麻花钻的结构以及工作基本知识

合集下载

麻花钻的基本结构

麻花钻的基本结构

麻花钻的基本结构
麻花钻是一种中国传统的面点食品,以其独特的形状和口感而受到广
大消费者的喜爱。

下面将介绍麻花钻的基本结构。

麻花钻主要由面粉、白糖、花生油、芝麻、食盐等原料制成。

制作麻
花钻的过程分为揉面、调糖、擀面、切片、拧成麻花形、炸制、撒芝麻等
步骤。

首先,面粉和适量的水混合揉搓成面团。

这个过程需要花费一定的时间,以使面筋充分发展。

揉面时,可以适量添加食盐,增加面团的弹性和
风味。

接下来,将揉好的面团分成小份,用擀面杖将其擀成薄片。

为了保证
麻花钻的口感,面片的厚度应该足够薄,一般在2-3毫米左右。

然后,将白糖和食盐混合,撒在面片上。

根据个人口味,可以适量调
节白糖和食盐的用量。

这样可以增加麻花钻的味道和口感。

接着,将面片切成长条形,宽度约为1-2厘米。

长条形的面片将通过
下一步的操作,形成麻花钻的特有形状。

然后,将切好的面条一端拉长,双手交叉扭转,形成一根扭曲的面条。

这个过程类似于拧麻花,因此得名麻花钻。

最后,将制作好的麻花钻放入热油中炸制。

炸制的时间一般在2-3分
钟左右,直到麻花钻变得金黄脆香。

炸好后,将麻花钻取出沥油,待温度
降至室温后,撒上适量的芝麻,增加口感和风味。

总结起来,麻花钻的基本结构包括面粉、水、白糖、食盐、花生油和芝麻等原料,通过揉面、调糖、擀面、切片、拧形、炸制和撒芝麻等步骤制作而成。

麻花钻钻孔参数

麻花钻钻孔参数

麻花钻钻孔参数麻花钻是一种常用的钻孔工具,其具有结构简单、使用便捷、适应性广泛等特点,因而在建筑、矿业、地质勘探等领域得到了广泛的应用。

本文将对麻花钻的钻孔参数进行详细的分析,并探讨其在不同领域中的应用。

一、麻花钻的结构和钻孔参数麻花钻的结构主要由钻头、钻杆和手柄组成。

钻头是麻花钻的主要部件,其直径和长度决定了钻孔的尺寸。

常见的麻花钻钻头直径包括6mm、8mm、10mm等,长度可根据实际需要来定制。

钻杆是连接钻头和手柄的部件,其长度取决于需要钻孔的深度,通常有20cm、30cm、40cm等不同规格。

手柄是用于旋转钻杆来进行钻孔作业的部件,其设计合理性会直接影响到操作者的工作效率和劳动强度。

麻花钻的钻孔参数包括转速、推力、冲击频率等。

通常情况下,麻花钻的转速为500-1500rpm,推力为15-50N,冲击频率为0-3000次/min。

这些参数的选取需根据具体的钻孔材料和工艺要求来进行合理的调整,从而达到最佳的钻孔效果。

二、麻花钻在建筑领域中的应用在建筑领域中,麻花钻主要用于墙体、地面、天花板等材料的钻孔作业,例如混凝土、砖石、钢筋混凝土等。

由于其钻孔效率高、操作简便、成本低廉,因此得到了广泛的应用。

对于建筑领域中的钻孔作业,需要根据具体的钻孔材料来调整麻花钻的参数。

在对混凝土进行钻孔时,通常需要选择较高的转速和推力,以确保能够快速有效地完成钻孔作业。

而在对砖石进行钻孔时,则可以适当降低转速和推力,以防止钻孔材料的损坏。

三、麻花钻在矿业领域中的应用在矿业领域中,麻花钻主要用于采矿工作中的地层勘探、爆破孔钻等作业。

由于矿石的硬度和地质条件的复杂性,对麻花钻的钻孔参数提出了更高的要求。

在进行地层勘探时,需要根据地质条件和勘探深度来选择合适的钻头直径和长度,并结合较高的冲击频率和转速,以确保快速高效地完成勘探作业。

而在进行爆破孔钻时,则需要对麻花钻的推力和冲击频率进行调整,以满足爆破孔的尺寸和平整度要求。

第五章 麻花钻与铰刀.

第五章 麻花钻与铰刀.

测量方便
6
第五章
3 刃倾角λs :
麻花钻与铰刀
一 麻花钻的结构与几何参数
在切削平面内,主切削刃与基面之间的夹角
端面刃倾角λt :
主切削刃与基面在端面投影中
ห้องสมุดไป่ตู้
的夹角
7
第五章
4 顶角2φ与主偏角κr :
麻花钻与铰刀
一 麻花钻的结构与几何参数
顶角2φ:两条主切削刃在与其平行的平面上投影的的夹角
标准麻花钻:2φ=118 °
30
第五章
四 铰刀
5 结构
工作部分 颈部 柄部
麻花钻与铰刀
引导锥:在切削部分的锥角2φ≤30º 时,为便于切入,
工作 部分
在其前端制成引导锥:0.5~2.5 X 45º 切削部分:锥角2φ 校准部分:有刃带(修光刃):bα1 = 0.2~0.4 mm 导向;修光;提高表面质量和刀具寿命;便于制造、检验; 圆柱部分: 倒锥部分:降低摩擦
15
第五章
2
麻花钻与铰刀
二 麻花钻切削部分结构的分析与改进
标准高速钢麻花钻切削部分的修磨与改进
(2)修磨前刀面
加工较硬材料时,可将 主切削刃外缘处的前刀 面磨去一部分,适当减 小该处前角,以保证足 够强度
当加工较软材料时,在前 刀面上磨出卷屑槽,加大 前角,减小切屑变形,降 低切削温度,改善工件表 面加工质量
是磨削钻头柄部时的砂轮越程槽
常用来标钻头的规格。 工作部分 分切削部分和导向部分 切削部分:担负切削工作 导向部分:导向 备磨部分 钻芯:正锥 锥度:1.4~2/100 外径:倒锥 锥度:0.03~0.12/100
2
第五章
切削部分: 2个前刀面:螺旋槽

[精彩]钻工实际常识教材

[精彩]钻工实际常识教材

麻花钻1、高速钢麻花钻的结构标准锥柄高速钢麻花钻由三部分组成(1)、工作部分又分为切削部分与导向部分,切削部分担负着主要切削工作,导向部分的作用是当切削部分的切入工件孔后起导向作用,也是切削部分的备磨部分。

为了提高钻头的刚性与强度,其工作部分的钻心直径向柄部方向递增,每100mm长度钻心的递增量为1.4-2.0mm。

(2)、柄部钻头的夹持部分,并用来传递扭矩。

柄部分直柄和锥柄两种,前者用于小直径钻头,后者用于大直径钻头。

(3)、颈部颈部位于工作部分与柄部之间,磨柄部时退砂轮之用,也是钻头打标记的地方。

为了制造方便,直柄麻花钻一般不制有柄部。

麻花钻的切削部分有两个前面、后面、副后面(临近注切削刃的棱带)、主切削刃、副切削刃及一个横刃组成。

2、麻花钻切削部分的几何参数(1)、基面与切削平面基面:主切削刃上任意点的基面,即通过该点,垂直于该点切削速度方向的平面,主切削刃上各点因切削速度方向不同,基面位置也不同。

切削平面:主切削刃上任意点的切削平面,是包含该点切削速度方向而又切于该点加工表面的平面。

同样,由于主切削刃上各点的切削速度方向不同,切削平面位置不同。

(2)、螺旋角β钻头外圆柱面与螺旋槽交线的切线与钻头轴线夹角为螺旋角β。

由于螺旋槽上各点的导程P相等,因而在麻花钻的主切削刃上沿半径方向各点的螺旋角β就不相同,钻头外径处的螺旋角最大,越靠近钻头中心,其螺旋角越小。

螺旋角实际上就是钻头进给前角。

因此,螺旋角越大,会消弱钻头强度,散热条件也差。

标准麻花钻的螺旋角一般在18°-30°之间。

(3)、刃倾角与端面刃倾角由于麻花钻的主切削刃不通过钻头轴线,从而形成刃倾角。

它是在切削平面内主切削刃与基面之间的夹角,因为主切削刃上各点基面与平面位置不同。

因此刃倾角也是有变化的。

麻花钻主切削刃上任意点的端面刃倾角,是该点的基面与主切削刃在端面投影中的夹角,由于主切削刃三各点的基面不同,因各点的端面刃倾角也不相等,外缘处最小,越接近钻芯越大。

麻花钻

麻花钻

一、麻花钻结构特点麻花钻是最常用的孔加工刀具,此类钻头的直线型主切削刃较长,两主切削刃由横刃连接,容屑槽为螺旋形(便于排屑),螺旋槽的一部分构成前刀面,前刀面及顶角(2Ø)决定了前角g的大小,因此钻尖前角不仅与螺旋角密切相关,而且受到刃倾角的影响。

麻花钻的结构及几何参数见图1。

D:直径 y:横刃斜角 a:后角 b:螺旋角Ø:顶角 d:钻芯直径 L:工作部分长度图1 麻花钻结构及切削部分示意图横刃斜角y是在端面投影中横刃与主切削刃之间的夹角,y的大小及横刃的长短取决于靠钻芯处的后角和顶角的大小。

当顶角一定时,后角越大,则y越小,横刃越长(一般将y控制在50°~55°范围内)。

二、麻花钻受力分析麻花钻钻削时的受力情况较复杂,主要有工件材料的变形抗力、麻花钻与孔壁和切屑间的摩擦力等。

钻头每个切削刃上都将受到Fx、Fy、Fz三个分力的作用。

图2 麻花钻切削时的受力分析如图2所示,在理想情况下,切削刃受力基本上互相平衡。

其余的力为轴向力和圆周力,圆周力构成扭矩,加工时消耗主要功率。

麻花钻在切削力作用下产生横向弯曲、纵向弯曲及扭转变形,其中扭转变形最为显著。

扭矩主要由主切削刃上的切削力产生。

经有限元分析计算可知,普通钻尖切削刃上的扭矩约占总扭矩的80%,横刃产生的扭矩约占10%。

轴向力主要由横刃产生,普通钻尖横刃上产生的轴向力约占50%~60%,主切削刃上的轴向力约占40%。

图3 钻芯直径d-刚度Do关系曲线以直径D=20mm麻花钻为例,在其它参数不变情况下改变钻芯厚度,从其刚度变化曲线(见图3)可以看出,随着钻芯直径d增加,刚度Do增大,变形量减小。

由此可见,钻芯厚度增加明显增加了麻花钻工作时的轴向力,直接影响刀具切削性能,且刀具刚度的大小对加工几何精度也有影响。

由于普通麻花钻的横刃为大负前角切削,钻削时会发生严重挤压,不仅要产生较大轴向抗力,而且要产生较大扭矩。

对于一些厚钻芯钻头,如抛物线钻头(G钻头)和部分硬质合金钻头(其特点之一是将钻芯厚度由普通麻花钻直径的11%~15%加大到25%~60%)等,其刚性较好,钻孔直线度好,孔径精确,进给量可加大20%。

孔加工知识

孔加工知识

砂轮机 a)台式砂轮机 b)立式砂轮机
二、钻削工艺 1.必须扎紧,女工必须戴工作帽。
(2)用钻夹头装夹钻头时要用钻夹头钥匙,不可用扁铁和手锤敲击,
以免损坏夹头和影响钻床主轴精度。 (3)工件必须夹紧,特别在小工件上钻较大直径孔时装夹必须牢固, 孔将钻穿时,要尽量减小进给力。 (4)开动钻床前,应检查是否有钻夹头钥匙或斜铁插在钻轴上。
直径的钻头将孔扩大。 2)进给量的选择。高速钢标准麻花钻的进给量可参考表选取。
高速钢标准麻花钻的进给量
钻头直径D(mm ) 进给量f(mm/r) <3 0.025~0.05 3 ~6 >0.05~0.10 >6~12 >0.10~0.18 >12~25 >0.18~ 0.38 >25 >0.38~0.62
螺旋角β
(2)第二类是刃磨参数。
包括锋角、后角和横刃斜角。麻花钻虽然结构复杂,但一般只需 刃磨后刀面,刃磨时需要控制上述三个角度。这三个角度的测量平
面分别是:中剖面、柱剖面和端平面,如图所示。
刃磨参数
1)锋角(2φ )。锋角又称顶角,是两主切削刃在中剖面中投
影间的夹角。标准麻花钻2φ =118º,此时主切削刃为直线。否则,
钻各种材料孔时使用的切削液。
工件材料 各类结构钢 不锈钢,结构钢 紫铜,黄铜,青铜 切削量 3%-5%乳化液,7%碳化乳化液 3%肥皂水加2%亚麻油水溶液,碳化切削液 不用,5%-8%乳化液
铸铁
铝合金 有机玻璃
不用,5%-8%乳化液,煤油
不用,5%-8%乳化液,煤油与菜油的混合液 5%-8%乳化液,煤油
孔加工知识
一、标准麻花钻
1.标准麻花钻的结构
标准麻花钻简称麻花钻或钻头,是应用最广泛的钻孔工具。标 准麻花钻由柄部、颈部和工作部分组成,如图所示。

麻花钻和手钻的用途是什么

麻花钻和手钻的用途是什么

麻花钻和手钻的用途是什么麻花钻和手钻是常见的工具设备,被广泛应用于工业生产、建筑工程、木工加工等领域。

它们有着不同的特点和用途,下面将分别从麻花钻和手钻的定义、结构特点、用途以及各自的优缺点等方面进行详细介绍。

一、麻花钻的定义、结构特点与用途:1. 定义:麻花钻是一种通过旋转运动,以钻头在工件上形成孔洞或挖掘的工具。

它通常由电动机、减速机、传动装置、工作设备等组成。

2. 结构特点:麻花钻通常采用电动驱动,具有单手持握、便于操作的特点。

它的传动装置可以实现高速旋转,使钻头具有强大的钻孔能力。

3. 用途:(1)金属加工:麻花钻可以用于金属制品的钻孔加工,如钢材、铝材、铜材等。

它可以用于制作机械零部件、金属管道等;(2)木工加工:麻花钻也可以用于木材制品的加工,如家具、门窗等。

它可以实现精确的孔洞定位和钻孔;(3)建筑工程:麻花钻可以用于建筑工程中的钻孔处理,如钢筋混凝土、瓷砖等。

它可以用于固定门窗、安装管道等。

麻花钻的优点:1. 高效性:麻花钻的高速旋转可以提高钻孔的速度和效率;2. 精确性:麻花钻可以实现精密定位和穿孔,适用于要求高精度的加工任务;3. 多功能性:麻花钻具有多种钻头和配件,可实现不同材质和形状的钻孔。

麻花钻的缺点:1. 尺寸限制:麻花钻的尺寸较大,不适合在狭小空间进行钻孔操作;2. 重量较大:麻花钻的电机和减速机等部分较为庞大,使用时相对沉重;3. 使用限制:麻花钻在工件较薄、易碎或不规则的情况下,操作不便或容易导致损坏。

二、手钻的定义、结构特点与用途:1. 定义:手钻是一种通过手动操作,以钻头在工件上形成孔洞或挖掘的工具。

它通常由手柄、主轴、钻头等组成。

2. 结构特点:手钻采用人力驱动,手柄是主要的操作部位,通过旋转手柄使主轴带动钻头进行旋转;3. 用途:(1)家庭维修:手钻是日常家庭维修常用的工具,如安装挂钩、拆卸家具等;(2)艺术创作:手钻在工艺品制作中有着广泛的应用,如雕刻木雕、雕刻玉石等;(3)电路维修:手钻可用于电路板上的各种维修和配线工作。

项目四--麻花钻.讲义

项目四--麻花钻.讲义

刃磨麻花钻要求两个主切削刃和麻花钻的轴 线成相同的角度并且长度相同。横刃斜角为55 。 刃磨要注意冷却,防止切削部分过热 口诀: 刃口摆平轮面靠 钻轴斜放出锋角 由刃向背磨后面 上下摆动尾别翘
15
o
引起退火。
(1)钻头摆放位置
麻花钻中心高于 砂轮中心,主切削 刃保持水平位置。 麻花钻中心线与砂 轮外圆表面的夹角 约为59 ,同时钻柄 向下倾斜。
几何角度
12
麻花钻顶角的大小对切削刃和加工的影响
顶角 2κr>118º 2κr=118º (标准麻花钻) 2κr<118º
图示
主切削刃 的形状
凹曲线
直线 适中
凸曲线
顶角大 , 则切削刃短、 定心差,钻出的孔容易 对加工的 扩大;同时前角也增大, 影响 使切削省力
适用的材料 钻削较硬的材料
顶角小,则切削刃 长、定心准,钻出的 孔不容易扩大;同时 前角也减小,使切削 阴力大
特点
直柄:钻头直径﹤14MM 锥柄:钻头直径﹤14MM
1标注钻头直径,材料牌号和商标 1颈部较大的钻头 2制造麻花钻 2退刀槽 1切削 作用 2导向 作用 切削作用 保持钻削方向,修光 孔壁
8
直柄麻花钻
9
锥柄麻花钻
10
2、 麻花钻的几何形状
1 、螺旋槽: 排除切屑. 通入切削液. 构成切削刃. 2、 前刀面: 指切削部分的螺旋槽面 3、主后刀面:指钻头的螺旋圆锥面 4、主切削刃:担负主要切削工作 5、横刃:影响麻花钻的钻尖强度.(轴向力) 6、棱边:确定钻削方向, 修光孔壁 作为切削部分的后备部分
主 后 主切削刃 面
主切削刃
前面 主 后 面 棱边 副切削刃
副后面
11

-麻花钻

-麻花钻

6.2.2 麻花钻(P101)一、概述 (1)工艺范围钻孔、扩孔、铰孔、攻螺纹、锪孔、锪端面等。

(见P106、表6-1)(2)切削运动①主运动:钻头旋转运动(r/min ) ②进给运动:钻头轴向垂直进给(mm/r ) (3)加工精度 IT13~IT11 Ra12.5~Ra6.3μm 二、麻花钻的组成 1、柄部(莫氏锥孔)主 轴————莫氏锥柄>(莫氏锥柄)钻夹头(圆柱形)直 柄⎪⎭⎪⎬⎫→→→→≤mm 12d 12mm d ※柄部作用:夹持钻头、连接主轴、传递转矩与轴向力(进给)2、颈部(1)磨削钻头直径时的退刀槽。

(2)打印规格与厂标处。

3、工作部分 (1)导向部分①(两条)螺旋槽⇒容屑;排屑通道。

②(两条)螺旋棱边(刃带)⇒钻头导向;保持圆的孔形。

(2)切削部分切削刃)切削作用(内孔车刀主、主切削刃圆锥面 后刀面螺旋面前刀面:切削刃形成的→⎭⎬⎫≈→→4217→刃带(棱边)→导向(前大后小) 3→副切削刃→修光和导向 8→副后刀面(7) 5:横刃※两个后刀面的交线(一条横刃)。

※切削条件差(V cmin ≈0;F f ↑;Q ↑)。

三、麻花钻的结构参数1、d :钻头直径,两刃带间的垂直距离。

⎪⎩⎪⎨⎧→→→擦。

减少刃带与孔壁间的摩前大后小)(~倒锥量>后前mm 10012.005.0d d2、d 0:钻心(两旁为螺旋槽) ※d 0=0.15d (mm )※前小后大(钻头轴向刚度↑)→正锥量→10024.1~(mm ) 3、螺旋角ββ:钻头刃带棱边螺旋线展开成的直线(斜边)与钻头轴线的夹角。

(1)主切削刃外径处(A 点)Pr.2tan 1-A πβ= 又:P =2π.r.tan βAP-钻头螺旋沟导程 (2)主切削刃钻心X 点:A 1x1-X r.tan .2.2tan P .2tan βπππβx r r -== A1-X r.tan tan ββxr =(3)⎩⎨⎧↓⇒→↑⇒→→minx x maxA r βββββr 钻心孔 外径处 (4)→β实际上是钻头假定工作平面内的进给前角(γfx =β,见后面讲解)∴⎩⎨⎧↑↑最小、切削最差 钻心处 最大、切削轻快 外径处 fx min fx max fx γβγβγβ四、麻花钻的几何参数 1、基面与切削平面(图6-9) (1)基面P r :rA C P V A 基面 平面垂直的②且与该点平面在内的轴线点与钻头①过⇒⎭⎬⎫(2)切削平面P sSA rA P P A ⇒⇒⎭⎬⎫并垂直于基面②与主切削刃相切 点 ①过见P11,还有: (3)P o 正交平面 (4)P f 进给平面(5)P p 背平面(复习P11)各点基面均不同。

麻花钻简介

麻花钻简介

麻 花 钻《机械加工方法与通用设备》扬州市职业大学 机械工程学院1、麻花钻的组成及结构参数;2、麻花钻切削部分几何参数;3、麻花钻的结构特征。

麻 花 钻柄部是钻头的夹持部分,用于联接机床,钻孔时传递转矩。

按麻花钻直径的大小,分为直柄(直径<12mm)和锥柄(直径>12mm)两种。

一、 麻花钻的组成由柄部、颈部和工作部分组成。

1、柄部颈部用于连接柄部和工作部分,供磨削时砂轮退刀和打印标记用。

直柄钻头没有颈部。

2、颈部麻花钻的工作部分是钻头的主要部分,由切削部分和导向部分组成。

切削部分 担负着切削工作,由两个前刀面、主后刀面、副后刀面、主切削刃、副切削刃及一个横刃组成。

导向部分 是当切削部分切入工件后起导向作用,也是切削部分的备磨部分。

3、工作部分标准麻花钻的切削部分由五刃(两条主切削刃、两条副切削刃和一条横刃)和六面(两个前刀面、两个主后刀面和两个副后刀面)组成。

与工件过渡表面(孔底)相对的端部两曲面螺旋槽与主后刀面的两条交线与工件已加工表面(孔壁)相对的两条棱边螺旋槽的螺旋面棱边与螺旋槽的两条交线两主后刀面在钻心处的交线五刃(两条主切削刃、两条副切削刃和一条横刃)和六面(两个前刀面、两个后刀面和两个副后刀面)组成。

1、直径d麻花钻的直径是钻头两刃带之间的垂直距离,它按标准尺寸系列或螺孔的底孔直径设计。

二、麻花钻的结构参数2、螺旋角β钻头外圆柱面与螺旋槽交线的切线与钻头轴线的夹角为螺旋角β。

tan 2x x r p βπ=在主切削刃上半径不同的点螺旋角不相等,越靠近钻头外缘处螺旋角↑,越靠近钻头中心,其螺旋角↓。

螺旋角↑,钻头的侧前角↑,钻头越锋利。

但是螺旋角过大,会削弱钻头强度,散热条件也差。

标准麻花钻的螺旋角一般在18°~30°,大直径取大值。

三、麻花钻切削部分的几何参数1、基面和切削平面Ø基面 麻花钻主切削刃上任一点的基面是通过该点并与该点切削速度方向垂直的平面,实际上是过该点与钻心连线的径向平面。

认识麻花钻及钻孔

认识麻花钻及钻孔

准备工具与设备
检查钻床、钻夹具、冷却液等 是否齐全,并确保设备正常工
作。
安全防护措施
设置安全防护网、戴好防护眼 镜、手套等个人防护用品,确保工作环源自整洁有序。钻孔的操作步骤与技巧
对准钻孔位置
将钻床移至需要钻孔的位置, 对准墨线或标记笔所做的标记。
控制转速与进给速度
根据不同材质和孔径大小,调 整钻床的转速和进给速度,以 获得最佳的钻孔效果。
观察孔洞边缘是否光滑、 无毛刺,检查表面质量
是否符合标准。
使用直角尺或测角仪检 查钻孔是否垂直于材料 表面,确保钻孔质量。
清洁与去毛刺
使用清洗剂清除孔内残 渣,使用砂纸或锉刀去
除孔洞边缘的毛刺。
04
钻孔中的常见问题与解决 方案
钻头磨损与更换
钻头磨损
钻头在长时间使用过程中,切 削刃会逐渐磨损,导致钻孔质
钻孔深度控制与测量
深度控制
解决方案
深度测量
测量方法
注意事项
在钻孔过程中,需要控 制钻孔深度,以免钻过 头或未达到预定深度。
使用限深装置或加长杆 ,确保钻头在达到预定 深度时自动停止。同时 ,在开始钻孔前,应先 在试样上试钻,调整好 钻床的进给量。
在加工过程中,需要经 常测量实际钻孔深度, 以确保符合图纸要求。
在钻孔过程中,由于切削刃的后 角很小,所以钻头不仅对孔壁施 加压力,而且对孔壁产生很大的 挤压作用,使孔壁产生弹性变形。
热效应
钻孔时,切削刃与孔壁摩擦产生 大量的热量,使孔的温度升高,
孔壁产生热膨胀,孔径增大。
麻花钻的材料与制造工艺
材料
麻花钻的材料一般为高速钢或硬质合金,根据不同的加工材料和加工要求选择 合适的材料。

麻花钻工作原理

麻花钻工作原理

麻花钻工作原理
麻花钻是一种用于钻取岩石和土壤的工具,它的工作原理可以简单描述如下:
1. 首先,麻花钻通过旋转运动将其扭曲的钻杆送入地下。

它通常由多个连接在一起的钻柄组成,形成一根长而坚固的钻杆。

2. 当麻花钻旋转时,其螺旋形状的钻杆会沿着钻井井筒逐渐钻进地下。

由于钻杆结构的不断扭转,钻杆可以轻松地穿过岩石和土壤。

这种螺旋钻杆的设计使得麻花钻可以处理不同类型的地质物质。

3. 麻花钻旋转的同时,通过配备的泥浆系统将泥浆从地表输送到钻杆的内部。

这种泥浆循环系统可以起到冷却钻头的作用,并将钻孔中的碎屑带回地表,使钻探过程更加高效。

4. 随着钻杆不断往下钻进,麻花钻的操作者可以通过检查从井口返回的岩屑样本和泥浆的物理性质来了解地下构造和地质特征。

5. 当达到目标深度后,麻花钻可以停止旋转,然后通过逆向旋转卸下连接在钻杆上的钻头。

总的来说,麻花钻的工作原理是通过旋转钻杆和循环泥浆来钻取地下岩石和土壤。

它能适应不同类型的地质条件,并提供实时的地质信息。

机械加工如何从入门到精通,麻花钻的结构组成及作用

机械加工如何从入门到精通,麻花钻的结构组成及作用

机械加工如何从入门到精通,麻花钻的结构组成及作用一、麻花钻的结构组成及作用1.麻花钻的组成及作用(1)柄部钻削时起夹持定心和传递转矩的作用。

(2)颈部直径较大的麻花钻在颈部标有钻头直径、材料牌号和商标。

直径小的直柄麻花钻没有明显的颈部。

(3)工作部分2.麻花钻工作部分的组成及作用麻花钻的工作部分是由“五刃六面”组成。

二、麻花钻的几何角度1.确定麻花钻几何角度的辅助平面2.麻花钻的几何角度(1)顶角两主切削刃在平行于麻花钻轴线的平面上的投影的夹角称为顶角。

标准麻花钻的顶角为118°。

(4)横刃斜角(ψ)在垂直于麻花钻轴线的端面投影图中,横刃与主切削刃之间的夹角称为横刃斜角。

三、麻花钻的刃磨与修磨1.麻花钻的刃磨要求(1)麻花钻的两条主切削刃应该是轴对称的,也就是两主切削刃与钻头轴线成相同的角度,并且长度相等。

(2)横刃斜角为55°。

2.麻花钻的缺陷(1)主切削刃上各点前角变化很大。

(2)横刃太长。

(3)主切削刃长。

(4)棱边处副后角为零。

3.麻花钻的修磨(1)修磨横刃目的:增大横刃前角,缩短横刃长度,以降低钻削力,提高定心精度,并有利于分屑和断屑,是最常用的修磨方法。

原则:工件材料越软,横刃可修磨得越短;工件材料较硬,横刃应少修磨些。

(2)修磨前面目的:改变主切削刃上前角的分布状态,增大或减小前角,以满足不同的加工要求。

方法:(1)一是修磨外缘处的前刀面,以减小前角。

(2)二是修磨横刃处的前刀面,以增大前角。

原则:(1)工件材料较软,应修磨横刃处前角。

(2)工件材料较硬,应修磨外缘处的前刀面。

(3)修磨主切削刃磨出双重顶角(或多重顶角,甚至磨成外凸圆弧刃),增大外缘处的刀尖角,改善外缘转角处的散热条件,延长麻花钻寿命,并可减小孔的表面粗糙度。

(4)修磨棱边其目的是减少棱边与孔壁的摩擦,适合加工韧性材料或软金属,以提高加工表面质量。

(5)开分屑槽在麻花钻的前刀面或后刀面上交错磨出小狭槽,使切屑变窄,有利于排出。

钻床工人培训教材

钻床工人培训教材

目录章节内容页号1.0 麻花钻1-62.0 钻削原理6-83.0 钻头的修磨8-94.0 先进钻型与结构特点简介95.0 台式钻床9-121.0麻花钻1.1麻花钻的结构麻花钻是一种形状较复杂的双刀槽孔加工工具。

1.2麻花钻的组成麻花钻按其功用的不同, 可以分为三部分:(1)钻柄(Shank);(2)钻颈(Neck);(3)钻体(Body)。

~1~钻柄: 钻头上供装夹用的部分, 并用以传递钻孔所需的动力(扭矩和轴向力)。

钻颈: 位于刀体和钻柄之间的过渡部分。

通常用作砂轮退刀用的空刀槽。

钻体: 钻头的工作部分, 由切削部分(即钻尖)和导向部分组成1.3麻花钻的名称与术语(1)前面(Face)螺旋槽靠近切削刃的那部分面。

(2)后面(Flank)在钻尖上与被加工表面相对的面。

有两个后面,每个又可分为第一后面和第二后面。

(3)钻尖(Point)或称钻锋,承担主要的切削任务。

(4)主切削刃(Cutting edge)前面与后面相交成的刃口。

普通麻花钻有两条。

(5)副切削刃前面与刃带的相交线,即刃带边缘刃。

(6)横刃(Chisel edge)两后面相交成的刃口。

(7)横刃转点(Chisel edge corner)主切削刃与横刃相交成的转角交点。

(8)外缘转点(Outer corner)主切削刃与副切削力刃的转角交点。

(9)钻芯尖(Core tip)理论上是麻花钻中心轴在钻尖处的端点,实际当中有偏差。

~2~(10)螺旋槽(Flutes)或称刃沟,钻体上螺旋形沟槽。

作用有:排屑,容屑,切削液流入的通道。

(11)刃瓣(Land)钻体上外缘未切出刃沟的部分。

(12)刃背(Body clearance)刃瓣上低于刃带的外缘表面。

作用:在钻体的外圆上减小直径,以与孔壁形成径向间隙,防止摩擦,提高加工精度,降低切削力(13)刃带(Margin)或称棱边,即钻头的副后面。

(14)后背棱后面与刃背的相交棱线。

(15)后沟棱后面与螺旋槽的相交棱线。

第五章 麻花钻与铰刀

第五章 麻花钻与铰刀
④ 磨短横刃的同时,加大前角 有利于分屑 增大钻尖部分排屑空间 保证一定强度
15
第五章 麻花钻与铰刀
二 麻花钻切削部分结构的分析与改进
2 标准高速钢麻花钻切削部分的修磨与改进
(2)修磨前刀面
加工较硬材料时,可将 主切削刃外缘处的前刀 面磨去一部分,适当减 小该处前角,以保证足 够强度
当加工较软材料时,在前
第五章 麻花钻与铰刀
一 麻花钻的结构与几何参数
标准麻花钻的结构:由柄部、颈部和工作部分组成
柄部: •钻头的夹持部分 •传递转矩和轴向力 •分锥柄和直柄 •直柄主要用于直径小于 12mm的小麻花钻。 •锥柄用于直径较大的麻花 钻 •锥柄钻头的扁尾用于传递 转矩和拆卸钻头。
1
第五章 麻花钻与铰刀
一 麻花钻的结构与几何参数
3 刃倾角λs :
在切削平面内,主切削刃与基面之间的夹角
端面刃倾角λt :
主切削刃与基面在端面投影中 的夹角
7
第五章 麻花钻与铰刀
一 麻花钻的结构与几何参数
4 顶角2φ与主偏角κr : 顶角2φ:两条主切削刃在与其平行的平面上投影的的夹角
标准麻花钻:2φ=118 °
8
第五章 麻花钻与铰刀
一 麻花钻的结构与几何参数
实践证明,经修磨后的钻头,其耐用
度可提高一倍左右。
17
第五章 麻花钻与铰刀
二 麻花钻切削部分结构的分析与改进
2 标准高速钢麻花钻切削部分的修磨与改进
(4)修磨切削刃
增长切削刃
减轻切削刃单位长度 上的负荷
改善转角处的散热条 件
提高耐用度
主副切削刃交接处磨 出过渡刃,形成双重 顶角或三重顶角
可获得较高的加工表 面质量和精度。

最全麻花钻刃磨知识详解

最全麻花钻刃磨知识详解

tan o
1
tan sin
360
-横刃斜角,一般
取550。 横刃前角:
o (900 o ) 540
4.钻削原理
钻削力在各切削刃的大约分配比例, 如下表所示。可见在钻一般材料时,轴 向力主要来自横刃,而扭矩主要由主刃 产生。但需要注意的是,当钻削某些弹
性模量E较小的材料(如钛合金)时,由于
弹性恢复大,使得孔壁与钻头刃带的摩 擦力矩增加,可约占总力矩的64%。
(2) 麻花钻的主切削刃全刃参加切削,切削宽度宽,刃上各 点的切削速度又不相等,容易形成螺旋形切屑,排屑困难。 因此切屑与孔壁挤压摩擦,常常划伤孔壁,加工后的表面粗 糙度值大。
(3) 麻花钻的直径受孔径的限制,螺旋槽使钻心更细,钻头 的刚度低;仅有两条棱带导向,孔的轴线容易偏斜;再加上 横刃前角小(负值)、长度大,钻削时轴向抗力大,定心困难, 钻头容易摆动。因此,孔的形位公差较大。
m O1
Prm stm
Ph
2 fm
m om
m
Pf Po
Po rm Pf
m
2rm 2R0
③ 前角
tan om tan m sinrm tan stm cosrm
④ 后角
计算主后角
cot ox
cot f x sin krx
tan tx
cos krx
⑤ 副偏角和副后角 ⑥ 横刃角度
横刃后角:
(4) 主、副切削刃交汇处切削速度最高、刀尖角较小,且又 因刃带的存在使副切削刃后角为零。因此刀尖处摩擦最大, 发热量大,散热条件差,磨损最快。
2)刃磨过渡刃 3)修磨横刃
1
118°
0.2d0
2 R
2 d0
f0

麻花钻的结构以及工作基本知识

麻花钻的结构以及工作基本知识

麻花钻的结构以及工作原理麻花钻的结构以及工作原理在金属切削中,孔加工占很大比重。

孔加工的刀具种类很多,按其用途可分为两类:一类是在实心材料上加工出孔的刀具,如麻花钻、扁钻、深孔钻等;另一类是对工件已有孔进行再加工的刀具,如扩孔钻、铰刀、镗刀等。

本节介绍常用的几种孔加工刀具。

(一)麻花钻1.麻花钻的结构要素图7-32为麻花钻的结构图。

它由工作部分、柄部和颈部组成。

(1)工作部分麻花钻的工作部分分为切削部分和导向部分。

①切削部分麻花钻可看成为两把内孔车刀组成的组合体。

如图7-33所示。

而这两把内孔车刀必须有一实心部分——钻心将两者联成一个整体。

钻心使两条主切削刃不能直接相交于轴心处,而相互错开,使钻心形成了独立的切削刃——横刃。

因此麻花钻的切削部分有两条主切削刃、两条副切削刃和一条横刃(如图7-32b 所示)。

麻花钻的钻心直径取为(0.125~0.15)do(do为钻头直径)。

为了提高钻头的强度和刚度,把钻心做成正锥体,钻心从切削部分向尾部逐渐增大,其增大量每100mm长度上为1.4~2.0mm。

两条主切削刃在与它们平行的平面上投影的夹角称为锋角2Φ,如图7-34所示。

标准麻花钻的锋角2Φ=118°,此时两条主切削刃呈直线;若磨出的锋角2Φ>118°,则主切削刃呈凹形;若2Φ<118°,则主切削刃呈凸形。

②导向部分导向部分在钻孔时起引导作用,也是切削部分的后备部分。

导向部分的两条螺旋槽形成钻头的前刀面,也是排屑、容屑和切削液流入的空间。

螺旋槽的螺旋角β是指螺旋槽最外缘的螺旋线展开成直线后与钻头轴线之间的夹角,如图7-34所示。

愈靠近钻头中心螺旋角愈小。

螺旋角β增大,可获得较大前角,因而切削轻快,易于排屑,但会削弱切削刃的强度和钻头的刚性。

导向部分的棱边即为钻头的副切削刃,其后刀面呈狭窄的圆柱面。

标准麻花钻导向部分直径向柄部方向逐渐减小,其减小量每100mm长度上0.03~0.12mm,螺旋角β可减小棱边与工件孔壁的摩擦,也形成了副偏角。

麻花钻的基本结构

麻花钻的基本结构

本章知识内容简介本章从认识麻花钻开始,介绍了麻花钻的基本结构及相关的术语。

同时作为分析麻花钻的辅助工具----基准系在本章也作了具体的讲解,并在此基础上介绍了麻花钻的长度参数和角度参数。

通过本章的学习,读者可以初步了解麻花钻的组成,为后续内容的学习做下必要的准备。

本章的主要知识点如下:麻花钻的结构与术语麻花钻简介麻花钻的组成麻花钻的名称术语麻花钻的三种基准系三种基准系简介结构基准系理论参考系工作参考系测量平面三种基准系的区别麻花钻的结构参数长度尺寸参数结构角度参数麻花钻按其功用的不同, 可以分为三部分:1. 钻柄(Shank);2. 钻颈(Neck);3. 钻体(Body)。

钻柄: 钻头上供装夹用的部分,并用以传递钻孔所需的动力(扭矩和轴向力)。

钻颈: 位于刀体和钻柄之间的过渡部分。

通常用作砂轮退刀用的空刀槽。

钻体: 钻头的工作部分, 由切削部分(即钻尖)和导向部分组成。

第一节 麻花钻的结构与术语麻花钻简介麻花钻是一种形状较复杂的双刀槽孔加工工具。

要分析麻花钻切削过程的特点, 必须深入了解钻头上各切削刃的刀具角度, 这些角度依照GB/T12204-90和ISO3002标准具有严格定义。

不过, 各国麻花钻的标准有所不同, 既有区别, 又有联系。

为此, 很有必要了解麻花钻的结构。

麻花钻的组成 各种不同型号的麻花钻切削部分1. 前面(Face)螺旋槽靠近切削刃的那部分面。

2. 后面 (Flank)在钻尖上与被加工表面相对的面。

有两个后面,每个又可分为第一后面和第二后面。

3. 钻尖(Point)或称钻锋,承担主要的切削任务。

4. 主切削刃(Cutting edge)前面与后面相交成的刃口。

普通麻花钻有两条。

5. 副切削刃前面与刃带的相交线,即刃带边缘刃。

6. 横刃(Chisel edge)两后面相交成的刃口。

7. 横刃转点(Chisel edge corner)主切削刃与横刃相交成的转角交点。

8. 外缘转点(Outer corner)主切削刃与副切削力刃的转角交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

麻花钻的结构以及工作原理
麻花钻的结构以及工作原理
在金属切削中,孔加工占很大比重。

孔加工的刀具种类很多,按其用途可分为两类:一类是在实心材料上加工出孔的刀具,如麻花钻、扁钻、深孔钻等;另一类是对工件已有孔进行再加工的刀具,如扩孔钻、铰刀、镗刀等。

本节介绍常用的几种孔加工刀具。

(一)麻花钻
1.麻花钻的结构要素
图7-32为麻花钻的结构图。

它由工作部分、柄部和颈部组成。

(1)工作部分
麻花钻的工作部分分为切削部分和导向部分。

①切削部分
麻花钻可看成为两把内孔车刀组成的组合体。

如图7-33所示。

而这两把内孔车刀必须有一实心部分——钻心将两者联成一个整体。

钻心使两条主切削刃不能直接相交于轴心处,而相互错开,使钻心形成了独立的切削刃——横刃。

因此麻花钻的切削部分有两条主切削刃、两条副切削刃和一条横刃(如图7-32b 所示)。

麻花钻的钻心直径取为(0.125~0.15)do(do为钻头直径)。

为了提高钻头的强度和刚度,把钻心做成正锥体,钻心从切削部分向尾部逐渐增大,其增大量每100mm长度上为1.4~2.0mm。

两条主切削刃在与它们平行的平面上投影的夹角称为锋角2Φ,如图7-34所示。

标准麻花钻的锋角2Φ=118°,此时两条主切削刃呈直线;若磨出的锋角2Φ>118°,则主切削刃呈凹形;若2Φ<118°,则主切削刃呈凸形。

②导向部分
导向部分在钻孔时起引导作用,也是切削部分的后备部分。

导向部分的两条螺旋槽形成钻头的前刀面,也是排屑、容屑和切削液流入的空间。

螺旋槽的螺旋角β是指螺旋槽最外缘的螺旋线展开成直线后与钻头轴线之间的夹角,如图7-34所示。

愈靠近钻头中心螺旋角愈小。

螺旋角β增大,可获得较大前角,因而切削轻快,易于排屑,但会削弱切削刃的强度和钻头的刚性。

导向部分的棱边即为钻头的副切削刃,其后刀面呈狭窄的圆柱面。

标准麻花钻导向部分直径向柄部方向逐渐减小,其减小量每100mm长度上
0.03~0.12mm,螺旋角β可减小棱边与工件孔壁的摩擦,也形成了副偏角。

(2)柄部
柄部用来装夹钻头和传递扭矩。

钻头直径do<12mm常制成圆柱柄(直柄);钻头直径do>12mm常采用圆锥柄。

(3)颈部
颈部是柄部与工作部分的连接部分,并作为磨外径时砂轮退刀和打印标记处。

小直径钻头不做出颈部。

2.麻花钻切削部分的几何角度
由图7-33所示,钻头实际上相当于正反安装的两把内孔车刀的组合刀具,只是这两把内孔车刀的主切削刃高于工件中心(因为有钻心而形成横刃的缘故,钻心半径为)。

(1)基面和切削平面
在分析麻花钻的几何角度时,首先必须弄清楚钻头的基面和切削平面。

①基面:切削刃上任一点的基面,是通过该点,且垂直于该点切削速度方向的平面,如图7-35a所示。

在钻削时,如果忽略进给运动,钻头就只有圆周运动,主切削刃上每一点都绕钻头轴线做圆周运动,它的速度方向就是该点所在圆的切线方向,如图7-35b中A点的切削速度垂直于A点的半径方向,B点的切削速度垂直于B点的半径方向。

不难看出,切削刃上任一点的基面就是通过该点并包含钻头轴线的平面。

由于切削刃上各点的切削速度方向不同,所以切削刃上各点的基面也就不同。

②切削平面:切削刃上任一点的切削平面是包含该点切削速度方向,而又切于该点加工表面的平面(图7-35a所示为钻头外缘刀尖A点的基面和切削平面)。

切削刃上各点的切削平面与基面在空间相互垂直,并且其位置是变化的。

(2)主切削刃的几何角度,如图7-36所示
①端面刃倾角
为方便起见,钻头的刃倾角通常在端平面内表示。

钻头主切削刃上某点的端面刃倾角是主切削刃在端平面的投影与该点基面之间的夹角。

如图7-36所示,其值总是负的。

且主切削刃上各点的端面刃倾角是变化的,愈靠近钻头中心端面刃倾角的绝对值愈大(见图7-36b)。

②主偏角
麻花钻主切削刃上某点的主偏角是该点基面上主切削刃的投影与钻头进给方向之间的夹角。

由于主切削刃上各点的基面不同,各点的主偏角也随之改变。

主切削刃上各点的主偏角是变化的,外缘处大,钻心处小。

③前角
麻花钻的前角是正交平面内前刀面与基面间的夹角。

由于主切削刃上各点的基面不同,所以主切削刃上各点的前角也是变化的,如图7-36所示。

前角的值从外缘到钻心附近大约由+30°减小到-30°,其切削条件很差。

④后角
切削刃上任一点的后角,是该点的切削平面与后刀面之间的夹角。

钻头后角不在主剖面内度量,而是在假定工作平面(进给剖面)内度量(见图7-36a)。

在钻削过程中,实际起作用的是这个后角,同时测量也方便。

钻头的后角是刃磨得到的,刃磨时要注意使其外缘处磨得小些(约8°~10°),靠近钻心处要磨得大些(约20°~30°)。

这样刃磨的原因,是可以使后角与主切削刃前角的变化相适应,使各点的楔角大致相等,从而达到其锋利程度、强度、耐用度相对平衡;其次能弥补由于钻头的轴向进给运动而使刀刃上各点实际工作后角减少一个该点的合成速度角μ(见图7-36中f-f剖面)所产生的影响;此外还能改变横刃处的切削条件。

(3)横刃的几何角度如图7-37所示
①横刃前角
由于横刃的基面位于刀具的实体内,故横刃前角为负值(约-45°~-60°),所以钻削时在横刃处发生严重的挤压而造成
很大的轴向力。

②横刃后角
横刃后角≈90°-││,故≈30°~35°。

③横刃主偏角=90°。

④横刃刃倾角=0°。

⑤横刃斜角Ψ
横刃斜角是在钻头的端面投影中,横刃与主切削刃之间的夹角。

它是刃磨钻头时自然形成的,锋角一定时,后角刃磨正确的标准麻花钻横刃斜角Ψ为47°~55°,而后角愈大则Ψ愈小,横刃的长度会增加。

相关文档
最新文档