概率论与数理统计复旦大学出版社第四章课后答案
概率论与数理统计第四章习题及答案
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
概率论与数理统计第四章答案
证:
由于X1与X2分布相同,所以二者方差相等,所以上式为0.
解:矩母函数:
验证
解:根据切比雪夫不等式
解:设一个学生成绩X,根据马尔科夫不等式
根据切比雪夫不等式
设有n人参加考试,其中Xi为第i个学生的成绩,它们相互独立,均值75,方差25。那么总成绩(注意:并不是nX)为 ,平均成绩
E[X22]=12×1/2+22×1/2=5/2
Var(X2)= E[X22]-( E[X2])2=1/4
E(X1X2)=0+0+1*1*1/16+1*2*1/16+2*1*3/16+2*2*1/8+3*1*1/8+3*2*1/4=47/16
Cov(X1,X2)= E(X1X2)- E[X1]E[X2]=1/8
解:
从而a=3/5, b=6/5.
解:(a)令Y=Xn,先求分布函数
FY(y)=P(Y<=y)=P(Xn<=y)
当y<=0, FY(y)=0.当y>=1, FY(y)=1.当0<y<1,
求导得到密度函数
求数学期望
(b)(本题改为利用命题4.5.1.)
解:(a)令
那么P(Xi=1)=17/40.这样
E[Xi]= 17/40, i=1,2, ..., 10
根据数学期望的性质
E[X]=E[X1]+E[X2]+...+E[X10]=17/4.
(b)将白球按1~17编号,取10个球,令
那么P(Yi=1)=10/40=1/4.这样
E[Yi]= 1/4, i=1,2, ..., 17
概率论与数理统计第04章习题解答
第四章 正态分布1、解:(0,1)Z N Q :(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==Q ,,得,,,得2、解:(3,16)X N Q :8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥::、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=Q :,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95X N P X C >≥Q :,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)X N Q :4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=Q(25,0.1492)Y B ∴:4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N Q :{}{}81(1.055)10.85540.1446(85}0.176151(0.923)(0.923)0.82121P X P X X P X >-Φ-∴>>======>-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))X N Q :12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ::,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=U7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少 解:因为2(160,)X N σ:由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))X N Q :8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d : 由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥9、解:22~(150,3),~(100,4)X Y X N Y N Q 与相互独立,且 则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y Q ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))W N :,男子身高(以m 计)2(1.73,(0.05))M N :,设各人身高相互独立。
概率论与数理统计第四章习题参考答案
=
⎡ E⎢
1
⎢⎣ n −1
n i =1
(Xi
−
⎤ X )2 ⎥
⎥⎦
=
1 n −1
⎡ E⎢
⎢⎣
n i =1
X
2 i
−
nX
2⎤ ⎥ ⎥⎦
=
1 n −1
⎡n ⎢ ⎢⎣ i=1
E
(
X
2 i
)
−
nE( X
2⎤ )⎥ ⎥⎦
∑[ ] [ ] =
1 n −1
⎧ ⎨ ⎩
n i =1
D(X i ) + E 2 (X i )
X −µ 3/2
<
⎫ 1.96⎬
=
0.95
⎭
故,正态总体均值 µ 的 95%的置信区间为 (X − 2.94, X + 2.94)
代入样本值得正态总体均值 µ 的 95%的置信区间为(-2.565,3.315)。
(2)当σ 未知时,由 T = X − µ ~ t(n − 1) 即T = X − µ ~ t(3) ,所以
n
−a n
=0 =0
无解。由此不能求得
a,
b
的极大似然估计量。
⎩ ∂b
b−a
解:X
的概率密度为
f
(x)
=
⎪⎧ ⎨b
1 −
a
,
a
≤
x
≤
b
,
⎪⎩ 0, 其它
似然函数为 L(a, b) = 1 , θ1 ≤ xi ≤ θ 2 ,i = 1,2,L, n , (b − a)n
对于给定的样本值 (x1 , x2 ,L, xn )
−
n
D(
概率论与数理统计》课后习题答案第四章
习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为()50.10.5E X =⨯=4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ==所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752a b a b ⎧=⎪⎪+⎨⎪=⎪+⎩ 可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解12013312201()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为 X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求(1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
概率论与数理统计(I)第四章答案
第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。
并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X 独立同分布,这一设定在《数理统计》部分一直沿用了下去。
全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。
三个定理。
“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。
§2节主要研究对象为:算术平均值()n X X nX +⋯+=11;§4节的主要研究对象为: nni i X X X +⋯+=∑=11,比n X 1少了。
§2节的学习,不妨先从复习入手。
第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。
定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X n n n ni i A ==∑=11,于是可用定理一了。
推导本身是一件很愉快的事。
§2节的三个定理可在比对中学习。
定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。
定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。
定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。
“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。
这个结论很精致,十分简单了。
翻开§4节,一堆一堆的符号映入眼中,让人头大。
其实,若标准化方法娴熟,这一节并不难。
概率论与数理统计习题解答(第4章)
第4章习题答案三、解答题1. 设随机变量X求)(X E ,)(2X E ,)53(+X E .解:E (X ) =∑∞=1i ixp= ()2-4.0⨯+03.0⨯+23.0⨯= -0.2E (X 2) =∑∞=12i i p x= 44.0⨯+ 03.0⨯+ 43.0⨯= 2.8E (3 X +5) =3 E (X ) +5 =3()2.0-⨯+5 = 4.42. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为6,,2,1,6/1}{ ===i i X P记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=283. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙图书的行为相互独立,读者之间的行为也是相互独立的. (1) 某天恰有n 个读者,求借阅甲种图书的人数的数学期望.(2) 某天恰有n 个读者,求甲乙两种图书至少借阅一种的人数的数学期望. 解:(1) 设借阅甲种图书的人数为X ,则X~B (n , p 1),所以E (X )= n p 1 (2) 设甲乙两种图书至少借阅一种的人数为Y , 则Y ~B (n , p ),记A ={借甲种图书}, B ={借乙种图书},则p ={A ∪ B }= p 1+ p 2 - p 1 p 2 所以E (Y )= n (p 1+ p 2 - p 1 p 2 )4. 将n 个考生的的录取通知书分别装入n 个信封,在每个信封上任意写上一个考生的姓名、地址发出,用X 表示n 个考生中收到自己通知书的人数,求E (X ).解:依题意,X~B (n ,1/n ),所以E (X ) =1.5. 设)(~λP X ,且}6{}5{===X P X P ,求E (X ).解:由题意知X ~P (λ),则X 的分布律P{}k X ==λλ-e k k!,k = 1,2,...又P {}5=X =P {}6=X , 所以λλλλ--=e e!6!565解得 6=λ,所以E (X ) = 6.6. 设随机变量X 的分布律为,,4,3,2,1,6}{22 --===k kk X P π问X 的数学期望是否存在?解:因为级数∑∑∑∞=+∞=+∞=+-=-=⨯-11212112211)1(6)6)1(()6)1((k k k k k k kk k k πππ, 而 ∑∞=11k k 发散,所以X 的数学期望不存在.7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为⎪⎩⎪⎨⎧>=-.0,0,91)(3/其它x xe x f x 求一天的平均耗电量.解:E (X ) =⎰⎰⎰∞-∞-∞∞-==03/203/9191)(dx e x dx xe xdx x f x x x =6.8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为⎪⎩⎪⎨⎧>-=.0,5,251)(2其它x x x F求这种家电的平均寿命E (X ).解:由题意知,随机变量X 的概率密度为)()(x F x f '=当x >5时,=)(x f 3350252xx =⨯--,当x ≤5时,=)(x f 0. E (X ) =10|5050)(5-53=-==∞++∞∞+∞⎰⎰xdx x x dx x xf 所以这种家电的平均寿命E (X )=10年.9. 在制作某种食品时,面粉所占的比例X 的概率密度为⎩⎨⎧<<-=.0,10,)1(42)(5其它x x x x f 求X 的数学期望E (X ).解:E (X ) =dx x x dx x xf ⎰⎰+∞∞-=-152)1(42)(=1/410. 设随机变量X 的概率密度如下,求E (X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤≤-+=.010,)1(2301)1(23)(22其它,,,,x x x x x f解:0)1(1023)1(0123)()(22=-++-=+∞∞-=⎰⎰⎰dx x x dx x x dx x xf X E .111. 设),4(~p B X ,求数学期望)2(sinX E π. 解:X 的分布律为k n kk n p p C k X P --==)1(}{, k = 0,1,2,3,4,X 取值为0,1,2,3,4时,2sinX π相应的取值为0,1,0,-1,0,所以)21)(1(4)1(1)1(1)2(sin13343114p p p p p C p p C XE --=-⨯--⨯=π12. 设风速V 在(0,a )上服从均匀分布,飞机机翼受到的正压力W 是V 的函数:2kV W =,(k > 0,常数),求W 的数学期望.解:V 的分布律为⎪⎩⎪⎨⎧<<=其它 ,00 ,1)(a v a v f ,所以 ===+∞∞-=⎰⎰aa v a k dv a kv dx v f kv W E 03022|)31(1)()(231ka13. 设随机变量(X ,求E (X ),E (Y ),E (X – Y ).解:E (X )=0×(3/28+9/28+3/28)+1×(3/14+3/14+0)+ 2×(1/28+0+0)= 7/14=1/2 E (Y )=0×(3/28+3/14+1/28)+1×(9/28+3/14+0)+ 2×(3/28+0+0)=21/28=3/4 E (X -Y ) = E (X )- E (Y )=1/2-3/4= -1/4.14. 设随机变量(X ,Y )具有概率密度⎩⎨⎧≤+≤≤≤≤=其它,01,10,10,24),(y x y x xy y x f ,求E (X ),E (Y ),E (XY )解:E (X )=⎰⎰⎰⎰-=⋅11022424xDydydx x xydxdy x dx x x ⎰-⋅=1022)1(2124dx x x x ⎰+-=10432)2412(52)51264(1543=+-=x x x.152)34524638()1(31242424)(5/22424)(1654311010322210102=-+-=-⋅==⋅===⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰--x x x x dx x x dydx y xxydxdy xy XY E xdxdy y xydxdy y Y E DxDy15.所得利润(以元计)为)12(1000X Y -=,求E (Y ),D (Y ).解: E (Y) = E [1000(12-X )]=1000E [(12-X )]=1000×[(12-10)×0.2+(12-11)]×0.3+(12-12)×0.3+(12-13)×0.1+(12-14)×0.1] = 400E (Y 2) = E [10002(12-X )2]=10002E [(12-X )2]=10002[(12-10)2×0.2+(12-11)2×0.3+(12-12)2×0.3+(12-13)2×0.1 +(12-14)2×0.1]=1.6×106D (Y )=E (Y 2)-[E (Y )]2=1.6×106- 4002=1.44×10616. 设随机变量X 服从几何分布 ,其分布律为,,2,1,)1(}{1 =-==-k p p k X P k 其中0 < p < 1是常数,求E (X ),D (X ).解:令q=1- p ,则∑∑∑∑∞=∞=-∞=-∞==⨯=⨯==⨯=111111)()}{()(k kk k k k k dqdq p qk p p qk k X P k X Ep q dq d p q dq d p k k /1)11(0∑∞==-==∑∑∑∑∞=-∞=-∞=-∞=⨯+⨯-=⨯==⨯=1111112122])1([)()}{()(k k k k k k k q k qk k p p qk k X P k X Ep qk k pq k k /1)1(12+⨯-=∑∞=-p qdq d pq p q dqd pq k k kk /1)(/1012222∑∑∞=∞=+=+=p p q p q pq p q dq d pq /1/2/1)1(2/1)11(2322+=+-=+-= D (X ) = E (X 2)- E (X ) =2q /p 2+1/p -1/p 2 = (1-p )/p 217. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<-=其它,01||,11)(2x x x f π,试求E (X ),D (X ).解:E (X )=011)(112=-=⎰⎰-∞∞-dx xxdx x f x πD (X )=E (X 2)=⎰⎰⎰--∈-∞∞-=-=2/2/2]2/,2/[11222cos sin sin 11)(ππππππdt tt tx dx xxdx x f x t2122cos 122/0=-=⎰ππdt t 18. 设随机变量(X ,Y )具有D (X ) = 9,D (Y ) = 4,6/1-=XY ρ,求)(Y X D +,)43(+-Y X D . 解:因为)()(),(Y D X D Y X Cov XY =ρ,所以)()(),(Y D X D Y X Cov XY ρ==-1/6×3×2=-1,11249),(2)()()(=-+=++=+Y X Cov Y D X D Y X D51)1(6369)3,(2)(9)()43(=--+=-++=+-Y X Cov Y D X D Y X D19. 在题13中求Cov (X ,Y ),ρXY . 解:E (X ) =1/2, E (Y ) =3/4, E (XY )=0×(3/28+9/28+3/28+3/14+1/28)+1×3/14+2×0+4×0=3/14, E (X 2)= 02×(3/28+9/28+3/28)+12×(3/14+3/14+0)+ 22×(1/28+0+0)=4/7, E (Y 2)= 02×(3/28+3/14+1/28)+12×(9/28+3/14+0)+ 22×(3/28+0+0)=27/28, D (X )= E (X 2) -[E (X )]2 = 4/7-(1/2)2= 9/28, D (Y )= E (Y 2)- [E (Y )]2=27/28-(3/4)2= 45/112, Cov (X ,Y )= E (XY )- E (X ) E (Y ) =3/14- (1/2) ×(3/4)= -9/56, ρXY = Cov (X ,Y ) /()(X D )(Y D )=-9/56 ÷ (28/9112/45)= -5/520. 在题14中求Cov (X ,Y ),ρXY ,D (X + Y ).解:52)()(==Y E X E ,,)(152=XY E 752)()()(),(-=-=Y E X E XY E Y X Cov )(5124)(2101032Y E dydx y x X E x ===⎰⎰-[])(25125451)()()(22Y D X E X E X D ==-=-= 752),(2)()()(32)()(),(=++=+-==Y X Cov Y D X D Y X D Y D X D Y X Cov XYρ21. 设二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤+=.0,1,1),(22其它y x y x f π试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:0/12/)(112111122=-==⎰⎰⎰-----dx x x dydx x X E x xππOx2x20/)(111122==⎰⎰----x x dydx y Y E π 0/)(111122==⎰⎰----x x dydx xy XY E π,所以Cov (X ,Y )=0,ρXY =0,即X 和Y 是不相关.⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122x x x dy dy y x f x f x x X ππ ⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122y y y dx dx y x f y f y y Y ππ 当x 2 + y 2≤1时,f ( x,y )≠f X ( x ) f Y (y ),所以X 和Y 不是相互独立的22. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=.010,2||,2/1),(其它x x y y x f 验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:由于f ( x,y )的非零区域为D : 0 < x < 1, | y |< 2x32221102212====⎰⎰⎰⎰⎰-dx x xdydx dxdy y x xf X E xx D ),()(,0211022⎰⎰⎰⎰-===xx Dydydx dxdy y x yf Y E ),()(,0211022⎰⎰⎰⎰-===xx Dxydydx dxdy y x xyf XY E ),()(,所以Cov (X ,Y )=0,从而0)()(),(==y D x D y x Cov xy ρ,因此X 与Y 不相关 .⎪⎩⎪⎨⎧<<===⎰⎰-∞∞-其他,010,221),()(22Xx x dy dy y x f x x x f⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-=<<-+===⎰⎰⎰-∞+∞-其他,020,421202,42121),()(1212Y y y dx y y dx dx y x f y y y f所以,当0<x <1, -2<y<2时,)()(),(y f x f y x f Y X ≠,所以X 和Y 不是相互独立的 .⎪⎩⎪⎨⎧≤>>=⎩⎨⎧≥<<--==-0,00,0,1)(,0),()(y y e y f Y x Y mx xY Y x n mY Y Q Q y Y θθθ的密度函数为[]()()()取最大值时,当又则令)(n ln 0n m )(d n ln,n 0)(1)()(d )()()()(1.1.)()(.)()( 20000000Q E n m x e dx Q E n m x n m e n e n m n e n m dx Q E nxn m e n m m xenx nxe e n m xe n m m xe nxe dy n m e ye n m m xde de nx yde n m dye m x dy e y x n m y dy Yf Y Q Q E x xxx x x x x y x xyx y x y x y x y x y y x x y x y Y +-=∴<+-=+-=∴+==-+=-⎪⎭⎫ ⎝⎛-+-=-+++-=+-++-+-=-+⎥⎥⎦⎤⎢⎢⎣⎡+-+=-++-=+--==---------∞+----∞+---∞+--∞∞-⎰⎰⎰⎰⎰⎰⎰θθθθθθθθθθθθθθθθθθθθθθθθθθθ四、应用题.1. 某公司计划开发一种新产品市场,并试图确定该产品的产量,他们估计出售一件产品可获利m 元,而积压一件产品导致n 元的损失,再者,他们预测销售量Y (件)服从参数θ的解:设生产x 件产品时,获利Q 为销售量Y 的函数2. 设卖报人每日的潜在卖报数为X 服从参数为λ的泊松分布,如果每日卖出一份报可获报酬m 元,卖不掉而退回则每日赔偿n 元,若每日卖报人买进r 份报,求其期望所得及最佳卖报数。
《概率论与数理统计》习题及答案第四章
《概率论与数理统计》习题及答案第 四 章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y 的分布列为其中(1,1)(1)(1|1)0P X Y P X P Y X =======余者类推。
2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。
解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32k P X k C k ===,于是(,)X Y 的分布列和边缘分布为01013818i p ⋅其中(0,1)(0)(1|0)0P X Y P X P Y X =======,13313(1,1)(1)(1|1)()128P X Y P X P Y X C =======⨯=,余者类推。
3.设(,)X Y 的概率密度为又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。
求{(,)}P X Y D ∈ 解(1)1321{(,)}(6)8P x y D x y dxdxy ∈=--⎰=321(6)8x x y dxdy --- =)落在圆222()x y r r R +≤<内的概率. 解(1)22223201(R x y R CR dxdy C R C r drd ππθ+≤==-⎰⎰⎰⎰333233R R C R C πππ⎡⎤=-=⎢⎥⎣⎦, ∴33C R π=.(2)设222{(,)|}D x y x y r =+≤,所求概率为322323232133r r r Rr R R R πππ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦. 5.已知随机变量X 和Y 的联合概率密度为 求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则解2由联合密度可见,,X Y 独立,边缘密度分别为 边缘分布函数分别为(),()X Y F x F y ,则 设(,)X Y 的分布函数为(,)F x y ,则6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。
概率论与数理统计课后习题答案 第四章
(2) 令
,求 Y 的概率密度 fY(y).
解:
(1)
(2)
由 Y=2X-1 得
, X’=
=
七、 设二维随机变量(X,Y)的概率密度为
其他
求: (1)E(X+Y); (2)E(XY); (3)
.
解:
(1)
(2)
(3)
八、 设随机变量 X 的分布律为
X
-1
0
1
P
记 Y=X2,求: (1)D(X), D(Y); 解:
ρ
ρ
ρ
ρ
5. 证明 D(X-Y)=D(X)+D(Y)-2Cov(X,Y). 证:
6. 设(X,Y)的协方差矩阵为 解:
,求 X 与 Y 的相关系数 ρxy.
ρ
自测题 4
一、 选择题
1. 设随机变量 X 服从参数为 0.5 的指数分布,则下列各项中正确的是 B .
A. E(X)=0.5, D(X)=0.25
2. 设二维随机变量(X,Y)的概率密度为
求 Cov(X,Y). 解:
其他
3. 设二维随机变量(X,Y)的概率密度为
求 X 与 Y 的相关系数 ρxy. 解:
其他
运用分部积分法. 服从λ =1 的指数分布
所以 ρ
4. 设二维随机变量(X,Y)服从二维正态分布,且 E(X)=0, E(Y)=0, D(X)=16, D(Y)=25, Cov(X,Y)=12,求(X,Y)的联合概 率密度函数 f(x,y). 解:
解: Cov(X,Y)=0
2. 设随机变量 X 的分布律为 3 .
X
-1
0
1
2
P
0.1 0.2 0.3 0.4
概率论与数理统计第四章课后习题及参考答案
概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论 习题四 答案1.设随机变量X 的分布律为X -1 0 1 2 P1/8 1/2 1/8 1/4求E (X ),E (X ),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. X 012345P5905100C 0.583C= 1410905100C C 0.340C = 2310905100C C 0.070C = 3210905100C C 0.007C = 4110905100C C 0C= 5105100C 0C =故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=L3.设随机变量X -1 0 1 Pp 1 p 2 p 3且已知E (X )=0.1,E (X 2)=0.9,求123,,p p p . 【解】因1231p p p ++=……①,又12331()(1)010.1E X p p p p p =-++=-=g g ……②,222212313()(1)010.9E X p p p p p =-++=+=g g g ……③由①②③联立解得1230.4,0.1,0.5.p p p ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑g 全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑g5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -g 因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯=8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2x f x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为2,01,()0,;X x x f x ≤≤⎧=⎨⎩其它 (5)e ,5,()0,.y Y y f y --⎧>=⎨⎩其它 求()E XY .【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x ==⎰g 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=g方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩g 其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x x y y +∞+∞----===⨯=⎰⎰⎰⎰g g10.设随机变量X ,Y 的概率密度分别为()X f x =⎩⎨⎧≤>-;0,0,0,22x x x e ()Y f y =⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) ()E X Y +;(2) 2(23)E X Y -.【解】22-20()()d 2ed [e]e d xx x X E X xf x x x x x x +∞+∞+∞--+∞-∞===-+⎰⎰⎰g201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞===⎰⎰g22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰g从而(1) 113()()().244E X Y E X E Y +=+=+= (2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx x k e求(1) 系数c ;(2)()E X ;(3) ()D X .【解】(1) 由2220()d e d 12k x c f x x cx x k+∞+∞--∞===⎰⎰得22c k =.(2) 2220()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰g22220π2e d .2k x kx x k+∞-==⎰(3) 222222201()()d()2e .k x E X x f x x x k x dx k+∞+∞--∞===⎰⎰g 故 222221π4π()()[()].4D X E X E X k k-=-=-=⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求()E X 和()D X . 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯= 于是,得到X 的概率分布表如下: X 0 1 2 3 P0.7500.2040.0410.005由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为41e ,0,()40,0.xx f x x -⎧>⎪=⎨⎪≤⎩为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元 /41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设12,,,n X X X L 是相互独立的随机变量,且有2(),(),1,2,,i i E X D X i n μσ===L ,记 11n i i X X n ==∑,2211()1n i i S X X n ==--∑. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证22211()1ni i S X nX n ==--∑; (3) 验证22()E S σ=.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑g22111111()()n nn i i i i i i i D X D X D X X DX n nn ===⎛⎫== ⎪⎝⎭∑∑∑g 之间相互独立2221.n n nσσ==g (2) 因为222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑g故22211()1ni i S X nX n ==--∑. (3) 因为2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因为 2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E S E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑g g15.对随机变量X 和Y ,已知()2D X =,()3D Y =,(,)1Cov X Y =-,计算:(321,43)Cov X Y X Y -++-.【解】Cov(321,43)3()10ov(,)8()X Y X Y D X C X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故(,3)(,3)0Cov X Cov Y ==,其余类似). 16.设二维随机变量(,)X Y 的概率密度为221,1,(,)π0,.x y f x y ⎧+≤⎪=⎨⎪⎩其它 试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰g 同理E (Y )=0. (注意到积分区域的对称性和被积函数是奇函数可以直接得到0) 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰g222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当1x ≤时,221212()1.ππx X x f x x --=-当 1y ≤时,()Y f y =. 显然 ()()(,)X Y f x f y f x y ≠g ,故X 和Y 不是相互独立的. 17.设随机变量(,)X Y 的分布律为1 0 111验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表:由期望定义易得()E X =()E Y =()E XY =0.从而()E XY =()E X ()E Y ,再由相关系数性质知xy ρ=0, 即X 与Y 的相关系数为0,从而X 和Y 是不相关的. 又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-g 从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求(,)Cov X Y ,xy ρ. 【解】如图,S D =12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3xx x y -==⎰⎰g22()(,)d d DE X x f x y x y =⎰⎰112001d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-g . 从而112XY ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差(,)Cov X Y 和相关系数xy ρ. 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x x x y y +∞+∞-∞-∞==+=⎰⎰⎰⎰g ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰g从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭g222222π4(π4)π8π164.πππ8π32π8π322162XY ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知条件得:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故12Z Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西—许瓦兹(Cauchy -Schwarz )不等式. 【证】考虑实变量t 的二次函数2222()[()]()2()()g t E V tW E V tE VW t E W =+=++因为对于一切t ,有2()0V tW +≥,所以 ()0g t ≥,从而二次方程 ()0g t =或者没有实根,或者只有重根,故其判别式Δ≤0,即 222[2()]4()()0E VW E W E V ∆=-≤g故 222[()]()()E VW E V E W ≤g22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .【解】由题设可知:设备开机后无故障工作的时间1()5X E :,其概率密度为151,0()50,0x e x f x x -⎧>⎪=⎨⎪≤⎩根据题意 {}min ,2Y X =,所以Y 的分布函数为 {}{}()min ,2F y P X y =≤当0y <时,{}{}{}()min ,20F y P X y P X y =≤=≤=; 当02y ≤<时,{}{}{}115501()min ,215x y yF y P X y P X y e dx e --=≤=≤==-⎰; 当2y ≥时,{}{}()min ,21F y P X y =≤=;于是Y 的分布函数为:150,0,()1,02,1,2y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。