最优化方法第三章(1)

合集下载

最优化方法第三章非线性优化

最优化方法第三章非线性优化

在点X
f (X )
可微,
f (X ) C1
则称向量f ( X ) ( f ( X ) ,..., f ( X ) )T
x1
xn
C1 C2
f (X) C2
为函数 f ( X ) 在点 X 处的梯度.
图3-6指出了梯度的几何意义:如果函数 f (X ) 在点 X 的梯度f (X ) 是非零向量,那么 f (X ) 就是 f (X ) 的等值面在 X 处的法向量,
Company Logo
定义3.1
设D是问题(3-1) ~ (3-3)的可行区域,
X * ∈D,若存在 X * 的一个邻域N(X *,δ),
当X∈ D∩N( X,* δ)时,就有
f (X *) f (X )
(3-4)
则称 X * 是非线性规划(3-1)~(3-3)的
一个局部最优(极小)解.
特X *别,若在(3-4)中严格不等号“<”成立,则称
x2
凸函数的判定及与Hesse矩阵的联系
定理3.7 (严格凸函数的一阶充要条件)
设D为开凸集,f X 在D上有一阶连续偏导。那么 f X 是D上
的严格凸函数的充要条件是:对D上任意两个相异X点1
有 f X 2 f X1 f X1 T X 2 X1
X,2
,都
建立数学模型:设售出两种设备分别为 x1 , x2 件。
max f 30x1 450x2
s.t.
0.5x1 (2 0.25x2 )x2 800 x1, x2 0
Company Logo
一般而言,线性规划问题总可以表示为如下
形式:
Min
f( X )
S . t . gi (X ) 0, j 1, 2,..., m

最优化方法 第三章(罚函数法)

最优化方法  第三章(罚函数法)

这种惩罚策略,对于在无约束的求解过程中企图违反约
束的迭代点给予很大的目标函数值,迫使无约束问题的 极小点或者无限地向可行域D靠近,或者一直保持在可 行域D内移动,直到收敛到原来约束最优化问题的极小 点。
不改变可行域局部极小值,可以将 约束域之外的局部极小值变大。
p ( x) 0, x D p ( x) 0, x D
k k
k 1
k 1
xk 1是F x, M k 1 的最优解.
k 1 k k 1 k 0 M k 1 M k p ( x ) p ( x ) p ( x ) p ( x )
M k 1 M k
(3) f ( x k 1 ) M k p( x k 1 ) F ( x k 1 , M k ) F ( x k , M k ) f ( x k ) M k p( x k )
gi ( x) gi ( x) max gi ( x), 0 = 罚函数p(x)的构造 2 m l p( x) (max gi ( x), 0) 2 h 2 j ( x)
i 1 j 1
(1) p(x)连续 (2) p( x) 0, x D (3) p( x) 0, x D
二、外点法 外点罚函数法算法步骤 1:给定初始点 x 0 ,初始罚因子M1 0 (可取M1 1 ), 精度 0, k : 1. 2:以 x k 1初始点,求解无约束优化问题
min F ( x, M k ) f ( x) M k p( x)
得到极小点 x* ( M k ),记为 x k , 其中
p( x) (max gi ( x), 0) h 2 j ( x)
2 i 1 j 1 m l

最优化设计 课后习题答案

最优化设计 课后习题答案

最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。

最优化方法第三章第一讲下降迭代算法基本概念

最优化方法第三章第一讲下降迭代算法基本概念

(i )
xk1 xk
或 xk1 xk
xk

(ii )
f ( xk1 ) f

(xk
) 或 f ( xk1 ) f ( xk ) ;
f ( xk )
(iii) f ( xk ) gk ;
(i ) 上述三种终止准则的组合,
其中 0是给定的适当小的实数。
2. 一维搜索
最优化问题的算法一般迭代格式:
给定初始点 x0,令k 0。 (i)确定 xk 处的可行下降方向 pk ;
(ii)确定步长k 0,使得 f ( xk k pk ) f ( xk ); (iii)令 xk1 xk k pk ; (i )若 xk1满足某种终止准则,则停止迭代,以 xk1为近似最优解。否则令k k 1,转(i)。
定义 1.2.1:在 xk 点处,对于 pk 0,若存在 0, 使 (0, )有
f ( xk pk ) f ( xk ) 成立,则称 pk 为 f ( x)在点 xk 处的一个下降方向。
当 f ( x)具有连续的一阶偏导数时,记f ( xk ) gk 。由
Taylor 公式 f ( xk pk ) f ( xk ) gkT pk o( )
由 xk 出发沿 pk 方向求步长k 的过程叫一维搜索
或线性搜索。
如果算法构造出的点列xk 在有限步之内得到 问题的最优解 x*,或者点列xk 有极限点,并且其
极限点是最优解 x*,则称这种算法是收敛的。
如果只有当 x0充分接近最优解 x*时,由算法产 生的点列才收敛于 x*,则该算法称为局部收敛。
定义 1.2.4:设序列xk 收敛于 x*,若对于实数 p 1,

lim
k
xk1 x* xk x* p

工程最优化第三章

工程最优化第三章

最优点同时与目标函数及约束函数的性质有关。存在两种情况:
x2
x2
x(0) =x*
x(0)
x*
S x1
(a) 无约束极值点x(0)S
S x1
(b) 无约束极值点x(0)S
! 目标函数的梯度等于零并不是约束问题的最优性必要条件!
带有不等式约束的优化问题的最优性条件通常是一组不等式与 方程,比较复杂的,很难求解,所以在一般情况下,不是直接 求解这些条件来获得极值点,而是使用各种迭代法求出近似的 极值点。但它在理论上很重要,是各种迭代方法的基础和依据。
(一)可行方向与起作用约束
定义:设点xS,p是一个方向,如果存在实数a1>0, 使对所有
a[0, a1],有x+apS,则称p为点x 的一个可行方向,或容许
方向、允许方向。
p
几何上,若从x处沿方 向p引一射线,若该射 线起始端有一段在可 行域内,则这个方向p
就叫可行方向。
x S
! 是否为可行方向与起始点的位置有关!
例3.5.1 验证下面的非线性规划在最优点x*处不满足约束规范,
最优点不是K-T点:
min
f
(x) (x1 3)2
x
2 2
s.t g1 (x) x 2 (1 x1 )3 0
g 2 (x) x1 0
g3 (x) x2 0
解:显然最优点 min
fx*(=x[)x1*,(xx21*]T=3[)12,
0]T,
x
2 2
f
=
f
(x*)
=
4.
x2
下面验证在 s.t
因为 g1(x*)
gx*1 (=x[)1,0x]T2处不(1满足x1约)3束 规0 范。 =g02 ,(xg2)(x*) <x10,g03(x*)=0,

最优化方法-最速下降法

最优化方法-最速下降法
s.t. 0
计算步骤
设f (X )是可微函数,精度要求为
X f ( ) K 1

X 0 为初始点。
(1)计算梯度
f
(
X
)
k
,初始k=0;
(2)
Pk

f
(
X
)
k
(3)求解 k
min f ( X k Pk)
s.t. 0
设 k 是一维搜索的最优解;
(4)求下一个点
评价
由例题中可以发现两次迭代的搜索方向满足:
P P P P T 0, T 0,...,
01
12
即相邻两个搜索方向 PK 与 PK1 正交,这是最速下降
法的搜索方向的基本形质。因此,最速下降法的迭代
路线呈锯齿形,尤其是在极小点附近,锯齿现象尤为
严重,从而影响了迭代速度。
评价
锯齿现象
最优化技术
第三章 7节 最速下降法
主要内容
1原 理
2 计算步骤
3 例题分析 4评 价
原理
定义:用来求解无约束多元函数 min f(x)
极小化问题的一种迭代算法。
拓展:
最速下降法又称梯度法,是 1847 年由著名数学家
Cauchy 给出的,它是解析法中最古老的一种,其他解析 方法或是它的变形,或是受它的启发而得到的,因此它是 最优化方法的基础。
X
)
0

(1,1)T
3-最优步长
2
X P ( ) f 5
0
0 2
1
0
应用一维搜索技术,解得函数最小值点 0 =0.2
举例分析
4-下一搜索点
X1

最优化理论与算法(第三章)

最优化理论与算法(第三章)

第三章 牛顿法§3.1 最速下降法一、最速下降法在极小化算法中,若每次都以迭代点处的负梯度方向为搜索方向,产生的算法称为最速下降法,它是无约束最优化算法中最简单、最基本的算法。

算法描述:1) 给出初始点0n x R ∈,允许误差0ε>,0k =; 2) 计算k k d g =-,若k g ε≤,Stop 令 *k x x ≈; 3) 由一维搜索确定步长因子k α,使得()min ()k k k k k f x d f x d ααα≥+=+4) 令1k k k k x x d α+=+,1k k =+,go to 2).二、最速下降算法的收敛性定理3.1 设1f C ∈,则最速下降算法产生的点列{}k x 的每个聚点均为驻点。

证明:设x 是{}k x 的一个聚点,则存在子序列{}1k K x ,使得1lim k k K x x ∈=令()k k d f x =-∇,由1f C ∈,知{}1()k K f x ∇是收敛序列,故{}1k K d 有界,且1lim ()k k K d f x ∈=-∇由定理2.6有2()(())()0Tf x f x f x ∇-∇=-∇=故有 ()0f x ∇=。

定理 3.2 设()f x 二次连续可微,且2()f x M ∇≤,则对任何给定的初始点0n x R ∈,最速下降算法或有限终止,或lim ()k k f x →∞=-∞,或lim ()0k k f x →∞∇=。

证明:不妨设k ∀,()0k f x ∇≠。

由定理2.5有211()()()2k k k f x f x f x M+-≥∇ 于是 []120101()()()()()2kk k i i i i i f x f x f x f x f x M -+==-=-≥∇∑∑令k →∞,由{()}k f x 为单调下降序列,则要么lim ()k k f x →∞=-∞,要么 lim ()0k k f x →∞∇=。

最优化方法第三章-孙文瑜

最优化方法第三章-孙文瑜
第3章线性搜索与信赖域方法本章内容31线性搜索320618法和fibonacci法33逐次插值逼近法34精确线性搜索方法的收敛性35不精确线性搜索方法36信赖域方法的思想和算法框架37信赖域方法的收敛性38解信赖域子问题31线性搜索线性搜索是多变量函数最优化方法的基础在多变量函数最优化中迭代格式为其关键是构造搜索方向d出发沿搜索方向d达到极小即使得或者选取0使得这样的线性搜索称为精确线性搜索所得到的线性搜索算法分成两个阶段第一阶段确定包含理想的步长因子或问题最优解的搜索区间第二阶段采用某种分割技术或插值方法缩小这个区进退法确定初始搜索区间的一种简单方法叫进退法本思想是从一点出发按一定步长试图确定出函数值呈现高低高的三点具体地说就是给出初始点出发加大步长再向前搜为出发点沿反方向同样搜索直到目标函数上升就停止
Fnk k ak (1 )(bk a k ) Fnk 1
Fn k 1 k a k (bk a k ), k 1,2,, n 1 Fn k 1 Fn k k ak (bk a k ), k 1,2,, n 1 Fn k 1
25
2018/12/11
3.2.2 Fibonacci法
另一种与0 .618 法相类似的分割方法叫Fibonacci 法. 它与0 .618 法的主要区别之一在于: 搜索区间长度的 缩短率不是采用0 .618 而是采用Fibonacci 数. Fibonacci 数列满足 F0 F1 1
Fk 1 Fk Fk 1 , k 1,2 Fibonacci 法中的计算公式为
N

1

2
1 2
Y
* (t * )
a t1 , t1 t 2 ,
1

第三章无约束问题的最优化方法

第三章无约束问题的最优化方法

赋以0.618。
2 ,
;并计算其对应
的函数值。 3)根据区间消去法原理缩短搜索区间。为了能用原来的 坐标点计算公式,需进行区间名称的代换,并在保留区间 中计算一个新的试验点及其函数值。
如果
令 b , , f f 记N0=0; 2 2 1 2 1 如果 ,则新区间= ,
2
2

图2-5 黄金分割法
• 黄金分割法要求插入两点: a1 a (1 )(b a), f1 f (a1 )
a2 a (b a), f 2 f (a2 )
黄金分割法的搜索过程:
1)给出初始搜索区间及收敛精度 2)按坐标点计算公式计算 1
,将
在搜索区间内[a,b] 任取两点a1、b1,令f1=f(a1), f2=f(b1) • (1)如f1<f2, 则缩小的新区间为[a,b1]; • (2)如f1>f2, 则缩小的新区间为[a1,b]; • (3)如f1=f2, 则缩小的新区间为[a1,b1]
f(b1) f(a1) f(a1) f(b1) f(a1) f(b1)
a
a1

b
a
a1
b1 b
a
a1
b1
b
§3.2 一维搜索方法
黄金分割法: • 黄金分割法适用于[a,b]区间上的任何单谷函数求极小值问题。对 函数除要求“单谷”外不作其他要求,甚至可以不连续。因此,这种 方法的适应面相当广。 • 黄金分割法也是建立在区间消去法原理基础上的试探方法。 • 在搜索区间内[a,b]适当插入两点,将区间分成三段;利用区间消 去法,使搜索区间缩小,通过迭代计算,使搜索区间无限缩小,从而 得到极小点的数值近似解。 •

最优化:最速下降法和Newton法

最优化:最速下降法和Newton法

定理 3.1.1 设假设 2.4.1的条件成立 , 那么采用精确搜索 , 或 Armijo搜索或 Wolfe- P owell搜索的最速下降法产生 的迭 代序列{xk }满足 lim || f ( xk ) || 0
k
由前面的例子看到, 最速下降法的收敛速度至多是线性的, 具体 见下面的两个定理.
第一节
最速下降法
最古老的优化方法,十九世纪中叶由Cauchy提出
1、 思想 :每次沿负梯度方向进行搜索

x*
xk 1
等值线(面)

xk

f ( xk )
负梯度方向也称为最速下降方向:
事实上,对任意p R n 且 || p || , 由Cauchy - Schwarz 不等式得 f ( xk ) T P - || f ( xk ) || || P || - || f ( xk ) || - f ( xk ) - f ( xk ) 当取p 时等号成立,即 p 是下列问题 || f ( xk ) || || f ( xk ) || 的解 min f ( xk ) T P
从上面的例子看到, 对于简单的二元二次函数极小化问题, 最速下降法在有限次迭代并没有求出其精确最优解, 但能 以较慢的速度无限接近最优解.
事实上,上面的例子刻画了最速下降法的所有收 敛特征
3、 最速下降法的收敛性 全局收敛性
由于最速下降法的搜索方向与负梯度方向一致, 即 k 0, 且 || f ( xk ) || || d k || 所以, 由定理2.4.1 - 2.4.3, 我们很容易得到最速下降算法的全 局收敛性.
2
max 其中 , 且max 和min分别是 f ( x * )的最大和最小特征值 . min

《最优化方法》课程教学大纲

《最优化方法》课程教学大纲

最优化方法》课程教学大纲课程编号:100004英文名称:Optimizatio n Methods一、课程说明1. 课程类别理工科学位基础课程2. 适应专业及课程性质理、工、经、管类各专业,必修文、法类各专业,选修3. 课程目的(1 )使学生掌握最优化问题的建模、无约束最优化及约束最优化问题的理论和各种算法;(2)使学生了解二次规划与线性分式规划的一些特殊算法;(3)提高学生应用数学理论与方法分析、解决实际问题的能力以及计算机应用能力。

4. 学分与学时学分2,学时405. 建议先修课程微积分、线性代数、Matlab语言6. 推荐教材或参考书目推荐教材:(1)《非线性最优化》(第一版).谢政、李建平、汤泽滢主编.国防科技大学出版社.2003年.孙(第一版)参考文瑜、徐成贤、朱德通主编.高等教育出版社.2004年(2)《最优化方法》书目:(第一版).胡适耕、施保昌主编.华中理工大学出版社.2000年(1)《最优化原理》(2)《运筹学》》(修订版).《运筹学》教材编写组主编.清华大学出版社.1990年7. 教学方法与手段(1)教学方法:启发式(2)教学手段:多媒体演示、演讲与板书相结合8. 考核及成绩评定考核方式:考试成绩评定:考试课(1)平时成绩占20%形式有:考勤、课堂测验、作业完成情况(2)考试成绩占80%形式有:笔试(开卷)。

9. 课外自学要求(1)课前预习;(2)课后复习;(3)多上机实现各种常用优化算法。

二、课程教学基本内容及要求第一章最优化问题与数学预备知识基本内容:(1 )最优化的概念;(2)经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)最优化问题的模型及分类;(4)向量函数微分学的有关知识;5)最优化的基本术语。

基本要求:(1)理解最优化的概念;(2)掌握经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)了解最优化问题的模型及分类;(4)掌握向量函数微分学的有关知识;(5)了解最优化的基本术语。

最优化方法 第三章(可行方向法)

最优化方法  第三章(可行方向法)
gi ( x k )T d * * 0 ,
又 f ( x k )T d * * 0,
d * 是可行下降方向。
改进方法具有全局收敛性。
一、Zoutendijk法
Frank Wolfe 方法 min f ( x )
给定线性规划问题
Ax b s .t . x0
f ( x k )T d k 0 gi ( x k )T d k 0 , i I ( x k )
1 di 1, i 1, 2,
,n
������ = 0 , 则 ������ ������ 处不存在可行下降方向 , ������ ������ 已是 ������−������ 点. 有例子表明上述方法不一定收敛到 ������−������ 点,即总有������ < 0 .
如果可行点为内点, 可取������ = −������������(������ )计算。
一、Zoutendijk法 非线性约束模型的可行方向确定方法
min s.t.
z f ( x )T d z 0 gi ( x) d z 0, i I
T
一、Zoutendijk法 线性约束模型的可行方向
min f ( x ) Ax b s .t . Cx e
紧约束
A1 b1 定理 设 x D ,在点 x 处有 A1 x b1 , A2 x b2 , 其中A , b , A2 b2 则非零向量 d 是 x 处的可行方向的充分必要条件是
定理 设 f ( x )可微, x k D, 如果y k 是上述线性规划的最优解,则有
(1) 当f ( x k )T ( y k x k ) 0时 , 则x k 是(1)的K -T点;

Python最优化算法实战学习笔记

Python最优化算法实战学习笔记

Python最优化算法实战第一章最优化算法概述1.1最优化算法简介最优化算法,即最优计算方法,也是运筹学。

涵盖线性规划、非线性规划、整数规划、组合规划、图论、网络流、决策分析、排队论、可靠性数学理论、仓储库存论、物流论、博弈论、搜索论和模拟等分支。

当前最优化算法的应用领域如下。

(1)市场销售:多应用在广告预算和媒体的选择、竞争性定价、新产品开发、销售计划的编制等方面。

如美国杜邦公司在20世纪50年代起就非常重视对广告、产品定价和新产品引入的算法研究。

(2)生产计划:从总体确定生产、储存和劳动力的配合等计划以适应变动的需求计划,主要采用线性规划和仿真方法等。

此外,还可用于日程表的编排,以及合理下料、配料、物料管理等方面。

(3)库存管理:存货模型将库存理论与物料管理信息系统相结合,主要应用于多种物料库存量的管理,确定某些设备的能力或容量,如工厂库存量、仓库容量,新增发电装机容量、计算机的主存储器容量、合理的水库容量等。

(4)运输问题:涉及空运、水运、陆路运输,以及铁路运输、管道运输和厂内运输等,包括班次调度计划及人员服务时间安排等问题。

(5)财政和会计:涉及预算、贷款、成本分析、定价、投资、证券管理、现金管理等,采用的方法包括统计分析、数学规划、决策分析,以及盈亏点分析和价值分析等。

(6)人事管理:主要涉及以下6个方面。

①人员的获得和需求估计。

②人才的开发,即进行教育和培训。

③人员的分配,主要是各种指派问题。

④各类人员的合理利用问题。

⑤人才的评价,主要是测定个人对组织及社会的贡献。

⑥人员的薪资和津贴的确定。

(7)设备维修、更新可靠度及项目选择和评价:如电力系统的可靠度分析、核能电厂的可靠度B风险评估等。

(8)工程的最佳化设计:在土木,水利、信息电子、电机、光学、机械、环境和化工等领域皆有作业研究的应用。

(9)计算机信息系统:可将作业研究的最优化算法应用于计算机的主存储器配置,如等候理论在不同排队规则下对磁盘、磁鼓和光盘工作性能的影响。

最优化方法 第三章(二次逼近法)

最优化方法  第三章(二次逼近法)

min s.t.
ci x ci x
1 T Q(d ) d Bk d f ( x k )T d 2
k T

d ci x k 0, i I m 1,..., p
k T

d ci x k 0, i E 1,..., m .
基本思想:将问题转化为求解一系列的二次规划子问 题。从已知点和近似乘子向量进行迭代,由二次规划 问题计算出的结果对迭代过程进行更新。
s.t.
三、二次逼近法 等式约束问题 由等式约束K-T条件,有
f x hE x 0,
T

hE x 0.
T x L x , f x A x F x, 0. hE x hE x



d,
T
k W x k , λ k A x k T d f x k A xk h x 0 E
一般约束问题
min s.t.
f (x), ci x 0, i I m 1,..., p ci x 0, i E 1,..., m .
x 1 不是原二次规划问题的可行解,令
,显然为函数值下降方向。但在 x1
1
d 1 x 1 x1
沿 d 趋向
T a 某些不等式约束 i x bi , i t 1, t 2,..., p ,设
x
1
的过程中,不满足原二次规划问题的
在移动的过程中,最先遇到某个不等式约束,对应 的下标为 l ,相应的交点记为 x ,x 点处对应的有

《最优化方法》课程教学标准

《最优化方法》课程教学标准

《最优化方法》课程教学标准第一部分:课程性质、课程目标与要求《最优化方法》课程,是我院数学与应用数学、信息与计算科学本科专业的选修课程,是系统地培养数学及其应用人才的重要的课程之一,它与工农业生产等实际问题紧密联系。

本课程的目的是利用微积分的思想,结合线性代数,解析几何等其他数学科学的知识,来对各种实际问题建立优化模型,并构造优化算法,使学生学会和掌握本课程的基本优化模型、基础理论和方法,为他们解决实际问题提供思想与方法;同时,通过这门课本身的学习和训练,使学生们学习数学建模的一些基本优化方法,初步了解当今自然科学和社会科学中的一些非线性问题,为将来从事相关领域的科学研究和教学工作培养兴趣,做好准备。

教学时间应安排在第六学期或第七学期。

这时,学生已学完线性代数,基本学完数学分析等课程,这是学习《最优化方法》课程必要的基础知识。

同时,建议在条件允许的情况下,介绍利用常用的数学软件解决优化问题的基本方法和技能,使学生初步体会计算机在解决数学及其应用问题的重要作用,增强使用数学方法和计算机解决问题的意识和能力。

第二部分:教材与学习参考书本课程拟采用由孙文瑜、徐成贤和朱德通编写的、高等教育出版社2004年出版的《最优化方法》一书,作为本课程的主教材。

为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下几本重要的参考书:1、最优化方法,施光燕、董加礼,高等教育出版社,19992、最优化理论与算法,陈宝林,清华大学出版社,1989第三部分:教学内容纲要和课时安排第一章基本概念主要介绍优化问题的基本模型、凸集和凸函数的概念和性质、最优性条件及最优化方法概述。

本章的主要教学内容(教学时数安排:6学时):§1.1最优化问题简介§1.2凸集和凸函数§1.3 最优性条件§1.4 最优化方法概述第二章线性规划本章介绍线性规划的基本性质及其对偶理论,求解线性规划的单纯形方法和对偶单纯形方法以及内点算法。

最优化理论和方法-第三章 线性规划拓展及应用

最优化理论和方法-第三章 线性规划拓展及应用

数学规划基础
2 1
e1
b
-4 1
c
3
e1
LHY-SMSS-BUAA
树解计算方式的线性代数解释
给定生成树 a点流平衡: d点流平衡: c点流平衡:
(共有 m-1 条弧)
-2 a 5d
2 1
-4
c
3
b
1
e1
b点流平衡:
第 3 章 线性规划:应用及扩展
数学规划基础
LHY-SMSS-BUAA
树解计算方式的代数理解 (续)
第 3 章 线性规划:应用及扩展
数学规划基础
LHY-SMSS-BUAA
原始网络单纯形法-既约费用系数的更新
新的树解去掉入弧,得两棵子树!
0a
T1
10 d
2 4
?
?
-13 4
c
?
23
3
b -11 与入弧同向桥接T1和T0
rab rab rde 1 2 1
T0 rdc rdc rde 0 2 2
(i, j) 使得
,称之为入弧.
Step 4. 确定出弧:入弧和出弧必形成一个圈. 如果圈中的所 有弧和入弧同向,则最优费用是 -∞,终止算法. 否 则,在与入弧反向的树弧中选一个流值最小的作为出弧.
Step 5. 转轴: 在当前树解中用入弧代替出弧,更新树解,得 新的树解. 转 Step2.
第 3 章 线性规划:应用及扩展
这里选取节点1作为根节点
5
7 个节点 8 条弧!
2
7-1=6 个基变量(树弧),
6
8-6=2 个非基变量(非树弧) 3
7
第 3 章 线性规划:应用及扩展
4
数学规划基础

最优化第3章一维搜索方法

最优化第3章一维搜索方法
一维搜索方法一般分两步进行: ■ 首先确定一个包含函数极小点的初始区间,即确定 函数的搜索区间,该区间必须是单峰区间; ■ 然后采用缩小区间或插值逼近的方法得到最优步长, 最终求出该搜索区间内的一维极小点。
§3.1 搜索区间的确定
根据函数的变化情况,可将区间分为单峰区间和多峰区间。 所谓单峰区间,就是在该区间内的函数变化只有一个峰值, 即函数的极小值。
§3.4 插值方法
一、牛顿法
f(x)
利用一点的函数值、 一阶导数以及二阶 导数构造二次多项 式。用构造的二次 多项式的极小点作 为原函数极小点的 近似。
φ0(x)
φ1(x) f(x)
x*
x2
x1
x0 x
§3.4 插值方法
一、牛顿法
设f(x)为一个连续可微的函数,则在点x0附近 进行泰勒展开并保留到二次项:
§3.1 搜索区间的确定
f(x)
f(x)
f(a0) f(a0+h)
f(a0+3h)
f(a0-h) f(a0)
f(a0+h)
0 a0 a
a0+h
a0+3h x b
0 a0-h
a0
a
进退试算法的运算步骤如下:
a0+h x b
(1)给定初始点α0和初始步长h (2)将α0及α0+h 代入目标函数 f(x) 进行计算并比较大小
φ0(x)
φ1(x) f(x)
f ′ (x)
x*
x2 x1
x0
φ ′ 1(x) f ′ (x)
x* x2
x1
x0
牛顿法程序框图
开始
x 给定初始点 ,误差 0
,
令k=0

第三章非线性规划无约束问题的最优化方法

第三章非线性规划无约束问题的最优化方法

x0
0p 0
1.919877 还需要经过10次迭代才
能满足精度要求
0.003070
第三节 牛顿法
3. 牛顿法的缺点: 牛顿法要求初始解离最优解不远,若初始点选得离最优解太
远时,牛顿法并不能保证其收敛,甚至也不是下降方向。因此, 常将牛顿法与最速下降法结合起来使用。前期使用最速下降法, 当迭代到一定程度后,改用牛顿法,可得到较好的效果。 4. 修正牛顿法 基本思想: 保留了从牛顿法中选取牛顿方向作为搜索方向,摒弃其步长恒 为1的做法,而用一维搜索确定最优步长来构造算法。
2
2
0
2e2 2 3
00 21 0
03
f x3 9
第二节 最速下降法
再从x(3)点 出发,沿x3轴方向e3进行一维搜索:
0 x 3 e3 0
3
00 00 13
f x 3 e3
32
f' 0 x4 x3
3
3
0
3e3 0 0
f x4 0
第二节 最速下降法
因为 x 1
x 4 ,0故.0以1 x(4)点作为新的x(1) ,进行新一轮迭代。
0
1 33 22
f x0
p0
52 5
42
f' x0
p0 5 5 0
22
01
第三节 牛顿法
x1 x0
1 p0 3
2
3
f x1
14
12 2
0
30
12 1 2
2
f x1
所以选取 x* x 1
1 3 作为极小点。 2
第三节 牛顿法
6. 修正牛顿法的缺点: 修正牛顿法虽然比牛顿法有所改进,但也有不足之处:

第三章 (1) 约束优化问题的最优性理论

第三章 (1) 约束优化问题的最优性理论

m
iai , i

0, i

1,...,
m


i 1

如果 n 维向量 g C ,则存在一个
法向量为d的超平面分离 g 和 C,
使得 gTd 0
aiT d 0,i 1,..., m
三、一阶最优性条件
Farkas 引理
给定任意 n 维向量 a1, a2,..., am 与 g,则集合
一、一般约束最优化问题
可行域 X x Rn ci x 0,i I , ci x 0,i E .
min f x xRn
s.t. ci x 0,i E 1, , me, ci x 0,i I me 1, , m.
不同时成立!
g* i*ai*
iE
二、约束规范条件
对不等式约束最优化问题
aiT ( x*)d 0,i I ( x*) (线性化可行方向)
g*Td 0
(下降方向)
不同时成立!
g* i*ai*, i* 0,i I * iI *
起作用约束问题
i* 0?
最优解为x (0,0)
F2 : d (d1, 0)T , d1 1
D : d (d1, d2 )T , d2 0 F1 D F2 D
正则性假设成立,KT约 束规范条件不成立。
二、约束规范条件
一阶必要条件(几何特征) 根据可行方向和下降方向定义, 若 x* 为约束问题的局部最优解,则
等式约束问题
不等式约束问题
记 Ax a1(x), , am (x), ai (x) ci x;
一、一般约束最优化问题 约束优化问题的求解困难:目标函数、约束函数共同作用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线搜索算法的第一步一般得先确定 (t) 的一个
(初始)搜索区间。根据定理3.1,可以给出确定搜索区 间的如下算法。
算法3.1(确定搜索区间) 已知:目标函数 (t)。
①选定初始点 t0和步长 h 。
②计算 0 (t0 ) ,t 2 t0 h ,2 (t2 ) 。
③若 2 0 ,则置 t1 t0 ,1 0 ,h h,
从本章起,以后两章将讨论非线性规划问题。本章首 先讨论无约束最优化问题,其一般形式为
min f (x) (3.1) 其中 f : R n R1
求解无约束问题的最优化方法可以分为两大类:一类
是根据目标函数的梯度(即一阶导数),有时还要根据 Hesse矩阵(即二阶导数)提供的信息构造出来的方法— —导数方法。本章介绍其中的最速下降法、Newton法、 共轭梯度法和拟Newton法。另一类是不使用导数,仅仅 利用目标函数值的信息构造出来的方法——直接方法。本 章将介绍其中的步长加速法、方法加速法和单纯形替换法。 两类方法各有利弊。前者收敛速度快,但需要计算梯度, 甚至需要计算Hesse矩阵;后者不涉及导数,适应性强, 但收敛速度慢。一般的经验是,在可以求得目标函数导数 的情况下,尽可能使用导数方法。
1. 搜索区间的确定
在以下讨论中,总假定一元函数 (t) 是单谷函数。
定义3.1 设 : L R1 R1 ,t* 是 (t) 在L上的全局
极小点。如果对于L上任意的两点 t1,t2 t1 t2 ,当 t2 t *
时,(t1 ) (t2 ) ;当 t1 t * 时,(t1 ) (t2 ) ,那么称(t)
是区间L上的单谷函数。
下图给出了单谷函数的基本图形。
定义3.2 设 : L R1 R1 , t * 是 (t) 在L上的
全局极小点。如果能够找到 t1 , t2 L ,使得 t* [t1,t2 ], 那么闭区间 [t1 , t2 ] 就称为 (t) 极小点的一个搜索区间, 记为{t1, t2}。搜索区间有时也记作{t1, t3, t2},其中 t1 t3 t2
转⑤;否则转④。
④置 t1 t0 ,1 0 ,t0 t2 ,0 2 ,h 2h 。
⑤计算 t2 t0 h ,2 (t2 ) 。若 2 0 ,则转⑥;
否则转④。ຫໍສະໝຸດ ⑥置 a min{t1, t2} , b max{ t1 , t2 } ([a, b] 即为 搜索区间),计算结束。
加负担。下面是确定 h 的一种比较合理而有效的方法。
第一次迭代( k 0 ,即从 xv0 到 xv1 的迭代)时,(t)
的初始步长可取为1,或根据问题中出现的数据的数量级
估计选定。而以后各次迭代的初始步长可按公式(3.5)
计算,
其中 0
般比从
xk
1 到
1hx。k的这距x是k离因pkx为xkk1从(xxkk3到.15小)xvk 或1 的接距近离,所xk以1 把xk按一
黄金分割法的思想是:在每次迭代中,合理地设置两
个插入点的位置,以使得在计算函数值次数同样多的条件 下,将区间缩小得最快。
设区间 [a,b] 的长为1。在距点 a 分
别为 和
为了确定
的地方插入 t1和 t2。
和 ,提出以下条
件:
第一,希望 t1 和 t2在 [a,b]中的位置是对称的。按这
一条件,有
解方法一般也会简单些。
直线搜索,理论上,分为精确的和不精确的。
精确的直线搜索方法主要分为两类:一类为区间收缩
法,另一类为函数逼近法。本节将相应地介绍两种常用的
精确的直线搜索方法:适用于一般函数的黄金分割法和适
用于一般连续函数的抛物线插值法。最后还将介绍实用的
不精确一维搜索技术。
精确的直线搜索算法的实现通常是在所谓的搜索区间 上进行的
3.1 直线搜索
直线搜索(一维搜索)是指求解如下一元函数极小化
问题
min (t )
(3.3)
的迭代方法,其中 : R1 R1 。
在微积分中,解决问题(3.3)的范围一般限于方程
(t) 0 (3.4)
可以直接解出的情况。而这里介绍的直线搜索对 不作
严格的要求。当然,对于可以求出导数的情况,相应的求
at1 t2b

1 .
(3.6)
这样无论删去哪一段,总保留长为 的区间。
第二,删掉一段,例如删掉[t2 , b] ,在保留下来的区间
在里[再a,插b]入中一的个位点置具t3有,相使同得的t比3 , t例1 ,在从[a而, t2保] 中证的每位次置迭与代都t1,能t2
以同一比率 缩小区间。按这一条件,有
显然,单谷函数的定义域区间是搜索区间。 单谷函数的性质。
定理3.1 设 {a, b}是单谷函数(t)极小点的一个搜索区
间。在 (a, b) 内任取两点 t1,t2 t1 t2 ,若 (t1 ) (t2 ) ,则
{a, t2 } 是(t) 极小点的一个搜索区间;若 (t1 ) (t2 ) ,则 {t1, b} 是 (t) 极小点的一个搜索区间。
(3.5)算出的作为下一次迭代的初始步长是合适的。在
实际计算中,当 k 较小时,相应的 可取得小些,而随
着的 k 增大,相应的 可取得接近1。
a
2. 直线搜索的方法
(1)黄金分割法 黄金分割法属于区间收缩法。它适用于任何单谷函
数求极小值问题。对函数除“单谷”外,不作其它要求, 甚至可以不连续。因此这种方法的适用面相当广。
上述过程开始时,必须选定初试点 t0 和步长 h。对于
任意给定的 (t),一般来说,无固定选取模式。
但对于在下降算法模式中所引入的 (t) f (xk tpk )
而言,可选取 t0 等于0(理论上)或接近0(实际计算中)。
而对于 h ,如果选得过小,那么需要迭代许多次才能找到
一个搜索区间;如果选得太大,虽然很少几步就可能把极 小点包括进来,但是这又会给下一步搜索极小点的过程增
at1 at2
at2 ab

1

2 .
(3.7)
把(3.7)代入(3.6)中,得到关于 的一元二次方程
其合理的根是 5 1 0.618 (3.8)
2
代回(3.6),得
3 5 0.382
2
在古代,人们认为按比率0.618分割线段是最协调的, 胜似黄金,故称黄金分割。因此,上述按比率0.618缩小 搜索区间的迭代方法称为黄金分割法或0.618法。
相关文档
最新文档