压裂技术理论及应用精讲
压裂基础知识培训
7.压裂液应具有哪些基本性质 ? 压裂液要指导传压 、 劈开裂缝,携带支撑剂进入油层的作用。因此它要具有如下五个方面的基本性质: ① 滤失量小,不易漏入油层,有利于造缝; ② 摩擦阻力小,以减少设备的动力损失; ③ 悬浮能力好,能够大比例地携带支撑剂进入油层; ④ 与油层不发生化学反应,压裂后易于返排,不污染和堵塞油层; ⑤ 材料来源方便,配制简单,成本低。
第一节 压裂设备
压裂车是压裂的主要设备,它的作用是向井内注入高压、大排量的压裂液,将地层压开,把支撑剂挤入裂缝。压裂车主要由运载、动力、传动、泵体等四大件组成。 压裂泵是压裂车的工作主机。现场施工对压裂车的技术性能要求很高,压裂车必须具有压力高、排量大、耐腐蚀、抗磨损性强等特点。
1.压裂车
01
第五节 压裂的基础知识
第五节 压裂的基础知识
14.压裂施工的井场布置有什么要求? 压裂施工的井场布置应分为四个区,即高压区 、 低压区 、 井口区和辅助区。在井场布置上应以高压区为中心向外展开,首先应确定高压管汇的位置,尽量离井口区稍远一些。 15.压裂施工时对高压管汇有什么要求? 压裂施工中不论使用哪种管汇都要满足下列要求: ① 必须能够承受高于本地区最高破裂压力的 1.5 — 2.0 倍的高压; ② 管汇与各压裂车的连通部分必须装有闸阀或者单流阀,以便进行单车控制; ③ 管汇上不允许有直角弯头; ④ 管汇上应有足够接口以便接满压裂车后,还可以进行高压管线放空等项作业; ⑤ 管汇上的所有阀门必须灵活好用,易于迅速开关。
第五节 压裂的基础知识
16.压裂施工的基本工序有哪些? 压裂施工尽管方法很多,但是基本工序是相同的,大致可以分为 7 个步骤:循环、试压 、试挤、压裂、加砂、替挤、活动管柱或反洗。 17.压裂施工时为什么要有循环工序? 因为压裂施工前首先要检查各台设备的工作性能,看泵的上水情况是否良好,管汇是否畅通,同时还要把贮罐内的压裂液进行搅拌,使其粘度和温度达到均匀。冬季施工还要检查管线或闸阀有无冻结的现象,所以必须要有循环这道工序。 18.压裂施工前为什么要对地面管线试压? 因为压裂施工中各道是连续进行的,中间不能停顿。因此,要求管线各个连接部位必须接牢 ,无刺漏现象,以便保证在破裂压力的条件下管线安全工作,所以要对地面管线进行试压。 19.压裂施工中试挤的目的是什么? 试挤的目的是检查井下管柱的各部分如封隔器 、 喷砂器 、 水力锚等工作是否正常。检查管柱下入的位置是否正确。更重要的是,通过对油层的试挤可以掌握地层吸液能力,以便估算最高的破裂压力。
压裂基础培训
H1197 H248 H249
H1177 H241
H243 H246 H256 H245 H1418
H252 H255 H257 H141H71310
50 45 40 35 30 25 20
H251 H254
H13H091426 H261
15 10
H253
H1415
H1323
5 0
H1407
H133火7 1
结论:弹性模量值越大,泊松比越小,说明储层岩石越 致密坚硬,造缝越短,而施工的净压力将有所提高。
第二节压裂设计参数及裂缝几何形状 力学参数
目前国内外对碳酸岩层压裂尚未有成功典范,准东采油厂先后对火南6、北32、 B402等碳酸岩层进行压裂,均造成砂堵,在火南6还在加砂前,采用了段塞加砂 技术,两次压裂均造成砂堵,其主要原因是裂缝的宽度W和弹性模量E成反比,而 碳酸岩弹性模量是砂岩弹性模量的好几倍,所以造成碳酸岩储层裂缝的宽度非常 小,所以加砂必然会造成砂堵。因此碳酸岩储层应进行酸压。
压裂概述
刘进军
准东采油厂
2009年08月
压
裂
1、岩石力学(压裂设计参数) 2、水力压裂力学(压裂设计模型及裂缝几何形状) 3、压裂液化学及支撑剂(压裂液材料性能) 4、压裂工艺技术
5、压裂施工技术
6、压后诊断技术
压裂基础培训
第一节:压裂基础知识 第二节:压裂设计参数及裂缝几何形状 第三节: 压裂工艺
H1128 H1127
H1140 H1154
H1169H203 H209
H1168
H208 H213
H207 H212
H127H8 1193 H214
H1192
70 65 60 55
压裂基础知识讲义(精品)
❖ 1、填砂选压 ❖ 2、单封隔器选压 ❖ 3、双封隔器选压
1、填砂选压
用填砂方法将井内非 选压层封隔开,以免压裂 时压开非选压层。此法一 般适用于封隔下层、选压 上层的压裂井。
管柱结构图
2、单封隔器选压
管柱结构图
当选压层段处于油气
层组的最上部或最下部位
选压层
置时,可采用封隔器将非
选压层分隔开,压裂时只
优点:施工简单,可以最大限度的降低 管道摩阻,相应提高了泵的排量和降低了泵 的工作压力。
缺点:携砂能力低,一旦造成砂堵无法 利用循环法解堵,并且在套管损坏或腐蚀的 井中使用受到了限制。
合层压裂
3、油、套管环行空间压裂
压裂液在油、套管环行空间,在高压下 泵入目的层。
优点:与油管压裂相比较,在同样的排 量条件下其摩阻损失小。
(一)压裂液对储层的伤害类型
1.压裂液在地层中滞留产生液堵 2.地层粘土矿物水化膨胀和分散运移产生
的伤害 粘土矿物与水为基液的压裂液接触,立 即产生膨胀,使流动孔隙减小。松散粘 附于孔道壁面的粘土颗粒与压裂液接触 时分散、剥落,随压裂液滤入地层或沿 裂缝运动,在孔喉处被卡住,形成桥堵, 降低渗透率,从而引起伤害。
暂堵剂是一种具有临时 性堵塞作用的物质。它主要 有两个方面的作用:一是堵
。 塞已压裂的层段,实现分压
多层的目的;二是保护(或 隔离开)非压裂层,实现选 择性压裂的目的。
分层压裂 施工时,将封隔器卡在欲压裂层 顶部,泵入压裂液。当压开第一 条裂缝后就往压裂液内加入暂堵 球,封堵住压开的裂缝后使泵压 升高。当泵压升至高于第一层的 破裂压力后,便压裂第二层。
5、替挤 加砂完成后,打开混砂车旁通替挤流程向井内注入 替挤液,将携砂液替挤到油层裂缝中;一般替挤量 小于地面管线和井下管柱容积的1.2倍;
国内压裂技术介绍 ppt课件
筛管
0.38
套管+裸眼
0.40
套管
0.30
合计117口:水平井93口,直井24口;ppt油课件井80口,气井37口,累计5.75亿元 12
汇报提纲
• 企业介绍与系统能力 • 一、水力喷射分段压裂技术 • 二、双封单卡分段压裂技术 • 三、滑套式封隔器分段压裂技术 • 四、国外水平井分段压裂技术 • 五、华鼎施工能力保障
126.4m3
分析山2、盒7段2层产水,关闭产水
层后,气量从1.7×104m3/d上升到
5.70×104m3/d
ppt课件
35
四、国外水平井分段压裂技术
连续油管喷砂射孔环空加砂压裂技术
作业程序 水力喷砂射孔 环空加砂压裂
层间封堵方式 砂塞封堵 底封隔器封堵
技术特色 不受压裂层数限制 可实现对多层系的动用
——HWB液压开关工具
ppt课件
25
三、滑套式封隔器分段压裂技术
1.裸眼井固井滑套选择性分段压裂技术 ——施工步骤
ppt课件
26
三、滑套式封隔器分段压裂技术
1.裸眼井固井滑套选择性分段压裂技术 ——施工步骤
ppt课件
27
三、滑套式封隔器分段压裂技术
2. 封隔器滑套选择性分段压裂技术
一次多层压裂措施(酸化或砾石充填),最多压裂15层 (14个球座,1个趾端滑套),无需中心管。
喷射起裂及 水力封隔
压裂液 喷射压裂
工具 喷砂射孔 参数效率
1
一、水力喷射分段压裂技术
1.水力喷射分段压裂机理
• 射孔过程:Pv+Ph<FIP,不压裂
环空加压:Pv+Ph+Pa≥FIP,起裂 • 射流在孔底产生推进压力约2~3MPa,
油气工程中的油井压裂技术资料
油气工程中的油井压裂技术资料油井压裂技术资料油气工程中的油井压裂技术是一种常用的增产措施,通过对油井进行高压注水,并在注水压力的作用下将储层中的裂缝扩张,从而提高产能。
本文将详细介绍油井压裂技术的原理、分类、施工方法以及应用前景等方面的资料。
一、压裂技术原理油井压裂技术的原理是在油井注入高压水或压裂液,通过水压作用下的地层水力压裂作用,使岩石储层裂缝扩展,使原本不可渗透的凝析油或天然气能够通过裂缝流入油井并提高产能。
该技术具有独特的地质力学和流体力学原理,需要通过对储层性质的详细分析和评估来确定施工参数。
二、压裂技术分类根据施工方式的不同,油井压裂技术可以分为液压压裂和射孔压裂两种主要类型。
1. 液压压裂液压压裂是指通过注入高压液体(通常为水或压裂液)来扩展储层裂缝的技术。
液压压裂可以进一步分为直接液压压裂和间接液压压裂两类。
直接液压压裂是指将压裂液注入到油井中,直接对储层进行压裂;而间接液压压裂是通过油井间的压力传递,将压裂液注入到非直接压裂的油井中,从而实现对目标油井的压裂作用。
2. 射孔压裂射孔压裂是指在目标油井的井身或套管上进行射孔,然后通过射孔孔眼注入压裂液来进行压裂作业。
射孔压裂技术主要适用于不适合进行液压压裂的储层,如含有脆弱层或储集层质量不均匀的目标层段。
三、压裂技术施工方法油井压裂技术的施工方法主要包括设计方案制定、井筒完井改造、压裂液配方设计、施工设备布置、压裂液注入与压裂监测等多个环节。
在设计方案制定阶段,需要根据储层性质和井况条件等因素来确定断裂参数和压裂液特性;井筒完井改造阶段主要包括套管射孔和固井作业,确保良好的井筒完整性;压裂液配方设计要考虑流体黏度、密度以及添加剂等因素;施工设备的布置要合理,确保施工过程的安全和高效性;压裂液注入阶段需要控制好注入速度和压力,并监测压裂效果。
四、压裂技术应用前景油井压裂技术作为一种增产手段,在油气工程中得到广泛应用。
随着科技的不断进步,压裂技术的施工效率和效果也在不断提高。
《压裂基础培训》课件
随着全球对环境保护意识的提高,许多国家对压裂技术中的用水 、废弃物处理等方面提出了更严格的法规和限制。
技术更新换代的压力
随着油气开采难度的增加,对压裂技术的要求也越来越高,需要不 断更新技术和设备来满足开采需求。
高成本与低效益的矛盾
压裂技术的实施成本较高,而油气价格受市场波动影响大,导致压 裂技术的经济效益不稳定。
压裂技术的发展经历了从传统水力压裂到新型复合压裂的演变,技术不断进步和创新。
详细描述
自20世纪50年代以来,压裂技术经历了多个发展阶段。最初的传统水力压裂技术使用 单一的液体或气体来施加压力。随着技术的进步,复合压裂技术开始出现,结合了多种 液体和支撑剂来提高压裂效果。如今,新型的复合压裂技术已经成为主流,能够更有效
《压裂基础培训》ppt课件
• 压裂技术概述 • 压裂技术的基本原理 • 压裂技术的主要设备 • 压裂技术的实际应用案例 • 压裂技术的挑战与未来发展
01 压裂技术概述
压裂技术的定义
总结词
压裂技术是一种通过施加压力将岩石破碎,从而释放和增加油气井产量的技术 。
详细描述
压裂技术是一种广泛应用于油气开采领域的增产技术。通过使用高压力将岩石 破碎,形成裂缝,使油气在井筒内流动更加顺畅,从而提高油气的产量。
04 压裂技术的实际应用案例
油田开发中的应用案例
案例一
某油田采用压裂技术提高采收率 ,通过压裂改造,单井产量提高
30%,最终实现增产目标。
案例二
某油田针对低渗透油藏,采用压裂 技术实现有效开发,通过优化压裂 参数和工艺,提高了储层渗透率和 产能。
案例三
某油田在老油田二次开发中,利用 压裂技术对老井进行改造,成功挖 掘出剩余油藏潜力,提高了采收率 。
《压裂工艺技术》PPT课件
(三) 压裂工具与管柱
压裂管柱组配和使用技术要求:
①压裂管柱采用N-80以上钢级的外加厚油 管和短节组配。
②封隔器卡点应选择在套管光滑部位,避 开套管接箍。
③压裂管柱喷砂器与封隔器直接连接,最 下一级封隔器以下的尾管长度不小于8m。管柱 底端距井内砂面或人工井底距离不小于10m。
(三) 压裂工具与管柱
④按照施工设计精确配出封隔器卡距、油 管下入深度,卡点深度与设计深度误差不超过 ±0.2m。
⑤由K344-114封隔器组成的浅井分压多层 管柱最多允许使用4级封隔器,允许上提一次。 该管柱承压能力为40 Mpa。
⑥压裂管柱是专用管柱,严禁用于替喷、 冲砂、压井、打捞等作业施工。
(三) 压裂工具与管柱 滑套式分层压裂管柱
(三)压裂的应用
大约40%完钻井数实施了压裂
125
80
100
1981年
1991年
2001年
全球压裂井次(万口)
美 石油储量的30%是通过压裂改造才达到经济开采条件的。
国 北 通过压裂增加130亿吨石油储量。
美 我 已探明低渗透地质储量约40亿吨,这些储量只有通过 国 压裂改造才能具备工业开采价值。
4 ± Ê »æ ͼ Æ÷
H D E ÏÖ ³¡ ²Î Êý У Õý ÒÇ ¡¢ S M ¡ª A ѹ ²î ʽ É°ÃÜ ¶È ¼Æ
1 ¡¢ ´ó ± à ˮ ¹¦ ÂÊ 1 3 0 0 Âí Á¦ £» 2 ¡¢ Öù Èû Ö±¾¶ 1 1 4 . 3 m m £» 3 ¡¢ ³å ³Ì 2 0 3 . 2 m m ¡£
²Ù ×÷Ä£ ʽ
ÊÖ ¿Ø
ÒÇ ±í ³µ
´ó ±Ã ¿Ø ÖÆ
压裂技术理论及应用精讲
001
002
003
0099
设计软件处于世界领先技术水平
5.0 0 5.0
0089 0099
19
2.压裂液和支撑剂
在压裂施工中,压裂液的主要作用是:造缝和携砂。压裂液 与地层岩石和油藏流体要配伍并且对支撑剂渗透率伤害最小。 一般来说,压裂液体系主要包括:水基压裂液(羟丙基瓜尔 胶)、清洁压裂液、油基压裂液、泡沫压裂液(CO2或N2)以 及相应的交联剂、破胶剂和添加剂,目前胜利油田主要使用 水基压裂液。
• 10 > k > 0.001 md (Gas) • 100 > k > 0.1 md (Oil) • 储层厚,含油性好 • 隔层遮挡性好 • 泄油面积大
复杂的压裂储层特性
• k ≥ 100mD或 k ≤ 0.1 mD (Oil) • k ≤0.001 mD (Gas) • 储层薄,含油性差 • 隔层遮挡性差 • 透镜体油气藏 • 敏感性储层
由于体积气体的泡沫含量高达95%,所以液相最小。在水基液
中,充满泡沫的液体极大地减少了与地层接触的液量,因此在
水敏地层中泡沫液的效果良好。
27
乳化压裂液
乳化液是两种不融和相的分散体系,如用表面活性剂稳定的水 中油或油中水。乳化基压裂液是高度粘稠溶液,具有良好的传 输性。
2475
2475
2500
2500
K-25L sand
K-25L 187 ft
2525
2525
2550
2550
2575 2600 2625
K-30 sand Mudstone
2575
K-30/35 207 ft
2600
Proppant Concentration (lb/ft²)
压裂工艺原理课件
04
压裂工艺的优化与改 进
压裂液的优化选择
总结词
压裂液是压裂工艺中的关键因素,其 选择直接影响压裂效果。
详细描述
根据地层特性和需求,选择具有合适 粘度、滤失量、摩阻等性能的压裂液 ,以满足压裂施工的要求。
总结词
优化压裂液的配方,提高其耐温、抗 剪切、稳定性等性能,有助于提高压 裂效果。
详细描述
通过实验和研究,不断改进压裂液的 配方,使其更好地适应不同地层和施 工条件。
根据需要选择合适的压 裂液,并进行配制。
注入支撑剂
将支撑剂注入到裂缝中 ,保持裂缝的开启状态
。
返排与测试
返排压裂液,并对油气 井进行测试,评估增产
效果。
03
压裂设备与工具
压裂泵
压裂泵是压裂工艺中的核心设备,用 于提供高压液体,将地层压开裂缝。
压裂泵的规格和型号较多,根据不同 的地层和施工要求选择合适的泵型和 规格。
新型压裂技术的研发与应用
总结词
随着技术的进步,新型压裂技术不断涌现,为油气开采提供了更多可 能性。
详细描述
研究和发展适用于不同地层和需求的压裂技术,如清水压裂、重复压 裂、水平井分段压裂等。
总结词
新型压裂技术的应用需充分考虑其适用范围和局限性,并进行严格的 现场试验。
详细描述
通过现场试验验证新型压裂技术的可行性和效果,不断完善和优化技 术方案,提高油气开采的经济效益。
压裂施工参数的优化
总结词
压裂施工参数的合理选择对压裂效果至 关重要。
总结词
通过实时监测和反馈,调整施工参数 ,确保压裂施工的安全和有效性。
详细描述
根据地层和井况,优化施工排量、砂 液浓度、砂量等参数,以实现最佳的 裂缝扩展和支撑效果。
《压裂工艺技术》PPT课件
(一)压裂的机理
利用地面高压泵, 注入液体压开缝。 填充适量支撑剂, 改善地层渗透性。
(二)压裂技术的发展
1947年在美国进行了首次水力压裂增产作业 六十年代,压裂主要作为单井的增产、增注措施 七十年代,进入低渗透油田的勘探开发领域 八十年代以后,成为提高采油速度和原油采收率 及油田开发效益的重要手段。
(二) 压裂设备
混
砂 车
一是把支撑剂与压裂液充分混合,
的
二是为泵车提供充足的液体。
作
用
最大排量15.9 m3/min,最大输 送砂量8165 Kg /min,8个泵车 接口。
(二) 压裂设备
仪
表 车
一是控制泵车和混砂车的运行参数
的 作
二是适时记录及监测分析施工参数
用
201队在用压裂设备综合性能参数表
(一)压裂施工过程
⑵ 试压
缓慢平稳启动压裂车高压泵,对井口阀 门以上的设备和地面压裂流程管线进行承受 高压性能试验,试验压力为预测泵压的1.2- 1.5倍,稳压5min,不刺不漏,压力不降为合 格。
(一)压裂施工过程
(3) 试挤
打开井口阀门,关闭循环放空阀门,逐台 启动压裂车,按压裂施工设计规定的试挤排量 将压裂液试挤入油层,压力由低到高至稳定为 止。目的是检查井下管柱及井下工具情况,检 查压裂层位的吸水能力。
77.5 107.9 130.2 150.1 181.3 221.5 283.3
(一)压裂施工过程
1、压裂准备 (4) 连接地面压裂流程 地面管线要使用N80以上钢级的油管和短节,
禁止使用软管线,并要求保证不刺不漏。 (5) 准备好压裂材料 主要是指压裂液和支撑剂。
(一)压裂施工过程
2、压裂施工工序
国内压裂技术介绍课件
一、水力喷射分段压裂技术案例分析
8.套管完井水平井喷射分段压裂-X5-4-PB092井
X5-4-PB092井1960m,水平段746m,施工前产液11t/d,油2t/d,含水84.3%。 2009年7月滑套水力喷射加砂压裂三层,加砂120m3, 油8~14t/d,是压裂施 工前的4~7倍,含水降为45%。 微地震监测,三段裂缝走向明显,均垂直裂缝,长50-101m,高14-29m.
一、水力喷射分段压裂技术
3.技术参数
技术 参数
套管孔径15-25mm 喷砂压力30MPa,排量2.5-3.6m3/min 环空压力20MPa, 排量0.6-1.2m3/min 地面泵压40-90MPa 单层加砂量15-50方
一、水力喷射分段压裂技术
4.技术优势
射孔-压裂联作,简化了射孔后压裂管柱的工序 降低地层破裂压力,有助于裂缝的形成和延伸 逐层进行喷孔压裂,不需对已压开的井段进行封堵 不需要井下封隔器,降低井下作业风险 不受完井方式的限制,适用于裸眼井、套管井、筛管井增产措施
3、指标:
工艺管柱耐温、耐压指标达到100℃、80MPa 一趟管柱最多压裂15段 单趟管柱最大加砂规模达到160m3陶粒 最大卡距达到112m
应用情况: 2006年8月-2010年底,大庆油田形成了以双封单卡分段压裂为
2.水力喷射分段压裂工具(工具串组成)
实现水力喷射分段压裂工艺的关键之一
喷枪2
喷枪1
一、水力喷射分段压裂技术
2.水力喷射分段压裂工具
拖动式喷射器
滑套式喷射器
适用于4″~95/8″套管, ~5500m井深 材料和处理:喷嘴工作寿命6h以上 地面泵压力:40~90MPa,排量:1.0~3.5m3/min 施工层段数:1~5层(5 ½″套管),单层填砂量:15~50m3
第一章 压裂
采集方法二:注入-关井试验
试验方法:完成注入试验后关井,记录压力和时间,
绘制压力与时间平方根的关系曲线,曲线拐点对应
的压力即为闭合应力。
石油与天然气工程学院
36
《油气井增产技术》 压裂
采集方法三:经验公式法 原理:关联实测闭合压力和由测井计算的v/(1-v)。
pc / m 0.12819 1
油气井参数 油气层参数 压裂参数 经济参数
设计参 数分类
石油与天然气工程学院
7
《油气井增产技术》 压裂
井类型、井径
储层孔饱渗 有效厚度
井下管柱与井口
油气 井参 数 油气 层参 数
储层压力 储层温度 流体性质 岩石力学性质 地应力性质
固井质量
射孔参数
井下工具
石油与天然气工程学院
遮挡层性质
8
《油气井增产技术》 压裂
石油与天然气工程学院
28
《油气井增产技术》 压裂
(3)施工参数计算法
或
pB pw pH p f pM
pB pI pH GF p B H
(4)统计分析
石油与天然气工程学院
29
《油气井增产技术》 压裂
G f 0.01589 3.5 10 H
6
0.83
图2 中原油田文留构造压力梯度和破裂压力梯度
31.5
31.3
31.1 0 12 24 36 48 60 思考:裂缝中流体随施工时间的变化规律? 距缝口的距离,m
图3 缝中流体温度和缝壁温度分布
石油与天然气工程学院
51
《油气井增产技术》 压裂
2. 裂缝几何尺寸模拟计算
宽度方程 压 裂 模 型 的 基 本 方 程 二维模型 压 裂 模 型 的 分 类 拟三维模型 全三维模型 集总参数模型
13压裂技术PPT课件
6 –停止泵注压裂液/携砂液,缝 内压裂液继续向渗透性地层滤失 。
7 – 裂缝闭合在支撑剂上,在地层 留下一条导流通道。
1 2
3
地面泵压 5
4
6
排量 砂比
理想的地面施工压力变化示意图
1 –开始泵注压裂液,地层破裂 2 – 裂缝随压裂液的泵注而延伸
18
Mfrac可实现多层压裂裂缝三维几何尺寸、并实现多裂缝的可视
化的显示和复杂裂缝的模拟。
19
Gohfer基于离散方法论、采用全三维模型、考虑各种复杂的地层因素,能
模拟非对称裂缝、复杂裂缝形状。
20
5、实施水力压裂基本条件
施工设备与管柱
基
施工工艺
本
施工参数
条
件
施工材料
配套措施
满足特定施工工艺条件下的地 层改造需要。
胜利油田压裂技术应用现 状
2013.11
1
提纲
一、压裂技术发展概况 二、大型压裂技术 三、机械分层压裂技术 四、非常规储层压裂技术
一、压裂技术发展概况
1、水力压裂的定义 2、水力裂缝延伸过程及关联的物理机理 3、水力压裂工艺技术分类 4、水力压裂设计方法 5、实施水力压裂的基本条件 6、水力压裂技术系列
3 – 支撑剂以悬浮状态进入水力裂缝
4 – 支撑剂随着泵注的继续向更远处
运移
5 –支撑剂在缝中向更远处前进,
7
随着压裂液继续向渗透性地层的滤
失 ,可到达水力裂缝的端部。
6 –停止泵注压裂液/携砂液,缝 内压裂液继续向渗透性地层滤失 。
7 –裂缝闭合在支撑剂上,在地层 留下一条导流通道。
压裂技术手册
压裂技术手册第一章:压裂技术概述1.1 压裂技术的定义压裂技术是一种利用高压液体将岩石裂开,以增加天然气或石油的产量的方法。
它是一种常用的增产手段,通过将液体压力传输到井下岩层,使岩石发生裂缝,从而增加天然气或石油的流动性和产量。
1.2 压裂技术的应用领域压裂技术主要应用于页岩气、页岩油、致密气和致密油等非常规油气储层的开发。
压裂技术也应用于重新注入井、水力增程和环境地下水治理等领域。
1.3 压裂技术的发展历史压裂技术起源于20世纪40年代,最初应用于石油与天然气勘探开发领域。
经过多年的发展和改进,压裂技术在不同类型的油气藏中得到了广泛应用,极大地推动了油气产量的提高。
第二章:压裂技术原理与方法2.1 压裂工艺压裂工艺包括井筒准备、液体携带体准备、良好的液体混合、压裂蓄能、施工压裂和压裂后处理等步骤。
其中压裂蓄能和施工压裂是整个压裂工艺的核心步骤,对良好的施工效果有着至关重要的作用。
2.2 压裂液体的选择压裂液体是压裂过程中的重要组成部分,影响着压裂效果和成本。
目前常用的压裂液体包括水基压裂液、油基压裂液和凝胶压裂液等。
不同类型的压裂液体适用于不同的岩石储层,需要根据具体情况进行选择。
2.3 压裂技术的方法常见的压裂技术方法包括液压压裂、酸压裂、液体增程压裂、射孔压裂和水力压裂等。
这些方法各有特点,可以根据油气藏的不同性质和地质条件进行选择和组合应用。
第三章:压裂技术设备与工具3.1 压裂泵压裂泵是压裂工程中的关键设备,主要用于将压裂液体输送到井下岩石储层,并施加高压以建立岩石裂缝。
根据不同的工程需求可以选择柱塞泵、隔膜泵或旋转泵等不同类型的压裂泵。
3.2 压裂管线与装置压裂管线是输送压裂液体的通道,需要具有耐高压、耐腐蚀和良好的耐磨性。
压裂装置包括防喷帽、防喷装置和安全阀等设备,能够保证施工过程的安全和稳定。
3.3 压裂监测与控制系统压裂监测与控制系统通过实时监测压裂施工现场的参数,包括压力、流量、井底压力和岩石裂缝参数等,以实现对压裂过程的精确控制和监测。
压裂技术手册
压裂技术手册
第一部分:压裂技术概述
压裂技术是一种常用于油气田开发中的重要工艺,通过对油气层进行注水或注汽,增加地层渗透率,提高油气产能。
本手册将介绍压裂技术的原理、流程、设备以及常见问题解决方法。
第二部分:压裂技术原理
1. 压裂基本原理:介绍压裂原理,包括地层力学性质、水力压裂原理、岩石断裂机制等内容。
2. 压裂效果影响因素:分析地层类型、压裂液性质、压裂参数等对压裂效果的影响。
第三部分:压裂工艺流程
1. 井前准备工作:包括压裂目的、井型选择、地层分析等。
2. 压裂液配方与搅拌:介绍常用的压裂液物理性质和配方搅拌方法。
3. 压裂设备布置与操作:包括压裂泵、管柱、压裂头等设备的布置和操作方法。
4. 压裂过程监测与记录:介绍压裂过程中的监测设备和记录方式。
第四部分:常见问题与解决方法
1. 压裂失效原因分析:分析压裂失效的原因,包括地层条件、操作失误、设备故障等方面。
2. 压裂问题解决方法:针对常见的压裂问题,提出解决方法和应对措施。
第五部分:压裂技术在油气开发中的应用
1. 压裂技术在常规油气田中的应用案例分析。
2. 压裂技术在非常规油气开发中的应用前景展望。
第六部分:压裂技术的未来发展
1. 压裂技术的发展趋势:包括环保压裂技术、智能化压裂设备等。
2. 压裂技术的国际规范和标准化趋势。
结语:压裂技术对油气田开发具有重要意义,是提高产能的有效手段。
本手册的目的是帮助人们全面了解压裂技术,提高压裂作业的效率和安全性。
希望通过本手册的学习,读者能够更加深入地了解压裂技术,并在实际应用中取得更好的效果。
压裂工艺技术在油田应用
✓ 集成化:将压裂工艺与其
和模拟技术,实现压裂工
他油气开采技术相结合,
艺的精准控制和优化。
提高油气开采效率。
压裂工艺技术在油 田中的应用
压裂工艺在油田增产中的应用
1
提高采收率:通过压裂工艺, 可以增加油井的产量,提高
油田的采收率。
2
延长油井寿命:压裂工艺可 以延长油井的寿命,提高油
田的经济效益。
3
降低生产成本:通过压裂工 艺,可以降低油田的生产成
本,提高油田的竞争力。
4
提高油品质量:压裂工艺可 以提高油品的质量,满足市
场需求。
压裂工艺在油田开发中的挑战
01 地质条件复杂:不同油田
的地质条件差异较大,需 要针对具体地质条件进行 压裂工艺的优化和调整。
02 成本问题:压裂工艺需要
较高的成本投入,需要平 衡成本与效益的关系。
降低环境影响: 通过采用环保型 压裂液、优化压 裂工艺等手段, 降低压裂作业对 环境的影响。
提高压裂液回收 率:通过优化压 裂液配方、改进 压裂工艺等手段, 提高压裂液回收 率,降低成本。
提高压裂液性能: 通过优化压裂液 配方、改进压裂 工艺等手段,提 高压裂液性能, 提高压裂效果。
压裂工艺技术在油田应用的前景
支撑剂:用于保持裂缝张开的固体颗粒,如石英 砂、陶粒等。
裂缝:地层中由于压裂液注入产生的裂缝,有利 于油气的流动和开采。
压裂工艺的工作原理
01
02
压裂液的注 入:将压裂 液注入地层, 形成高压环 境
地层破裂: 在高压环 境下,地 层产生裂 缝
03
04
支撑剂的注 入:将支撑 剂注入裂缝, 保持裂缝的 稳定性
压裂工艺技术在油田应用
压裂常识讲座全
•控制压裂层位准确、可靠; •施工中两个封隔器之间拉力较大,对深 井和破裂压力高的地层,不宜采用; •两个封隔器之间的所有井下工具、短节 的本体和螺纹抗拉强度必须大于施工时 的最大拉力; •喷砂器应紧接于下封隔器上部,以免施 工时封隔器上形成沉砂; •起管柱前,应先反循环将下封隔器上部 沉砂冲净,起管柱时,应先上下活动, 不得猛提。
如何认识水力压裂的裂缝尺寸
•应力剖面决定缝高延 伸,特别是产、隔层间 的应力差值;
•一般缝宽为支撑剂粒 径的4-10倍;
•缝长与液量、砂量、 砂比、排量有关,相对 而言人为设计的空间较 大;
•岩性对裂缝尺寸影响 较大。
裂缝高度测试(温度、示踪剂)
隔层
压后井温曲线
压裂层
热鼻现象
压前井温基线
隔层
五、水力压裂施工方式
封隔器+填砂分层压裂工艺
压第一层
压第二层
•可以不动管柱、不压井、不放 喷一 次施工分压多层; •由于受管柱内径限制,一般最多只 能用三级滑套,一次分压四层; •管柱结构复杂,容易造成砂卡,施 工完后应立即起出管柱; •如逐层压裂求产完再打开滑套压上 层,在打开滑套前应先反循环将管 柱内外沉砂冲净,以免造成砂卡; •滑套外径应小于所通过的管柱最小 内径,并与滑套坐落短节密封良好。
如何判断水力压裂的裂缝方位
1、地面微地震方法 2、井下微地震方法 3、测斜仪方法 4、电阻率层析成像方法
1、声发射定位裂缝监测与诊断技术
通过测定微震震源 辐射出的地震波运动学 参数,反演微震震源的 空间位置,微震震源的 空间分布反映了人工裂 缝的轮廓。可记录3000 米以内深度的-2级地震。 本次测试采用的是改进 后的6点无线传输定位 系统。
压裂技术理论及应用精讲94页PPT
压裂技术理论及应用精讲
6
、
露
凝
无
游
氛
,天高源自风景澈。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
压裂基本理论
圆孔周向的应力分布 :
σϕ =
σ x +σ y
2
σ x −σ y a2 3a 4 (1 + 2 ) − (1 + 4 ) cos 2ϕ 2 r r
A)当r=a且σx=σy=σH时,σφ=2σx=2σy=2σH ) 且 说明圆孔壁上各点的周向应力相等,与φ值无关。 值无关。 说明圆孔壁上各点的周向应力相等, 值无关 B)当r=a, σx > σy 时, 当
厚壁圆筒,假设材料是弹性的, 厚壁圆筒,假设材料是弹性的,根据弹性力学中的拉梅 公式(拉应力取负号 当厚壁筒外边界半径r 拉应力取负号),当厚壁筒外边界半径 公式 拉应力取负号 当厚壁筒外边界半径 e→∞,厚壁筒 , 外边界压力Pe=0时,井壁上r=a处的周向应力 外边界压力 时 井壁上 处的周向应力: 处的周向应力
z
H:地层深度;φ :孔隙度; 由于油气层中均有一定的孔隙压力pp(即地层压力或 流体压力),部分上覆岩层的压力σz被多孔介质中的流体 压力支持。
②故有效垂向应力可表示为: ze = σ z − p p 故有效垂向应力可表示为: σ ③根据广义虎克定律,则可求出岩石的有效水平 根据广义虎克定律, 应力为: 应力为: ν σ xe = σ Ze 1 −ν
1 − 2ν − p P )α 1− ν
σ Z = σ z + ( piwf
1 − 2ν − p p )α 1− ν
2. 造缝条件
为使地层破裂, 为使地层破裂,必须使井底压力高于井壁上的总应力 及岩石的抗张强度。
(1) 形成垂直裂缝
条件:如果地层的破裂属于纯张力破坏, 条件 : 如果地层的破裂属于纯张力破坏 , 那么随井
≥ 3σ y − σ x − piwf + ( piwf 1 − 2υ h − pP )α +σt 1 −υ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压 裂 工 艺
压裂工艺流程 压裂裂缝扩展及增产机理 压裂设计方法 压裂工艺技术 压裂测试方法
压裂施工评估方法
9
1.压裂工艺流程
压裂液罐 压裂井口
低压管汇
高压管汇
支撑裂缝
10
11
2.压裂增产机理——水力压裂裂缝增长过程
1 - Fracture initiation as pumping of fluid is started Time during fracture treatment 2 - Fracture propagation with fluid 3 – Proppant (usually sand) enters hydraulic fracture as it is suspended in the fracturing fluid Frac width 4 - Proppant advances further into the fracture as pumping continues 5 – Proppant advances further in the fracture and may reach the tip of the hydraulic fracture as fluid continues to leak into the permeable formation 6 – Pumping of the fluid/proppant mixture is stopped and fluid continues to leak away into the permeable formation
20
压裂液
压裂液是压裂工艺技术的一个重要组成部分。主要功能是 造缝并沿张开的裂缝输送支撑剂,因此液体的粘性至关重要。
成功的压裂作业要求液体除在裂缝中具有较高的粘度外,还要
能够迅速破胶;作业后能够迅速返排;能够很好地控制液体滤 失;泵送期间摩阻较低;同时还要经济可行。
最初的压裂液为油基液;20世纪50年代末,用瓜胶增稠的水基液日见普 及。1969年,首次使用了交联瓜胶液。当时仅有约10%的压裂作业使用的是 凝胶油。目前,约有85%以上的压裂施工用的是以瓜胶或羟丙基瓜胶增稠的 水基凝胶液;凝胶油作业和酸压作业各占约5%;增能气体压裂约占10%。
21
压裂液分类
水基压裂液
由于水基液具有价廉、性良且易于控制等特 点,已成为应用最为广泛的压裂液。 用于稠化压裂液的聚合物之一是瓜胶。瓜胶 聚合物具有很强的亲水性,把瓜胶粉加入水中, 瓜胶的微粒将溶胀并与水化合,即瓜胶聚合物分 子与许多水分子缔合,在溶液中展开并延伸。从 而增加了溶液的粘度。因为瓜胶中仍有4-8%的水 不溶物,所以,在聚合物链上又引入了羟丙基, 制成羟丙基瓜胶。
0049
d dn na aS S d dn na aS S
0049
0049
0049
0059
e el la ah hS S 2 2 d dn na aS S 0069
0059
0059
0059
0069
0069
0069
2 d dn na aS S 00792
0079
0079
0079
0089
e el la ah hS S
26
多相压裂液
泡沫压裂液
泡沫是一种稳定的气液混合物,用表面活性剂可使这种混合物
达到稳定。降低了表面张力。当液体从作业井中返排时,泡沫 中的承压气体(氮或二氧化碳)膨胀将液体从裂缝中驱出。泡 沫加速了支撑裂缝中液体的回收率,因此是一种用于低压储层 中的理想液体。
由于体积气体的泡沫含量高达95%,所以液相最小。在水基液
储层有效渗透率、孔隙度、含油饱和度、有效厚度、储层地层压力、静态
温度;储层油水的相渗关系、流体性质(密度、粘度、压缩系数与总矿化
度等);岩石力学性质(弹性模量、泊松比、抗压强度等);储层就地应 力的垂向分布及水平主应力方位;遮挡层的岩性,厚度与就地应力值、井 的试油、开发生产与生产测试等资料数据。
压 裂 参数
RG 02
)is p( s s ertS 0005 0007
)is p( s uludoM
...aemreP eroP 0 5.0
)²tf/bl( erutcarF ni tnapporP fo noitartnecnoC
)ni( eliforP htdiW
0029
0029
0029
0039
0039
0039
16
3.不同类型油气藏压裂设计原则
低渗透性油藏
需要长裂缝, 但只需要低到中等的裂缝导流能力
中渗透性油藏
需要中等长度、高的裂缝导流能力
高渗透性油藏
只需要短的裂缝,但需要超高的裂缝导流能力
17
4.压裂设计目标
wkf FCD = kL wk f = 裂缝导流能力, md-m
K = 储层渗透率, md L f = 裂缝半长, m 对于 FCD > 30 可以得到无限大的裂缝导流能力,一般
0099
001
002
003
设计软件处于世界领先技术水平
19
2.压裂液和支撑剂
在压裂施工中,压裂液的主要作用是:造缝和携砂。压裂液 与地层岩石和油藏流体要配伍并且对支撑剂渗透率伤害最小。 一般来说,压裂液体系主要包括:水基压裂液(羟丙基瓜尔 胶)、清洁压裂液、油基压裂液、泡沫压裂液(CO2或N2)以 及相应的交联剂、破胶剂和添加剂,目前胜利油田主要使用 水基压裂液。 目前胜利油田应用的压裂液以羟丙基瓜尔胶(HPG)为主,其 水不溶物含量在6.5~8%,国外羟丙基瓜尔胶(HPG)水不溶 物含量在2~4%。支撑剂包括石英砂和陶粒,目前胜利油田主 要采用陶粒支撑剂。
主讲人:卢云霄
中石化胜利石油管理局井下作业公司
2010.08
1
前
言
压裂酸化技术不仅仅是提高油气井产量,更是认识地层的
重要手段之一。 通过压裂酸化改造,使许多复杂区块的
地质储量得以升级和动用,在勘探试油和油气藏开发中发 挥着日益重要的作用。
近年来压裂酸化技术得到了迅速发展,在滩坝砂、砂砾岩、
中,充满泡沫的液体极大地减少了与地层接触的液量,因此在 水敏地层中泡沫液的效果良好。
27
乳化压裂液
乳化液是两种不融和相的分散体系,如用表面活性剂稳定的水 中油或油中水。乳化基压裂液是高度粘稠溶液,具有良好的传 输性。 乳化液常因乳化剂吸附在地层岩石表面上而破乳。由于聚合物
成为常规植物胶水基压裂液体系的换代产品,。
25
清洁压裂液
以粘弹性表面活性剂(VES)
为主体的粘弹性胶束结构体系。清
洁压裂液具有良好的流变性能、滤 失性能、低损害与高导流能力特性。 同时,该清洁压裂液配制简便,将 适量的VES加在盐水中,不需要使
用交联剂、破胶剂和其它添加剂,
不存在残渣,对储层伤害小,应用 前境广阔
0.10
0.20 50
0.30 75
0.40
0.50
0.60 125
0.70 150
0.80
0.90
1.0 200
100
175
7
压裂工艺是一个复杂的系统工程,要设计
一次压裂施工并达到预期的效果,与地质分析
(控制着区块的含油分布)、岩石力学(控制
着裂缝几何形态)、流体力学(控制着液体流 动与支撑剂在裂缝中的铺置)、化学(控制着 施工的材料性能)以及机械、材料力学等多学 科有着密切的联系。
1
Frac length
2 3
7 – Formation closes on proppant and a conductive path remains in the reservoir
1 2
3
4 5
6
5 4 6
7
12
7
增产机理 —— 压裂井地层流体流动状态
井筒
13
二、压 裂 设 计 方 法
压裂设计优化程序
页岩等储层改造中发挥了重要作用。通过压裂改造,使史 南地区、临盘基山砂岩体、正理庄油田、孤北深层气等多 个低渗透、特低渗透油气藏的储量得以探明和动用,有力 地促进了胜利油田的勘探开发。
2
一 压裂技术
二 酸化技术
3
第一部分
压 裂 技术
水力压裂技术自1947年投入现场应用以来, 经过半个多世纪的完善和发展,已经成为提高 单井产量的基本工程手段之一。压裂技术通过
粘度大大降低,破胶化水的压裂液沿裂缝流向井底,排出地面,
携带的支撑剂随即在裂缝中沉降,在地层中形成了具有一定长度、 宽度和高度的高导流能力的支撑裂缝。改善了地层附近流体的渗 流方式和渗流条件,扩大了渗流面积,减小了渗流阻力并解除了 井壁附近的污染,从而达到增产、增注的目的。
5
6
A-07 Design
在油藏内形成深穿透、高导流能力的裂缝,提
高油气井产量和增加勘探井可采储量,最终提
高油气田的采收率。
4
压 裂 机 理
水力压裂作业,是利用地面高压泵注设备将高粘度的流体, 以大大超过地层吸收能力的排量注入井筒,在射孔油层附近憋起
高压,当井底压力超过井壁附近地层最小主应力及岩石的抗张强
度后,在地层中形成裂缝并向前延伸。然后,利用高粘度的压裂 液携带支撑剂注入裂缝中,停止注入后,随着压裂液的快速破胶,
GR 30 NPHI 180 0 RHOB 0.3 2.2 IMPH 3 0 Rocktype 70 Shale 2400 2400 Stres s (ps i) 2375 5000 10000
Half-Length K-22 210 ft
2425
2425
2450 K-25U sand