第8讲 上转换发光材料
上转换材料及其发光机理
上转换材料及其发光机理传统的荧光发光机理是通过吸收高能量光,然后再辐射出低能量的可见光。
而上转换材料的发光机理则是在光激发的条件下,将两个或多个低能量光子转变为一个高能量光子。
这种非线性的发光过程在自然界中极为罕见,但在上转换材料中可以被实现。
这种不同的发光机理大大提高了材料的发光效率和发光颜色的可调性。
上转换材料一般由稀土离子掺杂的晶体或纳米颗粒组成。
稀土离子具有特殊的能级结构,使其在光激发后能够发生上转换过程。
这些稀土离子通常是从镧系元素中选择,如铒、钆、铽等。
它们的激发能级之间存在能级差,可以产生上转换。
首先,上转换材料吸收低能量光,将其激发到高能量态的能级上。
这个步骤类似于传统的荧光发光机制。
然后,在高能量态的能级上,经过一系列的能级跃迁,将能量转移到低能量态的能级上。
这些能级跃迁发生的过程符合量子力学的选择规则,只有特定的能级跃迁才能够发生。
最后,当稀土离子从高能量态能级回到低能量态能级时,通过相应的能级跃迁过程,产生一个高能量的光子。
这个光子的能量大于输入的光子能量,完成了上转换发光。
由于上转换的发生是非线性的过程,上转换材料可以实现比传统荧光材料更高的发光效率。
值得注意的是,上转换材料的发光颜色可以通过控制稀土离子的选择和浓度来改变。
不同的稀土离子对应不同的能级跃迁过程,从而产生不同的发光颜色。
这使得上转换材料具有广泛的应用潜力,例如在生物医学成像、显示技术和激光技术等方面。
总之,上转换材料是一类非常有趣和有用的材料,其发光机理通过稀土离子的能级跃迁实现。
上转换材料的发光效率高且能够调控发光颜色,为其在多个领域的应用提供了良好的前景。
随着对其发光机理的深入研究和材料性能的改进,上转换材料有望在未来得到更广泛的应用。
上转换发光材料
1966年, 法国科学家Auzel在研究钨酸镱 钠玻璃时,意外发现,当基质材料中掺入 Yb3+ 离子时,Er 3+、 Ho3+和 Tm3+离子 在红外光激发时,可见发光几乎提高了两 个数量级,由此正式提出了“上转换发光” 的概念
发展 历程
1968年,制出第一个有实用价值的上 转换材料LaF3,一时间Yb,Er 成为研 究热点; 20世纪 90年代初: 在低温下(液氮温 度)在掺Er3+:CaF2晶体中上转换发光 效率高达25%
• 其中就上转换发光效率而言,一般认为氯化物>氟化物> 氧化物,这是单纯从材料的声子能量方面来考虑的,这个 顺序恰与材料的结构稳定性顺序相反。
• NaYF4是目前上转换发光效率最高的基质材料
发展历程
1959年,Bloeberge用960nm的红外 光激发多晶ZnS ,观察到 525nm的 绿色发光。 1962年,此种现象又在硒化物中得 到了进一步的证实。
分类
• 根据掺杂离子分类可将上转换材料可分为单掺和双掺两种
• 单掺材料利用稀土离子f-f禁戒跃迁,效率不高。 • 双掺稀土离子则是以高浓度掺入一个敏化离子,其激发态
高于激活离子激发亚稳态,因此可将吸收的红外光子能量 传递给这些激活离子,发生双光子或多光子加和,从而实 现上转换过程。
分类
• 根据基质材料可分为5类,包括氟化物、氧化物、氟氧化 物、卤化物和含硫化合物。
上转换发光材料的应用(一)
• 基ቤተ መጻሕፍቲ ባይዱ上转换发光的活体成像技术
上转换发光材料的应用(一)
• 上转化纳米材料料在 肿瘤靶向成像中的应用
上转换发光材料的应用
• 生物成像 • 防伪技术 • 红外探测 • 显示技术
第8讲_上转换发光材料
第8讲_上转换发光材料上转换发光材料(Upconversion Luminescent Materials)上转换发光材料是一种在低能量激发下可以产生高能量发光的材料。
其发光机制与传统的下转换发光材料,如荧光粉和半导体量子点等有所不同。
下转换发光材料在受到外界激发后,会先吸收光子并将其转换为较低能量的光子发出。
而上转换发光材料则能够在较低能量的激发光下,将吸收的能量进行级联转换,最终发射出高能量光。
上转换发光材料主要有两种类型:硅基和非硅基的上转换材料。
硅基上转换材料已经取得了长足的进展,并在光伏领域中受到广泛关注。
硅基上转换材料主要的特点是其上转换效率高,可以将低能量的光激发转换为高能量的发射。
这种材料对于提高太阳能电池的转换效率有很大的潜力。
非硅基的上转换材料则具有更多的选择性,并且在通过适配光源和非线性光学过程实现上转换发光方面具有更大的优势。
上转换发光材料的发光机制可以通过光功率图谱和物质能级示意图进行解释。
光功率图谱可以揭示材料在不同波长下的发光强度,从而分析材料的上转换效率。
物质能级示意图则可以通过表示材料的能量级别来解释能量的转换过程。
上转换发光材料的能级示意图中通常会包含两个部分:上转换激发态和上转换发射态。
在受到激发光的作用下,材料的电子会从基态跃迁到激发态,并且会经过一个或多个中间态的跃迁,最终发射出高能量的光子。
另外,上转换发光材料还有一些其他的应用领域。
其中最显著的是生物医学领域。
由于上转换发光材料具有可调控的发光特性,可以在多种情况下应用于生物成像和药物传递等领域。
例如,上转换发光材料可以通过发光技术提供可见光对于红外光的扩展,从而实现更深度的生物组织成像。
此外,上转换发光材料还可以用于生产发出可见光的LED灯和激光等。
总之,上转换发光材料是一种具有广泛应用前景的新型材料。
其通过将低能量的光激发转换为高能量的发射,具有很高的上转换效率和可调控的发光特性。
上转换发光材料在太阳能电池、生物医学和光电器件等领域的应用前景广阔,将在未来的科研和产业中发挥重要作用。
第8讲上转换发光材料
第8讲上转换发光材料上转换发光材料是一种新型的发光材料,相比传统的下转换发光材料具有更高的照明效率和更广泛的应用范围。
本文将对上转换发光材料的原理、性能以及应用进行详细介绍。
上转换发光材料是通过将两个或多个低能量的光子转换成一个高能量的光子来实现发光的。
这种发光机制与传统的下转换发光材料不同,传统的下转换发光材料通过吸收高能量的光子后发出低能量的光子,而上转换发光材料则相反。
上转换发光材料可以将低能量的光直接转化为高能量的光,因此具有更高的发光效率。
上转换发光材料的原理主要包括以下几个方面:首先,需要有一个能够吸收低能量光子的发光体;其次,需要有一个能将吸收得到的能量转换为高能量光子的上转换剂。
当发光体吸收到低能量的光子后,会将能量传递给上转换剂,上转换剂再通过各种能量传递过程将能量聚集到一个特定的能级上,最后发出高能量的光子。
上转换发光材料的发光效率主要取决于上转换剂的吸收能力和能量传递效率。
上转换发光材料具有许多优点。
首先,上转换发光材料可以实现更高的发光效率。
由于上转换发光材料能够将低能量的光直接转换为高能量的光,因此可以提高发光效率,减少能源的消耗。
其次,上转换发光材料具有更广泛的应用范围。
传统的下转换发光材料主要用于照明和显示领域,而上转换发光材料还可以在光通信、生物医学和太阳能等领域得到应用。
上转换发光材料的应用前景十分广阔。
其中,光通信是上转换发光材料的一个重要应用领域。
由于上转换发光材料具有更高的发光效率和更低的损耗,因此可以有效提高光通信系统的传输速率和传输距离。
另外,上转换发光材料还可以应用于生物医学领域。
由于上转换发光材料具有更高的发射频率和更低的自发辐射强度,因此可以用于生物标记、光动力疗法和生物成像等应用。
此外,上转换发光材料还可以应用于太阳能领域。
太阳能电池是目前比较常见的太阳能转换设备,而使用上转换发光材料可以提高太阳能电池的光吸收效率和转换效率,从而提高太阳能发电效率。
上转换发光材料
上转换发光材料上转换发光的概念:上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。
本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。
斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。
比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。
但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。
上转换发光技术的发展:早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。
1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。
整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。
迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。
80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。
1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。
2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。
典型纳米材料举例-上转换发光材料分解
发出红外线。但是后来人们发现,
其实有些材料可以实现与上述定律 正好相反的发光效果,于是我们称 其为反斯托克斯发光,又称上转换 发光。
分类
• 根据基质材料可分为5类,包括氟化物、氧化物、氟氧化 物、卤化物和含硫化合物。 • 其中就上转换发光效率而言,一般认为氯化物>氟化物> 氧化物,这是单纯从材料的声子能量方面来考虑的,这个 顺序恰与材料的结构稳定性顺序相反。
夜明材料 电视显色材料 X射线荧光粉与闪烁体等
防伪技术
红外探测 显示技术
上转换发光材料的应用(一)
UCNPs ——稀土上转换发光纳米材料
• 激光扫描上转换发光显微成像 (laser scanning up-conversion luminescence microscopy, LSUCLM) 技术
上转换发光材料的应用(一)
• 基于上转换发光的活体成像技术
上转换发光材料的应用(一)
• 上转化纳米材料料在
肿瘤靶向成像中的应用
上转换发光材料的应用(二)
防伪技术
• 掺有稀土元素的红外上转换材料配制成无色的油墨
发展趋势
• 目前,上转换理论日趋完善,新产品层出不穷。随着节能 环保成为发展主流,稀土材料越来越受到重视,如果能对 稀土离子的电荷迁移带做充分研究,利用它对激发光能量
的宽带吸收和对稀土激活离子的能量传递,提高发光效率
,将带来巨大的发展前景
• 寻求新的发光机制
• 更合适的基质材料 • 提高发光效率
• NaYF4是目前上转换发光效率最高的基质材料
机理
可以把上转换过程归结为三种形式:激发态吸收、 能量传递及光子雪崩
上转换材料BaF2:Yb3+,Er3+的合成
上转换发光材料
上转换发光材料
上转换发光材料通常由激发态离子和基态离子组成。
当激发态离子吸收高能光
子后,它会跃迁到一个更高的能级,然后再通过非辐射跃迁回到基态,释放出低能量的光子。
这个过程中,能量的损失会导致发射出的光子的波长变长,从而完成了上转换发光的过程。
上转换发光材料有着许多优点。
首先,它可以实现高效的发光,能够将电能转
化为光能,从而提高能源利用率。
其次,上转换发光材料可以实现多色光发射,通过控制材料的成分和结构,可以实现不同波长的发光,满足不同应用的需求。
此外,上转换发光材料还具有较长的寿命和稳定的性能,能够在恶劣的环境下工作。
在实际应用中,上转换发光材料被广泛应用于LED照明和显示屏领域。
LED
照明具有节能、环保、寿命长等优点,而上转换发光材料可以实现LED的多色发光,从而满足不同场合对光的需求。
在显示屏领域,上转换发光材料可以实现高亮度、高对比度的显示效果,提高了显示屏的质量和观赏性。
此外,上转换发光材料还在生物成像、激光器、光通信等领域有着重要的应用。
在生物成像领域,上转换发光材料可以实现多色荧光标记,用于细胞和组织的成像和检测。
在激光器领域,上转换发光材料可以实现激光器的多波长输出,满足不同应用对激光波长的需求。
在光通信领域,上转换发光材料可以实现高效的光源和探测器,提高了光通信系统的传输速率和稳定性。
总的来说,上转换发光材料在现代科技领域有着非常广泛的应用前景,它不仅
可以实现高效的发光,还可以实现多色发光,具有较长的寿命和稳定的性能。
随着科技的不断发展,相信上转换发光材料会有更多的应用场景和发展空间。
上转换发光材料范文
上转换发光材料范文发光材料是一类具有发光性能的材料,广泛应用于照明、显示、传感等领域。
上转换发光材料是指通过吸收高能量的光子,然后发射出低能量的光子,实现能量的转换。
本文将从上转换材料的基本原理、发展历程,以及在照明、显示等领域的应用进行详细介绍。
上转换发光材料的基本原理是基于激发技术,通过上转换过程将吸收的高能量光子转换成低能量光子的发射,并且该过程是通过非线性光学效应实现的。
具体而言,上转换发光材料一般包含两个主要组分:吸收物和发射物。
吸收物可以吸收高能量的光子,并且通过与发射物之间的能量转移,将高能量的光子转换成低能量的光子。
而发射物则可以在吸收物的激发下,发射出相应的低能量光子。
早期的上转换发光材料主要是稀土元素化合物,如氧化物、硫化物等。
这些材料在经历激光束照射后,可以发射出光子,实现能量的转换。
然而,这些材料存在一些缺点,如低光转换效率、复杂的合成过程等,限制了其在实际应用中的推广。
因此,研究人员开始寻找新型的上转换发光材料。
近年来,基于半导体材料的上转换发光材料逐渐受到研究人员的关注。
这些材料具有较高的量子效率和较简单的制备方法,可以通过控制材料的组分、结构等来调控其上转换发光的性能。
例如,钙钛矿材料是一类具有良好上转换性能的半导体材料,其可利用偶极矩耦合效应和量子限制效应来实现能量的转换。
此外,量子点材料也是一类常用的上转换发光材料,通过调节量子点的大小和组分,可以实现对发光波长的精确控制。
在照明领域,上转换发光材料有望替代传统的荧光粉材料,实现更高效的照明效果。
传统的荧光粉材料主要是利用吸收紫外光,然后发射可见光的特性,存在一定的能量损耗。
而上转换发光材料可以通过调节吸收和发射波长之间的能量差,实现更高效的能量转换,从而提高光转换效率。
另外,上转换发光材料还可以实现发光波长的精确调控,通过调整材料的组分和结构,可以实现各种色温的照明效果。
在显示领域,上转换发光材料可以应用于量子点显示技术。
上转换发光材料的组成
上转换发光材料的组成发光材料是指在外部激发下能够发射出可见光的物质。
在现代科技中,发光材料的应用范围非常广泛,从电视,手机屏幕到荧光车漆等等,几乎涉及到了人们生活和工作的各个方面。
而上转换发光材料的组成也是多种多样的,下面就来一一介绍。
一、荧光材料荧光材料是一种上转换发光材料,它的基本原理是:荧光材料吸收它外界的能量(如紫外线),然后将这些能量转化成更高的能量状态,最终将这些能量以可见光的形式释放出来。
荧光材料组成的种类很多,其中比较常见的有:铝石榴石,钐铝石榴石,钡钛矿等。
荧光材料的应用非常广泛,如生物荧光探针、灯具、车漆、显示器、激光医疗和光腔探测等等。
二、半导体材料半导体材料是指在温度为25℃时,导电性介于导体和绝缘体之间的材料。
它们的上转换发光原理是:当电子从价带跃迁到导带时,会释放出光子,从而实现上转换发光。
半导体材料组成的种类也很多,如GaN(氮化镓)、InGaN(氮化镓镓)、ZnS(硫化锌)等等。
半导体材料的应用范围非常广泛,如LED照明、OLED显示、光电子器件、光伏发电和半导体激光等等。
三、稀土材料稀土材料是指由稀土元素组成的材料,它们的上转换发光原理是:当能量被输入到稀土离子中时,离子的电子进入了激发态,通过非辐射跃迁或辐射跃迁,最终传递给基态,从而发出上转换发光。
稀土材料组成的种类也很多,如YVO4:Eu3+(钇钒酸铕)、Y2O3:Eu3+(氧化钇铕)等等。
稀土材料的应用范围也很广泛,如高功率激光器、LED照明、显示器和荧光试剂等等。
四、量子点材料量子点是一种尺度在纳米级别的半导体晶体,在近年来发展迅猛,其上转换发光原理是:当电子从载流子到达量子点表面时,会形成束缚态,这种态的能级结构导致了比原材料更高的激发和发射效率。
量子点材料组成的种类也很多,如CdSe(硒化镉)、CdTe(碲化镉)等等。
量子点材料的应用范围也非常广泛,如LED照明、生物检测、医学成像、显示及光电子器件等等。
上转换荧光材料..
材料化学专业上转换荧光材料题目:班级:姓名:指导教师:年月日摘要近年来,上转换荧光纳米材料以其荧光效率高、稳定性好、分辨率高等优良性能,受到科研人员的广泛关注。
其在防伪识别、太阳能电池、生物荧光标记、上转换激光器等领域有着广泛的应用前景。
尤其是在生物上转换荧光标记领域,与传统的有机染料和量子点荧光标记材料相比具有很多优良性能,例如检测灵敏度高、背景干扰小、机体损伤小等。
通过上转换发光的原理,讨论了影响上转换发光材料发光效率的诸多因素,并通过查找文献资料,讨论了各独立影响因素的作用机理,总结了在当前发展状况下,为达到最佳发光效率应如何选择基质材料、环境温度、激活离子和敏化离子等。
现今,随着纳米技术、计算机技术等的发展,上转换发光纳米晶的研究成为了热点,在生物领域和非生物领域的研究都起着重要作用。
合成出高质量、高荧光性能的NaYF4∶Yb3+上转换纳米颗粒是使之能够在生物医学等领域广泛应用的前提条件。
本文针对NaYF4:Yb3+上转换荧光纳米颗粒的合成方法、表面修饰以及生物应用等方面的研究进展进行综述。
目录摘要 (I)第1章绪论 (1)1.1 上转换荧光材料介绍 (1)1.2 上转换荧光材料的类别 (1)1.3 上转换材料的发展历史 (2)第2章上转换的发光机制和方法 (4)2.1 上转换的发光机制 (4)2.1.1 激发态吸收 (4)2.1.2 能量传递上转换 (5)2.1.3 光子雪崩 (6)2.2 稀土上转换荧光纳米材料的制备方法 (7)第3章NaYF4:Yb3+/Er3+上转换荧光纳米晶 (9)3.1 NaYF4基质材料 (9)3.2 NaYF4:Yb3+/Er3+荧光纳米晶的上转换荧光结构与功能 (10)3.3 NaYF4:Yb3+/Er3+荧光纳米晶的制备 (11)3.4 NaYF4∶Yb3+ / Er3+上转换荧光纳米颗粒的表面修饰 (12)3.4.1 疏水性β-NaYF4:Yb,Er上转换纳米粒子(UCNPs)的表面改性 (12)3.5 NaYF4∶Yb3+ / Er3+上转换荧光纳米材料的运用 (14)总结 (15)参考文献 (16)第1章绪论1.1上转换荧光材料介绍上转换发光是在长波长光的激发下,可持续发射波长比激发光波长短的光,是指将2个或2个以上的低能光子转换成一个高能光子的现象,一般特指将红外光转换成可见光,其发光机理是基于双光子或多光子过程大多数发光材料是利用稀土离子吸收高能量的短波辐射,发出低能量长波辐射的Stoke效应。
有机上转换发光材料
有机上转换发光材料
有机上转换发光材料是一种新型材料,以其独特的性能引起广泛关注。
这种材料在光电子技术、生物成像、发光器件、显示技术等领域具有
广泛的应用前景。
本文将介绍有机上转换发光材料的基本原理、制备
方法、应用前景等方面内容。
有机上转换发光材料的基本原理是通过分子内的反转换(t-T),将传统
发光方式由荧光(F)转变为磷光(P)。
在传统的荧光材料中,电子在吸收光子后,在几纳秒的时间内就退回到基态并释放出光子。
而在有机上
转换发光材料中,电子在吸收光子后,被激发到t-T的激发态,然后
在过渡态上停留更长的时间,进而释放出更多的光子,从而达到更高
的光效。
在制备有机上转换发光材料时,可以采用微波辐射、溶液混合等不同
的方法。
其中,以微波辐射为主的绿色制备方法具有快速、高效、晶
体品质好等优点。
通过采用不同的制备方法,可以得到不同形态、不
同性能的材料。
在应用方面,有机上转换发光材料具有广泛的应用前景。
在光电子技
术中,可以用于发光器件和太阳能电池等领域。
在生物成像方面,这种材料的稳定性和降低轻碳污染的特性,使其成为细胞成像等方面的理想材料。
在显示技术方面,这种材料的高发光效率和宽波长调制范围,也使其具有广泛的应用前景。
综上所述,有机上转换发光材料作为一种新型材料,具有独特的性能和广泛的应用前景。
在未来,随着科技的不断发展,这种材料将会有更广泛的应用。
上转换荧光材料
材料化学专业上转换荧光材料题目:班级:姓名:指导教师:年月日摘要近年来,上转换荧光纳米材料以其荧光效率高、稳定性好、分辨率高等优良性能,受到科研人员的广泛关注。
其在防伪识别、太阳能电池、生物荧光标记、上转换激光器等领域有着广泛的应用前景。
尤其是在生物上转换荧光标记领域,与传统的有机染料和量子点荧光标记材料相比具有很多优良性能,例如检测灵敏度高、背景干扰小、机体损伤小等。
通过上转换发光的原理,讨论了影响上转换发光材料发光效率的诸多因素,并通过查找文献资料,讨论了各独立影响因素的作用机理,总结了在当前发展状况下,为达到最佳发光效率应如何选择基质材料、环境温度、激活离子和敏化离子等。
现今,随着纳米技术、计算机技术等的发展,上转换发光纳米晶的研究成为了热点,在生物领域和非生物领域的研究都起着重要作用。
合成出高质量、高荧光性能的NaYF4∶Yb3+上转换纳米颗粒是使之能够在生物医学等领域广泛应用的前提条件。
本文针对NaYF4:Yb3+上转换荧光纳米颗粒的合成方法、表面修饰以及生物应用等方面的研究进展进行综述。
目录摘要 (I)第1章绪论 (1)1.1 上转换荧光材料介绍 (1)1.2 上转换荧光材料的类别 (1)1.3 上转换材料的发展历史 (2)第2章上转换的发光机制和方法 (4)2.1 上转换的发光机制 (4)2.1.1 激发态吸收 (4)2.1.2 能量传递上转换 (5)2.1.3 光子雪崩 (6)2.2 稀土上转换荧光纳米材料的制备方法 (7)第3章NaYF4:Yb3+/Er3+上转换荧光纳米晶 (9)3.1 NaYF4基质材料 (9)3.2 NaYF4:Yb3+/Er3+荧光纳米晶的上转换荧光结构与功能 (10)3.3 NaYF4:Yb3+/Er3+荧光纳米晶的制备 (11)3.4 NaYF4∶Yb3+ / Er3+上转换荧光纳米颗粒的表面修饰 (12)3.4.1 疏水性β-NaYF4:Yb,Er上转换纳米粒子(UCNPs)的表面改性 (12)3.5 NaYF4∶Yb3+ / Er3+上转换荧光纳米材料的运用 (14)总结 (15)参考文献 (16)第1章绪论1.1上转换荧光材料介绍上转换发光是在长波长光的激发下,可持续发射波长比激发光波长短的光,是指将2个或2个以上的低能光子转换成一个高能光子的现象,一般特指将红外光转换成可见光,其发光机理是基于双光子或多光子过程大多数发光材料是利用稀土离子吸收高能量的短波辐射,发出低能量长波辐射的Stoke效应。
上转换发光机理与发光材料整理
上转换发光机理与发光材料整理发光技术是一种利用特定材料释放能量产生可见光的过程。
发光材料是发光技术的关键组成部分,而发光机理是发光材料发光的原理和过程。
本文将对发光机理和发光材料进行整理,详细介绍各种发光机理和常见的发光材料。
发光机理可以分为三种:自然发光机理、压电发光机理和电致发光机理。
自然发光是指通过吸收能量后,物质的电子跃迁能够发出光线。
这种发光机理适用于很多材料,如荧光体。
当荧光体吸收光或电子束等能量后,能级上的电子被激发到高能级,而后通过非辐射跃迁回到低能级释放能量,产生可见光。
荧光体可以分为有机荧光体和无机荧光体。
有机荧光体具有良好的发光性能和可调节发光颜色的特点,常用于显示和照明领域。
无机荧光体则具有较高的发光效率和较长的寿命,常用于射线检测和矿石探测等领域。
压电发光是指在施加机械应力或外电场作用下,物质会发出可见光的现象。
这种发光机理适用于一些晶体材料,如碱金属卤化物。
当施加机械应力或外电场后,碱金属卤化物晶体的结构发生畸变,造成晶格中的阳离子和阴离子对称性破坏,电子能级产生变化,从而引起发光。
压电发光具有低驱动电压、低电流和高可靠性等特点,常用于触摸屏和柔性显示等领域。
电致发光是指通过电磁激发,使材料发生电致发光现象。
这种发光机理适用于LED(发光二极管)。
LED是一种固体电子器件,由P型半导体和N型半导体以及中间的PN结构组成。
当施加电压后,PN结发生电子和空穴重新组合,释放出能量并产生可见光。
LED具有高亮度、高效率、低功耗和长寿命等优点,广泛应用于照明、电子显示和通信等领域。
在发光材料方面,目前主要的发光材料包括有机、无机和混合有机无机材料。
有机发光材料是一类以有机物质为基础的发光材料。
有机发光材料具有成本低、制备简单和发光颜色可调节等特点,并广泛应用于有机发光二极管(OLED)和柔性显示等领域。
无机发光材料是一类以无机材料为基础的发光材料。
无机发光材料具有发光效率高、色纯度好和稳定性高等特点,常用于LED和磷光体等领域。
上转换发光材料的激发波长
上转换发光材料的激发波长上转换发光材料的激发波长是指将较低能级的荧光物质转换为较高能级的发光材料时所需的波长。
这个过程是通过吸收低能量的光子,然后释放出高能量的光子来实现的。
上转换发光材料在光学传感、生物医学成像以及光学通信等领域有着广泛的应用。
在本篇文章中,我们将一步一步地回答上转换发光材料的激发波长这一主题。
第一步:理解上转换发光原理上转换发光是一种非线性光学效应,它的基本原理可以通过考虑荧光剂的能级结构来解释。
荧光剂通常包含两个能级:基态和激发态。
在常规的荧光(下转换发光)过程中,荧光剂吸收高能量的光子,跃迁到激发态,然后通过非辐射跃迁回到基态,释放出低能量的光子。
然而,在上转换发光过程中,荧光剂先吸收低能量的光子,跃迁到更低的激发态。
然后它再次通过吸收高能量的光子,从这个更低的激发态跃迁到更高的激发态。
最后,荧光剂通过非辐射跃迁回到基态,释放出高能量的光子。
第二步:确定上转换发光材料确定适合上转换发光的材料是实现该效应的第一步。
一些常见的上转换发光材料包括硫化锌(ZnS)、硫化铜(CuS)和氯化银(AgCl)等。
这些材料具有特殊的能级结构,可以实现上转换发光效应。
第三步:选择激发波长选择适当的激发波长是实现上转换发光的关键。
通常情况下,激发波长应该与荧光剂的吸收峰值相匹配。
这样可以最大程度地提高上转换发光效率。
激发波长的选择也受到材料的能带结构以及光学参数的影响。
第四步:调节激发条件在实际应用中,激发条件的调节对于实现高效的上转换发光至关重要。
常见的调节手段包括改变激发波长强度、调节激发光束的直径和改变激发光的脉冲宽度等。
这些调节条件可以影响到上转换发光的强度和效率。
第五步:优化材料性能除了选择适当的激发波长和调节激发条件,优化材料性能也是实现高效上转换发光的重要因素之一。
这可以通过改变材料的结构、控制材料的纯度,以及添加掺杂物等方式来实现。
优化材料性能可以提高上转换发光的效率,并降低其他非辐射跃迁损失。
上转换发光材料
上转换发光材料上转换发光的概念:上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。
本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。
斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。
比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。
但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。
上转换发光技术的发展:早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。
1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。
整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。
迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。
80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。
1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。
2000年Chen 等对比研究了Er/Yb:FOG 氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。
上转换发光材料报告
上转换发光材料报告发光材料是一类特殊的材料,其能够通过吸收能量并将其转换为可见光。
这种材料具有广泛的应用领域,包括照明、显示技术、荧光探针等。
上转换发光材料是一种在能谱中吸收较短波长的光,然后辐射出较长波长的光的材料。
下面的报告将探讨上转换发光材料的原理、制备方法以及应用领域。
上转换发光材料的原理是基于荧光共振能量转移的过程。
当上转换材料吸收较短波长的光时,其能级会上升到一个高能态。
然后,这个高能态会通过与另外一个低能态的材料接触来转移能量。
转移能量的过程中,原本处于低能态的材料会上升到一个高能态,并发射出一个较长波长的光子,即上转换光。
制备上转换发光材料的方法有多种,其中最常见的是溶液法和固相法。
溶液法是将上转换材料的前体物质溶解在适当的溶液中,然后通过加热或者其他方式进行结晶,最终得到上转换发光材料。
固相法则是将上转换材料的前体物质混合在一起,并通过高温处理使其相互反应生成上转换发光材料。
此外,还有一些其他的方法,如气相沉积法、脉冲激光沉积法等。
上转换发光材料在许多领域具有广泛的应用,其中最重要的应用之一是照明领域。
传统的照明方法往往会消耗大量的能源,而上转换发光材料可以将较短波长的光转化为可见光,从而提高能源利用率。
此外,上转换发光材料还在显示技术中得到了广泛的应用。
例如,一些荧光剂被用于增强液晶显示屏的亮度和颜色饱和度。
另外,上转换发光材料还可以应用于荧光探针领域。
通过将上转换材料与特定的生物分子结合,可以实现对生物样品的高灵敏度检测。
总结起来,上转换发光材料是一类具有特殊光学性质的材料,它能够将较短波长的光转换为较长波长的光。
制备上转换发光材料的方法有多种,如溶液法和固相法。
这种材料在照明、显示技术以及荧光探针等领域有着广泛的应用前景。
随着技术的进一步发展,相信上转换发光材料在各个领域将发挥越来越重要的作用。
第讲_上转换发光材料
止,在稀土离子掺杂浓度足够高时,才会 发生明显的PA过程,另外,PA过程也只 需要单波长泵浦的方式,需要满足的条件 是泵浦光的能量与某一激发态与其向上能
图5 PA过程
上转换发光影响因素
由于大部分上转换发光过程是分步 进行的,这就要求上转换过程的中间态能级有 足够长的寿命,以保证激发态离子有足够的时 间来参与上转换的发光或是其它的光物理过程。
8.2 上转换技术的发展
上转换现象被Obrien B发现于上世纪40年
代中期,稀土离子的上转换发光现象的研究则 始于20世纪50年代初的Kastler A,至60年代 因夜视等军用目的的需要,上转换研究得到进 一步的发展。整个60-70年代,以Auzal 为 代表,系统地对掺杂稀土离子的上转换特性及 其机制进行了深入的研究,提出掺杂稀土离子 形成亚稳激发态是产生上转换功能的前提。
AlF3-NaF) 已先后在微珠、光纤和块状中获得激光振
荡 。 特 别 是 在 光 纤 中 , 单 掺 Tm3+ 的 浓 度 只 有
0.1mol% ,长度2m ,用Nd3+ ∶YAG 1120nm 波长
泵 浦 时 , 能 观 测 到 480nm 的 蓝 色 激 光 , 泵 浦 阈 值 为
46mW,最大输出功率高达57mW,斜率效率18 % ,充
从理论研究的角度看,双波长泵浦也有很大的
(1) RE3+ — 阴离子的相互作用强,上转换发光强度一定 低;
(2) RE3+ 周围对称性低有利于提高上转换发光强度;
(3) 基质晶格中阳离子价态高对上转换发光有利。
8.4 上转换发光材料的激活剂、 敏化剂和基质材料
8.4.1AlAs、AlGaIn 和 InGaAs LD 的 发 射 波 长 分 别 位 于 979 ~ 810nm、670~690nm 和940~990nm, 这些波长分别处在一些稀土离子,如Nd3+ 、 Tm3+ 、Er3+ 和Ho3+ 离子的主吸收带上,这 可能是这些离子作为激活离子被研究较多的原 因所在。
上转换发光材料
上转换发光材料上转换发光材料是一种新型的发光材料,它具有许多优异的性能,因此在光学领域有着广泛的应用前景。
上转换发光材料是指能够将高能光转换成低能光的材料,其发光原理是通过吸收高能光子,然后重新辐射出低能光子。
这种发光材料不仅可以提高光电器件的效率,还可以拓展其应用范围,因此备受关注。
上转换发光材料的研究和应用已经取得了一系列的成果。
其中,稀土离子是上转换发光材料中的重要组成部分。
稀土离子具有丰富的能级结构和多种跃迁方式,能够实现多种波长的发光,因此被广泛应用于上转换发光材料中。
此外,纳米材料也是上转换发光材料的研究热点之一。
通过调控纳米结构,可以有效地改善材料的发光性能,提高其量子效率和稳定性。
在实际应用中,上转换发光材料具有广阔的市场前景。
首先,在光通信领域,上转换发光材料可以用于制备高效的波长转换器件,用于光信号处理和光通信网络的构建。
其次,在生物医学领域,上转换发光材料可以作为荧光探针,用于生物标记、细胞成像和药物传递等方面。
此外,上转换发光材料还可以应用于太阳能电池、显示器件、激光器件等领域,为这些领域的发展提供新的可能性。
然而,上转换发光材料在实际应用中还存在一些挑战和问题。
例如,目前上转换发光材料的量子效率和稳定性还有待提高,这需要在材料设计和制备工艺上进行进一步的研究和优化。
此外,上转换发光材料的成本也是一个需要解决的问题,如何降低材料的制备成本,提高其在大规模生产中的可行性,是当前亟需解决的问题。
总的来说,上转换发光材料是一种具有广阔应用前景的新型材料,其在光学领域的研究和应用将会为光电器件的发展带来新的机遇和挑战。
随着科学技术的不断进步,相信上转换发光材料将会在更多领域展现出其独特的价值,为人类社会的发展做出更大的贡献。
上转换材料及其发光机理
无辐射弛豫达到发光能级,由此跃迁到基态放出一可见
光子,
发光要求 为了有效实现双光子或多光子效应,发光中心的
亚稳态需要有较长的能级寿命,稀土离子能级之间的跃迁属 于禁戒的f-f 跃迁,因此有长寿命,符合此条件,
能级3-2之间能量差与能级2-1之间的能量差相等,若某一辐射的 能量与上述能量差一致,则会发生激发,离子会从1激发到2,如果 能级2的寿命不是太短,则离子从2激发到3.最后就发生了从3到1 的发射,
1、样品制备与光谱测试
NaOH吸收SiF4
11
2、激发机理
Er3+的绿色发射,由基态经由4I11/2到4F7/2能记得 两步激发,随后无辐射衰减到2I11/2和4S3/2能级, 最后辐射跃迁回基态,发出绿光
Er3+的红色发射: A、由4S3/2能级经无辐射衰减到红色发射的 4F9/2能级 B、 Er3+接受Yb 3+传递来的三个光量子,由 4S3/2能级激发至2G7将多余能量逆传递给 Yb 3+ C、 Er3+在第一步激发后,从4I11/2无辐射衰减到 4I13/2,再激发到红色发射的4F9/2能级
4
实际的上转换过程
能量传 递机理, 离子A 将能量 传递给 离子B, 从而能 够从更 高能级 发射
两步 吸收 机理, 仅由 一个 离子 完成
协同敏 化机理, 两个A离 子将能 量传递 给C离子, 由C的激 发产生 发射
协同发光 机理,将两 个A离子 的激发能 量结合,形 成一个产 生发射的 光量子
上转换材料及其发光机理
主要内容
1
上转换机理
2
上转换材料
3
实例分析
2
一、上转换机理
上转换材料 是一种红外光激发下能发出可见光的发光材
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1(a)是激发态吸收(ESA) 过程示意图。首先,离子吸 收一个能量为hv1 的光子, 从基态1被激发到 激发态2.然后,离子再吸 收一个能量为hv2的光子, 从激发态2被激发到激发态3, 随后从激发态3发射出比激 发光波长更短的光子。
在连续光激发下,上转换发光(来自能级3)的强度通常正比于 I1,I2,I为激发光强.一些情况下,hv1=hv2 ,其发光强度通常正 比于I2.更一般地,如果需要发生n次吸收,上转换发光强度将正 比于In, 另外,ESA过程为单个离子的吸收,具有不依赖于发光离 子浓度的特点。
8.3.2 能量传递上转换(ETU, Energy Transfer Upconversion)
连续能量转移(SET
Successive Energy Transfer)
,
一般发生在不同类型的离子之间,其原理如图2:处于激发态的 一种离子(施主离子) 与处于基态的另外一种离子(受主离子)满 足能量匹配的要求而发生相互作用,施主离子将能量传递给受主 离子而使其跃迁至激发态能级,本身则通过无辐射驰豫的方式返 回基态。位于激发态能级上的受主离子还可能第二次能量转移而 跃迁至更高的激发态能级。这种能量转移方式称为连续能量转移 SET。
然而,氟化物的上转换效率虽高,但它的化学稳定性和
机械强度差,抗激光损伤阈值低。工艺制作困难的缺点 也非常突出,从而在一定程度上限制了它的应用范围。
由于氟化物的上述缺陷,促使人们也致力于寻找其它的
基质材料。在ZnCl2 和CdCl2 基玻璃中,Zn2Cl 和 Cd2Cl 的对称拉伸模量的振动频率分别是230~290cm1和243~245cm-1 ,这些值比重金属氟化物玻璃的值还 低几百个波数。但氯化物玻璃对空气中的水分极其敏 感,因此在空气中制备玻璃和测量光谱都不可能。氯化 物晶体也有在空气中潮解的问题。
一种值得重视的基质材料—化学计量比晶体。
如前面提到的稀土五磷酸盐非晶玻璃和
Ba2ErCl7 以及早期研究过的Nd2(WO4)3 。这
类材料的共同特点是,激活离子是基质的组成 部分,因而可以有很高的浓度。高的浓度对上 转换发光却是有利的。有资料表明:在没有下 转换激光时,上转换发光最强。
在(复合) 氧化物单晶中也有一些低
交叉驰豫(CR,Cross
Relaxation)
发生在相同或不同类型的离子之间。 其原理如图3所示。同时位于激发态 上的两种离子,其中一个离子将能量 传递给另外一个离子使其跃迁至更高 能级,而本身则无辐射驰豫至能量更 低的能级。
图3 CR过程
合作上转换(CU,CooperativeUpconversion)
8.4 上转换发光材料的激活剂、 敏化剂和基质材料
8.4.1 上转换激光和发光材料的基质 与激活离子
目前,作为较成熟泵浦源的GaAlAs、AlGaIn 和 InGaAs LD 的发射波长分别位于979~810nm、 670~690nm 和940~990nm,这些波长分别处 在一些稀土离子,如Nd3+ 、Tm3+ 、Er3+ 和 Ho3+ 离子的主吸收带上,这可能是这些离子作 为激活离子被研究较多的原因所在。
除了掺杂稀土离子的浓度以及原料纯度 对上转换发光效率有明显的影响外,人们 就基质对稀土激活离子(RE3+ ) 的影响 已基本取得了共识: (1) RE3+ — 阴离子的相互作用强,上转 换发光强度一定低; (2) RE3+ 周围对称性低有利于提高上转 换发光强度; (3) 基质晶格中阳离子价态高对上转换发 光有利。
80年代后期,利用稀土离子的上转换 效应,覆盖红绿蓝所有可见光波长范围 都获得了连续室温运转和较高效率、较 高输出功率的上转换激光输出。 1994年Stanford大学和IBM公司合作研 究了上转换应用的新生长点—— 双频上 转换立体三维显示 ,并被评为1996年物 理学最新成就之一。
2000年Chen 等 对比研究了Er/Yb: FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的 上转换特性,发现后者的上转换强度是 前者的l0倍,前者发光存在特征饱和现 象,提出了上转换发光机制为扩散.转 移的新观点。近几年,人们对上转换材 料的组成与其上转换特性的对应关系作 了系统的研究,得到了一些优质的上转 换材料。
频率上转换研究的这些发展一方面是由
于社会对其应用技术的需求以及半导体
激光发展的促进所致,另一方面也是随
着上转换的机制等基础研究的突破和材
料的发展而发展的。
8.3 稀土离子上转换发光机理
8.3.1 激发态吸收(ESA, Excited State Absorption)
激发态吸收过程(ESA)是在1959 Bloembergen等人提出的,其原理是同一 个离子从基态能级通过连续的多光子吸 收到达能量较高的激发态能级的一个过 程,这是上转换发光的最基本过程。
发生在同时位于激发态 的同一类型的离子之间, 可以理解为三个离子之 间的相互作用,其原理 如图4所示。首先同时处 于激发态的两个离子将 能量同时传递给一个位 于基态能级的离子使其 跃迁至更高的激发态能 级,而另外两个离子则 无辐射驰豫返回基态。
8.3.3 “光子雪崩”过程 (PA ,Photon Avalanche)
稀土五磷酸盐基质
在稀土五磷酸盐(HoP5O14) 非晶玻璃中相继 获得了紫外上转换发光和蓝绿波段的上转换发 光。 稀土五磷酸盐是一种化学计量比晶体,高浓 度掺杂,低猝灭,高增益和低阈值等优点使其受 到广泛应用。经特殊处理后成为非晶材料,它 不仅保存了晶态材料的优点,而且还克服了晶 态材料基质易开裂和不易加工的缺点。
硫属化物
对于Er3+ / Yb3+ 共掺的硫属化物 (Ga2S3∶La2O3) 的上转换研究表明,当 把样品加热到155 ℃时,上转换发光的强 度达到极大值。高于或低于这个温度,发 光强度都有不同程度的降低。 这与传统的观点—温度越低越有利于 提高发光强度并不十分相符。
YVO4 晶体
YVO4 晶体在诸多方面所显示的优良性质,使其 作为激光晶体材料颇受重视。用808nmLD 和 658nm 染料激光器激发,都以553nm 附近绿色 上转换荧光为最强,410nm附近上转换荧光峰相 对较弱,两种情况下都不足绿光的10 %。且绿 光有较长的荧光寿命,在所测定的浓度范围内 随Er3 + 浓度的增加而减少;蓝光寿命较短,且 不随浓度变化。
近年来采用氟氧化物微晶玻璃(玻璃陶瓷) 来当基体是一种既方便又有效的方法。利用成 核剂诱发氟化物形成微小的晶相,并使稀土离 子优先富集到氟化物微晶中,稀土离子就被氟 化物微晶所屏蔽,而不与包在外面的氧化物玻 璃发生作用。这样,掺杂的氟氧化物微晶玻璃 既具有了氟化物的高转换效率,又具有了氧化 物的较好的稳定性。
表1表明
氟化物的晶体和玻璃(包括光纤) 依旧是 研究的重点和热点。 主要原因 氟化物基质的声子能量小,减小了由于多 光子弛豫造成的无辐射跃迁损失,从而导 致较高的上转换发光效率。
玻璃基质的优势
Байду номын сангаас
掺杂量可以较大 容易获得均匀大尺寸试样 可以把试样制成多种形状
氟化物玻璃(ZBLAN 体系)ZrF4-BaF-LaF3-AlF3-NaF) 已先后在微珠、光纤和块状中获得激光振荡。特别是 在光纤中,单掺Tm3+ 的浓度只有0.1mol% ,长度2m ,用 Nd3+ ∶YAG 1120nm 波长泵浦时,能观测到480nm 的蓝 色激光,泵浦阈值为46mW,最大输出功率高达57mW,斜率 效率18 % ,充分体现了把试样制成光纤的优势。
声子能量的材料,如YAl3 (BO3) 4 (192. 9cm-1) , ZnWO4 (199. 5cm-1) 。
8.5.2 敏化发光
敏化上转换发光同样是提高上转换发光 的有效途径之一。例如:在氧化物中双掺 Yb3 + ,Tm3 + 离子,可使Tm3+ 离子的上 转换发光强度提高3个数量级以上。
按照敏化离子对泵浦光吸收的情况,可以把敏化分 成直接上转换敏化与间接上转换敏化。 所谓直接,简单说就是敏化离子直接吸收激发源的 能量,通过辐射转移,共振转移和非共振转移等方式传 给激活离子; 间接是指激活离子先吸收激发源的能量,把能量传递 给敏化离子,最后敏化离子把能量传递给激活离子(参 看图1)。
8.5 上转换发光和上转换激光晶体 研究中的几个问题
8.5.1 基质材料
它一般不构成激(发) 光能级,但能为激活离子提供 合适的晶体场,使其产生合适的发射。此外,基质材料 对阈值功率和输出水平也有很大的影响。 对于上转换激(发) 光效率来讲,一般认为氯化物> 氟化物> 氧化物,这是单从材料的声子能量方面来考虑 的,前面已有谈到。但是,这恰与材料结构的稳定性成 反比,即氯化物< 氟化物< 氧化物。因此人们开展了一 系列的研究,希望找到既有氯化物,氟化物那样高的上 转换效率,又兼有类似氧化物结构稳定性的新基质材料, 从而达到实际应用的目的。
8.5.3 单一波长泵浦和双波长泵浦
如果基态吸收和激发态吸收不同,就需要有双 波长泵浦。90 年代中期,已有用双波长泵浦获 得连续激光输出的例子。由于充分考虑了基态 吸收(GSA) 和激发态吸收(ESA) 的差异,采用 双波长泵浦或更多泵浦波长可以得到较高的上 转换效率。
从理论研究的角度看,双波长泵浦也有很大 的意义。钛宝石激光器的出现,其在650~ 1100nm 是连续可调的,Ho3+ 、Er3+ 、Tm3+ 、 Nd3+ 等离子在此范围内都有吸收,我们可以人 为调整其波长,用来激发稀土离子,得到有关能 级分布的定量信息,为更好地利用泵浦能源和 提高效率提供依据。
是ESA和ET相结合的过程,其主要特征为: 泵浦波长对应于离子的某一激发态能级与 其上能级的能量差而不是基态能级与其激 发态能级的能量差; 其次,PA引起的上转换发光对泵浦功率有 明显的依赖性,低于泵浦功率阀值时,只 存在很弱的上转换发光,而高于泵浦功率 阀值时,上转换发光强度明显增加,泵浦 光被强烈吸收。 PA过程取决于激发态上的粒子数积累,因 止,在稀土离子掺杂浓度足够高时,才会 发生明显的PA过程,另外,PA过程也只需 要单波长泵浦的方式,需要满足的条件是 泵浦光的能量与某一激发态与其向上能级 的能量差匹配。