2018浙江数学高考试题(附含答案解析)

合集下载

(完整版)2018年浙江省数学高考真题试卷(含答案解析)

(完整版)2018年浙江省数学高考真题试卷(含答案解析)

2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则 ()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-= 台体的体积公式121()3V S S h=++其中分别表示台体的上、下底面积,12,S S 表示台体的高h 柱体的体积公式V Sh=其中表示柱体的底面积,表示柱体的高S h 锥体的体积公式13V Sh=其中表示锥体的底面积,表示锥体的高S h 球的表面积公式24S R =π球的体积公式343V R =π其中表示球的半径R 一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则C A=U A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}∅2.双曲线的焦点坐标是221 3=x y -A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧侧侧侧侧侧A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是21i-A .1+iB .1−i C .−1+iD .−1−i5.函数y =sin2x 的图象可能是||2xA B C D6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的⊄⊂A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ012P12p -122p 则当p 在(0,1)内增大时,A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·bπ3+3=0,则|a −b |的最小值是( )A B C .2D .10.已知成等比数列,且.若,则( )1234,,,a a a a 1234123ln()a a a a a a a +++=++11a >A .B .C .D .1324,a a a a <<1324,a a a a ><1324,a a a a <>1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2018年度浙江数学高考试题(整理汇编含标准答案)

2018年度浙江数学高考试题(整理汇编含标准答案)

绝密★启用前2018年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分 3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题 纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求, 在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共 10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是 符合题目要求的。

1.已知全集 U={1 , 2, 3, 4, 5}, A={1 , 3},则 e u A=A .B . {1 , 3} C. {2 , 4, 5} D . {1 , 2, 3, 4, 5}22 .双曲线—y 2 = 1的焦点坐标是参考公式:若事件A, B 互斥,贝U P(A B) P(A) P(B) 若事件A, B 相互独立,贝U P(AB) P(A) P(B) 若事件A 在一次试验中发生的概率是p,则n次独立重复试验中事件 A 恰好发生k 次的概率_ k kn kP n (k) C n P (1 p) (k 0,1,2,L ,n)台体的体积公式V 1(Si - S1S 2 S 2)h其中Si,&分别表示台体的上、下底面积,h 表柱体的体积公式V Sh其中S 表示柱体的底面积, h 表示柱体的高 锥体的体积公式V - Sh3其中S 表示锥体的底面积, h 表示锥体的高 球的表面积公式―_2S 4 R球的体积公式R 33A . (- y/2 , 0),(握,0)D.既不充分也不必要条件7 .设0<p<1,随机变量E 的分布列是3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位: cm 3)是A . 2B . 44 .复数—(i 为虚数单位)的共轴复数是1 iC.充分必要条件A .充分不必要条件B.必要不充分条件则|a- b|的最小值是则当 p 在(0, 1)内增大时,B. D ( &增大C. D ( &先减小后增大D. D ( &先增大后减小8 .已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设 SE与BC 所成的角为SE 与平面ABCD 所成的角为也,二面角S- AB- C 的平面角为 饱 则C.9 .已知a, b, e 是平面向量, e 是单位向量. 若非零向量 a 与e 的夹角为,向量 b 满足 b 2-4e b+3=0,A . 73-1B . ^3+1 C. D . 2-4310.已知 ai,a 2,a 3,a 4成等比数列,且 a i a? & a 4 ln(a i a ? a 3).若 A. a 〔 a 3,a 2a 4B. a 1 a 3,a 2 a 4C. a a 3,a 2 a 4非选择题部分(共110分)二、填空题:本大题共 7小题,多空题每题 6分,单空题每题4分,共36分。

2018年浙江高考数学试题文档版(含答案)

2018年浙江高考数学试题文档版(含答案)

绝密★启用前2018年一般高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部份。

全卷共4页,选择题部份1至2页;非选择题部份3至4页。

总分值150分。

考试历时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色笔迹的签字笔或钢笔别离填在试题卷和答题纸规定的位置上。

2.答题时,请依照答题纸上“注意事项”的要求,在答题纸相应的位置上标准作答,在本试题卷上的作答一概无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部份(共40分)一、选择题:本大题共10小题,每题4分,共40分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},那么=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的核心坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如下图(单位:cm ),那么该几何体的体积(单位:cm 3)是侧视图俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 知足m ⊄α,n ⊂α,那么“m ∥n ”是“m ∥α”的 A .充分没必要要条件 B .必要不充分条件C .充分必要条件D .既不充分也没必要要条件7.设0<p <1,随机变量ξ的散布列是那么当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,那么A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.已知a,b,e是平面向量,e是单位向量.假设非零向量a与e的夹角为π3,向量b知足b2−4e·b+3=0,那么|a−b|的最小值是A 1B C.2 D.210.已知1234,,,a a a a成等比数列,且1234123ln()a a a a a a a+++=++.假设11a>,那么A.1324,a a a a<<B.1324,a a a a><C.1324,a a a a<>D.1324,a a a a>>非选择题部份(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年数学真题及解析_2018年浙江省高考数学试卷

2018年数学真题及解析_2018年浙江省高考数学试卷

2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4.00分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4.00分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4.00分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.84.(4.00分)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4.00分)函数y=2|x|sin2x的图象可能是()A.B.C.D.6.(4.00分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4.00分)设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4.00分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4.00分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣10.(4.00分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年浙江数学高考试题及答案解析

2018年浙江数学高考试题及答案解析

2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件侧视图俯视图正视图22117.设0<p <1,随机变量ξ的分布列是ξ 012P12p- 12 2p 则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A .3−1B .3+1C .2D .2−310.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年浙江省高考数学试卷(含详细解析)

2018年浙江省高考数学试卷(含详细解析)

2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.84.(4分)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4分)函数y=2|x|sin2x的图象可能是()A.B.C.D.6.(4分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣10.(4分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

浙江省高考数学试题解析

浙江省高考数学试题解析

2018浙江省高考数学试卷新教改一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,23.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.84.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.4分2018 浙江设0<p <1,随机变量ξ的分布列是ξ 012P则当p 在0,1内增大时, A .Dξ减小B .Dξ增大C .Dξ先减小后增大D .Dξ先增大后减小8.4分2018 浙江已知四棱锥S ﹣ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点不含端点.设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ﹣AB ﹣C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= ,y= .12.6分2018 浙江若x,y 满足约束条件,则z=x+3y 的最小值是 ,最大值是 .13.6分2018 浙江在△ABC 中,角A,B,C 所对的边分别为a,b,c .若a=,b=2,A=60°,则sinB= ,c= . 14.4分2018 浙江二项式+8的展开式的常数项是 .15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是.若函数fx恰有2个零点,则λ的取值范围是.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.用数字作答17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.19.15分2018 浙江如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.Ⅰ证明:AB1⊥平面A1B1C1;Ⅱ求直线AC1与平面ABB1所成的角的正弦值.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.2018年浙江省高考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}考点1F:补集及其运算.A是由所有属于集合U但不属于A的元素构成的集合.分析根据补集的定义直接求解:UA是由所有属于集合U但不属于A的元素构成的集合,由已解答解:根据补集的定义,U知,有且仅有2,4,5符合元素的条件.A={2,4,5}U故选:C.点评本题考查了补集的定义以及简单求解,属于简单题.2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,2考点KC:双曲线的性质.专题34 :方程思想;4O:定义法;5D :圆锥曲线的定义、性质与方程.分析根据双曲线方程,可得该双曲线的焦点在x轴上,由平方关系算出c==2,即可得到双曲线的焦点坐标.解答解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为±2,0故选:B.点评本题考查双曲线焦点坐标,着重考查了双曲线的标准方程和焦点坐标求法等知识,属于基础题.3.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.8考点L:由三视图求面积、体积.专题35 :转化思想;5F :空间位置关系与距离.分析直接利用三视图的复原图求出几何体的体积.解答解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.点评本题考查的知识要点:三视图的应用.4.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点A5:复数的运算.专题5N :数系的扩充和复数.分析化简已知复数z,由共轭复数的定义可得.解答解:化简可得z===1+i,∴z的共轭复数=1﹣i故选:B.点评本题考查复数的代数形式的运算,涉及共轭复数,属基础题.5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.考点3A:函数的图象与图象的变换.专题35 :转化思想;51 :函数的性质及应用.分析直接利用函数的图象和性质求出结果.解答解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.点评本题考查的知识要点:函数的性质和赋值法的应用.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点29:充分条件、必要条件、充要条件.专题38 :对应思想;4O:定义法;5L :简易逻辑.分析根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.解答解:∵mα,nα,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.点评本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.4分2018 浙江设0<p<1,随机变量ξ的分布列是ξ012P则当p在0,1内增大时,A.Dξ减小B.Dξ增大C.Dξ先减小后增大D.Dξ先增大后减小考点CH:离散型随机变量的期望与方差.专题33 :函数思想;4O:定义法;5I :概率与统计.分析求出随机变量ξ的分布列与方差,再讨论Dξ的单调情况.解答解:设0<p<1,随机变量ξ的分布列是Eξ=0×+1×+2×=p+;方差是Dξ=×+×+×=﹣p2+p+=﹣+,∴p∈0,时,Dξ单调递增;p∈,1时,Dξ单调递减;∴Dξ先增大后减小.故选:D.点评本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力,是基础题.8.4分2018 浙江已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点不含端点.设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1考点MJ :二面角的平面角及求法;L3:棱锥的结构特征;LM :异面直线及其所成的角;MI :直线与平面所成的角.专题31 :数形结合;44 :数形结合法;5G :空间角.分析作出三个角,表示出三个角的正弦或正切值,根据三角函数的单调性即可得出三个角的大小.解答解:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心. 过E 作EF ∥BC,交CD 于F,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N, 连接SN,取CD 中点M,连接SM,OM,OE,则EN=OM, 则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO . 显然,θ1,θ2,θ3均为锐角. ∵tanθ1==,tanθ3=,SN ≥SO,∴θ1≥θ3, 又sinθ3=,sinθ2=,SE ≥SM,∴θ3≥θ2. 故选:D .点评本题考查了空间角的计算,三角函数的应用,属于中档题.9.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣考点9O :平面向量数量积的性质及其运算.专题11 :计算题;31 :数形结合;4R :转化法;5A :平面向量及应用. 分析把等式﹣4+3=0变形,可得得,即⊥,设,则的终点在以2,0为圆心,以1为半径的圆周上,再由已知得到的终点在不含端点O 的两条射线y=x >0上,画出图形,数形结合得答案. 解答解:由﹣4+3=0,得,∴⊥,如图,不妨设,则的终点在以2,0为圆心,以1为半径的圆周上, 又非零向量与的夹角为,则的终点在不含端点O 的两条射线y=x >0上.不妨以y=为例,则|﹣|的最小值是2,0到直线的距离减1.即.故选:A .点评本题考查平面向量的数量积运算,考查数学转化思想方法与数形结合的解题思想方法,属难题.10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4考点8I :数列与函数的综合;4H :对数的运算性质;87:等比数列的性质. 专题11 :计算题;32 :分类讨论;34 :方程思想;49 :综合法;51 :函数的性质及应用;54 :等差数列与等比数列.分析利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.解答解:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=lna 1+a 2+a 3,不成立, 即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D .当q=﹣1时,a 1+a 2+a 3+a 4=0,lna 1+a 2+a 3>0,等式不成立,所以q ≠﹣1; 当q <﹣1时,a 1+a 2+a 3+a 4<0,lna 1+a 2+a 3>0,a 1+a 2+a 3+a 4=lna 1+a 2+a 3不成立, 当q ∈﹣1,0时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,能够成立, 故选:B .点评本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查发现问题解决问题的能力,难度比较大.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= 8 ,y= 11 .考点53:函数的零点与方程根的关系.专题11 :计算题;33 :函数思想;49 :综合法;51 :函数的性质及应用.分析直接利用方程组以及z的值,求解即可.解答解:,当z=81时,化为:,解得 x=8,y=11.故答案为:8;11.点评本题考查方程组的解法,是基本知识的考查.12.6分2018 浙江若x,y满足约束条件,则z=x+3y的最小值是﹣2 ,最大值是8 .考点7C:简单线性规划.专题1 :常规题型;11 :计算题;35 :转化思想;49 :综合法;5T :不等式.分析作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+3y对应的直线进行平移,观察直线在y轴上的截距变化,然后求解最优解得到结果.解答解:作出x,y满足约束条件表示的平面区域,如图:其中B4,﹣2,A2,2.设z=Fx,y=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.∴z=F4,﹣2=﹣2.最小值可得当l经过点A时,目标函数z达到最最大值:z=F2,2=8.最大值故答案为:﹣2;8.点评本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.13.6分2018 浙江在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB= ,c= 3 .考点HP:正弦定理.专题11 :计算题;35 :转化思想;49 :综合法;58 :解三角形.分析由正弦定理得=,由此能求出sinB,由余弦定理得cos60°=,由此能求出c.解答解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1舍,∴sinB=,c=3.故答案为:,3.点评本题考查三角形中角的正弦值、边长的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.4分2018 浙江二项式+8的展开式的常数项是7 .考点DA:二项式定理.专题35 :转化思想;4O:定义法;5P :二项式定理.分析写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.解答解:由=.令=0,得r=2.∴二项式+8的展开式的常数项是.故答案为:7.点评本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是{x|1<x<4} .若函数fx恰有2个零点,则λ的取值范围是1,3 .考点57:函数与方程的综合运用;3E:函数单调性的性质与判断;5B:分段函数的应用.专题11 :计算题;31 :数形结合;34 :方程思想;49 :综合法;51 :函数的性质及应用.分析利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.解答解:当λ=2时函数fx=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式fx<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数fx恰有2个零点,函数fx=的草图如图:函数fx恰有2个零点,则λ∈1,3.故答案为:{x|1<x<4};1,3.点评本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260 个没有重复数字的四位数.用数字作答考点D8:排列、组合的实际应用.专题11 :计算题;35 :转化思想;49 :综合法;5O :排列组合.分析可先从1,3,5,7,9中任取2个数字,然后通过0是否存在,求解即可.解答解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.点评本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,注意“0“是否在4位数中去易错点,是中档题.17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 5 时,点B横坐标的绝对值最大.考点K4:椭圆的性质.专题34 :方程思想;48 :分析法;5A :平面向量及应用;5D :圆锥曲线的定义、性质与方程.分析设Ax1,y1,Bx2,y2,运用向量共线的坐标表示,以及点满足椭圆方程,求得y1,y2,有x22=m﹣2,运用二次函数的最值求法,可得所求最大值和m的值.解答解:设Ax1,y1,Bx2,y2,由P0,1,=2,可得﹣x1=2x2,1﹣y1=2y2﹣1,即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x 22+4y22=4m,②①﹣②得y1﹣2y2y1+2y2=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+2,即有x22=m﹣2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.点评本题考查椭圆的方程和应用,考查向量共线的坐标表示和方程思想、转化思想,以及二次函数的最值的求法,属于中档题.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.考点GP:两角和与差的三角函数;G9:任意角的三角函数的定义.专题33 :函数思想;4R:转化法;56 :三角函数的求值.分析Ⅰ由已知条件即可求r,则sinα+π的值可得;Ⅱ由已知条件即可求sinα,cosα,cosα+β,再由cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα代值计算得答案.解答解:Ⅰ∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P﹣,﹣.∴x=﹣,y=,r=|OP|=,∴sinα+π=﹣sinα=;Ⅱ由x=﹣,y=,r=|OP|=1,得,,又由sinα+β=,得=,则cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=,或cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=.∴cosβ的值为或.点评本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,是中档题.19.15分2018 浙江如图,已知多面体ABCA 1B 1C 1,A 1A,B 1B,C 1C 均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=l,AB=BC=B 1B=2. Ⅰ证明:AB 1⊥平面A 1B 1C 1;Ⅱ求直线AC 1与平面ABB 1所成的角的正弦值.考点MI :直线与平面所成的角;LW :直线与平面垂直.专题31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角. 分析I 利用勾股定理的逆定理证明AB 1⊥A 1B 1,AB 1⊥B 1C 1,从而可得AB 1⊥平面A 1B 1C 1; II 以AC 的中点为坐标原点建立空间坐标系,求出平面ABB 1的法向量,计算与的夹角即可得出线面角的大小.解答I 证明:∵A 1A ⊥平面ABC,B 1B ⊥平面ABC, ∴AA 1∥BB 1, ∵AA 1=4,BB 1=2,AB=2, ∴A 1B 1==2,又AB 1==2,∴AA 12=AB 12+A 1B 12,∴AB 1⊥A 1B 1, 同理可得:AB 1⊥B 1C 1, 又A 1B 1∩B 1C 1=B 1, ∴AB 1⊥平面A 1B 1C 1.II 解:取AC 中点O,过O 作平面ABC 的垂线OD,交A 1C 1于D, ∵AB=BC,∴OB ⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O 为原点,以OB,OC,OD 所在直线为坐标轴建立空间直角坐标系如图所示: 则A0,﹣,0,B1,0,0,B 11,0,2,C 10,,1, ∴=1,,0,=0,0,2,=0,2,1,设平面ABB 1的法向量为=x,y,z,则,∴,令y=1可得=﹣,1,0,∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.点评本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.考点8M:等差数列与等比数列的综合.专题34 :方程思想;48 :分析法;54 :等差数列与等比数列.分析Ⅰ运用等比数列的通项公式和等差数列中项性质,解方程可得公比q;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,运用数列的递推式可得cn=4n﹣1,再由数列的恒等式求得b n =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1,运用错位相减法,可得所求数列的通项公式.解答解:Ⅰ等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2舍去,则q的值为2;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得cn=2n2+n﹣2n﹣12﹣n﹣1=4n﹣1,上式对n=1也成立,则bn+1﹣bnan=4n﹣1,即有bn+1﹣bn=4n﹣1n﹣1,可得bn =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1=1+30+71+…+4n﹣5n﹣2,b=+3n+72+…+4n﹣5n﹣1,=+4+2+…+n﹣2﹣4n﹣5相减可得bnn﹣1=+4 ﹣4n﹣5n﹣1,化简可得b=15﹣4n+3nn﹣2.点评本题考查等比数列的通项公式和等差数列中项的性质,考查数列的恒等式和错位相减法的运用,考查运算能力,属于中档题.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.考点KN:直线与抛物线的位置关系;KL:直线与椭圆的位置关系.专题34 :方程思想;48 :分析法;5D :圆锥曲线的定义、性质与方程.分析Ⅰ设Pm,n,A,y1,B,y2,运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,由韦达定理即可得到结论;Ⅱ由题意可得m2+=1,﹣1≤m<0,﹣2<n<2,可得△PAB面积为S=|PM||y1﹣y2|,再由配方和换元法,可得面积S关于新元的三次函数,运用单调性可得所求范围.解答解:Ⅰ证明:可设Pm,n,A,y1,B,y2,AB中点为M的坐标为,,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,可得2=4 ,2=4 ,化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,可得y1+y2=2n,y1y2=8m﹣n2,可得n=,则PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,可得m2+=1,﹣1≤m<0,﹣2<n<2,由Ⅰ可得y1+y2=2n,y1y2=8m﹣n2,由PM垂直于y轴,可得△PAB面积为S=|PM||y1﹣y2|=﹣m=4n2﹣16m+2n2﹣m=n2﹣4m,可令t===,可得m=﹣时,t取得最大值;m=﹣1时,t取得最小值2,即2≤t≤,则S=t3在2≤t≤递增,可得S∈6,,△PAB面积的取值范围为6,.点评本题考查抛物线的方程和运用,考查转化思想和运算能力,以及换元法和三次函数的单调性,属于难题.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.考点6E:利用导数研究函数的最值.专题14 :证明题;35 :转化思想;49 :综合法;53 :导数的综合应用.分析Ⅰ推导出x>0,f′x=﹣,由fx在x=x1,x2x1≠x2处导数相等,得到+=,由基本不等式得:=≥,从而x1x2>256,由题意得fx1+fx2==﹣lnx1x2,设gx=,则,利用导数性质能证明fx1+fx2>8﹣8ln2.Ⅱ令m=e﹣|a|+k,n=2+1,则fm﹣km﹣a>|a|+k﹣k﹣a≥0,推导出存在x∈m,n,使fx0=kx+a,对于任意的a∈R及k∈0,+∞,直线y=kx+a与曲线y=fx有公共点,由fx=kx+a,得k=,设hx=,则h′x==,利用导数性质能证明a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.解答证明:Ⅰ∵函数fx=﹣lnx,∴x >0,f′x=﹣,∵fx 在x=x 1,x 2x 1≠x 2处导数相等, ∴=﹣,∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256, 由题意得fx 1+fx 2==﹣lnx 1x 2,设gx=,则,∴列表讨论:x 0,16 16 16,+∞g′x ﹣ 0 + gx↓2﹣4ln2↑∴gx 在256,+∞上单调递增, ∴gx 1x 2>g256=8﹣8ln2, ∴fx 1+fx 2>8﹣8ln2. Ⅱ令m=e ﹣|a|+k ,n=2+1,则fm ﹣km ﹣a >|a|+k ﹣k ﹣a ≥0, fn ﹣kn ﹣a <n﹣﹣k ≤n﹣k <0,∴存在x 0∈m,n,使fx 0=kx 0+a,∴对于任意的a ∈R 及k ∈0,+∞,直线y=kx+a 与曲线y=fx 有公共点, 由fx=kx+a,得k=,设hx=,则h′x==,其中gx=﹣lnx,由1知gx ≥g16,又a ≤3﹣4ln2,∴﹣gx ﹣1+a ≤﹣g16﹣1+a=﹣3+4ln2+a ≤0,∴h′x≤0,即函数hx在0,+∞上单调递减,∴方程fx﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.点评本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.。

2018年高考(浙江省)真题数学(理)试题及答案解析

2018年高考(浙江省)真题数学(理)试题及答案解析

2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同一直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )。

2018浙江高考数学试卷含答案

2018浙江高考数学试卷含答案

2018浙江一.选择题(本大题共10小题,每小题4分,共40分) 1.已知全集U ={1,2,3,4,5},A ={1,3},则C U A =( )A .∅B . {1,3}C . {2,4,5}D . {1,2,3,4,5} 2.双曲线x 23-y 2=1的焦点坐标是( )A . (-2,0),(2,0)B .(-2,0),(2,0)C . (0,-2),(0,2)D . (0,-2),(0,2)3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D . 84.复数21-i(i 为虚数单位)的共轭复数是( )A . 1+iB . 1-iC . -1+iD . -1-i5.函数y =2|x |sin2x 的图象可能是( )πππDC B A xyππOxyπOxyπOOπyx6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A .充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 7.设0<p <1,随机变量ξ的分布列是ξ 0 1 2 P1-p212p 2则当p 在(0,1)内增大( )A .D (ξ)减小B . D (ξ)增大C .D (ξ)先减小后增大 D . D (ξ)先增大后减小8.已知四棱锥S -ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S -AB -C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e •b+3=0,则|a -b |的最小值是( )A .-1B .+1C . 2D . 2-10.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4二.填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x ,y ,z ,则⎩⎪⎨⎪⎧x +y +z =100,5x +3y +13z =100,,当z =81时,x =___________,y =____________ 12.若x ,y 满足约束条件,则z =x +3y 的最小值是____________,最大值是___________13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =,b =2,A =60°,则sin B =________,c =__________ 14.二项式(+12x)8的展开式的常数项是_____________ 15.已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.,当λ=2时,不等式f (x )<0的解集是___________,若函数f (x )恰有2个零点,则λ的取值范围是___________16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成_________个没有重复数字的四位数(用数字作答)17.已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B横坐标的绝对值最大.解答题(本大题共5小题,共74分)18.(14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (-,-).⑴.求sin(α+π)的值; ⑵.若角β满足sin(α+β)=,求cos β的值.19.(15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2⑴.证明:AB 1⊥平面A 1B 1C 1⑵.求直线AC 1与平面ABB 1所成的角的正弦值20.(15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n⑴.求q 的值⑵.求数列{b n }的通项公式21.(15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上⑴.设AB 中点为M ,证明:PM 垂直于y 轴⑵.若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围22.(15分)已知函数f (x )=x -ln x⑴.若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8-8ln2⑵.若a ≤3-4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点C 1B 1A 1CBA数 学 答 案1.解答:由题意知,∁U A ={2,4,5}. 2.解答:因c 2=3+1=4,故双曲线x 23-y 2=1的焦点坐标是(-2,0),(2,0). 3.解答:由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6.4.解答:因为21-i =2(1+i )(1-i )(1+i )=2(1+i )1-i 2=1+i ,所以复数21-i 的共轭复数为1-i .5.设f (x )=2|x |sin 2x ,其定义域关于坐标原点对称,又f (-x )=2|-x |·sin(-2x )=-f (x ),故y =f (x )是奇函数,故排除①②;令f (x )=0,故sin 2x =0,故2x =k π(k ∈Z ),故x =k π2(k ∈Z ),故排除③.故填④.6.【解】若m ⊄α,n ⊂α,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m ⊄α,n ⊂α,不一定推出m ∥n ,直线m 与n 可能异面.故“m ∥n ”是“m ∥α”的充分不必要条件.7.解答:由题可得E (ξ)=12+p ,所以D (ξ)=-p 2+p +14=-(p -12)2+12,所以当p 在(0,1)内增大时,D (ξ)先增大后减小.8.解答:作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知θ2=∠SEO ,θ3=∠SMO ,过SO 固定下的二面角与线面角关系,得θ2≤θ3.易知,θ3也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角,根据最小角定理,OM 与直线SE 所成的线线角θ3≤θ1,故θ2≤θ3≤θ1.9.解答:设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.解 设e =(1,0),a =(x ,y ),b =(m ,n ),由题设可得a ·e =|a |·|e |cos π3,即x =12x 2+y 2,整理得y=3x (x ≥0).又由b 2-4e ·b +3=0可得m 2+n 2-4m +3=0,整理得(m -2)2+n 2=1.在直角坐标系xOy 中,分别画出圆C :(x -2)2+y 2=1,射线l :y =3x (x ≥0),过圆心C 作CD ⊥l ,交直线l 与点D .由直观图可知,|a -b |的最小值是|CD |-1=3-1.故选A .10.解答:因ln x ≤x -1,故a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,得a 4≤-1,即a 1q 3≤-1,故q <0.若q ≤-1,则a 1+a 2+a 3+a 4=a 1(1+q )(1+q 2)≤0,a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,矛盾.故-1<q <0,则a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0.故a 1>a 3,a 2<a 4.11.法一:由题意,得⎩⎪⎨⎪⎧x +y +81=100,5x +3y +13×81=100,即⎩⎪⎨⎪⎧ x +y =19,5x +3y =73,解得⎩⎪⎨⎪⎧x =8,y =11. 法二:100-81=19(只),81÷3=27(元),100-27=73(元).假设剩余的19只鸡全是鸡翁,则5×19=95(元).因为95-73=22(元),所以鸡母:22÷(5-3)=11(只),鸡翁:19-11=8(只).12.解答:不等式组所表示的平面区域如图所示,当⎩⎪⎨⎪⎧x =4,y =-2,时,z =x +3y 取最小值,最小值为-2;当⎩⎪⎨⎪⎧x =2,y =2.时,z =x +3y 取最大值,最大值为8.13.因为a =7,b =2,A =60°,故由正弦定理得sin B =b sin A a =2×327=217.由余弦定理a 2=b 2+c 2-2bc cos A 可得c 2-2c -3=0,故c =3.14.解析 该二项展开式的通项公式为T r +1=C r8x 8-r3(12x )r =C r 8(12)rx 8-4r 3.令8-4r 3=0,解得r =2,所以所求常数项为C 28×(12)2=7. 15.解答:(1)若λ=2,当x ≥2时,令x -4<0,得2≤x <4;当x <2时,令x 2-4x +3<0,解得1<x <2.综上可知,1<x <4,所以不等式f (x )<0的解集为(1,4).(2)令f (x )=0,当x ≥λ时,x =4,当x <λ时,x 2-4x +3=0,解得x =1或x =3.因为函数f (x )恰有2个零点,结合如图函数的图象知,1<λ≤3或λ>4.16.解答:C 25C 23A 44+C 25C 13C 13A 33=720+540=1260.17.解答:法一:设A (x 1,y 1),B (x 2,y 2),当直线斜率不存在时,m =9,x 2=0.当直线斜率存在时,设AB 为y =kx +1.代入x 24+y 2=m 得,(1+4k 2)x 2+8kx +4-4m =0,Δ>0得,4mk 2+m -1=0,x 1+x 2=-8k 1+4k 2,1224441m x x k -=+.因AP →=2PB →,故122x x =-,解得x 1=-16k 1+4k 2,x 2=8k 1+4k 2.故228821414k x k k k==≤++(当且仅当|k |=12时取“=”).x 1x 2=-16k 1+4k 2˙8k1+4k 2=-8,122442241mx x m k -==-+,得m =5,故当m =5时,点B 横坐标最大.法二:设A (x 1,y 1),B (x 2,y 2),由=2,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2(y 2-1),即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,故⎩⎨⎧4x 224+(3-2y 2)2=m ,x 224+y 22=m ,得y 2=14m +34,故x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,故当m =5时,点B 横坐标的绝对值最大,最大值为2. 18.解答:①由角α的终边过点P (-,-)得sin α=-45,故sin(α+π)=-sin α=45.②由角α的终边过点P (-,-)得cos α=-35,由sin(α+β)=513得cos(α+β)=±1213.由β=(α+β)-α得cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α,故cos β=-5665或cos β=1665.19.解答:(1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3).由AB 1→·A 1B 1→=0得AB 1⊥A 1B 1.由AB 1→·A 1C 1→=0得AB 1⊥A 1C 1,A 1B 1∩A 1C 1=A 1,所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2).设平面ABB 1的法向量n =(x ,y ,z ).由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,即⎩⎨⎧x +3y =0,2z =0,令y =1,则x =-3,z =0,可得平面ABB 1的一个法向量n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→|·|n |=3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是3913. 20.解答:(1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4,故a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20得8(q +1q )=20,解得q =2或q =12,因为q >1,故q =2.(2)设c n =(b n +1-b n )a n ,数列{c n }前n 项和为S n .由c n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,解得c n =4n -1.由(1)可知a n =2n -1,故b n +1-b n =(4n -1)·(12)n -1,故b n -b n -1=(4n -5)·(12)n -2,n ≥2,b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)·(12)n -2+(4n -9)·(12)n -3+…+7·12+3.设T n =3+7·12+11·(12)2+…+(4n -5)·(12)n -2,n ≥2,12T n =3·12+7·(12)2+…+(4n -9)·(12)n -2+(4n -5)·(12)n -1,故12T n=3+4·12+4·(12)2+…+4·(12)n -2-()4n -5·(12)n -1,因此T n =14-(4n +3)·(12)n -2,n ≥2,又b 1=1,故b n =15-(4n +3)·(12)n -2,n ≥2,又b 1=1也适合上式,故b n =15-(4n +3)·(12)n -2(n ∈N *).21.解答:(1)证明 设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2.因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).因此,△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],因此,△P AB 面积的取值范围是⎣⎡⎦⎤62,15104. 22.解答:(1)f ′(x )=12x -1x ,不妨设f ′(x 1)=f ′(x 2)=t ,即x 1,x 2是方程12x -1x=t 的两根,即x 1,x 2是方程tx 2-x 2+1=0的根,所以Δ=14-4t >0,得0<t <116,且x 1+x 2=12t ,x 1·x 2=1t,f (x 1)+f (x 2)=(x 1+x 2)-ln x 1x 2=12t -ln 1t 2=12t +2ln t ,令g (t )=12t +2ln t ,g ′(t )=2t -12t 2=4t -12t2<0,故g (t )在(0,116)上单调递减.故g (t )>g (116)=8-8ln2,即f (x 1)+f (x 2)>8-8ln2.(2)设h (x )=(kx +a )-f (x )=kx +a -x +ln x ,则当x 充分小时h (x )<0,充分大时h (x )>0,故h (x )至少有一个零点,则h ′(x )=k -12x +1x =k -116+(1x -14)2,①k ≥116,则h ′(x )≥0,h (x )递增,h (x )有唯一零点,②0<k <116,则令h ′(x )=0,得h ′(x )有两个极值点x 1,x 2(x 1≠x 2)14>,故0<x 1<16.可知h (x )在(0,x 1)递增,(x 1,x2)递减,(x 2,+∞)递增,故1111111()ln )ln h x kx x a x x a x =+=-+11lnx a =-++,又1111()h x x '==,故h (x 1)在(0,16)上单调递增,故h (x 1)>h (16)=3-a -ln16=3-a -4ln2≥0,故h (x )有唯一零点,综上可知,k >0时,y =kx +a 与y =f (x )有唯一公共点.。

2018年高考浙江高考数学试题及答案(精校版)

2018年高考浙江高考数学试题及答案(精校版)

(Ⅱ)若 P 是半椭圆 x2+ y2 =1(x<0)上的动点,求△PAB 面积的取值范围. 4
22.(本题满分 15 分)已知函数 f(x)= . x −lnx
(Ⅰ)若 在 , 处导数相等,证明: ; f(x) x=x1 x2(x1≠x2)
f(x1)+f(x2)>8−8ln2
(Ⅱ)若 a≤3−4ln2,证明:对于任意 k>0,直线 y=kx+a 与曲线 y=f(x)有唯一公共点.
Pn (k) Ckn pk (1 p)nk (k 0,1, 2,L , n)
柱体的体积公式V Sh 其中S 表示柱体的底面积,h表示柱体的高
锥体的体积公式V 1 Sh 3
其中S 表示锥体的底面积,h表示锥体的高 球的表面积公式
台体的体积公式 V
1 3 (S1
S1S2 S2 )h
其中 S1,S2 分别表示台体的上、下底面积, h 表
绝密★启用前
2018 年普通高等学校招生全国统一考试(浙江卷)
数学
本试题卷分选择题和非选择题两部分。全卷共 4 页,选择题部分 1 至 2 页;非选择题部 分 3 至 4 页。满分 150 分。考试用时 120 分钟。 考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题 卷和答题纸规定的位置上。
55
5
所以 sin( π) sin 4 . 5
(Ⅱ)由角 的终边过点 P( 3 , 4) 得 cos 3 ,
55
5
由 得 sin( ) 5 cos( ) 12 .
13
13
由 得 , ( ) cos cos( ) cos sin( )sin
所以 或 cos 56 cos 16 .

(完整)2018年高考浙江卷数学试题解析(精编版)(原卷版)

(完整)2018年高考浙江卷数学试题解析(精编版)(原卷版)

绝密★启用前2018年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共 4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名 、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定 的位置上。

2.作答一律无效。

参考公式:若事件A , B 互斥,则卜出:m ; m若事件A , B 相互独立,则 疋■贋,:汽科若事件A 在一次试验中发生的概率是 p ,则n 次独立重复试验中事件 A 恰好发生k 次的概率 卩矗)=(制F -pT k (k =a i2…n 台体的体积公式\/・*比+/廷+比血 其中S 「禺分别表示台体的上、下底面积, h 表示台体的高其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的 柱体的体积公式■其中 表示柱体的底面积,卩表示柱体的高锥体的体积公式其中| :表示锥体的底面积,炉表示锥体的高球的表面积公式S 4寂球的体积公式题目要求的。

1.已知全集U={1 , 2, 3, 4, 5}, A={1 , 3},则A. B. {1 , 3} C. {2 , 4, 5} D. {1 , 2, 3, 4, 5} 22. 双曲线I 的焦点坐标是 A. (-, 0), ( ' , 0)B. (-2 , 0), (2, 0)C. (0, - ' ) , (0 , )D. (0,-2) ,(0 , 2)3. 某几何体的三视图如图所示 (单位:cm ),则该几何体的体积(单位:cm 3)是A. 1+iB. 1-iC. -1+iD. -1-i 5.函数y= sin2x 的图象可能是直线m , n 满足m 花a , a ,则"m // n ”是"m // a”的.84.复数 (i 为虚A.充分不必要条件B.必要不充分条件则当p 在(0, 1 )内增大时,A. D (E)减小B. D (3增大C. D ( 3)先减小后增大D. D ( 3先增大后减小8.已知四棱锥 SABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为01, SE 与平面ABCD 所成的角为 込 二面角S-AB-C 的平面角为 出,则0W0W0 C. 01 <03<02 D. 02<0 <01的最小值是A. -1B. ' +1C. 2D. 2-10. 已知S 也內冋成等比数列,且h %心4 -忸佃1決2 °畧•若1,则 A.珂 吋牡七巧 B.勺 > 勺眄 < 打 C.巧 < 幻內> % D.尊 S 巧:-九非选择题部分(共110分)、填空题:本大题共 7小题,多空题每题 6分,单空题每题 4分,共36分。

2018年浙江数学高考试题WORD版(含答案)

2018年浙江数学高考试题WORD版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L 台体的体积公式11221()3V S S S S h =++其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧视图俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ 012P12p- 12 2p 则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A .3−1B .3+1C .2D .2−310.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018浙江高考数学试题及其官方答案

2018浙江高考数学试题及其官方答案

2018年普通高等学校招生全国统一考试浙江卷一、选择题(本大题共10小题,每小题4分,共40分)1. 已知全集U ={1,2,3,4,5},A ={1,3},则C U A =( )A . ∅B . {1,3}C . {2,4,5}D . {1,2,3,4,5}2. 双曲线−y 2=1的焦点坐标是( )A . (− ,0),( ,0)B . (−2,0),(2,0)C . (0,− ),(0, )D . (0,−2),(0,2)3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D . 84. 复数-(i 为虚数单位)的共轭复数是( ) A . 1+i B . 1−i C . −1+i D . −1−i5. 函数y = sin 2x 的图象可能是( )6. 已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件7. 设0<p <1,随机变量ξ则当p 在(0,1)A . D (ξ)减小 B . D (ξ)增大 C . D (ξ)先减小后增大 D . D (ξ)先增大后减小 8. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A . θ1≤θ2≤θ3 B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ19. 已知a,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 ,向量b 满足b 2−4e •b +3=0,则|a −b|俯视图正视图DC B A的最小值是( )A. −1B. +1C. 2D. 2−10.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则( )A. a1<a3,a2<a4B. a1>a3,a2<a4C. a1<a3,a2>a4D. a1>a3,a2>a4二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=__________________________,y=___________________________12.若x,y满足约束条件−≤ ,则z=x+3y的最小值是________________________,最大值是_____________________13.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,A=60°,则sinB=_________________,c=___________________14.二项式(+)8的展开式的常数项是_________________________15.已知λ∈R,函数f(x)=−,−,,当λ=2时,不等式f(x)<0的解集是_____________________,若函数f(x)恰有2个零点,则λ的取值范围是________________________16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)17.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=____________________时,点B横坐标的绝对值最大三、解答题(本大题共5小题,共74分)18.(14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(− ,− )(1)求sin(α+π)的值(2)若角β满足sin(α+β)=,求cosβ的值19. (15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2(1) 证明:AB 1⊥平面A 1B 1C 1(2) 求直线AC 1与平面ABB 1所成的角的正弦值20. (15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n (1) 求q 的值(2) 求数列{b n }的通项公式21. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上(1) 设AB 中点为M ,证明:PM 垂直于y 轴C 1B 1A 1CA(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围22.(15分)已知函数f(x)=−lnx(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2(2)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

2018年浙江省高考数学试卷及解析

2018年浙江省高考数学试卷及解析

2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4.00分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4.00分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4.00分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.84.(4.00分)复数(i为虚数单位)的共轭复数是()1A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4.00分)函数y=2|x|sin2x的图象可能是()A .B .C .D .6.(4.00分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4.00分)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()2A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4.00分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4.00分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A .﹣1B .+1 C.2 D.2﹣10.(4.00分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年浙江省高考数学试卷文档解析版

2018年浙江省高考数学试卷文档解析版

2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【解答】解:根据补集的定义,∁U A是由所有属于集合U但不属于A的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.∁U A={2,4,5}故选:C.2.(4分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)【解答】解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为(±2,0)故选:B.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.4.(4分)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:化简可得z===1+i,∴z的共轭复数=1﹣i故选:B.5.(4分)函数y=2|x|sin2x的图象可能是()A.B.C.D.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.6.(4分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.7.(4分)设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【解答】解:设0<p<1,随机变量ξ的分布列是E(ξ)=0×+1×+2×=p+;方差是D(ξ)=×+×+×=﹣p2+p+=﹣+,∴p∈(0,)时,D(ξ)单调递增;p∈(,1)时,D(ξ)单调递减;∴D(ξ)先增大后减小.故选:D.8.(4分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.9.(4分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣【解答】解:由﹣4•+3=0,得,∴()⊥(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x >0)上.不妨以y=为例,则|﹣|的最小值是(2,0)到直线的距离减1.即.故选:A.10.(4分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2018 年普通高等学校招生全国统一考试(浙江卷)数 本试题卷分选择题和非选择题两部分。

全卷共 4 页。

满分 150 分。

考试用时 120 分钟。

学4 页,选择题部分 1 至 2 页;非选择题部分 3 至考生注意:1.答题前, 请务必将自己的姓名、 准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题 纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题选择题部分(共 40 分)一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。

在每小题给出的四个选项中,只有一项是 符合题目要求的。

1.已知全集 U ={1,2,3,4,5},A ={1,3},则 e U A= A .B .{1,3}C .{2,4, 5}D .{1,2,3,4,5}卷上的作答一律无效。

参考公式:若事件 A ,B 互斥,则 P(A B) P(A) P(B) 若事件 A ,B 相互独立,则 P(AB) P(A)P(B) 若事件 A 在一次试验中发生的概率是 p ,则 n 次独立重复试验中事件 A 恰好发生 k 次的概率 k k n kP n (k) C k n p k (1 p)n k (k 0,1,2, ,n) 台体的体积公式 V 1(S 1 S 1S 2 S 2)h 其中 S 1, S 2分别表示台体的上、下底面积, h 表 示台体的高柱体的体积公式 V Sh其中 S 表示柱体的底面积, h 表示柱体的高1锥体的体积公式 V Sh3其中 S 表示锥体的底面积, h 表示锥体的高 球的表面积公式2S 4 R2球的体积公式4322.双曲线x y2=1 的焦点坐标是3A.(- 2 ,0),( 2,0)C.(0,- 2),(0, 2 )3.某几何体的三视图如图所示(单位:B.(-2 ,0),(2 , 0)D.(0 ,-2),(0 ,2)cm ),则该几何体的体积(单位: cm3)是侧视图A.2 B.4 C.D.4 .复数2(i 为虚数单位)的共轭复数是1iA . 1+iB. 1-iC.5.函数y= 2|x| sin2 x的图象可能是6.已知平面α,直线m,n 满足mα,B.必要不充分条件n α,A .充分不必要条件C .充分必要条件D.既不充分也不必要条件7.设 0< p <1 ,随机变量ξ的分布列是则当p 在( 0,1)内增大时,A .D(ξ)减小B.D(ξ)增大C .D(ξ)先减小后增大D .D(ξ)先增大后减小8.已知四棱锥S- ABCD 的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点),设SE与BC 所成的角为θ1 ,SE与平面ABCD 所成的角为θ2,二面角S- AB- C 的平面角为θ3,则 A .θ1 ≤θ2≤ θ3 B.θ3≤θ2≤θ1 C .θ1≤θ3≤θ2D .θ2≤ θ3 ≤ θ1 π9.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π,向量b满足 3 b2- 4e·b +3=0 ,则| a- b| 的最小值是A. 3-1 B. 3+1 C.2 D. 2- 310.已知 a1,a2,a3,a4成等比数列,且a1 a2 a3 a4 ln(a1 a2 a3) .若a1 1,则A.a1 a3,a2 a4 B. a1 a3,a2 a4 C . a1 a3,a2 a4 D. a1 a3,a2 a4非选择题部分(共 110 分)二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。

11 .我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别x y z 100,为x,y,z,则1当z 81时, x _______________________ , y _________ .5x 3y z 100,3x y 0,12.若x, y满足约束条件 2x y 6,则 z x 3y的最小值是_______,最大值是 ________x y 2,13 .在△ ABC 中,角A,B,C所对的边分别为a,b,c.若a= 7 ,b =2,A=60 °,则sin B= ________________________________________________________________________c = ________ .14.二项式(3x 1)8的展开式的常数项是______2xx 4,x15.已知λ∈R,函数f(x)= 2,当λ=2 时,不等式f(x)<0 的解集是.若x24x 3,x函数f(x)恰有 2 个零点,则λ的取值范围是.16.从 1 ,3,5,7,9 中任取 2 个数字,从 0,2,4 ,6 中任取 2 个数字,一共可以组成 __________________________________________________________________________个没有重复数字的四位数 .(用数字作答)17.已知点P(0 ,1),椭圆x+y2=m(m>1)上两点A,B 满足AP =2 PB ,则当m = _4时,点B 横坐标的绝对值最大.学科 *网三、解答题:本大题共 5 小题,共 74 分。

解答应写出文字说明、证明过程或演算步骤。

18 .(本题满分 14 分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过34点P(, - ).55(Ⅰ)求 sin (α+π)的值;5(Ⅱ)若角β满足 sin(α+β)= ,求 cos β的值.1319.(本题满分 15 分)如图,已知多面体ABCA 1B1C1,A1A,B1B,C1C 均垂直于平面ABC ,∠ABC =120 °,A1A=4,C1C=1,AB=BC=B1B=2 .Ⅰ)证AB 1⊥平面(Ⅱ)求直线AC1 与平面ABB1所成的角的正弦值.20.(本题满分 15 分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28 ,a4+2 是a3,a5的等差中项.数列{b n}满足b 1=1 ,数列{(b n+1 - b n)a n}的前n 项和为 2n2+n.(Ⅰ)求q 的值;(Ⅱ)求数列 {b n}的通项公式.学 *科网21 .(本题满分 15 分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y2=4x 上存在不同的两点A,B满足PA,PB 的中点均在C 上.B(Ⅰ)设AB中点为M,证明:PM 垂直于y 轴;2(Ⅱ)若P是半椭圆x2+ y =1(x<0)上的动点,求△ PAB 面积的取值范围.422 .(本题满分 15 分)已知函数f(x)= x - ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+ f(x2)>8-8ln2 ;(Ⅱ)若a≤ 3-4ln2 ,证明:对于任意k>0,直线y=kx+a 与曲线y= f (x)有唯一公共点.、选择题:本题考查基本知识和基本运算。

每小题 4 分,满分 40 分。

1.C 2.B 3.C 4.B5.D6.A7.D 8.D 9.A10.B二、填空题:本题考查基本知识和基本运算。

多空题每题 6 分,单空题每题 4 分, 满分 36 分。

11.8 ; 1112.-2 ;813. 21;3714.715. (1,4);(1,3] (4, )16.126017.5三、解答题:本大题共 5小题,共 74 分。

18. 本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。

满分 14 分。

34 (Ⅰ)由角 的终边过点 P( , )得 sin55 4所以 sin( π) sin .534(Ⅱ)由角 的终边过点 P( , ) 得 cos555 12由 sin( ) 得 cos( ) .13 13由 ( ) 得 cos cos( )cos sin( )sin ,4, 53, 5 所以cos56或 cos16.65 6519.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时力和运算求解能力。

满分 15 分。

方法一:Ⅰ)由 AB 2,AA 1 4,BB 1 2,AA 1 AB,BB 1 AB 得 AB 1 A 1B 1 2 2 , 所以 A 1B 12 AB 12AA 12. 故AB1 A 1B 1 .由 BC 2 , BB1 2,CC 1 1, BB 1 BC , CC 1 BC 得 B 1C 15 ,2018 年普通高等学校招生全国统一考试(浙江卷)数 学·参考答案由 AB BC 2, ABC 120 得 AC 2 3 ,由CC 1 AC ,得 AC 1 13,所以 AB 12B 1C 12AC 12,故 AB 1 B 1C 1 . 因此 AB 1 平面 A 1B 1C 1 . Ⅱ)如图,过点 C 1作C 1D A 1B 1 ,交直线 A 1B 1于点 D ,连结 AD .由 AB 1 平面 A 1 B 1C 1 得平面 A 1B 1C 1 平面 ABB 1 , 由 C 1D A 1B 1 得 C 1D 平面 ABB 1 ,所以 C 1AD 是 AC 1与平面 ABB 1所成的角 .学科 .网由B 1C 15, A 1B 1 2 2, A 1C 1 21得cos C 1A 1B 1,sin C 1A 1B 1所以 C 1D 3 ,故 sin C 1ADC 1D 39 AC 1 13因此,直线 AC 1与平面 ABB 1 所成的角的正弦值是3913方法Ⅰ)如图,以 AC 的中点 O 为原点,分别以射线 OB ,OC 为 x ,y 轴的正半轴,建立空间直角坐标系 O -xyz .由题意知各点坐标如下:A(0, 3,0), B(1,0,0), A 1(0, 3,4), B 1(1,0,2), C 1(0, 3,1), uuru uu u r uu u r因此 AB 1 (1, 3,2), A 1B 1 (1, 3, 2), A 1C 1 (0,2 3, 3), uuru uu u r由 AB 1 A 1B 1 0得 AB 1 A 1B 1 . uuru uu u r由 AB 1 A 1C 1 0得 AB1 A 1C1.所以 AB 1 平面 A 1B 1C 1 .(Ⅱ)设直线 AC 1与平面 ABB 1 所成的角为 .uuur uuur uuur由(Ⅰ)可知 AC 1 (0,2 3,1), AB (1, 3,0), BB 1 (0,0,2),设平面 ABB 1的法向量 n (x,y,z) .uuurn AB 0, x 3y 0,由 uuru 即 可取 n ( 3,1,0) n BB 1 0, 2z 0,uuuruuur| AC 1 n | |cos AC 1, n | uuur 1| AC 1 | |n |因此,直线 AC 1与平面 ABB 1 所成的角的正弦值是 39.1320.本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应 用能力。

相关文档
最新文档