八年级数学上册知识点归纳:等边三角形

合集下载

人教版八年级数学上册第十三章 1 13. 等边三角形

人教版八年级数学上册第十三章 1 13. 等边三角形
13.3.2 等边三角形
-2-
目标导引
1.掌握等边三角形的性质和判定方法,并能用它们解决相关问题. 2.掌握含30°角的直角三角形的性质,能灵活用其进行证明与计算.
思维导图
等边三角形的性质
等腰三角形的性质与判定

等边三角形的判定

☞ 三角形内角和定理


知 轴对称图形的性质
含 30°角的直角三角 知
角形的腰长是
.
关闭
8
答案
-9-
知识梳理 预习自测
123456
6.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向
平移2个单位长度后,得到△A'B'C',连接A'C,则△A'B'C的周长

.
关闭
12
答案
1
2
1.等边三角形的判定 【例1】 如图,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交
形的性质
-3-
知识梳理 预习自测
1.三条边都 相等 的三角形叫做等边三角形.
2.等边三角形的
三个内角都相等 ,并且每一个内角都
等于60°.
3.三个角 都相等 的三角形是等边三角形.
有一个角是60° 的等腰三角形是等边三角形.
4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边
等于 斜边的一半 .
所以S△ABC=
1 2
×15×20=150(m2).
所以需要投资150×50=7 500(元).
∴∠4=60°.
∴∠3=∠4=∠E=60°.
∴△ACE是等边三角形.
1

八年级数学上册知识点归纳:等边三角形

八年级数学上册知识点归纳:等边三角形

八年级数学上册知识点归纳:等边三角形八年级数学上册知识点归纳:等边三角形等边三角形英文:equilateraltriangle,“等边三角形”也被称为“正三角形”。

如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形为等边三角形:1.三边长度相等。

2.三个内角度数均为60度。

3.一个内角为60度的等腰三角形等边三角形尺规作法其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),等边三角形的尺规作图再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

等边三角形的性质⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。

⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。

⑷等边三角形的重要数据空间对称群二面体群(D3)角和边的数量3施莱夫利符号{3}内角的大小60°⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。

(四心合一)⑹等边三角形内任意一点到三边的距离之和为定值(等于其高)等边三角形的判定⑴三边相等的三角形是等边三角形(定义)⑵三个内角都相等(为60度)的三角形是等边三角形⑶有一个角是60度的等腰三角形是等边三角形(4)两个内角为60度的三角形是等边三角形说明:可首先考虑判断三角形是等腰三角形。

等边三角形的性质与判定理解:首先,明确等边三角形定义。

三边相等的三角形叫做等边三角形,也称正三角形。

其次,明确等边三角形与等腰三角形的关系。

等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

等边三角形定义:三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。

是特殊的等腰三角形。

如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:1.三边长度相等;2.三个内角度数均为60度;3.一个内角为60度的等腰三角形。

人教版八年级数学上册 等边三角形 讲义

人教版八年级数学上册 等边三角形 讲义

等边三角形知识点一、等边三角形的性质和判定知识概念:1、至少有两边相等的三角形,叫做等腰三角形2、三边相等的三角形,叫做等边三角形思考:下列两个说法是正确的还是错误的?(1)等边三角形是等腰三角形()(2)等腰三角形是等边三角形()所以,等边三角形_______等腰三角形,但等腰三角形_______等边三角形等边三角形的性质:1、三边相等2、三个内角都是60°3、三线合一等边三角形的判定:1、三边相等2、三个内角都是60°3、两边相等,一个角60°知识点二、含30°的直角三角形定理:30°所对直角边为斜边的一半例1、如图,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线交AB于D,交BC于E,若CE=3cm,求BE 的长.1、已知等腰三角形的一个外角是120°,则它是()A、等腰直角三角形B、一般的等腰三角形C、等边三角形D、等腰钝角三角形2、如图,是屋架设计图的一部分。

点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则BC= cm 、DE= cm3、如图,在Rt△ABC中,∠A=30°,AB+BC=12cm,则AB=______cm4、如图,∠AOB= 30°,P是角平分线上的点,PM⊥OB于M,PN//OB交OA于N,PM=1cm,则PN=________.5、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为6、等腰三角形一腰上的高线等于腰长的一半,则此三角形的三个角的度数分别是__________7、等边三角形的两条中线相交所成的钝角的度数是________.8、如图在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高,求CD的长9、如图,在△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D。

八年级数学三角形与全等三角形知识点大全

八年级数学三角形与全等三角形知识点大全

八年级数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰与底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边与腰不等的等腰三角形等边三角形7、三角形两边之与大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之与大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之与3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A与它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角与定理:三角形三个内角的与等于180度。

证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的与4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角与为360度6、等腰三角形两个底角相等三、多边形及其内角与1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。

3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角与:n边形内角与等于(n-2)*1808、多边形的外角与:360度注:有些题,利用外角与,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n 边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。

八年级上册数学笔记知识点归纳

八年级上册数学笔记知识点归纳

八年级上册数学笔记知识点归纳一、三角形。

1. 三角形的基本概念。

- 三角形就像一个三条边围起来的小院子。

它有三个顶点(就像院子的三个角点),三条边(院子的围墙),还有三个内角(院子里面的三个角)。

三角形的内角和是180°哦,这就好比把这个院子的三个角拼在一起,正好能拼成一个平角。

- 按照边来分,三角形有等边三角形(三条边都一样长,这可是三角形里的“三胞胎”,长得一模一样)、等腰三角形(有两条边一样长,就像有两个兄弟长得一样高)和不等边三角形(三条边都不一样长,各有各的个性)。

- 按角分呢,有锐角三角形(三个角都是锐角,这种三角形比较“温和”,没有特别大的角)、直角三角形(有一个角是直角,就像一个小角落特别方正,这个直角可重要啦,直角所对的边叫斜边,另外两条边叫直角边)和钝角三角形(有一个钝角,这个角比较“霸道”,占的地方大)。

2. 三角形的三边关系。

- 三角形的三条边就像三个小伙伴手拉手。

任意两边之和大于第三边,这就好比两个小伙伴手拉手的长度一定要比第三个小伙伴长,不然就拉不住啦。

比如说,三条边分别是a、b、c,那就得a + b>c,a + c>b,b + c>a。

反过来呢,任意两边之差小于第三边,就像两个小伙伴手拉手的长度比第三个小伙伴长不了太多,不然就脱节了。

3. 三角形的高、中线与角平分线。

- 三角形的高,就像从三角形的一个顶点向对边作的一条垂线。

这个高就像一个小杆子直直地立在对边上,它可以用来计算三角形的面积呢,三角形面积S=(1)/(2)×底×高。

- 中线呢,是连接三角形一个顶点和它对边中点的线段。

中线把三角形分成了两个面积相等的小三角形,就像把一个大蛋糕从中间切成了两块一样大小的小蛋糕。

- 角平分线就是把三角形的一个角平均分成两份的射线。

它就像一把小剪刀,把一个角剪成了两个一样大的小角。

二、全等三角形。

1. 全等三角形的概念和性质。

- 全等三角形就像双胞胎,长得一模一样。

八年级上册数学等边三角形

八年级上册数学等边三角形

八年级上册数学等边三角形一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为______.点(x, y)关于y轴对称的点的坐标为______.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

八年级上册数学-等边三角形

八年级上册数学-等边三角形

A第17讲 等边三角形【板块一】 等边三角形的性质方法技巧(1)运用等边三角形角的数量特征和边的相等关系解题.(2)共顶点的两个等边三角形(也称手拉手图形)组成的图中,必定有全等三角形.题型利一 与等边三角形有关的角度的计算.【例1】如图,△ABC 是等边三角形,CD ⊥BC ,CD =BC ,求∠DAC 和∠ADB 的度数.AD题型二 共顶点的等边三角形(手拉手图形)【例2】如图,点D 是等边△ABC 的边AB 上一点,以CD 为一边,向上作等边△EDC ,连接AE . (1)求证:△DBC ≌△EAC; (2)求证:AE ∥BC .B【例3】如图,△ABC 和△CDE 都是等边三角形,点E 在BC 上,AE 的延长线交BD 于点F . (1)求证:AE =BD ; (2)求∠AFB 的度数; (3)求证:CF 平分∠AFD ;(4)直接写出EF ,DF ,CF 之间的数量关系.题型三 平面直角坐标系中的等边三角形【例4】如图,,点A (-2,0),B (2,0),C (6,0),D 为y 轴正半轴上一点,且∠ODB =30°,延长DB 至E ,使BE =BD ,点P 为x 轴正半轴上一动点(点P 在点C 的右边),点M 在EP 上,且∠EMA =60°,AM 交BE 于点N .(1)求证:BE =BC ;(2)求证:∠ANB =∠EPC ;(3)当点P 运动时,求BP -BN 的值.针对练习11.如图,等边△ABC 中,点D ,E 分别在边AB ,BC上,把△BDE 沿直线DE 翻折,使点B 落在点B’处,D EDB ’,EB ’分别交AC 于点F ,G ,若∠ADF =80°,求∠EGC 的度数.B'B2.如图,△ABD 和△ACE 都是等边三角形, DC 于BE 交于点M . (1)求证:BE =CD ;(2)求∠AMD 的度数.3.如图1,等边△ABC 中,点D 是AB 上一点,以CD为一边,向上作等边△EDC ,向下作等边△DCF ,连接AE ,BF . (1)求证:AB =AE +BF ;(2)当点D 在BA 延长线上时,如图2,若AE =10,BF =4,求AC 的长.B图1 图24.已知点D ,E 分别是等边△ABC 的边BC ,AB 上的点,∠ADE =60°. (1)如图1,当点D 是BC 的中点时,求证:AE =3BE ; (2)如图2,当点M 在AC 上,满足∠ADM =60°,求证:BE =CM ;(3)如图3,过C 作CF ∥AB 交ED 延长线于点F ,探究线段BE ,CF ,CD 之间的数量关系,并给出证明.BCBCBC图1 图2 图35.在平面直角坐标系中,已知点A 在y 轴的正半轴上,点B 在第二象限,AO =a ,AB =b ,BO 与x 轴正方向的夹角150°,且220a -b a-b . ⑴判断△ABO 的形状;⑵如图1,若BC ⊥BO ,BC =BO ,点D 为CO 的中点,AC 、BD 交于点E ,求证:AE = BE +CE ;图 1⑶如图2,若点E 为y 轴的正半轴上一动点,以BE 为边作等边△BEG ,延长GA 交x 轴于点P ,AP 与AO 之间有何数量关系?试证明你的结论.图 26.△ABC 为等边三角形,BC 交y 轴于点D ,A (a ,0),B (b ,0),且a ,b 满足230a+ . (1)如图1,求点A ,B 的坐标及CD 的长;图 1(2)如图2,P是AB的延长线上一点,点E是CP右侧一点,CP=PE,且∠CPE=60°,连接EB,求证:直线EB必过点D关于x轴对称的对称点;E(3)如图3,若点M在CA的延长线上,点N在AB的延长线上,且∠CMD=∠DNA,求AN-AM的值.【板块二】60°角的用法◆方法技巧◆合理利用60°角构造等边三角形得到相等线段,再进行推理.题型一过60°角一边上一点作平行线构造等边三角形.方法技巧:过60°角一边上一点,作平行线构造等边三角形,转化边与角.【例5】如图,△ABC是等边三角形,点D是AC的中点,点E,F分别在BC,AB的延长线上,∠EDF=120°.(1)求证:DE=DF;(2)若AB=5,求CE-BF的值.A题型二 在60°角的两边上截取两条相等线段构造等边三角形 方法技巧:在60°角的边上截取两条相等线段后构成等边三角形,然后产生新的全等三角形,从而找到解决问题的突破口.【例6】如图,△ABC 为等边三角形,∠ADB =60°. (1)如图1,当∠DAB =90°时,直接写出DA ,DC ,DB 之间的数量关系_______;图 1ABCD(2)如图2,当∠DAB ≠90°时,①中的关系式是否成立?说明理由.图 1ABCD题型三 利用60°角的一边上的点向另一边做垂线构造30°,60°,90°的直角三角形 方法技巧:利用30角所对的直角边等于斜边的一半,作高. 【例7】如图,在△ABC 中,∠B =60°,∠C =45°,AB =2,BC =1 ,求△ABC 的面积.ABC題型四 利用60°角延长构造等边三角形方法技巧;向外延长60”角的一边,在外部构造等边三角形.【例8】已知点D ,点E 分別等边△ABC 边BC ,AC 上的点,CD =AE ,AD 与BE 交于点F .(1)如图1,求∠AFE 的度数;图 1BCAD(2)点G 边AC 中点,∠BFG =120° ,如图2,求证:AF =2FG .图 2BCAD针对练习21.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D ,连接PD ,如果PO =PD ,求AP 的长.ABCP2.如图.在等边△ABC 中,∠ABC 与∠ACB 的平分线相交于点O ,且OD ∥AB ,OE ∥AC . (1)试判定△ODE 的形状,并说明你的理由;(2)线段BD ,DE ,EC 三者有什么关系?请说明理由.E DBCA3.点D 为BC 上任一点,∠ADE =60°,边ED 与∠ACB 外角的平分线交于点E ,求证:AD =DE ;BCAD4.已知△ABC 是边长为5的等边三角形.(1)如图1,若点P 是BC 上一点,过点C ,点P 分别作AB ,AC 的平行线,两线相交于点Q ,连接BQ ,AP 的延长线交BQ 于点D .试问:线段AD ,BD ,CD 之间是否存在某种确定的数量关系?若存在,请写出它们之间数量关系并证明你的结论;若不存在,说明理由;图 1QBCA(2)如图2,若点P 是BC 延长线上一点,连接AP ,以AP 为边作等边△APE (点E 、点A 在直线BC 同侧),连接CE 交AP 于点F ,求CE -CP 的值.图 2BCDE5.如图,在△ABC 中,∠BAC =60°,以BC 为边在△ABC 的同侧作等边△DBC ,BD ,AC 相交于点E ,连结AD .(1)如图1,若A 2ACAB,求证:△ABC ≌△ADC图 1CAD(2)如图2,若3AC AB,求ABAD的值. 图 2CAD6.如图1,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE =BD ,连接CE 、DE . ⑴求证:EC =ED ;图 1BDE⑵如图2,EO ⊥CD 于点O ,点N 在EO 上,△DNM 为等边三角形,CM 交EO 于F ,若FO =1,求FM -FN 的值.图 1BDE[板块三) 30°角的用法方法技巧构造30°角的直角三角形,算边长与面积.题型一 已知30°角连线巧得隐直角.【例9】如图,在△ABC 中,AB =AC ,∠C =30°,AB 的垂直平分线交AB 于点D ,交BC 于点E ,试探究BE 与CE 之间的数量关系.BC题型二 利用30°作高构造直角三角形.【例10】如图,CD 是△ABC 的中线,CD ⊥CB ,∠ACD =30°,求证:AC =2BC.DABC题型三 已知30°和90°角补形构造直角三角形 【例11】如图,四边形ABCD 中,∠C =30°,∠B =90°,∠ADC =120°,若AB =2,CD =8,求AD 的长.ACBD题型四 利用底角为15°的等腰三角形构造30°角的直角三角形 【例12】如图,∠AOC =15°,OC 平分∠AOB ,点P 为OC 上一点,PD /∥OA 交OB 于点D ,PE ⊥OA 于点E ,若OD =4cm ,求PE 的长.EOA题型五 利用150°构造30°角的直角三角形【例13】如图,在△ABC 中,AB =AC ,点D 为BC 上一点,以AD 为腰作等腰△ADE ,且AD =AE ,∠BAC =∠DAE =30°,连接CE ,若BD =2,CD =5,求△DCE 的面积.BCADE题型六30°直角三角形斜边上的高方法技巧:30°角的直角三角形斜边上的高中,有3个30°的直角三角形,选取最小的和最大的两个直角三角形进行计算.【例14】如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,∠A =30°,AD =6,求BC 的长.DABC针对练习31.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米的售价为a 元,求购买这种草皮至少需要多少元?BCA2.在△ABC 中,∠B =30°,AB =AC =8,P 为BC 上一点,求AP 的最小值.ABCP3.如图,在等边△ABC 中,点D 为AC 上一点,CD =CE ,∠ACE =60°. (1)求证:△BCD ≌△ACE ;图1EBCA(2)延长BD 交AE 于点F ,连接CF ,若AF =CF ,猜想线段BF ,AF 的数量美系,并证明你的猜想.图 2BCAE4.如图,在△ABC 中,∠BAC =90°,点D 为三角形内一点,且AB =AC =BD ,∠ABD =30°.求证:AD =CD ,AB C。

人教版八年级数学上册等边三角形

人教版八年级数学上册等边三角形

反过来怎么样——逆向思维
命题:在直角三角形中, 如果一条直角边等于斜边 的一半,那么它所对的锐角等于300.是真命题吗? 如果是,请你证明它.
已知:如图,在△ABC中,∠ACB=900,BC= 1 AB.
求证:∠A=300.
2
A
B
C
反过来怎么样——逆向思维
证明:如图, 延长BC至D,使CD=BC,连接AD.
概念 性 质
等 有二 腰 条边 三 角 相等 形
等 有三 边 条边 三 角 轴一条 1、等边对等角 2、三线合一 3、对称轴三条
判定
1、定义 2等角对等边
1定义 2两个角是600 3等腰三角形有一个 600
我能行 3
将两个含有板有30°的三角尺如图摆放在 一起,你能借助这个图形,找到Rt△ABC的直
A 300
C
这是一个通过线段之间的关系来判定 一个角的具体度数(300)的根据之一.
比一比:看 谁 算 的 快
1.如图:在Rt△ABC中 ∠A=300,AB+BC=12cm 则AB=__8___cm B
300


2.如图:△ABC是等边三角形,
A
AD⊥BC,DE⊥AB,若AB=8cm,
BD=4_c_m_, BE=_2__c_ m E
∴∠A=300(直角三角形两锐角互余).
回顾反思 4
几何的三种语言
定理:在直角三角形中, 如果一条直角边等于 斜边的一半,那么它所对的锐角等于300.
在△ABC中
∵∠ACB=900,BC=AB/2(已知),
∴∠A=300(在直角三角形中,如果一条直
B
′ 角边等于斜边的一半,那么它所对的锐角
等于300).

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的边:组成三角形的三条线段叫做三角形的边。

3、三角形的顶点:三角形相邻两边的公共端点叫做三角形的顶点。

4、三角形的内角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。

(二)三角形的分类1、按角分类:(1)锐角三角形:三个角都是锐角的三角形。

(2)直角三角形:有一个角是直角的三角形。

(3)钝角三角形:有一个角是钝角的三角形。

2、按边分类:(1)不等边三角形:三条边都不相等的三角形。

(2)等腰三角形:有两条边相等的三角形。

其中,相等的两条边叫做腰,另一条边叫做底边。

两腰的夹角叫做顶角,腰与底边的夹角叫做底角。

(3)等边三角形:三条边都相等的三角形,也叫正三角形。

(三)三角形的三边关系1、三角形任意两边之和大于第三边。

2、三角形任意两边之差小于第三边。

(四)三角形的内角和定理三角形三个内角的和等于 180°。

(五)三角形的外角1、三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

2、三角形的一个外角等于与它不相邻的两个内角的和。

3、三角形的一个外角大于与它不相邻的任何一个内角。

二、全等三角形(一)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

(二)全等三角形的性质1、全等三角形的对应边相等。

2、全等三角形的对应角相等。

(三)全等三角形的判定1、三边分别相等的两个三角形全等(SSS)。

2、两边和它们的夹角分别相等的两个三角形全等(SAS)。

3、两角和它们的夹边分别相等的两个三角形全等(ASA)。

4、两角和其中一个角的对边分别相等的两个三角形全等(AAS)。

5、斜边和一条直角边分别相等的两个直角三角形全等(HL)。

三、轴对称(一)轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

人教版数学八年级上册 等边三角形

人教版数学八年级上册  等边三角形
这个定理该怎么写过程呢?
∵在Rt△ABC 中, ∠C =90°,∠A=30°, ∴
例题 下图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱 BC、 DE 垂直于横梁AC,AB=7.4m,∠A=30°,立柱BC 、 DE 要多长?
答案:3.7m,1.85m.
练习 在Rt△ABC 中,∠C =90° ,∠B=2∠A ,∠B 和∠A各是多少度 ,边AB 和BC 之间有什么关系?
∵∠B=60°
∴∠B=∠C=60°,
∴∠A=60°, ∴∠A=∠B=∠C, ∴△ABC 是等边三角形.
归纳
要判定一个三角形是等边三角形有哪几种方法?
方法一
方法二
方法三
三边相等的 三角相等的 三角形是等 三角形是等 边三角形 边三角形
有一个角是60°的等腰 三角形是等边三角形
例题
如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D ,E.求证:△ADE 是等边三角形. 证明: ∵△ABC 是等边三角形, ∴∠A =∠B =∠C =60°. ∵DE∥BC, ∴∠B =∠ADE,∠C =∠AED. ∴∠A=∠ADE =∠AED. ∴△ADE 是等边三角形. 想一想,还有其他证法吗?
证明
等边三角形的每条边上的中线、高和这 条边所对的角的平分线都分别重合.
∵AB=AC,BD=DC ∴∠BAD=∠CAD,AD⊥BC ∵BA=BC,EA=EC ∴∠ABE=∠CBE,BE⊥AC ∵CA=CB,AF=BF ∴∠CAF=∠BAF,CF⊥AB
结论
等边三角形的每条边上的中线、高和这 条边所对的角的平分线都分别重合.
证明
三个角都相等的三角形是等边三角形
已知:△ABC 中,∠A=∠B=∠C. 求证:△ABC 是等边三角形.

八年级数学上册 第二章 等边三角形知识点与同步训练(含解析)苏科版

八年级数学上册 第二章 等边三角形知识点与同步训练(含解析)苏科版

等边三角形一.等边三角形的概念等边三角形:三条边都相等的三角形叫做等边三角形.等边三角形是一种特殊的等腰三角形.二.等边三角形的性质等边三角形的三个内角都相等,并且每一个角都等于60︒.三.等边三角形的判定判定1:三个角都相等的三角形是等边三角形.判定2:有一个角是60︒的等腰三角形是等边三角形.四.直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半.B'CBA证明:90ACB ∠=︒,30A ∠=︒,延长BC 至'B 使'CB CB =,那么有AC 垂直平分'BB ,所以'AB AB =,因为60B ∠=︒,所以'ABB △是等边三角形,所以'2AB BB BC ==,即12BC AB =.五.等边三角形与全等三角形综合等边三角形与全等三角形综合问题主要分两种类型:一是以等边三角形为载体来考察全等三角形的综合问题;二是利用全等三角形的性质和判定证明三角形是等边三角形.不管是哪种类型都要注意60°角和边的等量关系的应用,尤其是后面学习旋转之后,会出现一些比较难的等边三角形和全等三角形结合的问题.一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形根底上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.题模一:等边三角形的性质例三个等边三角形的位置如下列图,假设∠3=50°,那么∠1+∠2=____°.【答案】130【解析】∵图中是三个等边三角形,∠3=50°,∴∠ABC=180°-60°-50°=70°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴70°+〔120°-∠2〕+〔120°-∠1〕=180°,∴∠1+∠2=130°.故答案为:130.例如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.假设DE=DB,那么CE的长为____.【答案】 32 【解析】 该题考察的是∵△ABC 为等边三角形,D 为AC 边上的中点,BD 为ABC ∠的平分线,∴60ABC ∠=︒,30DBE ∠=︒,又DE DB =, ∴30E DBE ∠=∠=︒,∴30CDE ACB E ∠=∠-∠=︒,即CDE E ∠=∠,∴CD CE =;∵等边△ABC 的周长为9,∴3AC =,∴1322CD CE AC ===, 即32CE =.例 在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,假设BC=5,BD=4.那么以下结论错误的选项是〔 〕A . AE ∥BCB . ∠ADE=∠BDC C . △BDE 是等边三角形D . △ADE 的周长是9 【答案】B【解析】 此题考察的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键. 首先由旋转的性质可知∠AED=∠ABC=60°,所以看得AE∥BC,先由△ABC 是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD ,BD=BE ,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD 即可判断出△BDE 是等边三角形,故DE=BD=4,故△AED 的周长=AE+AD+DE=AC+BD=9,问题得解.∵△ABC 是等边三角形,∴∠ABC=∠C=60°,∵将△BCD 绕点B 逆时针旋转60°,得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,应选项A 正确;∵△ABC 是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD 逆时针旋旋转60°得出,∴AE=CD,BD=BE ,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,应选项C 正确;∴DE=BD=4,∴△AED 的周长=AE+AD+DE=AC+BD=9,应选项D 正确;而选项B 没有条件证明∠ADE=∠BDC,∴结论错误的选项是B ,应选:B .题模二:等边的判定例 如下列图,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,那么BC '的长为________.【答案】 4【解析】 此题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=. 故此题的答案是4.例 :如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .〔1〕求证:AN BM =;〔2〕求证:CEF ∆为等边三角形.ACD B C '【答案】见解析【解析】〔1〕ACM∆是等边三角形,∆,CBN∠=∠=︒,ACM NCBAC MC=,60∴=,BC NC∠=∠.∴∠+∠=∠+∠,即ACN MCBACM MCN NCB MCN在ACN=,ACN MCB=,∠=∠,NC BC∆中,AC MC∆和MCB∴=.ACN MCB∴∆≅∆,AN BM〔2〕ACN MCB∴∠=∠,∆≅∆,CAN CMB又18060∴∠=∠,∠=︒-∠-∠=︒,MCF ACEMCF ACM NCB在CAE∠=∠,=,ACE MCF∆和CMF∠=∠,CA CM∆中,CAE CMF∴∆为等腰三角形,∴=,CEFCAE CMF∴∆≅∆,CE CF又60∠=︒,CEF∴∆为等边三角形.ECF例如图,六边形ABCDEF的六个内角都相等,假设AB=1,BC=CD=3,DE=2,那么这个六边形的周长等于____.【答案】15【解析】如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.题模三:30°的角直角三角形等于斜边的一边例如图,ABC⊥,那么以下关系式正确的为〔〕=,30∠=︒,AB AD∆中,AB ACCA.BD CDBD CD=D.4==B.2BD CDBD CD=C.3【答案】B【解析】该题考察的是特殊的直角三角形.∠=∠=︒,C CAD30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD应选B.例如图,30∥10PC=,那么OC=__________,⊥于D,PC OB∠=︒,OP平分AOBAOB∠,PD OBPD=__________.【答案】【解析】该题考察的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP∠=∠,∵PC OB∥,∴CPO BOP∠=∠,∴CPO AOP∠=∠,∴PC OC=,∵10PC=,∴10OC PC==,过P作PE OA⊥于点E,∵PD OB ⊥,OP 平分AOB ∠,∴PD PE =,∵PC OB ∥,30AOB ∠=︒∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC == ∴5PE PD ==例 如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC=∠E=60°,假设BE=6cm ,DE=2cm ,那么BC=____.【答案】 8cm【解析】 延长ED 交BC 于M ,延长AD 交BC 于N ,作DF∥BC,∵AB=AC,AD 平分∠BAC,∴AN⊥BC,BN=CN ,∵∠EBC=∠E=60°,∴△BEM 为等边三角形,∴△EFD 为等边三角形,∵BE=6cm,DE=2cm ,∴DM=4cm,∵△BEM 为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,OD B P CAE∴NM=2cm,∴BN=4cm,∴BC=2BN=8cm.故答案为:8cm .题模四:等边三角形与全等三角形综合例 :如图,等边三角形ABD 与等边三角形ACE 具有公共顶点A ,连接CD ,BE ,交于点P . 〔1〕观察度量,BPC ∠的度数为_______.〔直接写出结果〕〔2〕假设绕点A 将△ACE 旋转,使得180BAC ∠=︒,请你画出变化后的图形.〔示意图〕 〔3〕在〔2〕的条件下,求出BPC ∠的度数.【答案】 〔1〕120°〔2〕见解析〔3〕120°【解析】 此题考察等边三角形及全等三角形的性质与判定.〔1〕BPC ∠的度数为120°,理由为:证明:∵△ABD 与△ACE 都是等边三角形,∴60DAB ABD CAE ∠=∠=∠=︒,AD AB =,AC AE =,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,在△DAC 与△BAE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△DAC ≌△BAE 〔SAS 〕,∴ADC ABE ∠=∠,∵60ADC CDB ∠+∠=︒,∴60ABE CDB ∠+∠=︒,∴120BPC DBP PDB ABE CDB ABC ∠=∠+∠=∠+∠+∠=︒;〔2〕作出相应的图形,如下列图;〔3〕∵△ABD 与△ACE 都是等边三角形,∴60ADB DAB ABD CAE ∠=∠=∠=∠=︒,AD AB =,AC AE =,∴DAB DAE CAE DAE ∠+∠=∠+∠,即DAC BAE ∠=∠,在△DAC 与△BAE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△DAC ≌△BAE 〔SAS 〕,∴ADC ABE ∠=∠,∵60ABE DBP ∠+∠=︒,∴60ADC DBP ∠+∠=︒,∴120BPC BDP PBD ADC DBP ADB ∠=∠+∠=∠+∠+∠=︒例 如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且120BDC ∠=︒.以D 为顶点作一个60︒角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,那么AMN ∆的周长为____【答案】 6【解析】 延长NC 到E ,连接DE ,使CE BM =,连接DE .ABC ∆为等边三角形,BCD ∆为等腰三角形,且120BDC ∠=︒,603090MBD MBC DBC ∴∠=∠+∠=︒+︒=︒,18018090DCE ACD ABD ∠=︒-∠=︒-∠=︒,又BM CE =,BD CD =,CDE BDM ∴∆∆≌,CDE BDM∴∠=∠,DE DM =,1206060NDE NDC CDE NDC BDM BDC MDN ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒,在DMN ∆和DEN ∆中,DM DE =,60MDN EDN ∠=∠=︒,DN DN =,DMN DEN ∴∆∆≌,MN NE CE CN BM CN ∴==+=+.=6AMN L AM MN AN AM BM CN AN AB AC ∆∴+==+++=+=例 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.〔1〕假设D 恰好在BC 的中点上〔如图1〕求证:△ADE 是等边三角形;〔2〕假设D 为直线BC 上任一点〔如图2〕,其他条件不变,上述〔1〕的结论是否成立?假设成立,请给予证明;假设不成立,请说明理由.【答案】 见解析【解析】 〔1〕证明:∵a ∥AB ,且△ABC 为等边三角形,∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =,∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒,∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒,∴△ADE 是等边三角形;〔2〕在AC 上取点F ,使CF CD =,连结DF ,∵60ACB ∠=︒,∴△DCF 是等边三角形,∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒,∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠,∴△ADF ≌△EDC 〔AAS 〕,∴AD ED =,又∵60ADE ∠=︒,∴△ADE 是等边三角形.作业1如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F.〔1〕求∠F的度数;〔2〕假设CD=2,求DF的长.【答案】〔1〕30°〔2〕4【解析】〔1〕∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;〔2〕∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.作业2 如下列图,ABC ∆、ADE ∆与EFG ∆都是等边三角形,D 和G 分别为AC 和AE 的中点,假设4AB =时,那么图形ABCDEFG 外围的周长是_____【答案】 15【解析】 ABC ∆、ADE ∆与EFG ∆都是等边三角形,AD DE ∴=,EF EG =,D 和G 分别为AC 和AE 的中点,4AB =,2DE EA ∴==,1GF EF ==,∴图形ABCDEFG 外围的周长是432115⨯++=.作业3 如图1,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置,得到图2,那么阴影局部的周长为____.【答案】 2【解析】∵两个等边△ABD,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A′B′D′的位置, ∴A′M=A′N=MN,MO=DM=DO ,OD′=D′E=OE,EG=EC=GC ,B′G=RG=RB′, ∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.作业4 如下列图,等边△ABC 的边长为a ,P 是△ABC 内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++=__________,并证明你的猜想.【答案】 见解析【解析】 PD PE PF a ++=.理由如下:如图,延长EP 交AB 于G ,延长FP 交BC 于H ,∵PE ∥BC ,PF ∥AC ,△ABC 是等边三角形,∴60PGF B ∠=∠=︒,60PFG A ∠=∠=︒,∴△PFG 是等边三角形,同理可得△PDH 是等边三角形,∴PF PG =,PD DH =,又∵PD ∥AB ,PE ∥BC ,∴四边形BDPG 是平行四边形,∴PG BD =,∴PD PE PF DH CH BD BC a ++=++==.故答案为a .作业5 :如图,ABC △是等边三角形.D 、E 是ABC △外两点,连结BE 交AC 于M ,连结AD 交CE 于N ,AD 交BE 于F ,AD EB =.当AFB ∠度数多少时,ECD △是等边三角形?并证明你的结论.【答案】 60AFB ∠=︒【解析】 该题考察的是全等三角形的判定和性质.60AFB ∠=︒,A C MFEN D B理由如下:∵△ABC 是等边三角形,∴CA CB =,460∠=︒,∵245∠+∠=∠,135∠+∠=∠,且360∠=︒,∴12∠=∠,又∵BE AD =,在△BCE 和△ACD 中, 1. 12CA CB AD BE =⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△ACD 〔SAS 〕 ∴CE CD =,BCE ACD ∠=∠,∴66BCE ACD ∠-∠=∠-∠,即4760∠=∠=,∴△ECD 是等边三角形.作业6 在△ABC 中,AB AC =,BAC ∠=α()060︒<α<︒,将线段BC 绕点B 逆时针旋转60︒得到线段BD .〔1〕如图1,直接写出ABD ∠的大小〔用含α的式子表示〕;〔2〕如图2,150BCE ∠=︒,60ABE ∠=︒,判断△ABE 的形状并加以证明;〔3〕在〔2〕的条件下,连结DE ,假设45DEC ∠=︒,求α的值.【答案】 〔1〕302α︒-〔2〕见解析〔3〕30︒ 【解析】 该题考察的是三角形综合.〔1〕∵AB AC =∴1809022ABC ACB ︒-αα∠=∠==︒-,A D B CADB C E∴90603022ABD ACB DBC αα∠=∠-∠=︒--︒=︒-,………………………………………1分 〔2〕△ABE 是等边三角形, ………………………………………………………2分 连结AD ,CD .∵60DBC ∠=︒,BD BC =,∴ △BDC 是等边三角形,60BDC ∠=︒,BD DC = ………………3分 又∵AB AC =,AD AD =,∴ △ABD ≌△ACD .∴ADB ADC ∠=∠,∴150ADB ∠=︒. ………………4分∵60ABE DBC ∠=∠=︒,∴ABD EBC ∠=∠.又∵BD BC =,150ADB ECB ∠=∠=︒,∴ △ABD ≌△EBC .∴AB EB =.∴ △ABE 是等边三角形. …………………………………………5分〔3〕∵△BDC 是等边三角形,∴ 60BCD ∠=︒.∴ 90DCE BCE BCD ∠=∠-∠=︒又∵45DEC ∠=︒,∴CE CD BC ==.………………………………………………………6分∴15EBC ∠=︒. ∵302EBC ABD α∠=∠=︒-, ∴ 30α=︒. ……………………………………………………………7分作业7 将一张矩形纸片ABCD 如下列图折叠,使顶点C 落在C '点.2AB =,30DEC '∠=︒,那么折痕DE 的长为〔 〕A . 2B . 23C . 4D . 1【答案】C【解析】 该题考察的是图形的翻折.因为四边形ABCD 是矩形,所以AB CD =,由题意可知'30CED DEC ∠=∠=︒,1sin 2CD CED DE ∠==,所以2224DE CD ==⨯=.所以,此题的正确答案是C .作业8 如图,在等边△ABC 中,2AB =,点P 是AB 边上任意一点〔点P 可以与点A 重合〕,过点P 作PE ⊥BC ,垂足为E ,过点E 作EF ⊥AC ,垂足为F ,过点F 作FQ ⊥AB ,垂足为Q ,求当BP 的长等于多少时,点P 与点Q 重合?【答案】 43BP =【解析】 设BP x =,在直角三角形PBE 中,30BPE ∠=︒ ∴12BE x =,那么122EC x =- 在直角△EFC 中,30FEC ∠=︒, ∴11124FC EC x ==-,∴1214AF FC x =-=+ 同理:1128AQ x =+ 当点P 与点Q 重合时,2BP AQ +=即11228x x ⎛⎫++= ⎪⎝⎭,解得43x =A BE C DC '故当43BP =时,点P 与点Q 重合.作业9 如图,ABC ∆为等边三角形,AD 平分BAC ∠,ADE ∆是等边三角形,以下结论中 ①AD BC ⊥,②EF FD =, ③BE BD =,④60ABE ∠=︒.正确的个数为〔 〕A . 1B . 2C . 3D . 4【答案】D【解析】 该题考察的是三角形的性质.∵△ABC 为等边三角形,AD 为角平分线,∴AD BC ⊥,30BAD ∠=︒,60ABD ∠=︒∵△ADE 是等边三角形,30BAD ∠=︒,∴30EAB EAD BAD ∠=∠-∠=︒,EA DA =,在△AEF 和△ADF 中,EA DA EAB DAB AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△ADF 〔SAS 〕,∴EF FD =,同理,△AEB ≌△ADB ,∴60ABE ABD ∠=∠=︒,EB DB =,故正确的个数为4个,故此题答案为D .作业10 如图,过边长为2的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,那么DE 的长为〔 〕A . 13B . 12C . 23D . 1【答案】D【解析】 过P 作BC 的平行线交AC 于F ,Q FPD ∴∠=∠,ABC ∆是等边三角形,60APF B ∴∠=∠=︒,60AFP ACB ∠=∠=︒,APF ∴∆是等边三角形,AP PF ∴=,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中,FPD Q ∠=∠, PDF QDC PF CQ ∠=∠=,PFD QCD ∴∆∆≌,FD CD ∴=,PE AC ⊥于E ,APF ∆是等边三角形,AE EF ∴=,AE DC EF FD ∴+=+,12ED AC ∴=,2AC =,1DE ∴=.作业11 如图,在等边ABC △中,点D 、E 分别在边BC 、AC 上,且AE CD =,BE 与AD 相交于点P ,BQ AD ⊥于点Q .〔1〕求证:ABE CAD △≌△;〔2〕请问PQ 与BP 有何关系?并说明理由.【答案】 〔1〕见解析〔2〕2BP PQ =【解析】 该题考察全等三角形的判定与性质.∵△ABC 为等边三角形.∴AB AC =,60BAC ACB ∠=∠=︒,在△BAE 和△ACD 中:AE CD BAC ACB AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△ACD〔2〕2BP PQ =∵△BAE ≌△ACD∴ABE CAD ∠=∠∵BPQ ∠是△ABP 的外角,∴BPQ ABE BAD ∠=∠+∠,∴60BPQ CAD BAD BAC ∠=∠+∠=∠=︒∵BQ AD ⊥,AB P EQD C∴30∠=︒PBQ∴如有侵权请联系告知删除,感谢你们的配合!。

八年级上册数学知识点归纳

八年级上册数学知识点归纳

八年级上册数学知识点归纳一、三角形1. 三角形的内角和:三角形的内角和等于180°。

2. 三角形的分类:按边分,有不等边三角形、等腰三角形、等边三角形;按角分,有锐角三角形、直角三角形、钝角三角形。

3. 三角形的主要性质:三角形的两边之和大于第三边,两边之差小于第三边。

4. 三角形的重心:三角形的重心是三条中线的交点,它将每条中线分为2:1的两部分。

5. 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

二、全等三角形1. 全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2. 全等三角形的判定方法:SSS(三边相等)、SAS(两边和夹角相等)、ASA(两角和边相等)、AAS(两角和一边的对应边相等)。

三、图形的变换1. 轴对称:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴。

2. 中心对称:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心。

四、四边形1. 四边形的内角和:四边形的内角和等于360°。

2. 矩形:矩形的四个角都是直角,对边平行且相等。

3. 菱形:菱形的四条边都相等,对边平行,对角相等。

4. 正方形:正方形的四个角都是直角,四条边都相等,对边平行。

五、一次函数1. 一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数。

2. 一次函数的图象:一次函数的图象是一条直线。

3. 一次函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

4. 一次函数的解析式:y=kx+b,其中k是斜率,b是截距。

六、数据的初步认识1. 频数与频率:频数是指某个对象出现的次数,频率是指某个对象出现的次数与总次数的比值。

2. 数据的分布:数据的分布可以通过频数分布表、频数分布直方图来表示。

八年级数学上册《等边三角形的性质与判定》讲义

八年级数学上册《等边三角形的性质与判定》讲义

等边三角形的性质与判定知识点一、等边三角形定义:三边都相等的三角形叫等边三角形.性质:(1)边的性质:三边相等(2)角的性质:三个内角相等,并且每一个内角都等于60°.(3)三线合一:任意一边上的中线、高线和顶角平分线都互相重合(4)对称性:是轴对称图形,且有三条对称轴知识点二、等边三角形的判定判定:(1)边:三条边都相等的三角形是等边三角形;(2)角:三个角都相等的三角形是等边三角形;(3)边角综合:有一个角是60°的等腰三角形是等边三角形.知识点三、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.类型一、等边三角形的性质与判定1. 如图,在四边形OAPB中,120OP=,若点M、N∠,且2∠=︒,OP平分AOBAOB分别在直线OA、OB上,且PMN∆有()∆为等边三角形,则满足上述条件的PMNA.1个B.2个C.3个D.3个以上2. 如图,ABC=,∆中,120∠+∠=︒,点D,E分别在边AC,BC上,且AD BECAB CBA以DE为边作等边DEF∆,连接AF,BF.求证:FAB∆是等边三角形.类型二、含30°角的直角三角形的性质3.如图,在ABC∠=︒,点D是AC的中点,DE AC⊥交BC于E;点O在DEC∆中,30上,OA OBOE=,则BE的长为.=,1OD=,2类型三、通过构造等边三角形来解题4. 如图,已知ABC=,连∆为等边三角形,延长BC到点D,延长BA到点E,使AE BD接CE和DE.求证:CDE∆为等腰三角形.5. 如图,∠BAD=120°,BD=DC,AB+AD=AC,求证:AC平分∠BAD.类型四、等边三角形的探究问题6.【问题提出】如图①,已知ABC∆是等边三角形,点E在线段AB上,点D在直线BC上,且ED EC=+.∆连接EF,试证明:AB DB AF ∆绕点C顺时针旋转60︒至ACF=,将BCE【类比探究】如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由.【复习巩固】1.如图,在ABC ∆中,90ACB ∠=︒,D 是AB 上的点,过点D 作DE AB ⊥交BC 于点F ,交AC 的延长线于点E ,连接CD ,DCA DAC ∠=∠,则下列结论正确的有( ) ①DCB B ∠=∠;②12CD AB =;③ADC ∆是等边三角形;④若30E ∠=︒,则DE EF CF =+. A .①②③B .①②④C .②③④D .①②③④第1题 第2题 第3题2.如图,在Rt ABC ∆中,CM 平分ACB ∠交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且MN 平分AMC ∠,若1AN =,则BC 的长为( )A .4B .6C .D .83.一个六边形的六个内角都是120︒(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是( ) A .13B .14C .15D .164.已知30AOB ∠=︒,点P 在AOB ∠内部,1P 与P 关于OB 对称,2P 与P 关于OA 对称,则1P ,O ,2P 三点所构成的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.如图所示,ABC ∆是等边三角形,D 点是AC 的中点,延长BC 到E .使CE CD =. (1)求E ∠的度数.(2)过D 点作D M BE ⊥,垂足为M .求证:BM EM =.7.如图所示,在等边三角形ABC中,D、E分别是BC、AC上的点,且CAD ABE∠=∠,AD、⊥于Q,猜想PB与PQ的数量关系,并简要说明理由.BE交于点P,作BQ AD8.如图,AB AC∠的度数.=+,求ADB∠=︒,若AB BD CD=,60ABD∠=︒,30BDC。

初中数学人教八年级上册第十三章轴对称-等边三角形

初中数学人教八年级上册第十三章轴对称-等边三角形

它所对的直角边等于斜边的一半.
A
符号语言:
∵ ∠C =90°,∠A =30°,
1
∴ BC = AB.
2
B
C
例题探究
例 如图是屋架设计图的一部分,点D 是斜梁AB
的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm,
∠A =30°,立柱BC、DE 要多长?
B
分析: 图中BC、DE 分
D
别是哪个直角三角形的直角
如图,△ADC是△ABC的轴对称图形,
A
因此AB=AD, ∠BAD=2×30°=60°,
从而△ABD是一个等边三角形.
再由AC⊥BD,
可得BC=CD= 1 A你B.还能用其他方法证 2 明吗?
性质:
B
C
D
在直角三角形中,如果一个锐角等于30°,那么它所对
的直角边等于斜边的一半.
已求知证::如BC图=,1 在ARB.t△ABC 中,∠C =90°,∠A =30°.
边?它们所对的锐角分别是
多少度?
A EC
解:在△ ABC中
∵ ∴
BBCC⊥= 12AACB,∠AB=C3=03°.7(m).B
在△ADC中
D

AD ∴
DD=EE12⊥=AAB12C,A∠DA=1=.3805°(Am)
E
C
答:立柱BC 的长是3.7 m,DE 的长是1.85 m.
尝试应用
1.如图,在△ABC中, ∠ACB=90 ° ,∠A=30 °,
2
A
证明:延长BC 到D,使BD =AB,连
接AD,
在△ABC 中,
∵ ∠C =90°,∠A =30°,
∴ ∠B =60°.

新人教版八年级上册数学[等边三角形(提高)知识点整理及重点题型梳理]

新人教版八年级上册数学[等边三角形(提高)知识点整理及重点题型梳理]

新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料等边三角形(提高)【学习目标】1. 掌握等边三角形的性质和判定.2. 掌握含30°角的直角三角形的一个主要性质.3. 熟练运用等边三角形的判定定理与性质定理进行推理和计算.【要点梳理】【等边三角形,知识要点】要点一、等边三角形等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.要点二、等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.要点三、等边三角形的判定等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点四、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半. 要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.【典型例题】类型一、等边三角形1、(2015秋·黄冈期中)如图,已知点B 、C 、D 在同一条直线上,ABC ∆和DCE ∆都是等边三角形,BE 交AC 于F ,AD 交CE 于H.(1)求证:△BCE ≌△ACD ;(2)求证:FH ∥BD.【答案与解析】(1)证明: ABC ∆和DCE ∆都是等边三角形∴BC =AC ,CE =CD ,∠BCA =∠ECD =60°∴∠BCA+∠ACE=∠ECD+∠ACE ,即∠BCE=∠ACD在△BCE 和△ACD 中BCE ACD CE B A D C C C ∠=∠==⎧⎪⎨⎪⎩∴△BCE ≌△ACD (SAS )(2)由(1)知△BCE ≌△ACD则∠CBF=∠CAH ,BC=AC又∵ABC ∆和DCE ∆都是等边三角形,且点B 、C 、D 在同一条直线上,∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF ,在△BCF 和△ACH 中 CBE CAH BC ACBCF ACH ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△BCF ≌△ACH (ASA )∴CF=CH ,又∵∠FCH =60°∴△CHF 是等边三角形∴∠FHC =∠HCD=60°,∴FH ∥BD【总结升华】本题考查等边三角形的判定与性质及全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键。

八年级上册数学 等边三角形的性质与判定

八年级上册数学 等边三角形的性质与判定
对等角) (等角对等边)
提示: 等边三角形是特殊的等 腰三角形.那么一个等腰 三角形,怎么才能变成 等边三角形呢?
类比探究
底角
(等边对等角)
(等角对等边)
类比探究
知识精讲
等边三角形的判定方法
三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形
例题讲解
知识精讲
等边三角形的性质
知识归纳
等腰三角形与等边三角形的区别和联系
名称
等腰三角形
等边三角形
图形
两条边相等
三条边都相等
两个底角相等
三个角都相等,

底边上的中线、高线
每一边上的中线、高线和

和顶角的平分线互相重合 它所对的角的平分线互相重合
对称轴
例题讲解
等腰三角形“三线合一” 等腰△+中线→ 高线、角平分线
知识探究 1
等边三角形三个内角的关系:
等腰三角形
你能证明此结论吗? 等边三角形
知识探究
知识精讲
等边三角形的性质
知识探究 2
等边三角形有三线合一的性质吗? 它又有几条对称轴呢? 底边中线、底边高线、顶角角平分线
“三线合一”
等腰三角形
所在直线是等腰三角形的对称轴
知识探究 2
结论: 等边三角形每条边上的中线、高线和所对角的平分线都“三线合一”.
想一想:本题还有其他证法吗?
例题讲解
变式练习
例题讲解
巩固练习
真题拓展
真题拓展
× √
(1)(2)(3)(4)
真题拓展
真题拓展
真题拓展
真题拓展
课堂总结
课堂总结
下节预告
下节预告

人教版八年级上册数学课件等边三角形

人教版八年级上册数学课件等边三角形
4.等边三角形是轴对称图形,有三条对称轴.
1.三边都相等的三角形叫做_等__边_三角形. 2.等边三角形的每个内角都等于_6_0__度. 3.等边三角形有__3__条对称轴. 4、已知△ABC中,∠A=∠B=60°,AB=3cm 则△ABC的周长____9c_m___
5、 △ABC是等腰三角形,周长为15cm且 ∠A=60°,则BC=____5_c_m_
1.等边三角形的性质. 2.等边三角形的判定. 3.直角三角形中常用的边角数量关系
1.练习第二题 2. 同步练习册
2、等边三角形有“三线合一”的性质吗? 远大的希望造就伟大的人物。
学做任何事得按部就班,急不得。
为什么? 鹰爱高飞,鸦栖一枝。
对没志气的人,路程显得远;对没有银钱的人,城镇显得远。 褴褛衣内可藏志。
卒子过河,意在吃帅。
A
海纳百川有容乃大壁立千仞无欲则刚
有志者能使石头长出青草来。
死犹未肯输心去,贫亦其能奈我何!
在等腰三角形中,有一种特殊的情况,就 是底边与腰相等,这时,三角形三边相等。
我们把三条边都相等的三角形叫做等边三 角形(正三角形)。
探究一
1、等边三角形的内角什么关系? 为什么?
∵ AB=AC=BC ∴ ∠A=∠B=∠C(等边对等角)
∵ ∠A+∠B+∠C=180° ∴ ∠A=∠B=∠C=60°
探究二
人教版八年级上册 我们把三条边都相等的三角形叫做等边三角形(正三角形)。
我们把三条边都相等的三角形叫做等边三角形(正三角形)。
∵ ∠A= ∠ B= ∠ C 5、 △ABC是等腰三角形,周长为15cm且∠A=60°,则BC=_______ 提示:证明△CDE是等边三角形即可.
13.3.2 5、 △ABC是等腰三角形,周长为15cm且∠A=60°,则BC=_______
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册知识点归纳:等边三角形
等边三角形
英文:equilateraltriangle,“等边三角形”也被称为“正三角形”。

如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形为等边三角形:
.三边长度相等。

2.三个内角度数均为60度。

3.一个内角为60度的等腰三角形
等边三角形尺规作法
其作法相当简单:先用尺画出一条任意长度的线段,等边三角形的尺规作图
再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

等边三角形的性质
⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。

⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。

⑷等边三角形的重要数据
空间对称群
二面体群
角和边的数量3
施莱夫利符号{3}
内角的大小60°
⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。

⑹等边三角形内任意一点到三边的距离之和为定值等边三角形的判定
⑴三边相等的三角形是等边三角形
⑵三个内角都相等的三角形是等边三角形
⑶有一个角是60度的等腰三角形是等边三角形
两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。

等边三角形的性质与判定理解:
首先,明确等边三角形定义。

三边相等的三角形叫做等边三角形,也称正三角形。

其次,明确等边三角形与等腰三角形的关系。

等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

等边三角形定义:
三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。

是特殊的等腰三角形。

如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
.三边长度相等;
2.三个内角度数均为60度;
3.一个内角为60度的等腰三角形。

性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。

②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。

④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。

(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形③有一个角是60度的等腰三角形是等边三角形
④两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。

等边三角形的性质与判定理解:
首先,明确等边三角形定义。

三边相等的三角形叫做等边三角形,也称正三角形。

其次,明确等边三角形与等腰三角形的关系。

等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

相关文档
最新文档