗余信息的处理,可以实现对图像的压缩。
1. 空间冗余在图像中,相邻像素之间往往存在着很强的相关性。
通过利用这种相关性,可以采用像素间差值编码、预测编码等方法来减少冗余信息,从而实现对图像的压缩。
2. 频域冗余图像在频域上存在着一定的冗余性。
通过对图像进行傅里叶变换,可以将其转换到频域中,然后利用频域的特性对图像进行压缩。
常用的方法有离散余弦变换(DCT)和小波变换等。
3. 视觉冗余人眼对图像的感知是有限的,对于一些细节信息的损失往往并不敏感。
通过利用人眼对图像的感知特性,可以对图像进行适当的压缩,从而减少冗余信息。
二、图像压缩的方法图像压缩的方法主要分为有损压缩和无损压缩两种。
1. 有损压缩有损压缩是指在压缩过程中对图像进行一定程度的信息丢失。
这种方法可以在一定程度上减小图像的数据量,从而实现对图像的高效压缩。
常用的有损压缩方法有JPEG、MPEG等。
2. 无损压缩无损压缩是指在压缩过程中不对图像的信息进行任何丢失。
这种方法可以保持图像的完整性,但相应地,压缩率较低。
常用的无损压缩方法有GIF、PNG等。
三、图像压缩的应用图像压缩技术广泛应用于各个领域,如图像传输、存储和显示等。
1. 图像传输在网络传输中,图像压缩可以减小图像的数据量,从而提高传输效率。
特别是在移动通信领域,图像压缩技术可以减少数据流量,提高用户体验。
2. 图像存储随着数码相机的普及,人们对图像存储的需求也越来越大。
图像压缩技术可以将大容量的图像数据压缩成较小的文件,从而节省存储空间。
photoshop图像处理技术论文
photoshop图像处理技术论文有些网友觉得photoshop图像处理技术的论文难写,可能是因为没有思路。
所以小编为大家带来了photoshop图像处理技术论文的相关的例文,希望能帮到大家!photoshop图像处理技术论文篇一摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。
本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。
关键字:图像处理发展技术应用1.概述1.1图像的概念图像包含了它所表达的物体的描述信息。
我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。
视像等。
1.2图像处理技术图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。
图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。
1.3优点分析1.再现性好。
数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。
2.处理精度高。
按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。
现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。
3.适用面宽。
图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。
从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。
即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
毕业论文图片格式
毕业论文图片格式毕业论文图片格式在撰写毕业论文的过程中,图片是不可或缺的一部分。
图片可以用来支持论文中的观点、提供数据分析结果、解释实验过程等。
然而,对于毕业论文中的图片格式,很多人可能并不十分了解。
本文将探讨毕业论文中常用的图片格式,并分析它们的优缺点。
一、JPEG格式JPEG(Joint Photographic Experts Group)是一种广泛应用于数字图像压缩的格式。
它可以将图像压缩到较小的文件大小,同时保持相对较高的图像质量。
因此,JPEG格式常常被用于存储照片、插图等大量颜色丰富的图像。
然而,JPEG格式也存在一些缺点。
由于压缩算法的特性,JPEG格式在图像压缩的过程中会丢失一部分细节,尤其是在高压缩比下。
因此,如果需要在论文中展示细节丰富的图片,如实验结果的曲线图或者实物的细节图,使用JPEG格式可能不太适合。
二、PNG格式PNG(Portable Network Graphics)是一种无损压缩的图片格式。
与JPEG不同,PNG格式在压缩图像时不会丢失任何细节,因此适合用于保存需要保持高质量的图片。
PNG格式的另一个优点是支持透明背景。
在论文中,有时需要将图片与文字或其他图像进行叠加,为了使叠加效果更好,可以选择使用PNG格式的图片。
然而,PNG格式的文件大小通常比JPEG格式大,尤其是对于颜色丰富的图像。
因此,在论文中使用PNG格式的图片时,需要注意文件大小的控制,以免影响论文的加载速度。
三、TIFF格式TIFF(Tagged Image File Format)是一种高质量的无损压缩格式。
它可以保存图像的所有细节,并且支持多种颜色模式和色彩深度。
因此,对于需要保持高质量的图片,如研究中的显微镜图像或者实验结果的高分辨率图像,TIFF格式是一个不错的选择。
然而,TIFF格式的文件大小通常比JPEG和PNG更大,因此在使用TIFF格式的图片时,同样需要注意文件大小的控制。
四、SVG格式SVG(Scalable Vector Graphics)是一种基于XML的矢量图形格式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙理工大学
《数字图像压缩》报告
学院计算机与通信工程专业计算机与科学技术班级计算学号
学生姓名指导教师尹波
课程成绩完成日期2015年12月16日
摘要
图像压缩技术对于数字图像信息在网络上实现快速传输和实时处理具有重要的意义。
本文介绍了当前几种最为重要的图像压缩算法:JPEG2000、分形图像压缩和小波变换图像压缩。
其中主要研究了离散余弦变换压缩和小波变换压缩,并对两种压缩的前后数据进行了对比,同时还分析了离散余弦变换压缩和小波变换压缩之间的差异。
1.绪论
1.1图像压缩技术的发展现状
基于分形的方法是近几年来引起关注和争议的一种图像压缩方法。
对图像压缩而言,分形主要是利用自相似的特点,通过迭代函数系统来实现压缩。
利用分形特征对图像进行描述和处理是很自然的。
分形能取得更好的图像质量,当然在较低压缩比的情况下,JPEG是更好的选择。
分形压缩方法计算量比较大,时间开销长,因此加快分形压缩方法的速度是当前研究的热点之一。
小波变换(Wavelet Transform)在频率精度方面稍差一些,但在时间的分析能力上更好一些,而且可以对时间和频率同时进行分解,这是传统傅立叶变换所做不到的。
小波变换已经开始应用到图像数据压缩等领域,主要是采用离散小波变换。
在某些情况下,小波变换更优于DCT等其他正交变换。
利用人工神经网络(Artificial Neural Network,ANN)进行图像压缩是这个领域近几年的又一研究热点,并且取得了积极的进展。
这是一种与视觉系统知识紧密相关的压缩方法。
ANN并分布的联结机制与人的视觉系统有某些相似之处,利用此原理及其改进的方法进行图像压缩可获得较好的效果
1.2研究内容和目的
本文通过DCT和小波变换为基础的压缩方法,最大限度地减小图像的冗余度,同时分析DCT和小波变换压缩的实验结果,最后比较DCT和小波变换之间的差异。
最后并得出了自己对两种不同压缩方法的看法和今后发展的前景。
2.图像压缩原理分析
2.1图像压缩的可能性
图像可以压缩,是因为图像中存在大量的冗余信息,图像的冗余包括以下几种:
(1)空间冗余:像素点之间的相关性。
(2)时间冗余:活动图像的两个连续帧之间的冗余。
(3)信息熵冗余:单位信息量大于其熵。
(4)结构冗余;图像的区域上存在非常强的纹理结构。
(5)知识冗余:有固定的结构,如人的头像。
(6)视觉冗余:某些图像的失真是人眼不易觉察的。
2.2图像压缩原理
图像压缩主要目的是为了节省存储空间,增加传输速度。
图像压缩的理想标准是信息丢失最少,压缩比例最大。
不损失图像质量的压缩称为无损压缩,
无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。
压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。
信息的冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。
高效编码的主要方法是尽可能去除图像中的冗余成分,从而以最小的码元包含最大的图像信息。
编码压缩方法有许多种,从不同的角度出发有不同的分类方法,从信息论角度出发可分为两大类。
①冗余度压缩方法,也称无损压缩、信息保持编码或嫡编码。
具体说就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。
②信息量压缩方法,也称有损压缩、失真度编码或烟压缩编码。
也就是说解码图像和原始图像是有差别的,允许有一定的失真。
本实验主要利用MATLAB程序进行离散余弦变换(DCT)压缩和行程编码(Run Length Encoding, RLE)。
2.3离散余弦变换(DCT)图像压缩原理
离散余弦变换DCT在图像压缩中具有广泛的应用,它是JPEG、MPEG等数据压缩标准的重要数学基础。
●用DCT压缩图像的过程为:
①首先将输入图像分解为8×8或16×16的块,然后对每个子块进行二维DCT 变换。
②将变换后得到的量化的DCT系数进行编码和传送,形成压缩后的图像格式。
●用DCT解压的过程为:
①对每个8×8或16×16块进行二维DCT反变换。
②将反变换的矩阵的块合成一个单一的图像。
余弦变换具有把高度相关数据能量集中的趋势,DCT变换后矩阵的能量集中在矩阵的左上角,右下的大多数的DCT系数值非常接近于0。
对于通常的图像来说,舍弃这些接近于0的DCT的系数值,并不会对重构图像的画面质量带来显著的下降。
所以,利用DCT变换进行图像压缩可以节约大量的存储空间。
压缩应该在最合理地近似原图像的情况下使用最少的系数。
使用系数的多少也决定
了压缩比的大小。
在压缩过程的第2步中,可以合理地舍弃一些系数,从而得到压缩的目的。
在压缩过程的第2步,还可以采用RLE和Huffman编码来进一步压缩。
3.实验步骤
1)在matlab命令窗口中直接输入dctdemo选图像flower如图所示:
在右上角8*8 DCT系数图下,调节系数选择滑块。
保留系数为白色,置零系数为黑色。
按Apply键,比较原始图象、恢复图象、误差图象,观察原始图象与恢复图象的均方误差,改变系数选择滑块的位置,重做上步。
2)利用离散余弦变换进行JPEG图像压缩。
●使用函数dctmtx()产生DCT变换矩阵
T=dctmtx(8);%产生二维8*8 DCT变换矩阵;
●使用blkproc ()函数对图像进行分块处理
先使用rgb2gray()函数将原始图像转换成灰度图;再使用blkproc ()函数对图像进行分块处理。
B=blkproc(I,[8,8],'P1*x*P2',T,T');
%二值掩模,用来压缩DCT系数,只留下DCT系数中左上角的10个
mask=[1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ];
B2=blkproc(B,[8 8],'P1.*x',mask) ; %只保留DCT变换的
10个系数
I2=blkproc(B2,[8 8],'P1*x*P2',T',T) ; %重构图像
4实验代码.
I1=imread('1.jpg');
I=rgb2gray(I1);
I=im2double(I) ; %转换图像矩阵为双精度型。
T=dctmtx(8);%产生二维DCT变换矩阵
B=blkproc(I,[8,8],'P1*x*P2',T,T'); %二值掩模,用来压缩DCT系数,只留下DCT系数中左上角的10个
mask=[1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ];
B2=blkproc(B,[8 8],'P1.*x',mask) ; %只保留DCT变换的10个系数
I2=blkproc(B2,[8 8],'P1*x*P2',T',T) ; %重构图像
figure,subplot(1,2,1);imshow(I);title('原始图像');
subplot(1,2,2);imshow(I2);title('压缩图像');
5.实验结果。