昆明理工大学 高等数学A(2)重修试卷(2013年)

合集下载

昆明理工大学01—08级昆明理工大学高等数学[下]期末试卷

昆明理工大学01—08级昆明理工大学高等数学[下]期末试卷
n 1
4.求微分方程 dx
dy x y sin x y ( ) 1
的特解.
5.求微分方程 y y 1 的通解. 三. (11 分) 利用格林公式计算曲线积分 I e x (1 cos y )dx (e x sin y 2x )dy , 其中 L 为
L
5.设∑为平面
x y z x y z 1 在第一卦限中的部分,则曲面积分 ( )dS 2 3 4 2 3 4
.
.
6.级数
3n n ! 的敛敛性为 n n 1 n

7.幂级数
2n n x 的收敛半径 R= 2 n 1 n 1

,收敛区间为
.
8.求微分方程

1 x 1 x f ( )dydz f ( )dzdx zdxdy , y y x y
其中 f (u ) 具有二阶连续导数, 为上半球面 z a 2 x 2 y 2 与 z 0 所围成空间闭区 域 的整个边界曲面的外侧. 六. (10 分)设曲线积分 yf ( x) dx [ 2 xf ( x) x ]dy 在右半平面 ( x 0) 内与路径无关,
昆明理工大学 2005 级高等数学[下]期末试卷
一.填空题(每小题 4 分,共 32 分) 1.设函数 z x 4 y 4 4 x 2 y 2 , 则 2.设 z e xy ,则 dz
1 2
2 z xy
.
.
3.曲线 x 1 2t , y 2 t 2 , z t 在t =1 处的法平面方程为 4.交换二次积分次序,则 dy

L
ydx ( x 1)dy , 其中: ( x 1) 2 y 2

昆明理工大学07-08级AB高数(下)考试试卷和高等数学公式大全

昆明理工大学07-08级AB高数(下)考试试卷和高等数学公式大全

昆明理工大学2007级《高等数学》A (2)试卷(A 卷) (2008年6月20日)题号 一 二 三 四 五 六 七 八 九 总分 得分阅卷人大 一、填空题(每小题3分,共30分)(1)设2(,,),sin ,.u f x y z y x z x ===且f 具有一阶连续偏导数, 则dudx= . (2)设2sin 2x y z e =,则全微分dz = . (3)曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . (4)交换二次积分次序,则211(,)xdx f x y dy =⎰⎰ .(5)计算二重积分值4Dxyd σ=⎰⎰ 其中D :01,0 1.x y ≤≤≤≤( 6)曲线L 为球面2222x y z a ++=与平面x y =相交的圆周,其中0.a >则曲线积分⎰=+Lds z y 222 .(7)设曲面∑是在柱面222a y x =+(0)a >上介于;z h z h =-=(0)h >的那一部分,则曲面积分I dS ∑==⎰⎰ .(8)当a = 时,曲线积分3222(cos )(12sin 3)Laxy y x dx y x x y dy-+-+⎰与路径无关. (9)微分方程2(x dyy be b dx-+=为常数)的通解为 . (10)微分方程2290d yy dx+=的通解为 .二、(8分)已知三个正数,,x y z 之和为12.求32u x y z =的最大值.三、 (8分)计算二重积分sin Dxdxdy x⎰⎰的值.其中D 是由直线y x =及曲线2y x =所围成的闭区域.四、(10分)求旋转抛物面222z x y=--与锥面22z x y=+所围立体的体积.五、(8分)求⎰++++-L dyxydxyx)635()42(,其中L为顶点坐标分别是(0,0),(3,0),(3,2)的三角形的正向边界.六、(10分)利用高斯公式计算曲面积分:323232 ()()(),I x az dydz y ax dzdx z ay dxdy ∑=+++++⎰⎰其中∑是曲面222y x a z --=的上侧(0).a >.七、(10分)求二阶常系数非齐次线性微分方程 44ax y y y e '''++=的通解(其中a 为常数).八、(10分)设()f x 具有一阶连续导数,且()1,f π=又()[sin ()]()00yx f x dx f x dy x x-+=>是全微分方程,求()f x .九、(6分)已知(),z z u =且()(),xy u u p t dt ϕ=+⎰其中()z z u =可微,'()u ϕ连续,且'()1,()u p t ϕ≠连续,求()().z zp y p x x y∂∂+∂∂昆明理工大学2007级《高等数学》A (2)试卷(B 卷)大 一、填空题(每小题3分,共30分)(1)函数221)ln(yx x x y z --+-=的定义域为 .(2)设)32ln(y x z -=,则dz = . (3)设)ln ,(22y x y x f z -=,f 可导,则=∂∂xz. (4)椭球面632222=++z y x 在点)1,1,1(处的法线方程为 . (5)交换二次积分次序:=⎰⎰221),(xdy y x f dx .(6)若L 为平面上的单位圆,则=⎰L ds . (7)若∑是空间中简单闭曲面的外侧,则曲面积分=+-⎰⎰∑dxdy ydzdx xdydz 2 .(8)微分方程0=+xdy ydx 的通解为 . (9)微分方程136=+'-''y y y 的通解为 .(10)微分方程x e y y y 2344=+'-''的非齐次特解形式应设为=*y .二、(8分)已知三个正的真分数,,x y z 之和为1,求32u x y z =的最大值.三、(8分)计算二重积分⎰⎰+Dd y x σ)(22,其中D 是由上半圆22x x y -=与x 轴所围成的闭区域.四、(10分)求由四个平面0=x ,1=x ,0=y ,1=y 所围方柱体被两平面0=z 和2=++z y x 所截部分的立体体积.五、(8分)求⎰-+-Ldy x dx y x )1()(2,其中L 为上半单位圆21x y -=从点)0,1(A 到点)0,1(-B 的一段.六 、(10分)利用高斯公式计算曲面积分:⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是曲面222y x a z --=的上侧(0).a >七、(10分)求微分方程0)(=-+xdy dx y x 的满足初始条件1)1(=y 的解.八、设)(x y y =二阶可导,且⎰⎰-+=xx xdt t y x dt t ty e x y 0)()()(,求)(x y .(10分)九、(6分)))(,(2xy y x f z ϕ-=,),(v u f 具有二阶连续偏导数,)(u ϕ二阶可导,求yx z ∂∂∂2.昆明理工大学2008级《高等数学》A (2)A 卷期末试题解答及评分标准一、(每小题4分)1.21.1()x dx x-⎰2.110(,).dy f x y dx ⎰ 3.π.4. 2.5..(,,0)D R x y dxdy -⎰⎰6. 12S U -.7. (ln 3)!0nx n n ∞∑=.8. 收敛. 9. 23.x y y C += 10.()()[()].P x dx P x dx y e Q x e dx C -⎰⎰=+⎰二、1. 241()0V x x dx x π=-⎰ 3分 2.15π=5分 2. 22111221012()()||x x dx x y dy dx y x dy I y x dxdy D--=-+-=-⎰⎰⎰⎰⎰⎰ 3分11.15=5分三、22cos 32000sin d d d Iππϕθϕρϕρ=⎰⎰⎰ 5分8.5π= 7分 四、21()()L x y dx x y dy a I =+--⎰Ñ2分22Dd a σ-=⎰⎰ 5分 2.π=- 7分 五、122222()()x y ds x y ds I ∑∑=+++⎰⎰⎰⎰2222(()DDx y x y d σσ=+++⎰⎰⎰⎰ 4分2130(1d r dr πθ=⎰⎰ 6分(12π=分六、21 ().a I axdydz z a dxdy ∑=++⎰⎰ 1分补()2221:0z xy a ∑=+≤取下侧 3分1121 []()()a I axdydz z a dxdy axdydz z a dxdy ∑+∑∑-=++++⎰⎰⎰⎰21[(1)]D a dv a d a σΩ=++⎰⎰⎰⎰⎰ 6分 (52)3a a π=+ 8分 七、1.122!2limlim lim 0,(1)!1(1)n n n n na n n n R a n n n ρ+→∞→∞→∞++====∴=+∞+++收敛区间),(+∞-∞; 4分 2.设01()!nn n S x x n ∞=+=∑, 则100001()!!!n n xx n n n n n x x S x dx x dx x n n n +∞∞∞===+===∑∑∑⎰⎰0()!nxxn x xe e n ∞===∑Q所以()()(1)xx S x xe e x '==+ 8分八、1. '()()(0)0f x f x f ==()x f x Ce ∴= 4分 .(0)00,()0f C f x =∴==又, 6分2.微分方程的特征方程022=-+r r其特征根为1,221=-=r r ,故对应齐次方程的通解为x x e C e C Y 221+=- 3分因为x e x f 22)(=,2=λ不是特征方程的根, 故原方程的特解设为:x Ae y 2*=,代入原方程得⇒=-+x x x x e Ae Ae Ae 2222222421222=⇒=A e Ae x x ,xe y 221*= 因此,原方程的通解为*y Y y +=x x x e e C e C 222121++=-昆明理工大学2008级《高等数学》A (2)期末试卷考试日期:2009.06.17 (B 卷)题号 一 二 三 四 五 六 七 八 总分 得分阅卷人一.填空题(每小题4分,共40分)1.由直线0y x y ==,及2x =围成的图形的面积为A ,若以x 为积分变量,面积A可用定积分表示为A = .2.设(,)f x y 为连续函数,则交换二次积分次序后133(,)xdx f x y dy =⎰⎰ .3.设L 是任意一条分段光滑的闭曲线,则22Lxydx x dy +=⎰Ñ . 4. 设∑为曲面0,2222≥=++z a z y x 的部分,则对面积的曲面积分222()I x y z dS ∑=++=⎰⎰ .5. 设∑为曲面,,0222a y x z ≤+=的上侧,则对坐标的曲面积分25x dydz dzdx dxdy ∑++=⎰⎰.6. 已知级数∑∞=1n n U 的部分和11(1)331n S n =-+,则级数∑∞=1n nU 的和s =.7.级数λλ-∞=∑-e n n n1)!1(的和s =.8.当01a <≤时,级数111nn a ∞=+∑的敛散性为 . 9.全微分方程cos sin sin cos 0x ydx x ydy +=的通解为 .10.一阶线性齐次方程:()0y P x y +='的公式通解为y = . 二、计算下列各题(每小题5分,共10分)1.求曲线2y x =与2y x =所围成的平面图形绕x 轴旋转一周所成旋转体的体积.2. 计算二重积分Dx y d σ+⎰⎰,其中闭区域(){,11,11}D x y x y =-≤≤-≤≤.三、(7分)计算由曲面22z x y =+及226z x y =--所围成的立体的体积四、(7分)计算22()()Lx y dx x y dyI x y=++-+⎰Ñ,其中L 为圆周222(0)x y a a +=>(按逆时针方向绕行).五、(8分)计算()22I x y dS ∑=+⎰⎰Ò,其中∑是锥面z =2z =所围成的区域的整个边界曲面.六、(8分)利用高斯公式计算曲面积分 I ∑=其中∑是曲面222z a x y =--的上侧.(0a >为常数)七、(8分)求幂级数2111(1)21n n n x n -∞-=--∑的收敛域与和函数.八、计算下列各题(每题6分 共12分) 1. 求微分方程 322dx x dy y y+= 在条件11x y ==下的特解.2.求微分方程22y y y +-='''的通解.高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

2013年云南昆明理工大学机械原理考研真题A卷

2013年云南昆明理工大学机械原理考研真题A卷
六、(12分)试求下列(a)(b)图机构在图示位置时全部瞬心的位置(用符号Pij标注在图上)
七、(8分)图示曲柄滑块机构中,设已知机构尺寸,图中虚线圆为摩擦圆,滑块与导路的摩擦角为φ,驱动力为F,阻力矩为M。试在下图所示机构位置简图中画出各运动副中反力方向(必须注明力矢量和构件间相对角速度的脚标)。
9、若刚性转子满足动平衡条件,这时我们可以说该转子也满足静平衡条件。------( )
10、为了减轻飞轮的重量,最好将飞轮安装在转速较高的轴上。-----------------( )
四、(20分)计算图示机构的自由度,并分析组成此机构的基本杆组,确定机构的级别。
五、(20分)在下图示自行车里程表的机构中,C为车轮轴。已知Z1= 17,Z3= 23,Z4= 19,Z4´= 20,Z5= 24。设轮胎受压变形后使28英寸的车轮有效直径约为0.7m,当车行一公里时,表上的指针P要刚好回转一周,求齿轮2的齿数。
八、(10分)试标出下列机构图示位置时的压力角和传动角,箭头标注的构件为原动件。
九、(16分)在图示凸轮机构中,从动件的起始上升点为C0点。
(1)试在图上作图标出从动件从C0点到C点接触时,凸轮转过的角度及从动件的位移s;
(2) 作图标出在C点接触时凸轮机构的压力角。
6、滚子从动件盘形凸轮机构中,基圆半径和压力角应在凸轮的实际廓线上来度量。( )
7、渐开线标准齿轮的齿根圆恒大于基圆。------------------------------------( )
8、周转轮系的传动比等于各对齿轮传动比的连乘积。--------------------------( )
2013年云南昆明理工大学机械原理考研真题A卷
一、选择题(共24分 每题2分)

昆明理工大学考研历年真题之高等代数2007--2014年考研真题

昆明理工大学考研历年真题之高等代数2007--2014年考研真题

昆明理工大学2007年硕士研究生招生入学考试试题(A卷)考试科目代码:803 考试科目名称:高等代数试题适用招生专业:计算数学、应用数学、系统理论、系统分析与集成考生答题须知1.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。

请考生务必在答题纸上写清题号。

2.评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。

3.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。

4.答题时不准使用涂改液等具有明显标记的涂改用品。

昆明理工大学2008年硕士研究生招生入学考试试题(A卷) 考试科目代码:837 考试科目名称:高等代数试题适用招生专业:计算数学、应用数学、系统理论、系统分析与集成考生答题须知5.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。

请考生务必在答题纸上写清题号。

6.评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。

7.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。

8.答题时不准使用涂改液等具有明显标记的涂改用品。

昆明理工大学2009年硕士研究生招生入学考试试题(A卷)考试科目代码:837考试科目名称:高等代数试题适用招生专业:计算数学,应用数学,系统理论,系统分析与集成考生答题须知9.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。

请考生务必在答题纸上写清题号。

10.评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。

11.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。

12.答题时不准使用涂改液等具有明显标记的涂改用品。

昆明理工大学2010年硕士研究生招生入学考试试题(A 卷)考试科目代码:833 考试科目名称 :高等代数试题适用招生专业 :070102计算数学、070104应用数学、071101系统理论、071102系统分析与集成考生答题须知13.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。

考研_2013年云南昆明理工大学工程力学考研真题A卷

考研_2013年云南昆明理工大学工程力学考研真题A卷

2021年云南昆明理工大学工程力学考研真题A卷一、判断题〔正确的在括号中打“√〞,错误的在括号中打“×〞。

每空2分,共40分〕1、合力一定比分力大。

〔〕2、但凡只受到两个力作用的杆件都是二力杆件。

〔〕3、汇交力系中各个力的作用点为同一点。

〔〕4、力偶矩的单位与力矩的单位是一样的。

〔〕5、平面汇交力系中各力在任意轴上投影的代数和分别等于零,那么该力系平衡。

〔〕6、一个汇交力系如果不是平衡力系,那么必然有合力。

〔〕7、在应用平面汇交力系的平衡方程解题时,所选取的两个投影轴必须相互垂直。

〔〕8、材料力学的任务是尽可能保证构件的平安工作。

〔〕9、作用在刚体上的力偶可以任意平移,而作用在变形固体上的力偶一般不能平移。

〔〕10、线应变是构件中单位长度的变形量。

〔〕11、假设构件无位移,那么其内部不会产生内力。

〔〕12、用圆截面低碳钢试件做拉伸试验,试件在颈缩处被拉断,断口呈杯锥形。

〔〕13、一般情况下,脆性材料的平安系数要比塑性材料取得小些。

〔〕14、胡克定律只适用于弹性变形范围内。

〔〕15、塑性材料的应力-应变曲线中,强化阶段的最高点所对应的应力为强度极限。

〔〕16、发生剪切变形的构件都可以称为剪切构件。

〔〕17、受扭杆件的扭矩,仅与杆件受到的外力偶矩有关,而与杆件的材料及其横截面的大小和形状无关。

〔〕18、根据平面假设,圆轴扭转时,横截面变形后仍保持平面。

〔〕19、假设两梁的跨度、承受载荷及支撑一样,但材料和横截面面积不同,那么两梁的剪力图和弯矩图不一定一样。

〔〕20、控制梁弯曲强度的主要因素是最大弯矩值。

〔〕二、填空题(每空2分,共20分)a、使材料丧失正常工作能力的应力称为极限应力。

工程上一般把___1____作为塑性材料的极限应力;对于脆性材料,那么把____2 ____作为极限应力。

b、_____ 3_____面称为主平面。

主平面上的正应力称为______4________。

c、机动法作静定梁影响线应用的原理为 5d、受力后几何形状和尺寸均保持不变的物体称为 6 。

昆明理工大学试卷(概率统计B-历年试题)

昆明理工大学试卷(概率统计B-历年试题)

昆明理工大学试卷(历年试题)考试科目: 概率统计B(48学时) 考试日期: 命题教师:2013年概率统计试题一、填空题(每小题4分,共40分)1.设A,B,C 为三个事件,则A,B,C 中至少有两个发生可表示为 。

2.已知1()4p A =,1(|)2p A B =,1(|)3p B A =,则()p A B ⋃= 。

3.设事件A,B 互不相容,且1()2p A =,1()3p B =,则()p AB = 。

4.进行独立重复实验,设每次成功的概率为p ,失败的概率为1p -,将实验进行到出现一次成功为止,以X 表示实验次数,则()p X k == 。

5.已知随机变量X 服从参数2λ=的泊松分布,即(2)X P ,则(0)p X == 。

6.已知随机变量(2,1)X N -,(2,1)Y N 且,X Y 相互独立,则2X Y -服从的分布是 。

7.若随机变量X 满足()1,()2,E X D X =-=则2(31)E X -= 。

8.设12,X X 是来自于总体X 的样本,1121233X X μ=+,2121122X X μ=+为总体均值μ的无偏估计,则12,μμ中较有效的是 。

9.设12,,n X X X 为来自总体2(,)N μσ的一个样本,2σ已知,则212()nii XX σ=-∑服从的分布是 ,212()nii Xμσ=-∑服从的分布是 。

10.设12,,n X X X 为来自总体2(,)N μσ的一个样本,2σ未知,则μ的1α-的置信区间是为 。

一、 填空题(每小题4分,共40分)1.AB BC AC 2. 13 3.12 4. ()p X k ==1(1)k p p -- 1,2,k =5. 2e -6.(6,5)N -7. 88. 2μ9. 22(1),()n n χχ-10. 22(_(1),(1))x n x n αα-+- 二、(10分)某保险公司把被保险人分为三类:谨慎的、一般的、冒失的,统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30。

昆明理工大学历年高数(上)期末试题和答案

昆明理工大学历年高数(上)期末试题和答案

昆明理工大学01—08级高等数学(上)期末试题集2001级高等数学(上)期末试卷一、填空题(每小题3分、共24分)1、01lim sinx x x→=; 2、2 dx dx =;3、设)(x f 在[,]a a -连续并且为偶函数,则⎰-=aadx x f )(;4、⎰= nxdx;5、过点)1,2,3(1-M 和)2,0,1(2-M 的直线方程是 ;*6、已知级数1n n u S ∞==∑,则级数11()n n n u u ∞+=+∑的和是 ;*7、.曲线x x y ln 2-=在1=x 点处的曲率是 ;8、函数, 0(), 0x x f x x x ≥⎧=⎨-<⎩在点0=x 处的导数为 ;二、计算下列各题(每小题5分,共25分)1、240ln(13)lim ln(3)x x x →++ 2、)arcsin(ln x x y =求y '.3、求由方程sin ()0y x xcos x y -+=所确定的隐函数)(x y y =的导数y '.4、⎰++dx x x 1322 5、⎰ 三、计算下列各题(每小题5分,共25分)1、dx x ⎰--)1(112、⎰-xedx1323、判别级数∑∞=+1311n n 的敛散性 4、求幂级数∑∞=+1212n nn n x 的收敛区间 5、设点A,B,C 的坐标分别为A(2,3,-1),B(1,1,1)及C(0,4,-3)求23,,- 及C AB A ⋅.四、(7分)求幂级数∑∞=----112112)1(n n n n x 的收敛区间,并求和函数. 五、(7分)求过点P(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742:z y x z y x L 垂直的平面方程.六、(6分)求由曲线b y x y ln ,ln ==及0(0)x b =>所围图形的面积. 七、(6分)讨论x x x f ln )(=在其定义域上的最大值与最小值.2002级高等数学(上)期末试题一、填空题(3分×10=30分) 1、若s 2lim23x inax x →∞=,则a = .2、函数1,1,1x x y a x x -≥⎧=⎨-<⎩,当a = 时连续.3、设⎰=Φ,sin )(2dt t t x b x则=Φdxd . 4、曲线sint cos 2x y t=⎧⎨=⎩在4π=t 处的法线方程为 .5、当a 时,点(1, 3)为3232y x ax =-+的拐点. 6、设cos x 是)(x f 的一个原函数,则)('x f = .7、⎰=--dx xx221211arcsin .8、设+-=+-=2,53,则a b ⋅= .*9、级数∑∞=+1)1(1n pn 当p 时发散. 10、2332)(x x x f -=在[1-4]上的最小值为 . 二、试解下列各题(5分×3=15分)1、02sin limx x tdt x→⎰.2、设)()(x f xee f y =,其中)(x f 可导,求dxdy .3、设xxy cos =,(0x >),求dy .三、求积分(5分×4=20分)1、⎰dx e e x x )sin( 2、3、⎰-221xxdx4、1arctan x xdx ⎰*四、[9分]设平面图由xy x y 1,2==及x=2所围成,求: 1)平面图形的面积A (要求作草图); 2)平面图形绕x 轴旋转的体积x V .五、[9分]一直线过点(0,2,4)且与两平面12=+z x 和23=-z y 平行,求直线方程.六、[5分]判断级数∑∞=12!n n n 的收敛性.七、[8分]设幂级数 ++++753753x x x x 1)、写出它的一般项;2)、求收敛半径及收敛域. 八、[4分]证明:当1>x 时ex e x>2003级高等数学(上)期末试卷一、填空题:(共10题,每题3分)1、数列6661,1010,10n n x n n ⎧ < ⎪=⎨⎪ ≥ ⎩,则lim n n x →∞=___________________________.2、()f x 在0x 的某去心邻域内无界是0lim ()x x f x →=∞的___________________条件.3、0x =是1()sinf x x xα=的可去间断点,则常数α的取值范围是____________________.4、()f x 可导, 0(1)(1)lim12x f f x x→--=-, 则曲线()y f x =在点[1,(1)]f 处的切线斜率是____________________.5、()(),(),y f x x f x dy f x x ∆=+∆-=∆′则y ∆与dy之间的关系是________________________.6、可导函数()f x 在点0x 处取得极值的必要条件是___________________________.7、使公式()()k f x dx k f x dx =⎰⎰成立的常数k 应满足的条件是 .8、设物体以速度()v t 做直线运动, 则[0,]T 上物体经过的路程是___________________.9、投影Pr 2,3,b j a b == 则a b⋅=______________________.10、a b +与a b -平行的充要条件是________________________. 二.计算题(共8题,每题5分)1、求 2arctan lim 1ln(1)x x x x→∞+ 2、求 02lim 1cos x x x e e x -→+--3、ln (),()y f x fx ''=存在, 求y '' 4、求2ln xxedx+⎰5、求2tan x xdx ⎰6、求11(1sin x -+⎰7、求1010x y x y z ++=⎧⎨-++=⎩的对称式方程.8、求到220xy z ++=的距离为1的动点轨迹.三、设2,0()(1),0axe xf x b x x ⎧ <⎪=⎨- ≥⎪⎩,在0x =处可导,求11()f x dx -⎰.(8分)四、设0()(2)(),()0xF x t x f t dt f x =- >⎰′,试问点(0,0)是否是曲线()y F x =的拐点,为什么?(8分)*五、设抛物线20(01),y ax bx x =+≥ ≤≤ 试确定,a b 之值,使抛物线与直线1,0x y ==所围面积为13,并且绕x 轴旋转的体积最小.(8分)六、设()()()0xaF x f t dt F b =, ≠ , ⎰且()0F x ≠′,试证:方程()()x ba xf t dt f t dt =⎰⎰ 在(,)a b 内有且只有一根.(6分)2004级高等数学(上)期末试卷一、填空题(每题3分,共30分) 1、设x 1f (x)=,x 0,x 1,x-≠≠则1f[]f (x)= .2、若sin ax 3lim ,x 0sin 5x 4=→则a = .3、函数n x nf (x)=lim ()n 2n +=→∞- .4、x 1=是函数1x-1f (x)=e的第 类间断点.5、函数32y 2x 3x 12x 1=+-+在(2,1)-内单调 .6、曲线2y ln(1x )=+在区间 上是凸的,在 上是凹的, 拐点是 .7、设函数f (x)在[a,a]-上连续,g(x)f (x)f (x)=--,则aa g(x)dx -⎰= . 8、当k 时,反常积分akdx x(ln x)⎰收敛.9、a (2,3,1),b (113)c (120)→→→-=-=-=,,,,,,则a b (b c )()→→→→=++ . 10、过点(3,0,-1)且与向量a 3i 7j 5k →→→→=-+垂直的平面方程为 .二、计算下列各题(每题6分,共48分)1、计算极限:x2limx (arctan t ⎰) 2、设x y xy e e =0-+,求dy3、设2x ln(1t y arctan t ⎧=+⎨=⎩),求dy dx 和22d y dx 4、求 x1dx 1-e ⎰ 5、求 2dx xsin x⎰6、计算定积分20I x =⎰ 7、求过点(0,2,4) 且与两平面x 2z 1,y 3z 2+=-=平行直线方程.8、设x 220 F(x)tf(x t )dt -=⎰,求F (x)''三、(9分)设有位于曲线xy e =的下方,该曲线过原点的切线的左方以及x 轴上方之间的图形:(1)求切线方程;(2)求平面图形的面积;(3)求此平面图形围绕x 轴旋转的旋转体的体积.四、(8分)讨论a,b 为何值时,函数2f (x)ln(a+x ),x>1x b,x 1=⎧⎨+≤⎩在x 1=处可导.五、(5分)设f(x)在区间I 上可导,证明在f(x)的任意两个零点之间必有方程f (x)xf (x)0'+=的实根.2005级高等数学(上)期末试卷一、填空题(每题3分,共30分)1、3321lim 1x x x x →∞-++= .2、21lim()x x x x→∞+= . 3、0(),0,x e x f x a x x <=+≥⎧⎨⎩,若)(x f 在),(+∞-∞连续,则a = .4、曲线x ysin =在点)22,4(π的切线方程为___________________.5、函数()()820f x x x x =+>的单调增加区间为 .6、曲线3129223-+-x x x 的拐点为 .7、532425sin _________21x x dx x x -=++⎰. 8、⎰+∞+0211dx x = . 9、设()3,1,2a =--,()1,2,1b =-,则_______)(=⋅-b a32.*10、当_______a 时,级数11(0)1nn a a ∞=>+∑收敛. 二、计算下列各题(每题6分,共42分)1、计算极限()22220limx t xx t e dt te dt→⎰⎰. 2、21sin xy e-=,求y '.3、设函数)(x f y =由方程y x e xy +=确定,求dxdy .4、问函数()2540y x x x=-<在何处取得最小值. 5、计算⎰-+dx e e xx 1 6、计算⎰1dx e x 7、过点),,(420P 且与两平面2312=-=+z y z x ,垂直的平面方程.三、(8分)设 ⎩⎨⎧>+≤=11 ,2x b ax x x x f ,)(为了使()f x 在1x =连续可导函数,,a b 应取什么值?四、(8分)求幂级数2111(1)21n n n x n -∞-=--∑的收敛域,并求和函数. 五、(8分)由直线y x =及抛物线2y x =围成一个平面图形1.求平面图形的面积A.2.求平面图形绕x 轴旋转的旋转体体积x V .六、(4分)设()0,(0)0f x f ''<=,证明:对于任意0021>>x x ,有 )()()(2121x f x f x x f +<+2006级高等数学(上)试卷一、填空题:(每小题3分,共30分) 1、使函数xxx f 32sin )(=在0=x 处连续,应补充定义 . 2、极限____________3lim 3=⎪⎭⎫⎝⎛+∞→x x x x .3、)('0x f 存在,则极限________)()(lim000=--+→hh x f h x f h .4、线xe y =在点(1,e )处的切线方程为 . 5、线xxey -=的拐点是________________.6、用奇偶性计算定积分_______________11sin 11223=++⎰-dx xx x . 7、计算反常积分x xe dx +∞-⎰=__________________.8、向量(2,1,2),(1,,2),a b λ=-=且满足a b ⊥,则数____=λ.9、过点(4,-1,3)且平行于直线51123+==-z y x 的直线方程是_____________. 10、级数⋅⋅⋅+++⋅⋅⋅++nn 1232的敛散性为______________. 二、 计算下列各题:(每小题6分,共42分) 1、求极限2arctan limxdt t t xx ⎰+∞→.2、求由参数方程⎩⎨⎧+==)1ln(arctan 2t y t x 确定的函数)(x y y =的导数22,dx yd dx dy . 3、设函数)(x y y =由方程0333=-+axy y x 确定,求dy . 4、7186223+--=x x x y 的极值. 5、计算不定积分xdx x cos 2⎰.6、计算定积分21e ⎰7、证明:当1>x 时,不等式ex e x>成立. 8、写出直线241312-=-=-z y x 的参数方程并求此直线与平面062=-++z y x 的交点.三、(8分)求幂级数∑∞=--11)1(n nn nx 的收敛半径、收敛区间与收敛域,并求其和函数. 四、(8分)由曲线xy 1=与直线2,==x x y 及x 轴围成一个平面图形, 1、求此平面图形的面积A ;2、求此平面图形绕x 轴旋转一周所生成的旋转体的体积x V . 五、(4分)设函数)(x f 在区间[0,1]上连续,且1)(<x f ,证明1)(20=-⎰dt t f x x在区间(0,1)内仅有唯一实根.2007级高等数学(上)试卷一、填空题:(每小题3分,共30分)1、22lim()kxx x e x→∞-=,则 k =2、点1x =是函数1,13,1x x y x x - ≤⎧=⎨- >⎩的第一类间断点中的 间断点3、设(sin )y f x =,f 可导,则dy = 4、定积分0=⎰5、曲线y =的拐点坐标是6、设sin x 是()f x 的一个原函数,则()xf x dx '=⎰7、设22,410,,a i j k b i j k c b a c a λ=++ =-+ =- ⊥,则λ= 8、xoz 面上的曲线:2z x =绕z 轴旋转一周所得旋转曲面的方程为9、正项级数211n n n ∞=+∑的敛散性为 10、幂级数nn ∞=的收敛区间为 二、计算下列各题:(每小题6分,共48分)1、计算极限3113lim()11x x x→---. 2、设3ln x t x y e dt =⎰,求dydx.3、设函数()y f x =由方程0xyxy e e -+=确定,求dy .4、求32()23f x x x =-的极值. 5、计算不定积分11cos dx x +⎰.6、计算41⎰. 7、计算21(1)x x dx -+⎰.8、求过点(1,2,4)P 且与两平面23x y +=,42y z -=平行的直线方程. 三 (9分)、(1)、求曲线3y x =在点(2,8) 处的切线方程;(*2)、求曲线3y x = 与直线2,0x y = =所围成平面图形A 的面积; (*3)、求(2)中的平面图形A 绕y 轴旋转一周所得旋转体的体积.四 (9分)、利用x e 幂级数的展开式:(2)、写出e 的无穷级数展开式;(3)、再利用数e 的无穷级数的展开式,求数项级数21!n n n ∞=∑的和.五(4分)、设()f x 可导,(0)0f =,10()(),xn n n F x t f x t dt -=-⎰n 为正整数,证明:20()1lim(0)2n x F x f x n→'=.2008级高等数学(上)试卷一、填空题(每题3分,共30分) 1.2.(1)(23)lim6n kn n n→∞+-=则k = . 2. 1lim(1-sin 2)xx x →= .3. 曲线3y x =上经过点0-2(,)的切线方程为 . 4.arctan cot x arc x += . 5. 已知()f x的一个原函数为ln(x ,则'()xf x dx =⎰ .6.-((0aa x dx a >⎰为常数)= .7.设()y x 由方程2201y t e dt x y +=⎰所确定,则'y = .8. 设向量,(3,5,),(2,1,4)a x b ==且2a b+与z 轴垂直,则x = .9.经过点(0,3,0)且与平面0y =垂直的直线方程是 .*10. 设22ln y x u +=,则du = .二、计算下列各题(每题7分,共14分)1. 设221x t y t⎧⎪⎨⎪⎩==-求22,dx y d dx dy . 2.已知()f x 连续,求lim ().xx a ax f t dt x a →-⎰ 三、计算下列各题(每题7分,共28分)1.求函数2y x =-. 2.x ⎰.3.12arcsin xdx ⎰. *4.设23222.,,xz u v u e v x y ===+求2.,z zx x y∂∂∂∂∂四、计算下列各题(每题9分,共18分) 1.(1)求过点(0,1,1)M -且与直线20,:270y L x z ⎧⎪⎨⎪⎩+=+-=垂直的平面方程,(2)求点M 到直线L 的距离.*2.将已知正数a 分解为三个正数之和,并使它们的倒数之和为最小.五、(6分)已知()f x 连续,10.()()(),limx f x x f xt dt A xϕ→==⎰(A 为常数) 求(1)(0),(0)f ϕ;(2)'()x ϕ;(3)讨论'()x ϕ在0x =处的连续性.六、(4分)设()f x 在0,1⎡⎤⎣⎦上可微,且120(1)2().f xf x dx =⎰证明:存在(0,1)ξ∈,使得'()()0.f f ξξξ+=2009级高等数学(上)期末试题答案一、填空题(每题3分,共30分)1、向量(2,1,2),(1,,2)a b λ=-=满足a b ⊥,则数λ= .2、过点(1,2,3且与两平面1x y z -+=和3232x y z ++=平行的直线方程为 .3、极限11lim sin 3sin 2x x x x x →∞⎛⎫+=⎪⎝⎭ . 4、已知函数()⎪⎩⎪⎨⎧=≠+=0,0,sin 2x A x xx xx f 在0=x 处连续,则=A . 5、已知()32='f ,则极限()()01lim 22x f x f x x →++-=⎡⎤⎣⎦ . 6、曲线x e y =过点()0,0的切线方程为 .7、当a = 时,点1x =为2y x ax =-+的极值点. 8、积分0=⎰.9、积分21212sin 1x xdx x -+=+⎰ . 10、已知级数∑∞=+111n na 收敛,则a 的取值范围为 . 二、计算下列各题(每题6分,共12分) 1、已知直线421321:1-=-=-z y x L 和112432:2--=+=+z y x L ,求经过1L 且与2L 平行的平面方程. 2、2(arctan )limx x t dt .三、计算下列各题(每题6分,共18分)1、ln 1x x →-.2、设方程arctan y x=)(x y y =,求dy .3、已知 2ln cot tan x ty t=⎧⎨=⎩ , 求622π=t dx y d .四、计算下列各题(每题6分,共12分)1、设()2ln 1,0()11,101x x x f x x x-+≥⎧⎪=⎨--<<⎪+⎩ , 求(1)()x f 的单调区间;(2)求()x f 的极值.2、设()f x 的一个原函数是()21ln x x ++, 求()xf x dx '⎰.五、计算下列各题(每题6分,共18分) 1、1⎰2、41⎰.3、0x xdxe e+∞-+⎰.六、计算下列各题(共10分)1、 求幂级数12nnn x n ∞=⋅∑的收敛域及其和函数(6分). 2、设()()()0xa Fx f td t Fb =, ≠, ⎰且'()0F x >,试证:方程()()x baxf t dt f t dt =⎰⎰ 在(,)a b 内有且只有一根.(4分)试题参考解答2001级高等数学(上)期末试卷解答一、填空题(每小题3分、共24分) 1.0; 2.2x ; 3. 02()af x dx ⎰; 4.11n n n x n --; 5.12421x y z +-==--; 6.2S ;7.略; 8.不存在.二. 计算下列各题(每小题5分,共25分)1、[解]:240ln(13)0lim0ln(3)ln 3x x x →+==+.2、[解]:1arcsin(ln )arcsin(ln )y x x x x '=+= . 3、[解]:sin cos ()sin()(1)0y x y x cos x y x x y y ''+-++++=()sin()cos sin()sin cos x y x x y y x y x x y x+-+-'=++.4、[解]:2232arctan 1x dx x x c x +=+++⎰. 5、 [解]t =,2sin 2cos 2(cos cos )t tdt td t t t tdt ==-=--⎰⎰⎰⎰2(cos sin )sin t t t c =--=-+.三.计算下列各题(每小题5分,共25分) 1、[解]:111(1)221x dx xdx --=-=⎰⎰.2、[解]:23332232(1)1ln(1)ln 111x xx x dx d e e e e e e -------=-=--=---⎰⎰. 3、[解]:3321,1n n+故∑∞=+1311n n 收敛.4、[解]:12221(1)1lim 2,221n n n n R n ρ+→∞++==∴=+,收敛区间为11(,)22-. 5、[解]{1,2,2},{2,1,2},32{1,8,10}AB AC AB AC =--=---=-,4AB AC ⋅=- 四、解:令2111222111()(1),()(1)211n n n n n n x S x S x x n x -∞∞---=='=-=-=-+∑∑, 21()arctan 1xS x dx x x ∴==+⎰,收敛区间为(-1,1). 五、解:平面,0742:1=-+-z y x π法向量{}4,2,11-=n ,平面,01253:2=+-+z y x π法向量{}2,5,32-=n..取所求平面的法向量 {}1212424,14,11352i j kn s n n ==⨯=-=--....由点法式方程可得所求平面方程为 24(2)14(0)11(3)x y z --+-++=,即241411810x y z ---=.六、解:曲线b y x y ln ,ln ==及0(0)x b =>所围图形为无界区域,其面积为(ln ln )ln ln bbS b x dx b b x x b b +=-=-+=⎰.七、解:x x x f ln )(=的定义域为0x >,令()l n 10,f x x '=+=得驻点1x e =,当1x e< 时,()ln 10,f x x '=+<当1x e>时,()ln 10,f x x '=+>故x x x f ln )(=在其定义域上的最小值为111()ln f x e e e==-,无最大值.2002级高等数学(上)期末试卷解答一、填空题(每小题3分、共24分) 1.34 ;2.1;3.2sin x x -;4.)22(221-=x y ;5.29;6.x cos -;7.0;8.12;9.≤1;10.(1)5f -=-二、试解下列各题(每小题5分,共15分)1.解:原式0sin lim 2x x x →=21=.2.解:()()[()]'()[]x f x x f x dyf e e f e e dx'=+ )()()()(')('x f x x f xxe ef x f ee f e +=.3.解:取对数 cos ln lny x x =,两边关于x 求导得1cos .sin dy x xlnx y dx x=-+, 故 cos cos (sin )xxdy x xlnx dx x=-+. 三、求积分(每小题5分,共20分)1、解:原式⎰=xx de e )sin(c e x+-=)cos(.2、解:原式=⎰2)(arcsin )(arcsin x x d c x+-=arcsin 1. 3、解:令sin x t =,cos dx tdt =,原式2cos c sin cos tdttgt c t t==-+⎰c x x +--=21. 4、解:原式21arctan ()2x xd =⎰21122001[c tan ]221x dxar x x x=-+⎰. 120111.(1)2421dx x π=--+⎰101[c tan ]82x ar x π=-- 2148218-=+-=πππ.四、解:1)2211()dx A x x =-⎰2311[ln ]3x x =-7ln 23=-.2)24211()dx x V x x π=-⎰521157[]5100x x ππ=+=. 五、解:设求直线的方向向量为s ,由于{}2,0,1⊥且{}3,1,0-⊥,则j 1 0 2 2 i 3 j k 0 1 -3i ks ==-++,故直线方程为 143220-=-=--z y x . 六、解:用比值法 10)1()1(lim lim 221<=++=∞→+∞→n n n U U n nn n ,故原级数收敛.七、解:1)一般项为121n a n =-. 2)121limlim 12(1)1n n n na n a n ρ+→∞→∞-===+-,收敛半径11==ρR ,当1x =时,幂级数为1121n n ∞=-∑发散,1x =-时,幂级数为1121n n ∞=--∑发散,故收敛域为(-1,1). 八、证明:设ex e x f x-=)(,e e x f x-=)(',故当1>x 时0)('>x f ,即1>x 时)(x f单增,故当1>x 时,0)1()(=>f x f ,从而1>x ,ex e x>.2003级高等数学(上)期末试卷解答一、填空题(每小题3分、共30分)1、610 ; 2、必要; 3、0a >; 4、2- ; 5、()y dy x ο∆=+∆6、0()0f x '= ;7、0k ≠;8、0()Tt dt ν⎰; 9、6; 10、//a b .二、计算题(共8题,每题5分) 1、因为arctan 2x π<,11ln(1)~x x+(2分) 故原式=arctan lim 0x xx→∞= (5分)2、原式=0lim sin x xx e e x -→- (2分)= 0lim2cos x xx e e x-→+= (5分) 3、()()f x y f x ''=(2分) 22()()()()f x f x f x y f x '''-''= (5分)4、原式 = 2x e xdx ⎰(2分)= 212x ec + (5分)5、原式 = 2sec x xdx xdx -⎰⎰(2分)= 2tan ln cos 2x x x x c +-+ (5分) 6、因为11sin 0x -=⎰(2分)12-=⎰⎰sin x t =2202cos 2tdt ππ=⎰ (4分)故原式022ππ=+=(5分)7、直线过点(1,0,0)- (2分)其方向向量 1{1,1,2}1i j k s= 1 0=-- -1 1(4分)故所求的对称式方程为 112x y +=-=-(5分) 8、解法一:由于动点平行于平面220x y z ++=,故可设所求的 动点轨迹方程为220x y z D +++= (2分)又220x y z ++=过点(0,0,0),故有 (3分)13D =⇒=±⇒动点轨迹方程为2230x y z ++±= (5分)解法二:动点(,,)x y z 到平面220x y z ++=,即1= (3分)故动点轨迹方程为 2230x y z ++±= (5分) 三、解:0lim ()lim ()1x x f x f x b +-→→=⇒= (2分) (0)(0)2f f a +-''=⇒=-,22,0()(1),0xe xf x x x -⎧ <⎪=⎨- ≥⎪⎩ (4分) 112211()(1)xf x dx edx x dx ---=+-⎰⎰⎰ (6分)21126e =- (8分) 四、解:0()2()()xxF x tf t dt x f t dt =-⎰⎰ (2分)()()()x F x xf x f t dt '=-⎰ (4分)()()F x xf x '''= (6分) 0()0()x F x F x ''>⇒>⇒凹,0()0(x F x F x ''<⇒<⇒凸,故(0,0)是()y F x =的拐点. (8分)五、解:1201a b 2(ax +bx)dx b (1a)3323==+⇒=-⎰ (4分)122220111V (ax +bx)dx (a ab b )523ππ==++⎰ (6分)25(2a 5a 20),V 0a 1354π'=+-=⇒=-令,5V ()04''>,所以5V()4最小.故 53,42a b =-=. (8分)六、证明:存在性:令xb axG(x)f (t)dt-f (t)dt =⎰⎰,则baG(a)f (t)dt=-F(b)=-⎰,baG(b)f (t)dt=F(b)=⎰,2G(a)G(b)F (b)0⋅=-<,由零点存在定理,G(x)在(a,b)内有存在零点; (3分)唯一性:如若G(x)在(a,b)内必有两个零点12,ξξ,由罗尔定理,存在12(,)ξξξ∈,使得()2()2()0G f F ξξξ''===,此与题设矛盾.因此G(x)在(a,b)内仅有一零点. (3分)2004级高等数学(上)期末试卷解答一、填空题(每小题3分、共30分)1.1x ;2.154; 3.x 2e+; 4. 二; 5.减少;6.11111ln2∞∞±(-,-)(,+),(-,+),(,);7. 0 ;8.>19.30;10.3x 7y 5z-40-+=.二、计算下列各题(每题6分,共48分)1.原式=222lim x (arctan ()x 24x ππ→∞==). 2.xyydx xdy e dx e dy 0+-+=,所以x ye ydy dx e x-=+. 3.221dy 11t 2t dx 2t 1t +==+; 222223d y 11t 1t dx 2t 2t 4t ++=-=- 4.原式=x x x x x x1e e d(1-e )dx x x ln 1e c 1e 1e-+=-=--+--⎰⎰ 5.原式=ln sin xdctgx xctgx ctgxdx xctgx x c =-=-+=-++⎰⎰6令x=2sint .dx=2costdt,当x 0,t 0;x 2,t=2π===,22222200I=4sin t 4cos tdt=16sin t(1sin t)dt ππ⋅-⎰⎰2420131=16(sin t sin t)dt=16()2422πππ⨯--⋅=⎰⨯.7.取12ij ks n n 1022i 3j k 013→→→→→→→→→=⨯==-++-,所求直线方程为 x y 2z 4231--==-. 8.令221u x t .du 2tdt.dt du 2t =-=-∴=-,当2t 0u x =⇒=,当t=x u=0⇒,220x x 011F(x)t f(u)()du f(u)du 2t 2∴=⋅-=⎰⎰,221F (x)f (x )2x xf (x )2'∴=⋅=.三、解:.(1)、x y e '=,设00p(x ,y )为切点,切线方程为:00x x 0y e =e (x x )--,切线过原点(0,0)得:00x 1,y e ==, ∴切线方程为: y e=e(x 1)--,即y ex =. (2)、面积1111x x 200e e A e dx exdx=e x 22-∞-∞⎡⎤⎡⎤=--=⎣⎦⎣⎦⎰⎰. (3)、体积221111x 2x 232x 00V (e )dx (ex)dx=e e x e 236πππππ-∞-∞⎡⎤⎡⎤=--=⎣⎦⎣⎦⎰⎰. 四、解:由连续性+f (1)1b=f (1)ln(1a),b ln(1a)-1=+=+∴=+,又'x 1x 1f (x)f (1)x b 1b(1)lim lim 1x 1x 1f ---→→-+--===--,+22'x 1x 1x 12xf (x)f (1)ln(a+x )-(1+b)2a x (1)lim lim lim x 1x 11a 1f +++→→→-+====--+ 由''2(1)(1)1,a 1,b ln 21a 1f f -+=⇒=∴==-+.五、证明:令F(x)xf (x)=,设12x ,x 为f (x)的任意两个零点.即12f (x )0,f (x )0,==则F(x) 在[]12x ,x 上连续,在()12x ,x 内可导,且12F(x )F(x )0,==由Rolle 定理可知至少存在一点12(x ,x )ξ∈使得F ()0ξ'=,即F ()F ()0ξξξ''+=,因此,在()f x 的任意两个零点之间必须有方程f (x)xf (x)0'+=的实根.2005级高等数学(上)期末试卷解答一、填空题(每小题3分、共30分)1.2; 2. 2e 3. 1; 4. )4y x π=-, 5.2x >; 6.32;7.0; 8. 2π;9. 18-; 10.1a >. 二、计算下列各题(每题6分,共42分)1.解:原式()222222022limlimxxt xt x x x x e dt e e dxxexe→→==⎰⎰222202lim2xx x x e e x e→=+=202lim212x x →=+.2.解:21sin 2111(2sin )(cos )()x y e x x x -'=⋅-⋅⋅- 21sin 212sin x e x x -=3.解:两边对x 求导得 (1)x yy xy ey +''+=+ ,解得xe ey y yx yx --=++' 4.解:232272542xx x x y )('+=+=,令0y '= 得驻点3x =-,当3x <-时0<'y ,当30x -<<时0>'y ,故3x =-为极小点,极小值为(3)27y -=.5.解:⎰-+dx e e xx 1=⎰+dx e e x x12=⎰+21)(x x e de =arctan x e c + 6.解:令tdt dx t x 2,==原式:=⎰102dt tet=)(21010dt e te tt⎰-=1220t e e -=2.7.解:所求直线的方向向量s垂直于两已知平面的法向量21n n, ,故取21n n s⨯=310201-=kj i =k j i132++-所求直线方程为:14322-=-=-z y x . 三.(8分)解:11=)(f ,1(10)lim x f ax b a b +→+=+=+, 故当 1=+b a 时,)(x f在 1=x处连续.又2'1111(0)lim lim 211x x x x f x ---→→-+===- '11(0)lim 1x ax b f x ++→+-==-1(1)1lim 1x ax a a x +→+--=- 故当2=a 时,)()()('''111f f f ⇒=+-存在,即当 12-==b a , 时,)(x f 在 1=x 处连续可导.四.(8分)解:221n n 12(1)1 lim lim x 121n nu n x u n ρ+→+∞→+∞+-===- 当12<x ,即11<<-x 时原级数收敛,当12>x ,即11>-<x x 或时原级数发散,故收敛半径1R =,当1±=x 原级数为收敛的交错级数,收敛域为],[11-.设2111()(1)21n n n x s x n -∞-==--∑ ∑∞=---'-='1121121n n n n x x s )()()(=∑∞=---12211n n n x )( 246221111()1x x x x x=-+-==--+ 故 dx x s x s x⎰'=0)()(=dx x x⎰+0211=arctan x . 五.(8分)解:求交点得),(),,(11001.A=⎰-102dx x x )(=61321032=⎥⎦⎤⎢⎣⎡-x x .2.1525310105342πππ=⎥⎦⎤⎢⎣⎡-=-=⎰x x dx x x V x )(. 六.(4分)证明:不妨设210x x ≤<,分别在区间1112[0,],[,]x x x x +上使用拉格朗日中值定理存在),(110x ∈ξ,2112(,)x x x ξ∈+使:=11x x f )()(')()(11100ξf x f x f =-- )(')()()()(22221221221ξf x x f x x f x x x x f x x f =-+=-+-+因为12ξξ<,又"()0f x <,故'()f x 单调减,所以)(')('21ξξf f >,故)()()()()()(2211122111x f x x f x f x x f x x f x x f -+>⇒-+> 即 1212()()()f x f x f x x +>+.2006级高等数学(上)期末试题答案及评分细则一、填空题:(每小题3分,共30分) 1. 2/3; 2. e ; 3. )('20x f ; 4. yex =; 5. )2,2(2e ; 6.2π; 7. 1; 8. 2; 9. 531124-=+=-z y x ; 10. 发散. 二、计算下列各题:(每小题6分,共48分) 1、解:原式=)'2......(42arctan lim )'4........(2arctan limπ==+∞→+∞→x x x x x x2、解: )'2)....(1(2112);.....'4.......(21112222222t tdx y d t t t tdx dy +=+==++= 3、解:在方程两端求微分得:)'4......(0)(33322=+-+xdy ydx a dy y dx x ,)'2......(22dx axy x ay dy --=.4、解:令0)3)(1(6)32(6'2=-+=--=x x x x y 得)'2......(3,1=-=x x , )'2......(0)3('',0)1(''),1(12''><--=y y x y , 极大值,17)1(=-y 极小值)'2......(47)3(-=y . 5、解:原式22sin sin 2sin .......(3')x d x x x x xdx ==-⎰⎰22sin 2cos sin 2cos 2cos x x xd x x x x x xdx =+=+-⎰⎰2sin 2cos 2sin .......(3')x x x x x c =+-+6、解:原式=[])'3).......(13(2ln 12)'3.........(ln 1)ln 1(2211-=+=++⎰e e xxx d7.证明:令)1(0)(',)(>>-=-=x e e x f ex e x f xx……(4’))(x f 单调增加, 当1>x 时, 0)1()(=>f x f 成立 …..(2’)即当1>x 时,不等式ex e x>成立.8、解:直线的参数方程为2342x t y t z t =+⎧⎪=+⎨⎪=+⎩........(4')代入平面方程解出 )'2......(1-=t , 所求交点为(1,2,2) (2’). 三、解: 11lim lim1=+=∞→+∞→n na a n nn n ,收敛半径1R =,收敛区间为(-1,1) (3’);1-=x 时,原级数为∑∞=-11n n ,发散, 1=x 时,原级数为111(1)!n n n ∞-=-∑收敛,故 收敛域为(]1,1-….. (2’);由级数xx n n n +=-∑∞=--11)1(111两端积分得:)1ln(11)1(101x dx xn x n x n n +=+=-∑⎰∞=-为所求的和函数 (3’). 四、解:(1) )'4......(2ln 2111021+=+=⎰⎰dx x xdx A ; (2) 12220115()......(4')6x V x dx dx x πππ=+=⎰⎰.五、证明:令1)(2)(0--=⎰dt t f x x F x,则)(x F 在区间[0,1]上连续,0)(11)(2)1(,01)0(1>-=--=<-=⎰ξf dt t f F F ,由零点定理知存在),1,0(0∈x 使0)(0=x F ……. (2’) 又0)(2)('>-=x f x F ,)(x F 在区间[0,1]上是严格单调增加的,从而零点唯一.(2’).2007级高等数学(上)期末试题答案二、填空题:(每小题3分,共30分)1. 1- ; 2. 跳跃 ; 3.(sin )cos f x xdx '; 4. π; 5.(0,0) ;6.cos sin x x x C -+; 7. 3 ; 8.22z x y =+; 9. 收敛 ;10.(0,2) ;二、计算下列各题:(每小题6分,共48分)1、[解]:原式=2321113(2)lim lim 111x x x x x x x x→→++--+==--++ 2、[解]:33321()()31x lnx x dy e x e x e dx x'=⋅-=-3、[解]:两边对x 求导得0x x xyyy e y e yy xy e e y y dy dx e x e x--'''+-+= ⇒ = ∴=++ 4、[解]:2()666(1)f x x x x x '=-=-,()1266(21)f x x x ''=-=-由(0)0f '=得驻点0,1x = ,(0)60f ''=-<,(1)60f ''=>,所以 极大值:(0)0f =,极小值(1)1f =- 5、[解]:法一:2211sec tan 1cos 222cos2x x dx dx dx C x x ===++⎰⎰⎰ 法二:原积分2221cos 1cos 1cot 1cos sin sin sin x x dx dx dx x C x x x x-==-=-++-⎰⎰⎰ 6、[解]:原式=4141113ln 4ln 21222x x x dx x -=-⎰7、[解]:原式=323202221002()()()()103232x x x x x x dx x x dx --+++=-+++-⎰⎰629456== 8、[解]:所求直线的方向向量s 垂直于已知平面的法向量12,n n ,所以:1224//{2,4,1}0i j s n n i j κ=⨯ = 1 0=- +8 + 2κ - 1 -4所求直线的方程为:124241x y z ---==- 三、(9分)[解]:(1)23y x '=,12k =,则切线方程为:812(2)y x -=-即:12160y x -+=; (2)42302404x S x dx ===⎰;(3)258233083642832055y V y dy y πππππ=⋅⋅-=-=⎰四、(9分)[解]: (1)0!n xn x e n ∞==∑,所以:01!n e n ∞==∑;(2)2012101111122!(1)!(2)!(1)!!n n n n k n n e n n n n k ∞∞∞∞∞=====-+==+==---∑∑∑∑∑五、(4分)[证明]: 记0011,()()()nn x nnx x t u F x f u du f u du n n -= ⇒ =-=⎰⎰,12212100001()()()11()lim lim lim lim 222n n n n n n nx x x x f x nxF x F x f x n x nx n x n x ---→→→→'=== 01()(0)1lim (0)202n t f t f x t f n t n→-'==-2008级高等数学(上)期末试题答案一、填空题(每题3分)1.k =3;2.-2e ;3..320y x -+=;4.2π;ln(x c +; 6.22a π;7.2'22y xy y e x -=+;8. 2x =-;9. 00x z ⎧⎪⎨⎪⎩==;10.22xdx ydydu x y+=+ 二、1解:1,dy dx t=- 4分 222311dy d y dt t dx t dx t dt'=== 7分 2.解:原式=lim(()())xx a a f t dt xf x →+⎰ 5分()af a = 7分三、1. 解: 1'322yx -=- 3分得驻点1x =及0x =为不可导点 5分(0)0y =(极大值) 1=-1y ()(极小值) 7分2. 解:令2sin x t =原式2sin 2=4tdt ⎰2分2=4sin 2(1cos4)2tdt t dt =-⎰⎰ 5分12sin 42t t c =-+ 6分12arcsin sin 4arcsin 222x xc =-+ 7分3.解:原式11220[arcsin ]x x =-⎰4分120]11212ππ=+= 7分4. 解:4223222(4()6())x ze x y x x y x∂=+++∂ 4分 422222422222(24()24())24()()x x e y x y xy x y ye x y x y x z x y=+++=+++∂∂∂ 7分 四、 1. 解:(1)直线L 的方向向量010102ij ks = 2分(2,0,1)=- 4分过点(0,1,1)M -且与直线L 垂直的平面方程为:2(0)0(1)1(1)0210x y z x z -++-+=⇔-+= 5分(2)联立20,270210y x z x z ⎧⎪⎨⎪⎩+=+-=-+=得垂足(1,2,3)N - 7分所以,d MN =分2.解:设,(,,0)x y z a x y z ++=> 111(,,)f x y z x y z=++ (,,)(,,)()F x y z f x y z x y z a λ=+++- 4分222000x y z F x F y F z x y z aλλλ---⎧⎪⎪⎪⎨⎪⎪⎪⎩=-==-==-=++= 7分 得3ax y z ===9分 五、解:由已知及0()lim x f x A x→=得(0)0,f =(0)0ϕ= 2分 010()(0)()()xf u du x xx f xt dt ϕ≠==⎰⎰ 4分'02'02()()()(0)lim 2(0)()xxx xf x f u duxf u du Ax x x ϕϕ→-==≠=⎰⎰ 5分又'0lim ()2x Ax ϕ→=故()x ϕ连续 6分 六、证明:设()()x xf x ϕ= 1分 则11111(1)(1)()()(0,)2f f ϕξξϕξξ===∈ 3分故在1[,1]ξ上由罗尔定理得至少有一点ξ使'1()0(,1)(0,1)ϕξξξ=∈⊂ 即存在(0,1)ξ∈使得'()()0.f f ξξξ+= 4分昆明理工大学2009级高等数学A(1)参考解答及评分标准一1.=2λ; 2.23101y z x ---==-; 3.12; 4.1; 5.6; 6.ex ; 7.2; 8.π; 9.π; 101a >. 二1.111(9,14,1)323i j kn =-=-9(1)14(3x y --+-+)(z-2)=091435x y z -++=2.原式22(arctan )lim 16x x xπ→+∞==三1.原式0lim12x x x→-==-2. 解:等式两端对x 求导得:2''22222x y x y xy y x y x x y ++⋅=++ ''y x y x yy -=+ '()x yy x y x y+=≠- x ydy dx x y+=- 3.22sec 1tan 2tan csc 2dy t t dx t t ==--22221sec 12tan 2tan csc 4td y t dx t t -==-26t d y dx π==四1.'2101()110(1)x x x f x x x -⎧>⎪+⎪=⎨-⎪-<<+⎪⎩,'(0)1f =-令'()0f x =得1x =单增区间[1,)+∞,单减区间(1,1]-; 极小值(1)12ln 2f =-. 2.'()()xf x dx xdf x =⎰⎰()()xf x f x dx =-⎰()ln(xf x x c =-+(又'()(ln(f x x ==ln(x c ==-+五1.原式211(1)12d +-=21(1x =-+= 2.原式411xx d x=-+⎰4arctan 24π=-+5arctan 212π=--3. 原式201xxde e +∞=+⎰arctan 4x eπ+∞==六1.112lim 1(122n nn n n x x n n x ++→∞⋅=<+) 2R =,2x =发散,2x =-收敛, 收敛域为[2,2)-令1()2nn n x s x n ∞==∑1'1112()2212n nn x s x x x -∞====--∑ 001()ln(2)ln 2ln(2)2xxs x dx x x x==--=---⎰2.设()()-()xbaxx f t dt f t dt ϕ=⎰⎰2()()(())0b aa b f t dt ϕϕ=-<⎰ 故由零点定理至少有一ξ使()0ϕξ=而''()2()2()0x f x F x ϕ==>,()x ϕ单调, 故仅有一根.。

昆明理工大学2011级《高等数学》A(2)期末试卷及参考答案

昆明理工大学2011级《高等数学》A(2)期末试卷及参考答案

昆明理工大学2011级《高等数学》A (2)期末试卷一、单项选择题(每小题4分,共20分)1.设),(y x f z =在点),(00y x 处取极小值,则函数),()(0y x f y =ϕ在0y 处( )。

)(A 取最小值,)(B 取最大值,)(C 取极大值,)(D 取极小值。

2.已知全微分dy y x dx xy x y x df )()2(),(222-++=,则).(),(=y x f,33)(323y y x x A +-,33)(323y y x x B --,33)(323y y x x C -+.33)(323C y y x x D +-+3.设),0(:222>≤+a a y x D 要使,222π=σ--⎰⎰d y x a D则.)(=a.21)(,43)(,23)(,1)(333D C B A 4.微分方程y y dxdyxln =满足条件2)1(e y =的特解为.)(=y .)(,)(,)(,)(2221xe D e C e B eA xx x+5. 微分方程x xe y y 22='-''的特解*y 的形式为.)(.)()(,)(,)(,)()(22222x x x x e B Ax x y D e Ax y C Axe y B e B Ax y A +===+=****二、填空题(每小题4分,共20分)1.过曲面224y x z --=上点P 处的切平面平行于,0122=-++z y x 则P 点的坐标是 .2.设10,10:≤≤≤≤y x D ,则=-⎰⎰dxdy x y D.3.设曲面∑为上半球面229y x z --=的上侧,则zdxdy ∑=⎰⎰ .4.设曲线L 为)0(222>=+a ax y x ,则=⎰Lds .5设)(x ϕ在),0(+∞有连续导数,,1)(=πϕ要使积分dy x dx xyx x I L)()]([sin ϕ+ϕ-=⎰在0>x 时与路径无关,则=ϕ)(x .三 (9分).设),(y x z z =是由0),(=--bz y az x F 确定的隐函数,而),(v u F 可微,验证1z zab x y∂∂+=∂∂.四(9分)计算,222dv z y x I ++=⎰⎰⎰Ω其中Ω是.2222z z y x ≤++五(9分)用格林公式计算,)2(2ydx x dy x xy I L--=⎰其中L 为闭区域41:22≤+≤y x D 的正向边界曲线。

2012-2013年高等数学工科试题A

2012-2013年高等数学工科试题A
姓名:______________ 学号:______________ 班级:______________ 考试性质:首修、重修、
再修 学院:_____________


线
辽宁石油化工大学考试题 2012 -- 2013 学年 第 一 学期
课程名称:
高等数学(1)
考试形式: 闭 卷
授课学院:
理学院
第4页
共5页
姓名:______________ 学号:______________ 班级:______________
考试性质:首修、重修、 再修
学院:_____________ 装
22.用边长为 48 cm 的正方形铁皮做一个无盖的铁皮盒时,在铁皮的四个角各 截去一个面积相等的小正方形(如图),然后把四边折起,就能焊成铁盒,问在四 个角各截去多大的正方形,才能使铁盒的容积最大?
dx 4
.
线
第3页
共5页
四.解答题(第 1 题 6 分,第 2-4 题 8 分,共 30 分,请将计算过程写在题目的下方)
2
19.求定积分 sin 2 x cos5 xdx .
0
20.求由曲线 y x2 与 y x 2 围成图形的面积.
21.求微分方程 y 2 y 3y e3x 的通解.
9.设
lim
1
k
1
xx
e2 ,则 k
______。
x0
10. f x0 0 是可微函数 f x 在 x0 取得极值的
条件。
11.定积分 2 x3 1 4 x2 dx _________。 2
12.反常积分 dx 的收敛性是_________。
1x
13.由曲线 y cos x x 与 x 轴围成的图形绕 x 轴旋转

2013成人高考专升本高等数学(二)真题及答案

2013成人高考专升本高等数学(二)真题及答案

7、2013年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效选择题、选择题:1~10小题,每小题4分,共40分。

在每小题给出的四个选项中, 只有一项是符合题目要求的,cos2x lim ——x F xA. 单调增加 C.先单调增加,后单调减少B. 单调减少D.先单调减少,后单调增加A.— 2B. 2C.D.2、 设函数y 7 -ln3」3、 4、 A. e 设函数 A. 6设函数 dy dx D x 1B. e 3C.xD. ef (x) = In(3x),则 f (2)= B. In6C. D.f (X )=1 -X 3在区间(^C )5、. 2 B.ln xD.Acx6、 把所选项前的字母填涂在答题卡相应题号的信点1、7、1 3 C. (x 1) 3曲线y x|与直线y 二2所围成的平面图形的面积为 A. 2B. 4C. 6设函数z = cos(x y),则Ox l(1,1) B. -cos22A. (x 1)B. 0 D. 8D. 2(x 1)A. cos2C. sin2D. -sin 2x2 y尸Z9、设函数 z 二xe y ,贝U -一x .:y"x r y— yA. eB. eC. xe非选择题、填空题:11~20小题,每小题4分,共40分,将答案填写在答题卡相应题 号后。

In x x > 1 12、设函数f(x)=2 , -,在x=1处连续,则a= __________________ . l a - x, x :: 113、 曲线y =x 3 -3x 2 +5x-4的拐点坐标为 __________________ .uII 14、 设函数y=e",则y = __________________ . 1 3x 15、 l im(1+—)=x 性 x16、 设曲线y=ax 2+2x 在点(1,a+2)处的切线与直线y=4x 平行,则a= _____________仃、Je 3x dx= _________________ .1 318、 L (x 3+3x)dx= __________________ .19、 二^dx = -------------------------- .20、 设函数 z =x 2 +ln y ,贝U dz = ______________ .三、解答题:21~28题,共70分。

大学高等数学A-2试卷答案

大学高等数学A-2试卷答案

《高等数学》考试试卷A-2参考答案及评分标准一、单项选择题(每小题3分, 共15分)1.B 2.C 3.C 4.D 5.B二、填空题(每小题3分,共15分)1.12dx dy + 2.533.2(,)x f a b ' 4.230+-=y z 5.18π三、计算题(每题7分;共56分)1.解: 设平面方程为 0+++=Ax By Cz D根据题意有000+++=⎧⎪-+=⎨⎪++=⎩A B C D B C D A B C (4分)所以有0=D ;::2:1:1=-A B C所求平面方程为 20--=x y z (3分)2.解:21212()2()4,z z u z v u v x y x y x x u x v x∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅=++-= (3分) ()21212()2()4.z z u z v u v x y x y y y u y v y∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅-=+--= (4分)3解:D 是由22y x =及21y x =+所围成的闭区域也就是{}22(,)11,21=-≤≤≤≤+D x y x x y x (3分)(){}22221111120212240(2)(2)223221415++-+=+==+-=⎰⎰⎰⎰⎰⎰⎰x x x x D x y dxdyD dx x y dy dx ydyx x dx (4分)4.解:计算三重积分:zdxdydz Ω⎰⎰⎰,其中Ω是由旋转抛物面221()2z x y =+及平面1z =所围成的闭区域. 解: {}(,,)(,),01z x y z x y D z Ω=∈≤≤,其中z D :222x y z +≤ (+2分)故10z D zdxdydz zdz dxdy Ω=⎰⎰⎰⎰⎰⎰12022 3z dz ππ==⎰ (+5分) 5.解: 设2222(,),(,)y x P x y Q x y x y x y ==-++,因为()()22:111L x y -+-=, 所以220x y +≠,而且有()22222Q x y P x y x y ∂-∂==∂∂+, .(3分) 故由格林公式得22 L ydx xdy I x y -=+⎰0xy D Q P dxdy x y ⎛⎫∂∂=-= ⎪∂∂⎝⎭⎰⎰ .(4分) 6.解:计算⎰⎰∑++dxdy z dzdx y dydz x 222,∑是抛物面22y x z +=被平面1=z 所截下的有限部分的下侧。

高等数学(下)重修考试题

高等数学(下)重修考试题

高等数学(下)重修练习题1.设a 是从点A (2, 1, 2)到点B (1, 2, 1)的向量, 则与a 同方向的单位向量为a ︒=_______. 2.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则|a +b |=________. 3.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则|a -b |=________. 4.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则a ⨯b =________.5.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则与a 和b 都垂直的向量c =_______ 6.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则cos(a ,^ b )=________.7.设向量a ={2, 1, 2}, 则与a 的方向相同而模为2的向量b =________.8.1. 以向量a =(1, 1, 2)与b =(2, -1, 1)为邻边的平行四边形的面积为________.9.以曲线⎩⎨⎧==+x z zy x 222为准线, 母线平行于z 轴的柱面方程是________.10.2. 以曲线220x y zx y z ⎧+=⎨+-=⎩为准线, 母线平行于z 轴的柱面方程是________.11.2. 曲线⎩⎨⎧==-+00222y z z x 绕z 轴旋转所得的旋转曲面的方程为________.12.2. 曲线2220y z z x ⎧+-=⎨=⎩绕z 轴旋转所得的旋转曲面的方程为________.13.2. 旋转抛物面x 2+y 2=z 与平面x +z =1的交线在xoy 面上的投影方程为________. 14.2.锥面z =x =z 2的交线在xoy 面上的投影方程为_________.15.2. 过点M (1, 2, -1)且与直线2341x t y t z t =-+⎧⎪=-⎨⎪=-⎩垂直的平面方程是________.16.2. 过点M (1, 2, -1)且与直线421131y x z +-+==-垂直的平面方程是________. 17.2. 过点M (1, 2, 1)且与平面2x +3y -z +2=0垂直的直线方程是_________. 18.2. 过点M (1, -1, 2)且与平面x -2y +1=0垂直的直线方程是________.19.函数f (x , y )在点P 0处的偏导数存在是函数f (x , y )在P 0处连续的( ). (A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 20.函数f (x , y )在点P 0处连续是函数f (x , y )在P 0处的偏导数存在的( ). (A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 21.函数f (x , y )在点P 0处连续是函数f (x , y )在P 0处可微分的( ).(A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 22.若f (x , y )在点P 0的某个邻域内( ), 则f (x , y )在P 0处可微.(A)连续; (B)有界; (C)存在两个偏导数; (D)存在连续的一阶偏导数.23.3. 设z =f (x 2+y 2, x 2-y 2, 2xy ), 且f (u , v , w )可微分, 则xz∂∂=________.24.3. 设w =f (u , v ), u =xy , v =x 2+y 2, 且f (u , v )可微分, 则w x∂=∂________.25.3. 设z =ln(1+x 2+y 2), 则d z |(1, 1)= ________.26.设f (x , y , z )=x 2+y 2+z 2, 则梯度grad f (1, -1, 2)= ________. 27.设f (x , y , z )= x 3y 2z , 则梯度grad f (1, 1, 1)= ________.28.函数f (x , y , z )=x 2+y 2+z 2在点(1, -1, 2)处沿方向________的方向导数最大.29.函数f (x , y , z )= x 3y 2z 在点(1, 1, 1)处沿方向_____{3,2,1}_______的方向导数最大. 30.函数f (x , y , z )=x 2+y 2+z 2在点(1, -1, 2)处方向导数的最大值为________. 31.函数f (x , y , z )= x 3y 2z 在点(1, 1, 1)处方向导数的最大值为________. 32.交换二次积分的积分次序, 则100d (,)d yy f x y x ⎰⎰=________. 33.交换二次积分的积分次序, 则11d (,)d xx f x y y ⎰⎰=________.34.交换二次积分的积分次序,则10d (,)d y y x y x ⎰=________.35.交换二次积分的积分次序, 则210d (,)d xxx f x y y ⎰⎰=________.36.设D 为上半圆域x 2+y 2≤4(y ≥0), 则二重积分d Dσ⎰⎰=________.37.设D 是由两个坐标轴与直线x +y =1所围成的区域, 则二重积分d Dσ⎰⎰=______.38.设D 是由直线x =1、y =x 及x 轴所围成的区域, 则二重积分d Dσ⎰⎰=________.39.设D 是由椭圆221916y x+=所围成的区域, 则二重积分d Dσ⎰⎰=________.40.设L为上半圆y则曲线积分Ls ⎰=________.41.设L 为圆x 2+y 2=1,则曲线积分Ls ⎰=________.42.设L为上半圆y 则曲线积分22ln(1)d Lx y s ++⎰=________. 43.设L 为圆x 2+y 2=1, 则曲线积分22ln(1)d Lx y s ++⎰=________.44.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则22d d Lxy x x y +⎰=________.45.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则 (e cos )d e sin d x x Ly x x y y --⎰=________.46.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则 22d (2)d Lxy x x x y ++⎰=________.47.设L是由上半圆y x 轴所围成的区域的正向边界, 则22d (2)d Lxy x x x y ++⎰=________.48.若p 满足________,则级数n ∞=. 49.若p 满足________,则级数n ∞=收敛.50.若q 满足________, 则级数0()2n n q a ∞=∑收敛.51.若p 满足________, 则级数01()2n n n p ∞=+∑收敛. 52.若p 满足________, 则级数2011()pn n n ∞=+∑收敛. 53.设1n n u ∞=∑是任意项级数, 则lim 0n n u →∞=是级数1n n u ∞=∑收敛的( )条件.(A)充分; (B)必要; (C)充分必要; (D)无关.54.设1n n u ∞=∑是任意项级数, 则级数1n n u ∞=∑收敛是级数1n n ku ∞=∑(k ≠0)收敛的( )条件.(A)充分; (B)必要; (C)充分必要; (D)无关. 55.下列级数中收敛是( A ).(A)11(1)1nn n ∞=-+∑; (B)11n n ∞=∑; (C)111()2n n n ∞=+∑;(D)n ∞=.56.下列级数中绝对收敛的是( C ).(A)1(1)nn ∞=-∑; (B)11(1)n n n ∞=-∑; (C)11(1)2n n n ∞=-∑; (D)11(1)(1)n n n n ∞=-+∑.57.下列级数中绝对收敛的是( D ).(A)1(1)nn ∞=-∑; (B)11(1)n n n ∞=-∑; (C)11(1)(1)nn n n ∞=-+∑; (D)211(1)n n n ∞=-∑.58.设幂级数0nn n a x ∞=∑的收敛半径为R , 则当x =R 时, 幂级数0n n n a x ∞=∑ ( ).(A)条件收敛; (B)发散; (C)绝对收敛; (D)可能收敛, 也可能发散. 59.设幂级数0nn n a x ∞=∑的收敛半径为R , 则当x =-R 时, 幂级数0n n n a x ∞=∑ ( ).(A)条件收敛; (B)发散; (C)绝对收敛; (D)可能收敛, 也可能发散. 60.如果幂级数0n n n a x ∞=∑在x =2处收敛, 则收敛半径为R 满足( ).(A)R =2; (B)R >2; (C)R ≥2; (D)R <2.61.如果幂级数0n n n a x ∞=∑在x =-2处收敛, 则收敛半径为R 满足( C ).(A)R =2; (B)R >2; (C)R ≥2; (D)R <2.62.将函数21()1f x x =+展开为x 的幂级数, 则f (x )=_______.63.将函数21()1f x x =-展开为x 的幂级数, 则f (x )=________.64.将函数1()4f x x =-在区间________可展开为x 的幂级数.65.将函数1()12f x x=+在区间________可展开为x 的幂级数.66.求通过直线113y x z==和点(2, -1, 1)的平面方程.67.求过三点A (1, 0, -1)、B (0, -2, 2)及C (1, -1, 0)的平面的方程.68.求通过点(1, 2, -1)且与直线23503240x y z x y z -+-=⎧⎨+--=⎩垂直的平面方程.69.求通过点(1, 2, -1)且与直线23503240x y z x y z -+-=⎧⎨+--=⎩平行的直线方程.70.求通过点(1, 2, -1)且与平面2x -3y +z -5=0和3x +y -2z -4=0都平行的直线方程.71.设z =x sin(x +y )+e xy, 求z y ∂∂, 2z ∂, 2z y x∂∂∂.72.设z =ln(1+xy )+e 2x +y, 求z x ∂∂, 22z x ∂∂, 2z x y ∂∂∂.73.设z =(2x +3y )2+x y, 求z x ∂∂, 22z x∂∂, 2z x y ∂∂∂.74.设z =x y, 求z x ∂∂, 2z x∂∂, 2z x y ∂∂∂.75.设z =x y, 求z ∂, 2z ∂, 2z ∂.76.设z =x sin(2x +3y ), 求z x ∂∂, 22z x∂∂, 2z x y ∂∂∂.77.设z =f (x , y )由方程x e x -y e y =z e z 确定的函数, 求z x ∂∂,z y ∂∂.78.设z =f (x , y )由方程x +y -z =x e x -y -z 确定的函数, 求z x∂∂, zy ∂∂.79.已知z =u 2ln v , 而x u y =, v =3x -2y , 求z x ∂∂, zy∂∂.80.设z =u ⋅sin v , 而u =e x +y , v =x 2y , 求z x ∂∂, zy ∂∂.81.设z =e u sin v , 而u =x -y , v =x 2y , 求z x ∂∂, zy∂∂.82.求曲面z =ln(1+x +y )上点(1, 0, ln2)处的切平面方程. 83.求曲面z =1+2x 2+y 2上点(1, 1, 4)处的切平面方程. 84.求曲面e z -z +xy =3上点(2, 1, 0)处的切平面方程.85.求空间曲线2231y x z x =⎧⎨=+⎩在点M 0(0, 0, 1)处的切线方程.86.求空间曲线x =a cos t , y =a sin t , z =bt 在对应于t =0处的切线方程.87.计算二重积分22()d Dx y x σ+-⎰⎰, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.88.计算二重积分2d Dxy σ⎰⎰, 其中D 是由直线y =x , y =0, x =1所围成的区域.89.计算二重积分sin d Dx y σ⎰⎰, 其中D 是由直线y =x , y =0, x =π所围成的区域.90.计算二重积分(e )d y Dxy σ+⎰⎰, 其中D 是由直线y =x , y =1, x =-1所围成的区域.91.计算二重积分3(Dx σ+⎰⎰, 其中D 是由曲线y =x 2, 直线y =1, x =0所围成的区域.92.计算二重积分22e d xy Dσ+⎰⎰, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域.93.计算二重积分1d 1Dx yσ++⎰⎰, 其中D 是由圆周x 2+y 2=4及坐标轴所围成的在第一象限内的闭区域.94.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由曲面z z =0所围成的闭区域.95.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由曲面z =1-x 2-y 2及平面z =0所围成的闭区域.96.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由柱面x 2+y 2=1及平面z =0, z =1所围成的闭区域.97.计算曲线积分2(1)d lx s +⎰, 其中l 为圆周x 2+y 2=1.98.计算曲线积分s ⎰,其中l 为抛物线y =x 2(-1≤x ≤1).99.计算曲线积分22()d (2)d CI x y x x y =+++⎰, 其中C 是以O (0, 0), A (1, 0), B (0, 1)为顶点的三角形的正向边界.100.计算曲线积分222()d ()d LI x y x x y y =+++⎰, 其中L 是从O (0, 0)到A (1, 1)的抛物线y =x 2,及从A (1, 1)到O (0, 0)的直线.101.计算曲线积分43224(4)d (65)d LI x xy x x y y y =++-⎰, 其中L 是从(-2, 0)到(2, 0)的半圆x 2+y 2=4(y ≥0).102.计算曲线积分22d d LI xy x x y y =+⎰, 其中L 是曲线y =ln x 上从A (1, 0)到B (e , 1)的一段.∑104.计算曲面积分22()d x y S ∑+⎰⎰, 其中∑为平面x +y +z =1含于柱面x 2+y 2=1内的部分.105.计算曲面积分2d d z x y ∑⎰⎰, 其中∑为上半球面z x 2+y 2=1内的部分的上侧.106.计算曲面积分22d d d d d d y z x y x y z x y z x ∑++⎰⎰, 其中∑是由圆柱面x 2+y 2=R 2和平面x =0,y =0, z =0及z =h (h >0)所围的在第一卦限中的一块立体的表面外侧.107.计算曲面积分22(2)d d d d d d x z y x x y z x xz x y ∑-+-⎰⎰,其中∑是正方体0≤x ≤a , 0≤y ≤a ,0≤z ≤a 的表面的外侧.108.判别级数021!n n n ∞=+∑的敛散性. 109.判别级数213n n n ∞=∑的敛散性.110.判别级数1e()n n π∞=∑的敛散性.111.判别级数∑∞=1!100n nn 的敛散性112.判别级数111(1)2n n n n ∞--=-∑是否收敛?若收敛, 是绝对收敛还是条件收敛?113.求幂级数1(1)nn n ∞-=-∑的收敛半径和收敛区间. 114.求幂级数234 234x x x x -+-+⋅⋅⋅的收敛半径和收敛区间. 115.求幂级数1nn n x n∞=∑的收敛半径和收敛区间.116.将1()2f x x =+展成x 的幂级数, 并写出展开式成立的区间.117.将f (x )=x 3e -x 展成x 的幂级数, 并写出展开式成立的区间.118.将1()2f x x=+展开为(x -1)的幂级数, 并写出展开式成立的区间.119.将1()4f x x=-展开为(x -2)的幂级数, 并写出展开式成立的区间.120.求函数f (x , y )=2x +2y -x 2-y 2的极值. 121.求函数f (x , y )=3x +2y -x 3-y 2的极值.122.求函数f (x , y )=x 2+5y 2-6x +10y +6的极值. 123.求函数f (x , y )=y 3-x 2+6x -12y +5的极值。

昆明理工大学线性代数考试试题集与答案

昆明理工大学线性代数考试试题集与答案

《线性代数B》2010〜2011学年第一学期课程试卷A一、填空1 1 1 11. 2 3 4 5= 124 9 16 258 27 64 12512.设A、B 为4 阶方阵,且| A | 2, 3B 81,则| AB | 1/2 ________3. 给定矩阵A,且A E可逆,满足AB1 0 0 14.设A 0 1 1 ,则A 1 00 1 2 05.已知1, 2 ,3线性相关,3不能由1:1 1 06.设1 2 ,2 t , 3 2 ,且3 6 17. 设A是4 3矩阵,且R(A) 2 , B& 设三阶方阵A的每行元素之和均为零,又1k 1 (k 1 R) .11 30 19. 向量组 1 J 2 , 31 21 01 ,2 , 4 亠E A2 B ,则B A E0 02 1 —.1 12线性表示,则 1 , 2线性相关1 ,2 ,3线性相关,则t 8 .1 2 30 10 则R(AB) 23 1 2R(A) 2,则齐次线性方程组Ax O的通解为0 11 0J4的一个最大线性无关组为1 13 010.设A为n阶方阵,Ax0有非零解,则A必有一个特征值为、单项选择x 3 1x 2 y 4 z 21..若 y0 21,则 30 2 (A )z21121(A)1 ;(B)2 ;(C)1(D) 03.下列结论正确的是(A )(A ) 1, 2, , s 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合(B)若向量1, 2, 3线性相关,则 1, 2线性相关;(D)2 ,3 ,2 2 3 .6•若n 阶矩阵A, B 有共同的特征值,且各有 n 个线性无关的特征向量,则( A )2•设A,B,C 均为二阶方阵,AB AC ,则当(C )时,可以推出B C •(A) A(B) A(C) A(D) A(C)若n 阶方阵A 与对角阵相似,则 A 有n 个不同的特征值(D)若方程组Ax O 有非零解,则 Axb 有无穷多解4.已知1, 2,3是四兀方程组Axb 的三个解,其中 R(A)3,则以下不是方程组Axb 的通解为( D )2 11 11 2 0222 (A) k;(B) k(C) k2 3 1 3 1 2 4424223 2 (D) k “1(C) 1 ,2,2 1(A) A 与B 相似;(B) A B ,但 | A B | 0;(C) A B ;(D) A 与B 不一定相似,但| A| |B|.5.设向量组 1, 2, 3线性无关,则下列向量组中线性无关的是( B )(A )12 , 2 3,3 1;( B ) 1 , 2 , 3 1;1 1 0 1 11 1 01 1- 1A2 1 23 0 1 1 1 21 1 1 1 6 0 0 1 0 50 1 0 1 k0 1 01 k1 1 0 1 j 11 1 0 1 10 111 • 20 1 1 1• 20 0 1 0: 50 0 15 0 0 1 0 :k 20 0 00 k 3当 i k3时, 方程组有解,1 0 0 0 : 1 40 1 01 i 3A10 0 1 0 d1 5 70 0 00 ■ ■x 1 4 X 2 3 X 4 X 3 5x 4x 4a0 b0 1 0的特征值之和为1,特征值之积为 1 .b0 0X 1 X 2 X 4 1, X 1 2X 2 X 3 2x 4 3 有解,并在有解时求通解X 1 X 2 X 3 X 4 6,X 2 X 4 k(D) P i P 2为零向量•三、k 为何值时,线性方程组 7.设 Ap 11P 1, AP 22 p 2 ,且 12,则以下结论正确的是( B )(A) P iP 2不— 1定是 A 的一个特征向量 (B) p 1 p 2一定不是A 的一个特征向量 (C) P i P 2 —定是 A 的一个特征向量4 0 (12分)通解为X3 1 k5 0四、已知矩阵A(1) 求 a, b(b 0)的值;(2)求可逆矩阵P 和对角阵 ,使得P 1AP0 1a 1 0 1b 2 1A 323,证明(1) 1, 2, 3线性无关;⑵令P 1, 2, 3,求P 1AP -0 0 1a 0,b 1. A 0 1 0 1 0 00 121 0 ( 1) ( 1) 01,1.当121时,E AP 1 1 , P 2 01时,P 30 1 11取P 10 0 1有P AP10 11五、计算 D na 1 1a 1 a 2a 2 1a n a na n 1 n解 D * r n ( a ii 1n(a ii 11)a 2 a 2 1a na na 2 a n 1a nn(a 1)( 1)n 1i 1六、设A 为3阶矩阵,1,2为A 的分别属于特征值1,1特征向量,向量3满足a 1 a 2 1C 2 C 1证明 k i i k 22 k 33 O ⑴,A(ki i k2 2 k3 3)O《线性代数B 》课程试卷A 解答第5页共9页1,2,3线性无关1 0 01(2) P AP 0 1 1 0 0 1、填空3.设A 为方阵,满足A 2 A 2E 0,则A6.设A 是m n 矩阵,R(A) r ,则齐次线性方程组 Ax O 有非零解的充分必要条件是 一 r n—&设三阶方阵 A 的每行元素之和均为 3,则A 有特征值 ____________ 3 ____1 1 03 1 0 4.设 A1 3 0,则 A 1 11 2 1 0 0 0 215.向量组 1 , 2, 3, 1 线性 一相一关.即k i1 k2 2 k 3( 23)。

12-13-2《高等数学A(工科数学分析)》第二学期期末考试.

12-13-2《高等数学A(工科数学分析)》第二学期期末考试.

河南理工大学 2012-2013 学年第二学期《高等数学a2》试卷(B 卷)1、求二重极限(((=→x xy y x sin lim2, 0, 2、设向量(2, 1, 2=a ,求与向量a 同方向的单位向量a e =u u r3、求微分方程y x dxdy23=的通解为 4、求(22ln z y x u ++=在点(1, 0, 1A 处沿点A 指向点(2, 2, 3-B 的方向导数为5、将直角坐标系中的累次积分(⎰⎰--+2112210x xdy y x f dx 化成极坐标系中的累次积分6、已知椭圆13422=+y x L 周长为a ,求曲线积分(+L ds y x 2243=1、求球面14222=++z y x 在点(3, 2, 1处的切平面及法线方程.切平面:x+2y+3z-14=0, 法线:x/1=y/2=z/32、求微分方程x x y y sin 40cos 89-=+''的通解.C1*cos3x + C2*sin3x + cosx- 5 sinx3、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.夹角为0度一、填空题(共30分,每题5分)二、试解下列各题(共48分,每题8分)4、利用Stokes 公式计算线积分((((-+-+-Cdz x y dy z x dx y z ,其中(C 是从(0, 0, a 依次经过(0, , 0a 和(a , 0, 0回到(0, 0, a 的三角形.3a^25、计算二重积分(⎰⎰σσxyd ,其中(σ为抛物线x y =2与直线2-=x y 所围成的区域.45/86、设(v u , ϕ具有连续的一阶偏导数,方程(0, =--bz cy az cx ϕ确定了函数(y x z z , =,其中c b a 、、为确定常数,求y x z b z a +.等于c三、试解下列各题(共22分,每小题11分)1、计算三重积分(⎰⎰⎰+V dV y x z 22, 其中(V 是由柱面x y x 222=+及平面(0, 0>==a a z z , 0=y 所围成的半圆柱体.8/(9a^2…………………………………密…………………………………封……………………………线…………………2、求函数(z y x z y x f 22, , +-=在条件1222=++z y x 下的最大值与最小值.3,-3…………………………………密…………………………………封……………………………线…………………。

昆明理工大学2013年考研试题711单考数学

昆明理工大学2013年考研试题711单考数学

昆明理工大学2013年硕士研究生招生入学考试试题(A卷)
考试科目代码:711 考试科目名称:单考数学
考生答题须知
1.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。

请考生务必在答题纸上写清题号。

2.评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。

3.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。

4.答题时不准使用涂改液等具有明显标记的涂改用品。

第 1 页共 1 页。

(完整word版)2013年高考理科数学全国新课标卷2试题与答案word解析版(2),推荐文档

(完整word版)2013年高考理科数学全国新课标卷2试题与答案word解析版(2),推荐文档

2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的.1. (2013 课标全国 U,理 1)已知集合 M= {x|( x — 1)2v 4, x € R} , N= { — 1,0,1,2,3},则 M H N 二( ).A. {0,1,2} B . {—1,0,1,2} C . {—1,0,2,3} D . {0,1,2,3} 2. (2013课标全国U,理2)设复数z 满足(1 — i) z = 2i ,则z =( ).A.— 1 + i B . — 1 — I C . 1+ i D . 1 — i3 . (2013课标全国U,理3)等比数列{a n }的前n 项和为S.已知a ?+ 10a 1,a s = 9,贝U a 二( ).11113 C . 9 D .94 . (2013课标全国U,理4)已知m n 为异面直线,ml 平面a, n 丄平面 丄m l 丄n , I 芒 a , K- B,则().A.a 〃B 且 l Ha B .a 丄B 且 l 丄B C.a 与B 相交,且交线垂直于l D .a 与B 相交,且交线平 行于l5. (2013课标全国U,理5)已知(1 + ax)(1 + x)5的展开式中x 2的系数为5, 则 a =( ).A . — 4B . — 3C . — 2D . — 1 6 . (2013课标全国U,理6)执行下面的程序框图,如果输入的 N= 10,那么输出的S =( ). 1 111 + - -LA . 2 310,11 ,1LB. 2! 3! 10!,1 1 , 1 1 + - LC . 2 3 111 1 11 + LD .23! 1 7 . (2013课标全国U,理7) 一个四面体的顶点在空间直角坐标系 O — xyz 中的坐标分别是 (1,0,1) ,(1,1,0) , (0,1,1) , (0,0,0),画该四面体三视图中的正视图时,以 zOx 平面为投 影面,则得到的正视图可以为( ).B .直线l 满足lA=l t S=0h 7=lS=S+Tk=k+l/输出S/8. (2013 课标全国 n, 理 8)设 a = log 36, b = log 5I0, c = Iog 7l4,则().A. c >b >a B . b >c >a C . a >c >b D . a >b >cx 1,x y 3, 若z = 2x + y 的最小 y ax 3 .10. (2013 课标全国 n,理 10)已知函数 f (x) = x 3+ ax 2 + bx + c ,A. x0 € R, f(x0) = 0B. 函数y = f(x)的图像是中心对称图形C •若x0是f(x)的极小值点,贝U f(x)在区间(一%, x0)单调递减 D.若x0是f(x)的极值点,贝U f ' (x0) = 011. (2013课标全国n,理11)设抛物线C: y 2 = 2px(p > 0)的焦点为F ,点M 在C 上, | MFf = 5,若以MF 为直径的圆过点(0,2),则C 的方程为( ).A. y2 = 4x 或 y2 = 8x B . y2 = 2x 或 y2 = 8x C. y2 = 4x 或 y2 = 16x D . y2 = 2x 或 y2 = 16x12)已知点 A - 1,0) , B(1,0) , C(0,1),直线 y = ax + b(a > 0)将13题〜第21题为必考题,每个试题考生都必须做答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明理工大学《高等数学》A (2)重修试卷(2013年)
一.填空题.(每题4分,共48分)
1.设)cos sin(),(y x y x f +=,则)2,0(π
x f = 1 .
注:)cos cos(),(y x y x f x
+=
2.设y x z =,则=dz xdy x dx yx y y ln 1+-
3.设0),,(=z y x F 可确定任一变量是其余两变量的函数,则
=∂∂∂∂∂∂z
y
y x x z ..1-. 4.曲面14222=++z y x 上点(1,2,3)处的切平面方程为
01432=-++z y x .
注:14),,(222-++=z y x z y x F ,z F y F x F z y x 2,2,2===, 2(x-1)+4(y-2)+6(y-3)=0 5.交换积分次序,则=
⎰⎰
dy y x f dx x x
1
0),(dx y x f dy y y ⎰

10
2
),(.
6.设D 为x y x 222≤+,则σd y x f D
⎰⎰+)(22在极坐标下的二次积分为
ρρρθθ
ππ
d f d ⎰
⎰-cos 20
2
/2
/)(.
7.设L 为122=+y x 在第一象限的弧段,则ds e
L
y x ⎰+2
2=e π2
1
.
8.曲线积分⎰
=+)
8,6()
0,0(ydy xdx 50 .
注:)
8,6()0,0(22|)(2
1y x +
9.设曲面∑为221y x z --=,则⎰⎰∑
++dS z y x )(222=π2.
10.设∑是母线平行于z 轴的柱面,则⎰⎰∑
dxdy z y x f ),,(= 0 .
11.微分方程2013=+'y y x 的特解为2013=y .
12.微分方程054=+'-''y y y 的通解为)sin cos (212x C x C e x +.
二..计算题.(每题8分,共24分)
1.设(,)u v Φ具有连续偏导数,(,)z z x y =由方程(,)0cx az cy bz Φ--=所确定,求
z
x
∂∂, z y ∂∂. 解:0)()(21=∂∂-Φ+∂∂-Φx z
b x z a
c 2
11Φ+ΦΦ=∂∂⇒b a c x z 0)()(21=∂∂-Φ+∂∂-Φy
z
b c y z a
212Φ+ΦΦ=∂∂⇒b a c y z 2.求函数x y x y x y x f 933),(2233-++-=的极值.
解:由⎪⎩⎪⎨⎧=+-=∂∂=-+=∂∂0ˆ630ˆ9632
2
y y y z x x x
z 得四个驻点
)2,1(),0,1(),2,3(),0,3(4321P P P P --
6622+=∂∂=x x
z
A ,02=∂∂∂=
y x z B ,6622+-=∂∂=y y z C (1)对P2:A=-12<0,B=0,C=-6<0, AC-B²=72>0,f(-3,2)=31为极大值. (2)对P3点: A=12>0,B=0,C=6>0, AC-B²=72>0, f(1,0)=-5为极小值; (3)对P1,P4点,都有AC-B²<0,故此两点不是极值点;因此:f(x,y)=x³-y³+3x²+3y²-9x 的极值点为: (1,0)对应极小值:f(1,0)=-5,(-3,2)对应极大值:f(-3,2)=31.
3.求曲面222y x z +=与2226y x z --=所围立体的体积. 解:222y x z +=,2226y x z --=222=+⇒y x
所求体积⎰⎰⎰--+=
2
22
2
262y x y x D dz dxdy V xy
⎰⎰--=xy D dxdy y x )2(322
⎰⎰-=2
220
)2(3ρρρθπ
d d ⎰-=2
3)2(6ρρρπd
=πρρπ6|)}4
1(6204
2=-
三.计算曲线积分⎰+-L
y
x ydx
xdy 2
2,其中L 是不过原点的正向简单闭曲线.(8分) 解:2
2),(y x y y x P +-
=,2
2),(y x x y x Q +=
2
2222)
(y x x y x Q +-=∂∂,2
2222)
(y x y x y P ++-=∂∂
(1)当L 不包含原点时
⎰+-L
y
x ydx
xdy 2
2=0)(=∂∂-∂∂⎰⎰dxdy y
P
x Q D
(2)当L 包含原点时,在L 内作以原点为圆心半径为r 的小圆C (正向取顺时针方向),则
⎰+-L y x ydx xdy 22=
⎰⎰
-
+
+C C
L =0+π
θθθθπ
2)
cos (sin )sin (cos 20
2
=-⎰r r d r r d r
四.计算曲面积分⎰⎰∑
yzdxdy ,其中∑是平面0,0,0===z y x 与
1=++z y x 所围四面体的边界曲面取外侧.(10分)
解:∑由四部分组成,以321,,∑∑∑分别表示位于坐标面的三部分,另一部分以4∑表示。

显然=⎰⎰∑1
⎰⎰∑2
=03
=⎰⎰∑
从而⎰⎰⎰⎰∑∑
=1
yzdxdy ⎰⎰∑++4
=⎰⎰∑4
⎰⎰--=
xy
D dxdy y x y )1(=⎰
⎰---x
dy y x y dx 10
210
])1([
=⎰-103)1(61dx x =24
1|)1(24110
4=--x
五.求解微分方程: 1)0(,0)0(,22='==-'+''y y x y y y (10分)
解:022=-+r r 1,221=-=⇒r r ,齐次方程通解:x x e C e C 221+- 设原非齐次方程的特解为B Ax y +=,
21
,1222-
=-=⇒=--B A x B Ax A
原非齐次方程的通解为2
1221-
-+=-x e C e C y x x 12'221-+-=-x x e C e C y
1)0(,0)0(='=y y 112,02
1
2121=-+-=-
+⇒C C C C 1,2
1
21=-=⇒C C
原方程的解为2
1
212--+-=-x e e y x x。

相关文档
最新文档