舵机原理应用和程序详解
舵机的原理与单片机控制(二)2024
舵机的原理与单片机控制(二)引言概述:舵机是一种常见的机电设备,广泛应用于机器人、遥控模型等领域。
本文将进一步介绍舵机的原理及其与单片机的控制方法。
正文内容:一、舵机的原理1. 舵机的结构组成:电机、减速器、控制电路和位置反馈装置。
2. 舵机的工作原理:利用电机的转动驱动控制电路,通过调整控制电路的输出脉冲宽度来实现舵机的转动。
3. 舵机的位置反馈装置:通过位置传感器实时检测舵机的转动角度,并将反馈信号传递给控制电路进行修正。
二、单片机控制舵机的基本原理1. 单片机的控制方式:通过控制IO口产生控制信号,即PWM 信号,来控制舵机的转动。
2. PWM信号的特点:通过调整PWM信号的高低电平持续时间来实现对舵机的控制,通常控制信号的占空比与舵机的转动角度成正比。
3. 单片机编程:使用单片机的编程语言,通过设定PWM信号的占空比来控制舵机的转动角度。
4. 控制舵机的程序设计:通过设置PWM信号的周期和占空比,利用适当的算法控制舵机的速度和位置。
三、舵机的常见问题及解决方法1. 舵机抖动问题:可通过增加控制信号的稳定性和校准舵机的中值来解决。
2. 舵机发热问题:可通过降低PWM信号的频率和增加散热系统来解决。
3. 舵机运转不稳定问题:可通过调整PWM信号的占空比和校正舵机的位置反馈装置来解决。
四、舵机控制的优化方法1. 控制算法优化:利用PID控制算法来提高舵机的精确度和稳定性。
2. 舵机模型参数的优化:通过调整舵机的工作电压和扭矩参数,提高其性能和适应性。
3. 舵机控制系统的设计优化:考虑电源、信号线路、控制器等因素,提高舵机控制的整体效果。
五、舵机控制应用案例1. 机器人舵机控制:通过单片机对舵机进行控制,实现机器人的运动和动作。
2. 遥控模型舵机控制:利用遥控器与接收机之间的通信,控制舵机来实现遥控模型的转动和动作。
总结:本文详细介绍了舵机的工作原理和单片机控制方法,以及舵机常见问题的解决方法和控制优化的途径。
舵机工作原理与控制方法
舵机工作原理与控制方法舵机是一种用于控制机械装置的电机,它可以通过控制信号进行位置或角度的精确控制。
在舵机的工作原理和控制方法中,主要涉及到电机、反馈、控制电路和控制信号四个方面。
一、舵机的工作原理舵机的核心部件是一种称为可变电容的设备,它可以根据控制信号的波形来改变电容的值。
舵机可分为模拟式和数字式两种类型。
以下是模拟式舵机的工作原理:1.内部结构:模拟式舵机由电机、测速电路、可变电容和驱动电路组成。
2.基准电压:舵机工作时,系统会提供一个用于参考的基准电压。
3.控制信号:通过控制信号的波形的上升沿和下降沿来确定舵机的角度。
4.反馈:舵机内部的测速电路用于检测当前位置,从而实现位置的精确控制。
5.驱动电路:根据测速电路的反馈信号来控制电机的转动方向和速度,从而实现角度的调整。
二、舵机的控制方法舵机的控制方法一般采用脉冲宽度调制(PWM)信号来实现位置或角度的控制。
以下是舵机的两种常见控制方法:1.脉宽控制(PWM):舵机的控制信号是通过控制信号的脉冲宽度来实现的。
通常情况下,舵机的控制信号由一系列周期为20毫秒(ms)的脉冲组成,脉冲的高电平部分的宽度决定了舵机的位置或角度。
典型的舵机控制信号范围是1ms到2ms,其中1ms对应一个极限位置,2ms对应另一个极限位置,1.5ms对应中立位置。
2.串行总线(如I2C或串行通信):一些舵机还支持通过串行总线进行控制,这些舵机通常具有内置的电路来解码接收到的串行信号,并驱动电机转动到相应的位置。
这种控制方法可以实现多个舵机的同时控制,并且可以在不同的控制器之间进行通信。
三、舵机的控制电路与控制信号1.控制电路:舵机的控制电路通常由微控制器(如Arduino)、驱动电路和电源组成。
微控制器用于生成控制信号,驱动电路用于放大和处理控制信号,电源则为舵机提供所需的电能。
2.控制信号的生成:控制信号可以通过软件或硬件生成。
用于舵机的软件库通常提供一个函数来方便地生成适当的控制信号。
舵机的控制方式和工作原理介绍
舵机的控制方式和工作原理介绍舵机是一种常见的电动执行元件,广泛应用于机器人、遥控车辆、模型飞机等领域。
它通过电信号控制来改变输出轴的角度,实现精准的位置控制。
本文将介绍舵机的控制方式和工作原理。
一、舵机的结构和工作原理舵机的基本结构包括电机、减速装置、控制电路以及输出轴和舵盘。
电机驱动输出轴,减速装置减速并转动输出轴,而控制电路则根据输入信号来控制电机的转动或停止。
舵机的主要工作原理是通过PWM(脉宽调制)信号来控制。
PWM信号是一种周期性的方波信号,通过调整占空比即高电平的时间来控制舵机的位置。
通常情况下,舵机所需的控制信号频率为50Hz,即每秒50个周期,而高电平的脉宽则决定了输出轴的角度。
二、舵机的控制方式舵机的控制方式主要有模拟控制和数字控制两种。
1. 模拟控制模拟控制是指通过改变输入信号电压的大小,来控制舵机输出的角度。
传统的舵机多采用模拟控制方式。
在模拟控制中,通常将输入信号电压的范围设置在0V至5V之间,其中2.5V对应于舵机的中立位置(通常为90度)。
通过改变输入信号电压的大小,可以使舵机在90度以内左右摆动。
2. 数字控制数字控制是指通过数字信号(如脉宽调制信号)来控制舵机的位置。
数字控制方式多用于微控制器等数字系统中。
在数字控制中,舵机通过接收来自微控制器的PWM信号来转动到相应位置。
微控制器根据需要生成脉宽在0.5ms至2.5ms之间变化的PWM信号,通过改变脉宽的占空比,舵机可以在0度至180度的范围内进行精确的位置控制。
三、舵机的工作原理舵机的工作原理是利用直流电机的转动来驱动输出轴的运动。
当舵机接收到控制信号后,控制电路将信号转换为电机驱动所需的功率。
电机驱动输出轴旋转至对应的角度,实现精准的位置控制。
在舵机工作过程中,减速装置的作用非常重要。
减速装置可以将电机产生的高速旋转转换为较低速度的输出轴旋转,提供更大的扭矩输出。
这样可以保证舵机的运动平稳且具有较大的力量。
四、舵机的应用领域舵机以其精准的位置控制和力矩输出,广泛应用于各种领域。
舵机原理及控制
舵机原理及控制舵机原理及控制第一章:引言舵机是一种用来控制机械设备运动的装置,广泛应用于航空、汽车、机器人等各个领域。
本章将介绍舵机的基本概念和其在实际应用中的重要性。
第二章:舵机工作原理2.1 舵机概述舵机是一种能够转动到特定角度的电机,其内部结构包括电机、减速机构和反馈控制系统。
舵机通过接收控制信号来控制转动角度,然后通过反馈控制系统使得舵机转动到目标位置。
2.2 舵机工作原理舵机的电机通过控制信号接收到电源,电机产生转动力矩,并通过减速机构将高速低扭的电机输出转化为低速高扭的输出。
同时,反馈控制系统监测舵机位置,并与目标位置进行比较,若有差异,则调整电机输出力矩,直到舵机转动到目标位置。
第三章:舵机控制方法3.1 PWM控制PWM(脉冲宽度调制)是一种常用的舵机控制方法。
通过调整脉冲信号的占空比,控制舵机转动的角度。
一般而言,脉冲信号周期为20ms,脉宽在0.5ms至2.5ms之间,其中1.5ms表示中立位置。
通过改变脉宽,可以将舵机转动到不同的角度。
3.2 PID控制PID(比例-积分-微分)是一种反馈控制方法,可用于舵机控制中的位置闭环控制。
PID控制通过比较目标位置与实际位置之间的差异,计算出控制器的输出值。
比例项决定控制器的输出与误差之间的线性关系,积分项和微分项则用于消除稳态误差和防止控制器过冲。
第四章:舵机在实际应用中的案例分析4.1 航空领域舵机广泛应用于飞机和其他飞行器的操纵系统中。
通过控制舵面的运动,可以实现飞行器的方向调整和姿态稳定。
4.2 汽车领域在汽车行业中,舵机被应用于转向系统中。
通过控制舵机转动到不同角度,实现车辆的方向转向。
4.3 机器人领域舵机是机器人运动的重要部件。
通过控制舵机的转动,可以使机器人的各个关节运动,实现复杂的动作。
在以上几个实际应用的案例中,舵机的原理和控制方法起到了至关重要的作用,使得舵机在现代技术中具有广泛的应用前景。
综上所述,舵机是一种用来控制机械设备运动的装置,其工作原理包括电机、减速机构和反馈控制系统。
舵机的工作原理
舵机的工作原理介绍舵机是一种常见的电动机械驱动装置,广泛应用于遥控模型、机器人、无人机等领域。
舵机的工作原理是通过电路控制电机的转动,并通过一系列机械装置将旋转的运动转化为线性的运动,产生所需的输出力矩。
工作原理舵机的核心是一个直流电机,通常为有刷直流电机。
舵机内部由电机、减速装置和位置反馈装置组成。
其工作原理可以简单分为以下几个步骤:1. 控制信号输入控制信号是通过舵机的控制线输入的,控制线通常使用PWM信号控制。
PWM信号的频率通常为50Hz,控制脉宽的占空比决定了舵机的角度位置。
2. 位置反馈舵机内置一个位置反馈装置,用于检测舵机当前的角度位置。
位置反馈装置通常是一个旋转可变电阻或光电编码器。
3. 控制电路接收到控制信号后,控制电路会根据信号的脉宽来决定控制电机的方向和速度。
控制电路一般由芯片和一些电子元件组成,可以实现对电机的精确控制。
4. 电机驱动控制电路将控制信号转化为适合电机驱动的信号,通过驱动电路将电流传递给电机。
电机驱动通常采用H桥电路,可以实现电机的正反转。
5. 转动和输出力矩电机根据接收到的驱动信号进行转动,通过减速装置将电机的高速旋转转化为舵机输出杆的线性运动。
舵机输出杆的运动产生了力矩,可以控制外部装置的运动。
舵机的应用舵机因其精准的控制能力和可靠的性能,在许多领域得到了广泛应用。
1. 遥控模型舵机常用于遥控模型的控制,例如飞机的方向舵、升降舵,汽车的转向舵等。
舵机可以根据遥控信号实现模型的各种运动,提升遥控模型的趣味性和可玩性。
2. 机器人舵机在机器人领域中也有重要应用,可以控制机器人的肢体运动。
通过配合多个舵机的工作,可以实现机器人的各种复杂动作,如行走、抓取等。
3. 无人机在无人机领域,舵机被广泛用于控制无人机的旋翼和舵面。
舵机可以实现无人机的姿态调整,使其保持平衡和稳定飞行。
舵机的选择和使用注意事项选择合适的舵机对于系统的性能至关重要。
在选择舵机时,需要考虑以下几个因素:1. 动力需求舵机的工作电压和电流要符合系统的需求。
舵机工作原理
舵机工作原理舵机是一种常用于控制机械装置运动的设备,被广泛应用于无人机、机器人、车辆航模等领域。
它通过接收来自控制器的信号,控制舵机的位置和角度,从而实现对机械装置的精确控制。
本文将详细介绍舵机的工作原理和操作方式。
一、舵机的组成舵机由电机、减速器、控制电路和反馈机构组成。
1. 电机:舵机通常采用DC有刷电机作为驱动源。
直流电机的特点是转速高、响应快。
2. 减速器:舵机中的减速器主要用来减小电机输出轴的转速,增加扭矩输出。
常见的舵机减速器有齿轮减速器、行星减速器等。
3. 控制电路:舵机的控制电路是用来控制电机的转动方向和角度的关键部分。
控制电路通常采用H桥驱动电路来控制电机的正反转。
4. 反馈机构:舵机中的反馈机构用来实时检测舵机的位置和角度信息,并将其反馈给控制电路。
通常采用位置传感器(如光电编码器)或角度传感器(如霍尔效应传感器)来实现。
二、舵机的工作原理舵机通过控制电路接收外部信号,并通过电机和减速器转动输出轴来改变机械装置的位置或角度。
舵机工作原理的核心是控制电路中的位置控制回路和PID控制算法。
1. 位置控制回路:位置控制回路是舵机工作的基础。
它的主要任务是接收外部信号,将其转化为控制信号,并控制电机转动到相应的位置。
位置控制回路主要由控制芯片和位置传感器组成。
控制芯片负责解析控制信号,并将其转化为电机驱动信号。
位置传感器则实时监测舵机输出轴的位置,并将其反馈给反馈机构。
控制芯片根据反馈信号和目标位置信号的比较结果,调整电机的转动方向和速度,使得输出轴转动到目标位置。
2. PID控制算法:舵机的PID控制算法用于精确控制舵机输出轴的位置。
PID控制算法通过比较目标位置和实际位置的差异,产生一个误差信号,然后根据误差信号计算出控制信号。
PID控制器包括三个部分:比例(P)控制器、积分(I)控制器和微分(D)控制器。
比例控制器根据误差信号的大小来调整输出信号的大小;积分控制器根据误差信号的累积值来调整输出信号的积累量;微分控制器根据误差信号的变化速率来调整输出信号的变化速率。
舵机的工作原理
舵机的工作原理引言概述:舵机是一种常见的控制装置,广泛应用于机器人、遥控模型、无人机等领域。
它通过接收控制信号来实现精确的角度控制,具有快速响应和高精度的特点。
本文将详细介绍舵机的工作原理,包括信号解析、电机驱动、反馈控制等方面。
一、信号解析1.1 脉冲宽度调制(PWM)舵机接收的控制信号是一种脉冲宽度调制信号(PWM)。
脉冲的周期通常为20毫秒,高电平的脉冲宽度决定了舵机的角度位置。
通常,1.5毫秒的脉冲宽度对应舵机的中立位置,较短的脉冲宽度使舵机转到一侧,较长的脉冲宽度使舵机转到另一侧。
1.2 控制信号解码舵机内部的电路会解析接收到的控制信号。
首先,它会将脉冲信号进行整形和增益放大,然后通过一个比较器将脉冲信号转换为数字信号。
接着,舵机会将数字信号与一个内部的角度表进行比较,以确定舵机应该转到哪个角度位置。
1.3 信号频率舵机还可以通过控制信号的频率来判断是否处于异常工作状态。
通常,合法的控制信号频率为50赫兹,如果接收到的频率超出了合法范围,舵机会进入错误状态或保护状态。
二、电机驱动2.1 直流电机舵机内部通常采用直流电机来实现角度调节。
直流电机由一个电枢和一个永磁体组成,电枢通过电流控制来产生转矩。
舵机内部的驱动电路可以根据控制信号的大小和方向,控制电流的流向和大小,从而驱动电机转动到指定的角度位置。
2.2 驱动电路舵机的驱动电路通常由一个H桥电路组成。
H桥电路可以实现电流的正反向控制,从而控制电机的转向。
通过改变电流的方向和大小,舵机可以根据控制信号精确地调整到指定的角度位置。
2.3 电机驱动的注意事项在实际应用中,为了保护电机和延长舵机的寿命,需要注意控制信号的合理范围和频率。
过大的电流或频繁的启停会导致电机过热或损坏,因此需要根据舵机的规格和工作要求来选择合适的控制信号。
三、反馈控制3.1 位置反馈为了提高舵机的精度和稳定性,一些高级舵机还配备了位置反馈装置。
位置反馈装置可以实时监测舵机的角度位置,并将实际位置与控制信号要求的位置进行比较。
舵机的工作原理
舵机的工作原理
舵机是一种常见的电动执行器,广泛应用于机械控制系统中。
它的主要作用是
根据输入的控制信号,控制输出轴的位置或角度,用于控制机械装置的运动。
舵机的工作原理可以简单地描述为:接收控制信号→信号解码→比较运算→驱
动电机→输出控制力矩→输出轴运动。
具体来说,舵机的工作原理包括以下几个关键步骤:
1. 接收控制信号:舵机通过接收来自控制系统的控制信号来确定输出轴的位置
或角度。
控制信号通常是一个脉冲宽度调制(PWM)信号,其脉冲宽度与期望位
置或角度成正比。
2. 信号解码:舵机接收到控制信号后,将其解码为一个数字量,用于后续的比
较运算。
3. 比较运算:舵机将解码后的控制信号与内部的位置或角度反馈信号进行比较。
如果两者不一致,舵机将根据差异调整输出控制力矩的大小。
4. 驱动电机:舵机内部包含一个电机,用于产生输出控制力矩。
根据比较运算
的结果,舵机会调整电机的转速或转向,以实现输出轴的位置或角度调整。
5. 输出控制力矩:舵机通过电机转动产生一个控制力矩,该力矩作用于输出轴上,驱动机械装置的运动。
力矩的大小取决于电机的转速和转矩。
6. 输出轴运动:根据输出控制力矩的作用,舵机将输出轴驱动到期望的位置或
角度。
输出轴通常通过齿轮传动或直接连接到舵机的输出轴。
舵机的工作原理基于控制信号与内部反馈信号之间的比较,通过调整输出控制
力矩来实现输出轴的位置或角度调整。
这种工作原理使得舵机在机械控制系统中具有精确的位置或角度控制能力,被广泛应用于机器人、航模、汽车等领域。
舵机原理与应用
1、概述2、舵机的组成3、舵机工作原理4、舵机选购5、舵机使用中应注意的事项6、辉盛S90舵机简介7、如何利用程序实现转向8、51单片机舵机测试程序1、概述舵机也叫伺服电机,最早用于船舶上实现其转向功能,由于可以通过程序连续控制其转角,因而被广泛应用智能小车以实现转向以及机器人各类关节运动中,如图1 、图2 所示。
图1 舵机用于机器人图2 舵机用于智能小车中舵机是小车转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳图3 舵机外形图2、舵机的组成图4 舵机的组成示意图图5 舵机组成图6 舵机的输出线3、舵机工作原理控制电路板接受来自信号线的控制信号,控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。
舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机转动的方向和速度,从而达到目标停止。
其工作流程为:控制信号→控制电路板→电机转动→齿轮组减速→舵盘转动→位置反馈电位计→控制电路板反馈。
流,才可发挥舵机应有的性能。
舵机的控制信号周期为20MS的脉宽调制(PWM)信号,其中脉冲宽度从0.5-2.5MS,相对应的舵盘位置为0-180度,呈线性变化。
也就是说,给他提供一定的脉宽,它的输出轴就会保持一定对应角度上,无论外界转矩怎么改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应位置上如图7所求。
舵机内部有一个基准电路,产生周期为20MS,宽度1.5MS的基准信号,有一个比出较器,将外加信号与基准信号相比较,判断出方向和大小,从而生产电机的转动信号。
由此可见,舵机是一种位置伺服驱动器,转动范围不能超过180度,适用于那些需要不断变化并可以保持的驱动器中,比如说机器人的关节、飞机的舵面等。
图7 舵机输出转角与输入脉冲的关系4、舵机选购市场上的舵机有塑料齿、金属齿、小尺寸、标准尺寸、大尺寸,另外还有薄的标准尺寸舵机,及低重心的型号。
舵机的原理及应用
舵机的原理及应用舵机是一种能够控制角度的电机装置,被广泛应用在机器人、无人机、模型玩具和工业自动化等领域。
它的原理是通过接收控制信号来控制转动角度,并能够精确地停止在指定位置上。
舵机具有较高的精度和稳定性,广泛应用于需要精准控制角度的场景。
舵机的基本构成包括直流电机、减速机构、位置反馈装置和控制电路。
直流电机驱动减速机构,减速机构将电机输出的高速旋转转换为较慢的转动角度,位置反馈装置通过检测舵机的旋转角度,将检测到的角度信号反馈给控制电路进行控制。
控制电路会根据输入的控制信号和反馈信号来计算输出的控制信号,从而控制舵机的角度。
舵机内部一般还设有位置回中功能,可以使舵机自动回到中立位置。
舵机的控制信号采用脉宽调制(PWM)方式,通过控制信号的脉冲宽度来指定舵机的目标角度。
通常,控制信号的周期为20毫秒,脉冲宽度可以在1-2毫秒之间调节,1毫秒对应0度,1.5毫秒对应90度,2毫秒对应180度。
通过改变控制信号的脉冲宽度,可以实现舵机的连续旋转和精确控制角度。
舵机的应用非常广泛。
在机器人领域,舵机通常用于控制机器人的关节,实现机器人的运动和姿态调节。
在无人机中,舵机可以控制无人机的舵面和螺旋桨,实现飞行的平衡和姿态调整。
在模型玩具中,舵机可以控制汽车、船只和飞机的转向、舵面和腿部等运动。
在工业自动化中,舵机常用于精密定位和角度控制的机械设备。
此外,舵机还可以用于摄像头云台、遥控器控制、机械臂和医疗设备等领域。
舵机具有以下几大特点,使其能够广泛应用于各个领域。
首先,舵机能够精确控制角度,通常具有较高的分辨率。
其次,舵机具有控制方便、响应速度快的特点,能够在短时间内完成对目标角度的调整。
此外,舵机结构紧凑,体积小巧,重量轻,易于集成到不同的系统中。
在舵机的应用过程中,还需注意一些问题。
首先,电源电压要与舵机的额定电压匹配,过高或过低的电压都会对舵机的使用寿命和性能产生不良影响。
其次,使用舵机时要注意舵机的工作温度范围,避免在过高或过低的温度下使用舵机。
舵机工作原理与控制方法
舵机工作原理与控制方法舵机是一种常见的机电一体化设备,用于控制终端设备的角度或位置,广泛应用于遥控模型、机器人、自动化设备等领域。
下面将详细介绍舵机的工作原理和控制方法。
一、舵机工作原理:舵机的工作原理可以简单归纳为:接收控制信号-》信号解码-》电机驱动-》位置反馈。
1.接收控制信号舵机通过接收外部的控制信号来控制位置或角度。
常用的控制信号有脉宽调制(PWM)信号,其脉宽范围一般为1-2毫秒,周期为20毫秒。
脉宽与控制的位置或角度呈线性关系。
2.信号解码接收到控制信号后,舵机内部的电路会对信号进行解析和处理。
主要包括解码脉宽、信号滤波和信号放大等步骤。
解码脉宽:舵机会将输入信号的脉宽转换为对应的位置或角度。
信号滤波:舵机通过滤波电路来消除控制信号中的噪声,使得控制稳定。
信号放大:舵机将解码后的信号放大,以提供足够的电流和功率来驱动舵机转动。
3.电机驱动舵机的核心部件是电机。
接收到解码后的信号后,舵机会驱动电机转动。
电机通常是直流电机或无刷电机,通过供电电压和电流的变化控制转动速度和力矩。
4.位置反馈舵机内部通常搭载一个位置传感器,称为反馈装置。
该传感器能够感知电机的转动角度或位置,并反馈给控制电路。
控制电路通过与目标位置或角度进行比较,调整电机的驱动信号,使得电机逐渐趋近于目标位置。
二、舵机的控制方法:舵机的控制方法有脉宽控制方法和位置控制方法两种。
1.脉宽控制方法脉宽控制方法是根据控制信号的脉宽来控制舵机的位置或角度。
控制信号的脉宽和位置或角度之间存在一定的线性关系。
一般来说,舵机收到脉宽为1毫秒的信号时会转动到最左位置,收到脉宽为2毫秒的信号时会转动到最右位置,而脉宽为1.5毫秒的信号舵机则会停止转动。
2.位置控制方法位置控制方法是根据控制信号的数值来控制舵机的位置或角度。
与脉宽控制方法不同,位置控制方法需要对控制信号进行数字信号处理。
数值范围一般为0-1023或0-4095,对应着舵机的最左和最右位置。
舵机的工作原理
舵机的工作原理引言概述:舵机是一种常见的电子设备,广泛应用于机器人、遥控模型等领域。
它能够实现精确的角度控制,具有较高的工作精度和可靠性。
本文将详细介绍舵机的工作原理,包括电机原理、反馈控制原理、位置控制原理、信号控制原理和工作模式。
一、电机原理:1.1 电机类型:舵机通常采用直流电机作为驱动源,常见的有核心式电机和无核心式电机两种类型。
1.2 电机结构:核心式电机由电枢、永磁体和电刷组成,无核心式电机则是通过电磁感应原理实现转动。
1.3 电机工作原理:舵机的电机通过电流控制实现转动,电流的方向和大小决定了舵机的转动方向和角度。
二、反馈控制原理:2.1 反馈装置:舵机内置了一个反馈装置,通常是一个旋转电位器或光电编码器,用于检测舵机的角度。
2.2 反馈信号:反馈装置会输出一个反馈信号,表示当前舵机的角度位置。
2.3 反馈控制:通过比较反馈信号和目标角度信号,舵机可以根据误差进行调整,实现精确的角度控制。
三、位置控制原理:3.1 控制信号:舵机接收一个控制信号,通常是一个脉冲宽度调制(PWM)信号。
3.2 脉宽解读:舵机通过解读控制信号的脉冲宽度来确定目标角度。
3.3 控制算法:舵机根据控制信号的脉冲宽度和反馈信号的角度,采用控制算法计算出驱动电机的电流,从而实现位置控制。
四、信号控制原理:4.1 控制信号范围:舵机的控制信号通常在0.5ms到2.5ms的脉宽范围内变化。
4.2 脉宽对应角度:脉宽的变化对应着舵机的角度变化,通常0.5ms对应最小角度,2.5ms对应最大角度。
4.3 中立位置:控制信号的脉宽为1.5ms时,舵机处于中立位置,即角度为0度。
五、工作模式:5.1 位置模式:舵机可以在位置模式下工作,根据控制信号的脉宽来实现精确的角度控制。
5.2 速度模式:舵机还可以在速度模式下工作,根据控制信号的脉宽来实现转速的控制。
5.3 扭矩模式:舵机在扭矩模式下工作时,根据控制信号的脉宽来实现扭矩的控制,可以用于对外力的响应。
舵机的原理及应用论文
舵机的原理及应用1. 引言舵机是一种用于控制机械装置位置和速度的装置。
它被广泛应用于各种领域,包括机械工程、机器人技术和无人驾驶等。
本文将介绍舵机的原理和应用,并探讨其在现实世界中的重要性。
2. 舵机的工作原理舵机是由电机、位置反馈装置和控制电路组成的。
当接收到控制信号后,舵机会根据信号的幅度和频率来调整电机的运动,使机械装置达到所要求的位置和速度。
下面是舵机工作原理的详细解释:•电机:舵机中的电机可以是直流电机、交流电机或步进电机。
电机会根据输入信号的要求旋转,通过与其他组件的结合,实现机械装置的运动。
•位置反馈装置:舵机中的位置反馈装置用于测量电机的位置。
它通常是一个旋转编码器或霍尔传感器,可以实时监测电机的旋转角度。
•控制电路:控制电路是舵机中最关键的组件之一。
它接收外部控制信号并将其转换为电机所需的动作。
控制电路还负责监测位置反馈装置的数据,以便对电机进行调整。
3. 舵机的应用领域舵机的应用范围非常广泛,涵盖了许多不同的领域。
以下是舵机在几个主要应用领域的例子:3.1 机械工程•机器人技术:舵机在机器人技术中起着至关重要的作用。
它们被用于控制机器人的关节,使机器人能够执行各种任务,例如拾取和放置物体,甚至进行复杂的精细操作。
•自动化设备:舵机在自动化设备中也非常常见。
它们被用于控制各种机械装置,例如自动门、工业生产线和自动化仓储系统。
舵机可以通过精确的位置和速度控制来提高设备的效率和精度。
3.2 无人驾驶•无人驾驶车辆:舵机在无人驾驶车辆中被广泛应用。
它们被用于控制车辆的转向系统,以便准确地转弯和变道。
舵机的快速响应能力使得无人驾驶车辆具备高度的灵活性和安全性。
•无人机:舵机也用于控制无人机的飞行姿态。
通过调整无人机的舵机,可以实现精确的飞行控制,使无人机能够稳定地悬停和进行各种飞行动作。
3.3 教育和科研•教育机构和科研实验室:舵机广泛应用于教育机构和科研实验室的各种实验和项目中。
它们被用于开发和测试新的机械装置和控制系统,从而推动科学研究和技术创新。
舵机的工作原理
舵机的工作原理舵机是一种常见的电机控制装置,广泛应用于机器人、无人机、航模、机械臂等领域。
它通过接收电信号来控制输出轴的位置,从而实现精确的角度调节。
本文将详细介绍舵机的工作原理,包括内部结构、信号控制和工作过程。
一、内部结构舵机的内部结构主要包括电机、减速装置、位置反馈装置和控制电路。
电机负责提供动力,减速装置用于减小输出轴的转速并增加扭矩,位置反馈装置用于检测输出轴的位置,控制电路则根据输入信号来控制电机的运转。
1. 电机:舵机通常采用直流电机,其转子通过电流产生转矩。
电机的转速和扭矩与输入电流成正比,因此控制电路可以通过控制电流来控制舵机的运动。
2. 减速装置:为了增加舵机的扭矩并减小转速,舵机通常会使用减速装置。
减速装置一般采用齿轮传动或行星齿轮传动,通过减小电机输出轴的转速来提供足够的扭矩。
3. 位置反馈装置:为了实现精确的角度调节,舵机通常配备位置反馈装置。
位置反馈装置可以是电位器、光电编码器或磁编码器等,用于检测输出轴的位置并将信号反馈给控制电路。
4. 控制电路:控制电路是舵机的核心部分,它接收输入信号并根据信号的大小和方向来控制电机的运动。
控制电路通常由微控制器、驱动电路和反馈电路组成。
二、信号控制舵机的工作原理基于接收到的控制信号,通常使用PWM(脉宽调制)信号来控制舵机的位置。
PWM信号是一种周期性的方波信号,通过调整方波的高电平时间来控制舵机的角度。
1. 脉宽范围:舵机通常接收的PWM信号脉宽范围为0.5ms到2.5ms,其中1.5ms为中间位置。
较小的脉宽会使舵机转到最小角度,较大的脉宽会使舵机转到最大角度。
2. 控制精度:舵机的控制精度取决于PWM信号的分辨率,即方波周期内脉宽的划分数量。
通常,舵机的控制精度在10比特(1024个划分)到16比特(65536个划分)之间。
3. 控制频率:舵机的控制频率是指PWM信号的重复频率,通常为50Hz或者更高。
较高的控制频率可以提供更平滑的运动,但也会增加系统的计算和通信负担。
舵机控制原理程序
舵机控制原理程序舵机控制原理程序第一章:引言舵机是一种用于控制机械装置位置和角度的装置,广泛应用于机器人、模型飞机、船舶等领域。
舵机的控制原理程序是通过向舵机发送特定的控制信号,使其转动到指定位置。
本论文将深入研究舵机控制的基本原理和编程方法。
第二章:舵机的工作原理舵机主要由电机、减速装置、位置反馈装置和控制电路组成。
电机通过齿轮传动将动力传递给舵盘或舵翼,位置反馈装置可以感知舵盘或舵翼的实际位置,将位置信息反馈给控制电路。
控制电路通过与位置要求进行比较,生成控制信号,控制舵盘或舵翼的位置和角度。
第三章:舵机控制的编程方法舵机控制的编程方法主要包括舵机PWM信号的生成和控制程序的编写。
PWM(脉冲宽度调制)信号是一种周期性的方波信号,通过改变方波的占空比来控制舵机的转动角度。
编程方法可分为硬件控制和软件控制两种。
硬件控制:通过外部电路将PWM信号传输给舵机,如使用单片机的IO口和计时器模块来生成PWM信号。
首先,将单片机的IO口配置为输出模式,然后设置计时器模块的工作方式和频率,最后根据要求计算占空比,并将占空比写入计时器的寄存器中,以生成PWM信号。
软件控制:通过软件方式生成PWM信号,即模拟PWM信号的工作原理。
在主程序中,设定一个周期性的计时器,然后在计时器中断中,根据要求计算舵机需要转动的角度,将舵机需要转动的位置信息转换为相应的占空比,并将占空比输出到舵机的控制引脚上,实现对舵机的控制。
第四章:实验与结果分析为了验证编程方法的正确性和稳定性,我们设计了一个舵机控制的实验。
首先,搭建好舵机控制电路,然后根据编程方法编写控制程序,通过生成PWM信号来控制舵机的转动角度。
实验结果表明,舵机能够按照设定的要求转动到指定的位置,控制精度较高。
综合以上所述,本论文主要研究了舵机控制的基本原理和编程方法,在硬件控制和软件控制两方面进行了详细的介绍和分析,并通过实验验证了编程方法的正确性和稳定性。
舵机控制的研究对于提高机械装置的控制精度和稳定性具有重要的意义。
舵机原理及其使用详解
舵机的原理,以及数码舵机VS模拟舵机一、舵机的原理标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。
以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。
3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。
该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。
该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。
当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。
舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。
有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。
原理是这样的:收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。
当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。
因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。
超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。
这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近)一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。
注意,给舵机供电电源应能提供足够的功率。
控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20ms(即频率为50Hz)。
当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。
某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。
二、数码舵机VS模拟舵机数码舵机比传统的模拟舵机,在工作方式上有一些优点,但是这些优点也同时带来了一些缺点。
船舶舵机的原理分析与应用
船舶舵机的原理分析与应用1. 引言船舶舵机是船舶操纵系统中的重要组成部分,负责控制船舶的转向。
舵机作为船舶的舵轮控制装置,通过控制舵机的运动,实现船舶的方向调整。
本文将对船舶舵机的原理进行深入分析,并探讨其在船舶操纵中的应用。
2. 船舶舵机的原理船舶舵机的原理主要涉及到以下几个方面:2.1. 机械原理船舶舵机通过一系列的机械传动装置将舵盘的转动转化为船舶舵的转动。
通常采用的机械传动装置包括齿轮传动、链条传动等。
当船舶舵机接受操纵指令后,机械传动装置将转动舵盘的力矩转化为转动船舶舵的力矩,实现船舶的转向调整。
2.2. 液压原理船舶舵机通常采用液压系统来实现舵的转动。
液压系统由液压泵、液压油缸和液压控制阀等部分组成。
当操纵员转动舵盘时,液压泵会生成液压油流,通过液压控制阀的调节,将液压油流传送到液压油缸,从而实现船舶舵的转动。
液压系统具有快速响应、可靠性高等优点。
2.3. 控制原理船舶舵机的控制原理主要包括两个方面:手动控制和自动控制。
在手动控制模式下,操纵员通过操纵舵盘来控制船舶舵的转动;在自动控制模式下,系统会根据输入的导航指令和船舶的状态来自动调整船舶舵的转动。
船舶舵机的控制原理是保证船舶转向灵活和安全航行的关键。
3. 船舶舵机的应用船舶舵机作为船舶操纵系统的核心部分,在航海中有着重要的应用。
以下是船舶舵机的几个主要应用场景:3.1. 转向操纵船舶舵机主要用于实现船舶的转向操纵。
操纵员可以通过操作舵盘来控制舵机,从而调整船舶的航向。
舵机的快速响应和稳定性,使得船舶在转向操纵时更加灵活和稳定。
3.2. 自动导航船舶舵机在自动导航系统中发挥着重要的作用。
通过与导航系统的集成,舵机可以根据导航指令和船舶的状态自动调整舵机的转动。
这样可以实现船舶的自动引导和航向控制,提高船舶的自动化程度。
3.3. 操纵控制船舶舵机还可用于实现其他船舶操纵系统的控制。
例如,船舶舵机可以与推进器、锚泊系统等进行集成,实现整体操纵和控制。
舵机的工作原理和PWM信号控制分析(二)2024
舵机的工作原理和PWM信号控制分析(二)引言概述:在上一篇文章中,我们已经初步了解了舵机的工作原理以及PWM信号的基本概念。
本文将继续深入探讨舵机的工作原理,并详细分析PWM信号在舵机控制中的运用。
正文:一、舵机的工作原理1. 电机运转原理- 舵机内部装有电动机,通过电能转换为机械能。
- 电机通常采用直流无刷电机,具有高效率和长寿命的特点。
2. 位置反馈系统- 舵机内部配备位置反馈系统,用于检测舵盘位置并实时反馈给控制器。
- 位置反馈系统通常采用编码器或霍尔传感器等装置。
3. 控制器- 舵机的控制器根据接收到的控制信号和位置反馈信号,计算出应去的位置,并驱动电机转动到该位置。
- 控制器的设计和算法决定了舵机的精度和响应速度。
二、PWM信号的概念1. PWM信号的产生- PWM信号是一种脉冲宽度调制信号,由一个高电平和一个低电平组成。
- 通过改变高电平和低电平的持续时间比例,可以调整PWM信号的占空比。
2. PWM信号在舵机中的作用- PWM信号被用于控制舵机的位置。
- 控制器根据接收到的PWM信号的占空比,确定舵盘应该转到的位置。
三、PWM信号与舵机的工作原理的关系1. PWM信号与位置控制- 不同的PWM信号占空比对应不同的位置输入。
- PWM信号的占空比与舵盘位置的关系可以通过试验得到,从而建立校准模型。
2. PWM信号与速度控制- 通过改变PWM信号的占空比可以改变舵盘旋转的速度。
- PWM信号的频率也会影响到舵机的响应速度。
四、PWM信号控制舵机的注意事项1. PWM信号的频率选取- 通常舵机的工作频率在50Hz到300Hz之间,选择合适的频率可以保证舵机的正常工作。
- 过低的频率可能导致舵机颤动或者无法工作。
2. PWM信号的占空比设置- 根据舵机的校准模型,设置PWM信号的占空比可以精确控制舵盘的位置。
- 过大或过小的占空比可能导致舵盘不能准确到达期望位置。
五、总结本文深入探讨了舵机的工作原理以及PWM信号在舵机控制中的应用。
舵机原理应用和程序详解
图 2 微型舵机
2、舵机介绍 舵机英文叫 Servo,也称伺服机。其特点是结构紧凑、易安装调试、控制简单、大扭力、
成本较低等。舵机的主要性能取决于最大力矩和工作速度(一般是以秒/60°为单位)。它是一 种位置伺服的驱动器,适用于那些需要角度不断变化并能够保持的控制系统。在机器人机电 控制系统中,舵机控制效果是性能的重要影响因素。舵机能够在微机电系统和航模中作为基 本的输出执行机构,其简单的控制和输出使得单片机系统很容易与之接口。
1
舵机原理应用及程序详解
输入信号脉冲宽度(周期为 20ms)
0.5ms
哈尔滨天祥电子 舵机输出轴转角
0度
1ms
45 度
1.5ms
90 度
2ms
135 度
2.5ms
180 度
图 4 舵机输出转角与输入信号脉冲宽度的关系
4、用单片机实现舵机转角控制 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的
//判断0.5ms次数是否小于角度标识 //确实小于,PWM输出高电平
else
pwm=0; count=(count+1);
//大于则输出低电平 //0.5ms次数加1
count=count%40;
//次数始终保持为40 即保持周期为20ms
} void keyscan()
//按键扫描
{
if(jia==0)
单片机控制单个舵机是比较简单的,利用一个定时器即可,假设仅控制舵机 5 个角度转 动,其控制思路如下:只利用一个定时器 T0,定时时间为 0.5ms,定义一个角度标识,数值 可以为 1、2、3、4、5,实现 0.5ms、1ms、1.5ms、2ms、2.5ms 高电平的输出,再定义一个 变量,数值最大为 40,实现周期为 20ms。每次进入定时中断,判断此时的角度标识,进行 相应的操作。比如此时为 5,则进入的前 5 次中断期间,信号输出为高电平,即为 2.5ms 的 高电平。剩下的 35 次中断期间,信号输出为低电平,即为 17.5ms 的低电平。这样总的时间 是 20ms,为一个周期。
舵机往复运动程序
舵机往复运动程序一、引言舵机是一种常见的机电设备,用于控制物体的角度或位置。
它通常由一个电机和一个关闭型反馈系统组成,可以将输入信号转换为具体的角度运动。
本文将从舵机的基本原理、往复运动的定义、往复运动的程序设计等方面进行探讨,帮助读者理解舵机往复运动的原理和开发相关程序。
二、舵机的基本原理舵机是一种基于电机驱动的控制设备,可以对连接的机械装置实施有限角度的精确控制。
其基本组成部分包括电机、减速器、位置反馈装置和控制电路。
电机提供驱动力矩,减速器将高速低力矩的旋转转换为低速高力矩的旋转,位置反馈装置检测到舵机的当前角度,而控制电路则将输入信号转换为控制舵机角度的驱动信号。
舵机通常以三线连接到外部控制电路或控制板,其中供电线连接到电源正负极,信号线用于接收控制信号,而地线通过连接到共地电池或电源,用于提供电气信号的参考点。
三、往复运动的定义往复运动是指物体在两点间来回移动的运动方式。
对于舵机而言,往复运动可以通过改变舵机的角度来实现。
具体来说,当舵机连接到一个运动装置时,根据控制信号的变化,舵机可以在指定的角度范围内来回摆动。
四、舵机往复运动的程序设计实现舵机的往复运动需要进行程序设计,以下是一个基本的舵机往复运动的程序设计示例:1.设置舵机的角度范围,确定舵机的初始角度;2.设置往复运动的幅度和速度;3.在程序的主循环中,将舵机的角度根据往复运动的规律进行调整;4.当舵机的角度达到设定的范围边界时,改变运动方向。
以下是一个简化的程序设计示例:import time# 设置舵机的初始角度和往复运动的幅度initial_angle = 0amplitude = 45# 设置往复运动的速度speed = 1# 设置舵机的角度范围min_angle = initial_angle - amplitudemax_angle = initial_angle + amplitude# 设置舵机的当前角度和运动方向current_angle = initial_angledirection = 1# 主循环while True:# 根据速度和方向调整舵机的角度current_angle += speed * direction# 判断舵机的角度是否超过范围边界,超过则改变运动方向if current_angle > max_angle:direction = -1elif current_angle < min_angle:direction = 1# 控制舵机的角度set_servo_angle(current_angle)# 等待一段时间,控制舵机的运动速度time.sleep(0.01)通过上述程序设计,舵机可以在指定的角度范围内来回摆动,实现往复运动的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
jd=1; count=0; Time0_Init(); while(1) {
keyscan(); display(); } }
舵机原理应用及程序详解 //按键扫描
哈尔滨天祥电子
7
#include "reg52.h" unsigned char count; sbit pwm =P1^7 ; sbit jia =P3^7; sbit jan =P3^6; unsigned char jd;
//0.5ms次数标识 //PWM信号输出
//角度增加按键检测IO口 //角度减少按键检测IO口 //角度标识
{
delay(10);
if(jan==0)
{
jd--;
//角度标识减1
count=0;
if(jd==0)
jd=1;
//已经是0度,则保持
while(jan==0);
}
}
} void display()
//数码管显示函数
{
5
unsigned char bai,shi,ge; switch(jd) { case 1: bai=0; shi=0; ge=0; break; case 2: bai=0; shi=4; ge=5; break; case 3: bai=0; shi=9; ge=0; break; case 4: bai=1; shi=3; ge=5; break; case 5: bai=1; shi=8; ge=0; break; } dula=0; P0=table[bai]; dula=1; dula=0; wela=0; P0=0xfe; wela=1; wela=0; delay(5); P0=table[shi]; dula=1; dula=0; P0=0xfd; wela=1; wela=0;
sbit dula=P2^6;
sbit wela=P2^7;
unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,
0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; void delay(unsigned char i)//延时
舵机原理应用及程序详解
哈尔滨天祥电子
TH0= 0xfe;
TL0= 0x33;
//11.0592MZ晶振,0.5ms
TR0=1;
//定时器开始
}
void Time0_Int() interrupt 1 //中断程序
{ TH0 = 0xfe;
//重新赋值
TL0 = 0x33;
if(count<jd) pwm=1;
信号的输出。
5、舵机与单片机连接原理图 在用单片机驱动舵机之前,要先确定相应舵机的功率,然后选择足够功率的电源为舵
机供电,控制端无需大电流,直接用单片机的I/O口就可操作,扩展板上舵机信号线接单片 机的P1.7,舵机与单片机连接原理图如图5所示。
U1
89C51
JP1
3 2 1
5V
1 2 3 4 5 6 7 8
1、舵机实物图片
舵机原理应用及程序详解
舵机原理应用程序详解
哈尔滨天祥电子
图 1 普通航模用舵机
图 2 微型舵机
2、舵机介绍 舵机英文叫 Servo,也称伺服机。其特点是结构紧凑、易安装调试、控制简单、大扭力、
成本较低等。舵机的主要性能取决于最大力矩和工作速度(一般是以秒/60°为单位)。它是一 种位置伺服的驱动器,适用于那些需要角度不断变化并能够保持的控制系统。在机器人机电 控制系统中,舵机控制效果是性能的重要影响因素。舵机能够在微机电系统和航模中作为基 本的输出执行机构,其简单的控制和输出使得单片机系统很容易与之接口。
3、舵机的工作原理 标准的舵机有 3 条引线,分别是:电源线 Vcc、地线 GND 和控制信号线,如图 3 所示。
输出转轴
地线 GND
电源线 Vcc
控制信号线
图 3 标准舵机引线示意图
在航模遥控系统中,控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。 他内部有一个基准电路,产生周期为 20ms,宽度为 1.5ms 的基准信号,将获得的直流偏置 电压和电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定 电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为 0, 电机停止转动。其实我们可以不用去了解它内部的具体工作原理,知道它的控制原理就够了。 就象我们使用三极管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体 怎么流动是可以完全不用去考虑的。舵机的控制信号也是 PWM 信号,利用占空比的变化改 变舵机的位置。图 4 为舵机输出转角与输入信号脉冲宽度的关系,其脉冲宽度在 0.5~2.5ms 之间变化时,舵机输出轴转角在 0°~180°之间变化。
2
舵机原理应用及程序详解
哈尔滨天祥电子
期为 20ms 的 1/8 减去正脉冲的时间,此路 PWM 信号在该周期中输出完毕,往复输出。在
每次循环的第 16 次(2×8=16)中断实行关定时中断 T0 的操作,最后就能够实现 8 路舵机控制
//判断0.5ms次数是否小于角度标识 //确实小于,PWM输出高电平
else
pwm=0; count=(count+1);
//大于则输出低电平 //0.5ms次数加1
count=count%40;
//次数始终保持为40 即保持周期为20ms
} void keyscan()
//按键扫描
{
if(jia==0)
P20 P21 P22 P23 P24 P25 P26 P27 VCC
21 22 23 24 25 26 27 28 40
5V
GND RXD TXD ALE/P PSEN
20 10 11 30 29
图5 舵机和单片机连接原理图
图6 本实验使用的舵机
本实验中使用的舵机参数如下:工作电压:4.8V~6V;电流:10 mA(静态);力矩: 3kg/cm;外型尺寸:41×42×20 mm;重量:48g;转速:0.22ms/60°。
{
unsigned char j,k;
for(j=i;j>0;j--)
for(k=125;k>0;k--);
} void Time0_Init()
//定时器初始化
{ TMOD = 0x01;
//定时器0工作在方式1
IE= 0x82;
4
P10 P11 P12 P13 P14 P15 P16 P17
P00 P01 P02 P03 P04 P05 P06 P07
39 38 37 36 35 34 33 32
舵机
13 12
INT1 INT0
15 14
T1 T0
5V
31 EA/VP
19 18
XIN XOUT
9 RESET
17 16
RD WR
6、舵机C语言程序实例
3
舵机原理应用及程序详解
哈尔滨天祥电子
图8 程序流程图
实验说明:开机时舵机角度自动转为0度,通过实验板上的独立按键调节舵机的角度转 动,并且在实验板上数码管上显示出相应的角度,本实验仅演示5个角度的控制,若想实验任 意角度控制请大家自行编程实验。
//角度增加按键是否按下
{
delay(10);
//按下延时,消抖
if(jiaLeabharlann =0)//确实按下{
jd++;
//角度标识加1
count=0;
//按键按下 则20ms周期从新开始
if(jd==6)
jd=5;
//已经是180度,则保持
while(jia==0);
//等待按键放开
}
}
if(jan==0)
//角度减小按键是否按下
1
舵机原理应用及程序详解
输入信号脉冲宽度(周期为 20ms)
0.5ms
哈尔滨天祥电子 舵机输出轴转角
0度
1ms
45 度
1.5ms
90 度
2ms
135 度
2.5ms
180 度
图 4 舵机输出转角与输入信号脉冲宽度的关系
4、用单片机实现舵机转角控制 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的
当用单片机系统控制多个舵机工作时,可以参考下以方法:以驱动 8 路舵机为例,假设 使用的舵机工作周期均为 20ms 时,那么用单片机定时器产生的多路 PWM 波的周期也相同。 使用单片机的内部定时器产生脉冲计数,一般来说,舵机工作正脉冲宽度小于周期的 1/8, 这样能够在 1 个周期内分时启动各路 PWM 波的上升沿,再利用定时器中断 T0 确定各路 PWM 波的输出宽度,定时器中断 T1 控制 20ms 的基准时间。第 1 次定时器中断 T0 按 20ms 的 1/8 配置初值,并配置输出 I/O 口,第 1 次 T0 定时中断响应后,将当前输出 I/O 口对应 的引脚输出置高电平,配置该路输出正脉冲宽度,并启动第 2 次定时器中断,输出 I/O 口指 向下一个输出口。第 2 次定时器定时时间结束后,将当前输出引脚置低电平,配置此中断周
单片机控制单个舵机是比较简单的,利用一个定时器即可,假设仅控制舵机 5 个角度转 动,其控制思路如下:只利用一个定时器 T0,定时时间为 0.5ms,定义一个角度标识,数值 可以为 1、2、3、4、5,实现 0.5ms、1ms、1.5ms、2ms、2.5ms 高电平的输出,再定义一个 变量,数值最大为 40,实现周期为 20ms。每次进入定时中断,判断此时的角度标识,进行 相应的操作。比如此时为 5,则进入的前 5 次中断期间,信号输出为高电平,即为 2.5ms 的 高电平。剩下的 35 次中断期间,信号输出为低电平,即为 17.5ms 的低电平。这样总的时间 是 20ms,为一个周期。