《解一元一次方程—合并同类项和移项》教学设计
解一元一次方程(一)——合并同类项与移项 优秀教学设计(教案)

解一元一次方程(一)——合并同类项与移项
【教学目标】
知识目标:移项概念的理解与应用.
能力目标:会用移项法则解方程;能把简单的实际问题用方程形式表达出来;灵活应用去括号法则.
情感态度与价值观:培养学生交流合作的能力,增强学习数学的兴趣和决心.
【教学重难点】
会用移项法则解方程.
去括号法则和分配律的正确应用.
知识考点:用移项法则解方程是中考考查的内容之一、应注意灵活解题..
【教学过程】
四、课堂小结,巩固反思
1.灵活运用移项法则解方程,并会解含有括号的方程;
2.移项要变号.
【教学板书】
课题:例1.例2.
移项:
去括号:。
解一元一次方程(一)——合并同类项和移项教案(教学设计)

解一元一次方程(一)——合并同类项和移项
【教学目标】
1.掌握解方程中的合并同类项。
2.熟练运用移项变号法则解决一些实际问题。
3.亲历移项变号进行解方程的探索过程,体验分析归纳得出移项变号法则,进一步发展学生的探究、交流能力。
【教学重难点】
重点:掌握利用合并同类项移项变号法则解一元一次方程。
难点:正确地找到等量关系列一元一次方程,会用“数学建模思想”解决实际问题,用“化归思想”分析以及分类讨论思想解方程。
初步养成了学生与他人合作交流、勇于探索的良好习惯。
【教学过程】
一、直接引入
师:今天这节课我们主要学习解一元一次方程(一)——合并同类项和移项,这节课的主要内容有解一元一次方程(一)——合并同类项和移项,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课
(1)教师引导学生在预习的基础上了解解一元一次方程(一)——合并同类项和移项内容,形成初步感知。
(2)首先,我们先来学习解一元一次方程(一)——合并同类项和移项,它的具体内容是:
只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
利用合并同类项解一元一次方程的一般步骤是:①合并同类项;②系数化为1;合并同类项的作用是:起“化简”的作用。
结合实际问题,建立一元一次方程解决实际问题。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
例:解方程:529x x -=。
解析:合并同类项,得39x =,系数化为1,得:3x =。
初中数学教学课例《“解一元一次方程——合并同类项与移项”》教学设计及总结反思

初中数学教学课例《“解一元一次方程——合并同类项与移
项”》教学设计及总结反思
小组讨论形式化,实效性不强。
在学案导学的过程中学生仅仅是一起热闹地“核对”了导学的答案,学
生没有有效进行深层的思考。
生生互动的生成内容没有
达成。
学案内容也太多,没有分层次,小组合作有效性
不明显。
而且激励性评价没有凸现。
1、优化小组合作评价,实现有效多维互动。
培养了学生的合作意识让学生学会合作是素质教育的一项重要任务,因合作意识是现代人必须具备的基本素质,合作将是未来社会的主流快乐高效课堂是培养学生合作意识的重要方式。
2、优化小组合作评价,实现有效多维互动。
培养了学生的集体观念在快乐高效课堂中,合作小组的异质性决定了学生在共同活动中必须做到互相帮助,互相监督,其中的每个成员都要对其他成员的学习负责,体现出人人为我,我为人人的意识要求。
可以使学生在交往中产生心理相容,建立起和谐的人际关系,从而对集体的形成和巩固产生积极的影响。
3、优化小组合作评价,实现有效多维互动。
培养了学生的竞争意识高科技时代是人才的竞争,没有竞争,时代不会向前发展。
虽然合作学习,强调学生间的。
3.2 合并同类项与移项教案

教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。
本节课是在教授了一元一次方程解法第一课时因此尤为重要。
同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。
教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。
七年级数学上册《解一元一次方程合并同类项与移项》教案、教学设计

1.培养学生对待数学问题的积极态度,激发他们勇于挑战、克服困难的信心。
2.培养学生的逻辑思维能力,使他们认识到数学学习的严密性和条理性。
3.培养学生具备良好的学习习惯,如认真听讲、主动思考、勤奋练习等,以提高学习效率。
4.培养学生运用数学知识解决实际问题的意识,使他们认识到数学在生活中的重要性。
4.适度性:作业量要适中,避免过多占用学生的课余时间,确保学生有足够的时间进行休息和娱乐。
(二)过程与方法
在教学过程中,学生将通过以下方式培养解题能力和思维方式:
1.通过小组合作和讨论,培养学生们的团队合作意识和交流能力。
2.通过实际例题的讲解和演示,让学生观察、思考、总结解一元一次方程的方法和步骤。
3.引导学生运用类比和归纳的思维方式,从特殊到一般,从简单到复杂地解决问题。
4.培养学生具备举一反三的能力,使他们能够将所学知识应用到不同类型的题目中。
(四)课堂练习
在学生练习时,我会巡回指导,观察他们的解题过程,及时发现问题并进行个别辅导。对于普遍性的错误,我会进行集体讲解和纠正。
(五)总结归纳
在课堂的最后,我会带领学生一起总结归纳本节课的重点内容。我会通过以下几个问题来引导学生回顾和巩固所学知识:
1.什么是合并同类项?它的作用是什么?
2.如何进行移项?移项的规则有哪些?
3.解一元一次方程的基本步骤是什么?
4.在实际解题中,如何选择和应用合并同类项与移项的方法?
五、作业布置
为了巩固学生对本章节知识的掌握,我设计了以下作业:
1.请学生完成课本上与本节课相关的练习题,包括合并同类项和移项的基础题、提高题以及拓展题,共计20道小题。要求学生在解题过程中,注意运算的规范性和准确性,养成良好的学习习惯。
七年级(人教版)集体备课教学设计:3.2《解一元一次方程(一)——合并同类项与移项》2

七年级(人教版)集体备课教学设计:3.2《解一元一次方程(一)——合并同类项与移项》2一. 教材分析《解一元一次方程(一)——合并同类项与移项》是人教版七年级数学的重要内容。
这部分内容主要让学生掌握一元一次方程的解法,培养学生解决实际问题的能力。
教材通过引入实际问题,引导学生掌握合并同类项与移项的方法,从而解决一元一次方程。
二. 学情分析学生在学习本节课之前,已经学习了代数式的基本概念,如加减乘除等运算。
但是,对于合并同类项与移项的方法,学生可能还比较陌生。
因此,在教学过程中,需要教师耐心引导,让学生逐步理解和掌握。
三. 教学目标1.让学生理解合并同类项与移项的概念和方法。
2.培养学生解决实际问题的能力,提高学生的数学素养。
3.培养学生合作学习的精神,提高学生的沟通表达能力。
四. 教学重难点1.合并同类项的方法。
2.移项的方法。
3.如何将实际问题转化为方程,并运用合并同类项与移项的方法解决问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究合并同类项与移项的方法。
2.采用合作学习法,让学生在小组讨论中,共同解决问题,提高沟通表达能力。
3.采用实例教学法,让学生在解决实际问题的过程中,理解并掌握合并同类项与移项的方法。
六. 教学准备1.准备相关的实例问题,用于引导学生学习和实践。
2.准备PPT,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决此类问题。
例如:某商店举行打折活动,原价100元的商品,打8折后售价是多少?2.呈现(10分钟)讲解合并同类项与移项的方法,并通过PPT展示相关的实例问题。
让学生在小组内讨论,共同解决问题。
3.操练(15分钟)让学生在小组内进行练习,运用合并同类项与移项的方法解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)挑选几个代表性的问题,让学生上讲台进行讲解,其他学生进行评价。
以此巩固所学知识。
解 一元一次方程(一)——合并同类项与移项(第2课时)教案

第三章一元一次方程3.2 解一元一次方程(一)——合并同类项与移项第2课时一、教学目标【知识与技能】1、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性。
2、掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
【过程与方法】进一步经历运用方程解决实际问题的过程,初步体会方程是刻画现实世界的有效数学模型;【情感态度与价值观】通过学生观察、独立思考等过程,培养学生归纳、概括的能力,进一步让学生感受到并尝试寻找不同的解决问题的方法,初步体会一元一次方程的应用价值,感受数学文化。
二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】建立列方程解决实际问题的思想方法,学会移项,会解“ax+b=cx+d”类型的一元一次方程。
【教学难点】分析实际问题中的已经量和未知量,找出相等关系,列出方程,使使学生逐步建立列方程解决实际问题的思想方法五、课前准备教师:课件、直尺等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课我们先一起思考下面的问题:(出示课件2)(1)解方程:2x-5x=6-8.2(2)观察下列一元一次方程,与上题的类型有什么区别?(二)探索新知1.师生互动,探究利用移项解一元一次方程3x+7=32-2x想一想:怎样才能使它向x=a (a为常数)的形式转化呢?(出示课件4)看下面问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?(出示课件5)教师问1:设这个班有x人,那么这批书有多少本?还可以怎么表示?学生讨论后回答:这批书共有(3x+20)本,还可表示为(4x-25)本。
教师问2:因为3x+20与4x-25都表示这批书,它们应该有怎样的关系?学生回答:相等.教师问3:这个问题如何列方程呢?学生回答:3x+20=4x-25教师问4:由上节课的学习,你能猜想怎么解这个方程吗?学生回答:把未知项移一到边,把常数项移到一边。
解一元一次方程(一)——合并同类项与移项 优秀教学设计(教案)

解一元一次方程(一)——合并同类项与移项【教学目标】一、知识与技能1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。
2.学会合并(同类项),会解“ax+bx=c”类型的一元一次方程。
二、过程与方法能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程。
三、情感态度与价值观初步体会一元一次方程的应用价值,感受数学文化。
【教学重难点】1.建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程。
2.分析实际问题中的已知量和未知量,找出相等关系,列出方程。
【第一课时】【教学过程】一、情景引入:活动1:(出示背景资料)约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程。
这本书的拉丁文译本取名为《对消与还原》。
“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题。
活动2:出示教科书76页问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍。
前年这个学校购买了多少台计算机?引导学生回忆:设问1:如何列方程?分哪些步骤?师生讨论分析:①设未知数:前年购买计算机x台②找相等关系:前年购买量+去年购买量+今年购买量=140台③列方程:x+2x+4x=140设问2:怎样解这个方程?如何将这个方程转化为x=a的形式?学生观察、思考:根据分配律,可以把含 x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:(略)为帮助有困难的学生理解,可以在上述过程中标上箭头和框图。
设问3:以上解方程“合并”起了什么作用?每一步的根据是什么?学生讨论、回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近x=a的形式。
二、练习巩固:师生共同解决,教师板书过程。
课堂小结提问:1.你今天学习的解方程有哪些步骤,每一步依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:①解方程的步骤及依据分别是:合并和系数化为1②总量=各部分量的和设计意图:本节引子与上一节的“阅读与思考”相呼应,同时提出下面几节要讨论的内容,起到承上启下的作用,又有助于增加学习数学的兴趣,扩大知识面,感受数学的历史和文化的陶冶,提高数学紊养以学生身边的实际问题展开讨论,突出数学与现实的联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《解一元一次方程—合并同类项和移项》教学设计艾玉霞廊坊市香河县第五中学 065400一、内容与解析1.内容一元一次方程的合并同类项解法,用方程模型解决实际问题。
2.内容核心本章的核心内容是“解方程”和“列方程”。
方程的解法是初中内容的核心,合并同类项是解方程的基本步骤之一,是一种同解变形,合并同类项的依据是乘法分配律,运用合并同类项可以把等式两边的多项式合并成一项,从而使方程向x=a的形式转化。
合并同类项是后续解方程经常应用的步骤,并且在学习其它方程、方程组、不等式、函数时都要经常使用。
“列方程”在所有方程类型中占有重要的地位,贯穿于全章的始终,从实际问题中建立一元一次方程模型,结合这些模型讨论方程的解法,这样可以自然的反映所讨论的内容是从实际需要中产生。
列方程对学生来说是个难点,以实际问题引入增强学生的兴趣,慢慢理解和掌握列方程的基本步骤,有利于提高学生分析问题和解决问题能力。
解方程就是将复杂的方程向x=a的形式转化,其中化归思想起了指导作用,化归思想在以后二元一次方程组、一元一次不等式、分式方程、一元二次方程的解法中都有所体现。
根据以上分析,确定本节课的教学重点是:确定问题中的相等关系,建立形如ax+bx=c的方程,会用合并同类项的方法解形如ax+bx=c+d类型的一元一次方程。
二、目标和目标解析1.目标(1)掌握解方程中的合并同类项,会解形如“ax+bx=c+d”类型的一元一次方程,体会等式变形中的化归思想。
(2)能够从实际问题中列出一元一次方程,体会方程思想的作用以及它的应用价值。
2.目标解析达成目标(1)的标志是:知道合并同类项是应用乘法分配率,给定一个方程,能够准确的进行合并同类项解方程。
知道合并同类项的作用可以简化方程,使方程向x=a的形式转化,在此过程中体会化归思想。
达成目标(2)的标志是:通过对某校三年购买计算机台数的研究,建立ax+bx=c类型的方程,观察与分析方程的特征,可以通过合并同类项解这类方程;在“列方程”和“解方程”的过程中,能够体会方程思想的价值。
三、学生学情分析学生已经学习了有理数的运算,掌握了单项式,多项式的有关概念及同类项、合并同类项的方法,会利用等式的基本性质解方程。
学习了方程的解的概念,这些知识为本节课的学习做了铺垫。
我所教的班级学生基础知识和发展水平一般,但整体学习气氛较浓厚,学生的好奇心和求知欲较强。
四、教学策略分析(一)创设情境,导入新课。
(二)讲解新课。
(三)例题示范,巩固新知。
(四)课堂练习,巩固新知。
(五)小结。
(六)作业五、发展学生核心素养分析化归思想是解方程的基本思想,在教学时引导学生联系解方程的目标是最终得到x=a的形式来体会具体的解法步骤。
列方程解应用题中,培养学生分析问题解决问题的能力是数学培养的目标。
六、教学过程(一)创设情境,导入新课1.利用课件出示一首古诗太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,共有多少请算清。
提出问题,你能用列出方程解决问题吗?设计意图:用古诗导入,使学生在轻松与新颖的环境下学习数学知识,激发学生学习的求知和探索的欲望。
2.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?【师生活动】教师利用课件出示,有一名学生朗读。
设计意图:为后面讨论方程的解法的引子,同时感受数学知识悠久的历史。
3.引导学生探索新知问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?【师生活动】教师出示问题,学生审题之后,教师提出问题(1)在我们生活中存在很多这样的问题,请你帮忙解决一下,你准备怎么做,谁能说一说自己的想法。
请说出你的理由?(2)那我们用方程的方法来解,哪位同学能说一下第一步应当先干什么呢?(3)未知数设了,下一步应该做什了呢?(4)列方程的根据是什么?本题中含有怎样的相等关系?所列的方程是什么?学生思考后发表意见,教师引导学生回顾列方程解决实际问题的基本思路。
学生自主分析相等关系列出方程。
教师指出“总体等于各部分的和”是一个基本的相等关系。
设计意图:以学生身边熟悉的实际问题展开讨论,一种轻松的学习氛围,激发学生继续学习的愿望。
教师提出的一些问题,实际就是列方程的一般步骤,让学生体会列方程的一般思路,以后可以逐步放手,培养学生独立解决问题的能力。
(二)讲解新课问题2 观察x+2x+4x=140等号左边的三个代数式有什么特点?怎么合并同类项?合并的结果是什么?【师生活动】:教师展示问题,学生独立思考,举手回答。
设计意图:让学生去观察这个方程的结构特点,去体会合并同类项的作用,调动学生学习解方程的积极性,渗透化归的思想。
问题3怎样才能将方程转化成x=a的形式呢?【师生活动】:教师指出此时方程变成了7x=140,我们要求的是x而不是7x,如何求出x?学生思考后回答。
教师强调,7x的系数是7,根据等式的性质2两边都除以7后得到了x,此时x 的系数是1,这个过程我们把它叫做系数化为1。
“系数化为1”指的是使方程的一边ax化为x,现在我们把这个问题解决了。
设计意图:理解系数化为1的理论依据是等式性质2,进一步渗透化归思想。
【师生活动】:教师用课件展示这个方程的具体步骤,以及这个问题1的具体解题过程。
↓合并同类项↓系数化为1设计意图:教师通过演示解方程以及列方程解应用题的过程,可以提高学生解题的规范性,而采取用框图表示解方程的过程,是为使解法中个步骤的先后顺序清晰,渗透算法程序化的思想。
问题4合并同类项的依据是什么?【师生活动】:教师提出问题,学生思考后回答,是应用乘法分配律。
问题5以上解方程中“合并同类项”起到了什么作用?【师生活动】:学生思考后回答,教师出示课件进行总结整理。
设计意图:结合解方程的过程,让学生思考合并同类项的作用,让学生体会化归的思想。
问题6对于问题1,如果所求问题是求去年购买数量?或者是今年购买数量?应如何设未知数呢?是设去年购买数量为x 台。
或着设今年购买数量为y 台吗?【师生活动】:学生思考后回答。
设计意图:对于实际问题中所求的问题,有时可以直接设所求问题为未知数x,有时可以间接的设未知数,分析比较多种解决方案中的简易,找到最简方法.学生练习1.小明在解方程20x-28x=-6-10时,是这样写解的过程的:-8x = -16 = x = 2(1) 小明这样写对不对?(2)应该怎样写?2.判断下列各题 打“√”或“×”(1) -3x+7x 的结果等于10x.( )(2) 解方程2x+x=9时,合并同类项得, 3x=9. ( )(3)解方程 421 x 得,x=2. ( ) (4)方程x-4x=15的解是x=-5. ( )(5)方程-x+6x=-2-8的解是x=-1. ( )(三)例题示范,巩固新知例1 解下列方程(1)2x- 25x=6-8 (2)7x-2.5x+3x-1.5x=-15×4-6×3【师生活动】:学生口述解题,教师板书规范思路、格式。
设计意图:进一步巩固合并同类项解方程的方法。
将方程一边含未知数的项,另一边的常数项,分别合并成一项。
使方程化成ax=b 的形式,两边除以a ,将方程化成x=a/b (a ≠0)的形式。
(四)课堂练习,巩固新知1.下列合并同类项,结果正确的是( ) A.3a+3b=6ab B.3m-2m=1 C.2y+3y+y=5y D.23 m -1.5m=0 2.方程21x+3x=210 的解为( ) A.x=20 B.x=40 C.x=60 D.x=80 3 .已知x=2,y=1时,kx+k=y+5,那么k 的值是_______4.关于x 的两个方程5x - 4x =3与ax=120的解相同,则a=_______。
5.若4x-5x 与-3+7的值相等,则x=_______6. 解下列方程。
-3x+ 21x=10 7x-4.5x=2.5×3-5 5x-2x=9 0.5x+1.5x=7 设计意图:通过练习,及时巩固新知识,加深对化归思想的理解。
(五)小结教师与学生一起回顾本节课所学主要内容,并回答下列问题1 你今天所学方程的特点是什么?解这样的方程有哪些步骤?2:如何列方程?分哪些步骤?列方程的关键是什么?设计意图:教师引导学生归纳本节课的重点,使学生对方程的解法以及列方程有一个全面的认识,同时养成反思的总结的习惯。
(六) 作业教科书习题3.2第1题6题教学设计说明对于本节课的教学,我首先以一首古诗引入,新颖活泼,能一下子抓住学生求知的欲望,然后介绍数学史上对解方程颇有影响的一部著作,既为后面讨论方程的解法的引子,同时感受数学知识悠久的历史。
在对问题1的的教学时,让学生掌握“总体等于各部分之和”是一种基本的等量关系,教师设置一些问题由学生思考,列出方程。
对于方程的解法,让学生观察思考方程的结构特点,如何转化成x=a的形式,自己尝试获得方程的具体解法。
通过学生反思解这类方程的步骤,思考解方程时“合并同类项”作用,以及合并同类项的理论依据。
另外我对问题一通过改变所求问题,渗透列方程解应用题方法的多样性和如何选择最简便的方法解决问题。
对于例题由学生口述解题,教师板书规范思路、格式,目的为了提醒学生解题的规范性。
通过例题进一步巩固合并同类项解方程的方法,就是将方程一边含未知数的项,一边的常数项,分别合并成一项,使方程化成ax=b的形式,两边除以a,将方程化成x=a/b(a≠0)的形式。
渗透化归思想一直贯穿于解方程的整个过程。
接下来通过练习来反馈。
我设计了一些练习,从合并同类项、已知某些字母的值代入法求未知数的值、两个方程同解、两个代数式的值相等来求未知数的值等多种方法巩固解方程的知识。
通过改错、选择、判断、具体解方程等多种题型对学生加以训练。
接下来学以致用来解答古诗中所求的问题,使整个课堂前后呼应,有问有答。
最后通过小结来回顾本节课所学的内容,使知识系统化,形成一个完整的课堂结构。