2017小学六年级数学总复习练习题(34) 图形的旋转与平移
小学数学 《图形的平移、旋转与轴对称》习题1
1、分别画出将平行四边形向下平移4格,向左平移8格后得到的图形。
2、把图形向右平移7格后得到的图形涂上颜色。
3、把图形向左平移5格后得到的图形涂上颜色。
4、画出小船向右平移6格后的图形。
5、画下面的图形向右平移6格后的图形。
6、小汽车向()平移了()格,小船机向()平移了()格,小飞机向()平移了()格。
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图1绕点“O”顺时针旋转()到达图4的位置;
(4)图2绕点“O”顺时针旋转()到达图4的位置;
(5)图2绕点“O”顺时针旋转900到达图()的位置。
10、选择。
(1)时钟从6:00走到18:00是围绕钟面中心旋转()。
(A)180°(B)90°(C)360°
(2)时钟围绕钟面中心旋转()才能从3:00走到9:00。
(A)180°(B)90°(C)360°
11、如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()。
A B C D
12、如图是用纸折叠成的图案,其中是轴对称图形的有()。
A B C
13、下面的图形是轴对称图形吗?如果是,请你画出它们的对称轴。
22、照这样排下去,第26图形是()。
23、有一列数按“654321654321……”排列着,则第34个数字应是()。
24、王兵在家练习硬笔书法时,写“我们爱科学我们爱科学……”依次写下去,那么第23个字应是()。
25、北京奥运北京奥运北京奥运……,根据排列规律,第43个字是(),第84个字是(),第105个字是(),第122个字是()。
7、画出三角形向右平移4格和梯形向左平移2格后的图形。
图形的平移与旋转练习题与答案全套
情景再现:你对以上图片熟悉吗?请你回答以下几个问题:(1)汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?(2)传送带上的物品,比如带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?(3)以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.图23.请将图3中的“小鱼”向左平移5格.图34.请欣赏下面的图形4,它是由若干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?一、填空:1、如下左图,△ABC经过平移到△A′B′C′的位置,则平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB是线段CD经过平移得到的,则线段AC与BC的关系为()A.相交B.平行C.相等D.平行且相等§3.1图形的平移与旋转§3.2图形的平移与旋转3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.(在两个三角形的内角中找)4、如下左图,四边形ABCD平移后得到四边形EFGH,则:①画出平移方向,平移距离是_______;(精确到0.1cm)②HE=_________,∠A=_______,∠A=_______.③DH=_________=_______A=_______.5、如下右图,△ABC平移后得到了△DEF,(1)若∠A=28º,∠E=72º,BC=2,则∠1=____º,∠F=____º,EF=____º;(2)在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行.6、如图,请画出△ABC向左平移4格后的△A1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,若把△A2B2C2看成是△ABC经过一次平移而得到的,那么平移的方向是______,距离是____的长度.二、选择题:7、如下左图,△ABC经过平移到△DEF的位置,则下列说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有()A.个B.2个C.3个D.4个8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,则△AFE经过平移可以得到()A.△DEFB.△FBDC.△EDCD.△FBD和△EDC三、探究升级:1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1.3、△ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在下列四张图中不能看成由一个平面图形旋转而产生的是()4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,若△ABC经旋转后能与△BDE重合,则旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE §3.3图形的平移与旋转都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:(1)旋转中心是哪一点?(2)旋转角是什么?(3)如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?一、选择题1.平面图形的旋转一般情况下改变图形的()A.位置B.大小C.形状D.性质2.9点钟时,钟表的时针和分针之间的夹角是()A.30° B.45° C.60° D.90°3.将平行四边形ABCD旋转到平行四边形A′B′C′D′的位置,下列结论错误的是()A.AB=A′B′B.AB∥A′B′C.∠A=∠A′D.△ABC≌△A′B′C′二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.5.菱形ABCD绕点O沿逆时针方向旋转到四边形DCBA'''',则四边形DCBA''''是________.6.△ABC绕一点旋转到△A′B′C′,则△ABC 和△A′B′C′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度.8.图形的旋转只改变图形的_______,而不改变图形的_______.三、解答题9.下图中的两个正方形的边长相等,请你指出可以通过绕点O旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A′B′C′D′是菱形ABCD绕点O顺时针旋转90°后得到的,你能作出旋转前的图形吗?§3.4图形的平移与旋转12.Rt△ABC,绕它的锐角顶点A分别逆时针旋转90°、180°和顺时针旋转90°,(1)试作出Rt△ABC旋转后的三角形;(2)将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O按顺时针方向旋转,分别作出旋转下列角度后的图形:(1)90°;(2)180°;(3)270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.看一看:下列三幅图案分别是由什么“基本图形”经过平移或旋转而得到的?1.2.3.试一试:怎样将下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF =21AB,(1)△ABE≌△ADF.吗?说明理由。
平移与旋转测试题
平移与旋转测试题一、选择题1. 平移变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置2. 旋转变换不改变图形的:A. 形状B. 大小C. 方向D. 颜色3. 下列哪个图形经过平移后,其形状会发生变化?A. 圆形B. 正方形C. 矩形D. 五角星4. 一个图形绕着某一点旋转90度后,其形状和大小:A. 发生变化B. 不变C. 形状变化,大小不变D. 大小变化,形状不变5. 平移和旋转的共同点是:A. 改变图形的形状B. 改变图形的大小C. 不改变图形的形状和大小D. 改变图形的颜色二、填空题6. 平移是将一个图形沿着直线方向移动一定的________。
7. 旋转是将一个图形绕着某一点或________,按照一定的角度进行转动。
8. 平移后的图形与原图形在形状和大小上是________的。
9. 旋转后的图形与原图形在形状和大小上也是________的。
10. 如果一个图形绕着其中心点旋转180度,那么它将与原图形________(完全/部分)重合。
三、判断题11. 平移可以改变图形的方向。
(对/错)12. 旋转可以改变图形的位置。
(对/错)13. 一个图形经过平移后,其位置会发生变化,但方向不变。
(对/错)14. 一个图形经过旋转后,其位置和方向都可能发生变化。
(对/错)15. 平移和旋转都不会改变图形的大小。
(对/错)四、简答题16. 请简述平移和旋转在几何变换中的区别。
17. 举例说明平移和旋转在日常生活中的应用。
五、应用题18. 一个正方形沿着一条直线平移了5个单位长度,如果原正方形的边长为10厘米,请画出平移后的正方形,并标出平移的方向和距离。
19. 一个时钟的时针在12小时内绕着钟表中心点旋转了多少度?请解释时针旋转的规律。
20. 如果一个图形绕着其中心点顺时针旋转了45度,那么它相对于原位置旋转了多少度?请画出旋转后的图形,并标出旋转的角度。
(完整版)平移与旋转练习题精选(有标准答案)(2)
第4题图O DCBA第10章轴对称、平移、旋转练习题一、选择题1、下列说法正确的是( )A .平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B .平移和旋转的共同点是改变图形的位置C .图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D .在平移和旋转图形中,对应角相等,对应线段相等且平行 2、.轴对称与平移、旋转的关系不正确的是()A.经过两次翻折(对称轴平行)后的图形可以看作是原图形经过—次平移得到的B.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过—次平移得到的C.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的 3、如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )4、如图,已知△OAB 绕点O 沿逆时针方向旋转80°到△OCD 的位置,且∠A =110°,∠D =40°,则∠AOD 的度数为. A. 30° B. 40° C. 50° D. 60°5、如图(1)中的图形N 平移后的位置如图6(2)中所示,那么正确的平移方法是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7题图6、国旗上的五角星是旋转对称图形,它需要旋转()后,才能与自身重合。
A. 36° B. 45° C. 60° D. 72°7、如图,把直角三角形ABC 绕直角顶点顺时针方向旋转90°后到达C B A ''∆,延长AB 交''B A 于D ,则'ADA ∠的度数是() A. 30°B. 60°C.75° D. 90°8、如图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P ’BA ,则∠PBP’的度数是 ( ) A .45° B .60° C .90° D .120°9、如图,该图形围绕旋转中心,按下列角度旋转后,不能..与其自身重合的是( ) A、72oB、108oC、144oD、216o10、如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCE ,连结EF ,若∠BEC=60°,则∠EFD 的度数为( )A 、10° B 、15° C 、20° D 、25°810题图图(2)图(1)MNNM(1) (2)5题图 A ’D BA CB ’二、 填空题11、如图,四边形OACB 绕点O 旋转到四边形DOEF ,在这个旋转过程中,旋转中心是_________,旋转角是_________,AO 与DO 的关系是_______,AOD ∠与BOE ∠的关系是___________。
(完整版)平移与旋转练习题精选(有答案)
15 题图
16
17 题图
题图
D
C
16、 如图,以△ ABC的边 AB、 AC 为边分别向外侧作等腰直角
E
△ ABD、△ ACE , 则将△ ADC绕点 A 逆时针旋转
度可得到 △ABE,此时 CD与 BE的关系为
。
17、如图 ,在四边形 ABCD 中, AD//BC , BC>AD ,∠ B 与∠ C 互余,将 AB 、CD 分别平移到 EF 和 EG 位
19 、A
90 度
20 、垂直
2
三、作图题
等腰直角
略
四、解答题
24 、解:( 1)旋转中心是 B,旋转角是 90°;
(2 )AE⊥CF. ( 3) 13cm 2
25 、解:( 1) D 点是旋转中心,旋转角是 90°.
( 2)对应线段是 DE 和 DG,DC 和 DA, CE 和 AG. 对应角是∠ CDE 和∠ ADG,∠ C 和∠ DAG,∠ DEC 和∠ G.
度,
27、( 1)旋转中心是点 A,旋转角度是 150° (2):∠ BAE=36°0 -150°×2=60° AC=AE= AB= ×4=2cm
( 3)∵∠ FDE=45° ,∠ ADC=9°0 ,∴∠ ADF+ ∠ EDC=9°0 -45°=45°,∵∠ GDF= ∠ GDA+ ∠ADF,∠ GDA= ∠EDC, ∴∠ GDF= ∠EDC+ ∠ADF=45° .
26 、( 1) .O 点 (2).60 度 (3).3 对,成立,因为角 AOD为 60 度,角 DOC为 120 度,向加 180 度,所以成立 (4).90 因为角 BOC=角 AOD=45度,所以应旋转 90 度 (5).120 度
平移与旋转练习题
平移与旋转练习题一、平移题1. 平面上有一个点P(2, 5),要将点P向右平移4个单位和向上平移3个单位,请求出平移后点的坐标。
解析:根据平移的性质,点向右平移4个单位等价于在横坐标上加4,点向上平移3个单位等价于在纵坐标上加3。
所以,平移后点的坐标为(2 + 4, 5 + 3),即(6, 8)。
2. 平面上有一个点Q(-3, 1),要将点Q向左平移2个单位和向下平移6个单位,请求出平移后点的坐标。
解析:根据平移的性质,点向左平移2个单位等价于在横坐标上减2,点向下平移6个单位等价于在纵坐标上减6。
所以,平移后点的坐标为(-3 - 2, 1 - 6),即(-5, -5)。
二、旋转题1. 平面上有一条线段AB,其中A的坐标为(-1, 3),B的坐标为(2, 6)。
以原点为中心,逆时针旋转30度,请求出旋转后线段AB的新坐标。
解析:以原点为中心逆时针旋转30度,相当于对每个点进行坐标变换。
设点A'和点B'是旋转后的点,根据旋转公式可以得到:A'的横坐标 = A的横坐标 * cos(30度) - A的纵坐标 * sin(30度)A'的纵坐标 = A的横坐标 * sin(30度) + A的纵坐标 * cos(30度)B'的横坐标 = B的横坐标 * cos(30度) - B的纵坐标 * sin(30度)B'的纵坐标 = B的横坐标 * sin(30度) + B的纵坐标 * cos(30度)代入A(-1, 3)和B(2, 6)的坐标,计算得到:A'的横坐标 = (-1) * cos(30度) - 3 * sin(30度) ≈ -0.134A'的纵坐标 = (-1) * sin(30度) + 3 * cos(30度) ≈ 2.732B'的横坐标 = 2 * cos(30度) - 6 * sin(30度) ≈ 2.598B'的纵坐标 = 2 * sin(30度) + 6 * cos(30度) ≈ 6.732所以,旋转后线段AB的新坐标为A'(-0.134, 2.732)和B'(2.598, 6.732)。
六年级图形旋转练习题
六年级图形旋转练习题图形旋转是数学中的一个重要内容,它是指把一个图形绕一个点旋转一定角度后得到的新图形。
通过图形旋转的练习,学生能够加深对图形性质的理解并提高空间想象力。
本文将为六年级学生提供一些图形旋转的练习题,希望能够给大家的数学学习带来帮助。
1. 矩形旋转给定一个矩形ABCDEF,其中AB=12cm,BC=8cm,以点A为中心逆时针旋转60度,求旋转后的矩形的周长和面积。
解析:首先,我们可以绘制出矩形ABCDEF,并找到旋转的中心点A。
然后,根据题意,将矩形逆时针旋转60度,得到矩形A'B'C'D'E'F'。
接下来,我们计算旋转后的矩形的周长和面积。
旋转后的矩形A'B'C'D'E'F',其周长即为A'B'+B'C'+C'D'+D'E'+E'F'+F'A',可以通过计算得出。
另外,旋转后的矩形的面积可以通过计算A'B'和A'C'的长度,并相乘得到。
2. 三角形旋转给定一个等边三角形ABC,边长为10cm,以点B为中心逆时针旋转120度,求旋转后的三角形的周长和面积。
解析:我们先绘制等边三角形ABC,并找到旋转的中心点B。
根据题意,将三角形逆时针旋转120度,得到三角形A'B'C'。
接下来,我们计算旋转后的三角形的周长和面积。
旋转后的三角形A'B'C',其周长即为A'B'+B'C'+C'A',可以通过计算得出。
另外,旋转后的三角形的面积可以通过计算A'B'和A'C'之间的距离并乘以原来三角形的高度,再除以2得到。
3. 圆形旋转给定一个半径为5cm的圆O,以点O为中心顺时针旋转45度,求旋转后的圆的周长和面积。
平移旋转复习题
平移旋转复习题平移旋转复习题平移和旋转是几何学中常见的操作,也是解决几何问题的重要工具。
在本文中,我们将通过一些复习题来巩固和加深对平移和旋转的理解。
题目一:平移的性质1. 平移是否改变了图形的大小和形状?答:平移只改变了图形的位置,不改变其大小和形状。
2. 平移是否保持了图形的相对位置关系?答:是的,平移保持了图形的相对位置关系。
即,平移后的图形与平移前的图形之间的距离和角度关系保持不变。
3. 平移是否保持了图形的对称性?答:平移保持了图形的对称性。
如果一个图形是对称的,那么经过平移后,它仍然是对称的。
题目二:旋转的性质1. 旋转是否改变了图形的大小和形状?答:旋转只改变了图形的方向,不改变其大小和形状。
2. 旋转是否保持了图形的相对位置关系?答:是的,旋转保持了图形的相对位置关系。
即,旋转后的图形与旋转前的图形之间的距离和角度关系保持不变。
3. 旋转是否保持了图形的对称性?答:旋转保持了图形的对称性。
如果一个图形是对称的,那么经过旋转后,它仍然是对称的。
题目三:平移和旋转的组合1. 如果一个图形先进行了平移,然后再进行旋转,结果会如何?答:平移和旋转是可交换的,即先平移再旋转和先旋转再平移所得的结果是相同的。
2. 如果一个图形先进行了旋转,然后再进行平移,结果会如何?答:旋转和平移是可交换的,即先旋转再平移和先平移再旋转所得的结果是相同的。
3. 如果一个图形同时进行平移和旋转,结果会如何?答:平移和旋转的组合操作会同时改变图形的位置和方向。
题目四:平移和旋转的应用1. 平移和旋转在日常生活中有哪些应用?答:平移和旋转在日常生活中有很多应用。
例如,地图上的标记点可以通过平移来改变位置,钟表的指针可以通过旋转来显示时间。
2. 平移和旋转在工程设计中有哪些应用?答:平移和旋转在工程设计中也有广泛的应用。
例如,建筑设计中的平面布局可以通过平移和旋转来调整,机械设计中的零件组装可以通过平移和旋转来实现。
旋转和平移练习题
旋转和平移练习题1. 问题描述在平面上给定一个三角形ABC和一个点P。
将三角形ABC沿顺时针方向旋转θ角度,并将旋转后的三角形记为A'B'C'。
同时,将点P平移向右平移dx个单位,向上平移dy个单位,得到点P'。
若已知三角形ABC的具体坐标和旋转角度θ,求旋转后的三角形A'B'C'的坐标以及点P'在旋转后的坐标。
2. 解题步骤2.1 旋转变换公式根据旋转变换的基本原理,我们可以得到三角形旋转后的坐标公式:对于点(x, y),以点(x0, y0)为旋转中心,逆时针旋转α角度后的新坐标为:x' = (x - x0) * cosα - (y - y0) * sinα + x0y' = (x - x0) * sinα + (y - y0) * cosα + y0其中,(x', y')为旋转后的坐标,(x, y)为旋转前的坐标,(x0, y0)为旋转中心,α为旋转角度。
2.2 平移变换公式根据平移变换的基本原理,我们可以得到点P'的坐标公式:x' = x + dxy' = y + dy其中,(x', y')为平移后的坐标,(x, y)为平移前的坐标,dx为水平平移的距离,dy为垂直平移的距离。
3. 例题解答假设三角形ABC的坐标分别为A(xA, yA), B(xB, yB), C(xC, yC),点P的坐标为P(xP, yP)。
旋转中心为点R(xR, yR),旋转角度为θ。
右平移的距离为dx,上平移的距离为dy。
首先,我们需要计算旋转后的三角形A'B'C'的坐标。
A'的坐标计算:xA' = (xA - xR) * cosθ - (yA - yR) * sinθ + xRyA' = (xA - xR) * sinθ + (yA - yR) * cosθ + yRB'的坐标计算:xB' = (xB - xR) * cosθ - (yB - yR) * sinθ + xRyB' = (xB - xR) * sinθ + (yB - yR) * cosθ + yRC'的坐标计算:xC' = (xC - xR) * cosθ - (yC - yR) * sinθ + xRyC' = (xC - xR) * sinθ + (yC - yR) * cosθ + yR接下来,我们计算点P'的坐标。
图形的平移与旋转练习题
图形的平移与旋转练习题图形的平移与旋转练习题在数学中,平移与旋转是两种常见的图形变换方式。
通过平移和旋转,我们可以改变图形的位置和方向,使其更加多样化和有趣。
下面,我们将通过一些练习题来巩固和加深对图形平移与旋转的理解。
练习题一:平移1. 将一个正方形沿着x轴正方向平移3个单位,结果是什么?解答:平移是指将图形沿着指定的方向移动一定的距离。
对于正方形,沿着x轴正方向平移3个单位,意味着将正方形的每个顶点都向右移动3个单位。
因此,结果是一个新的正方形,其每个顶点的坐标都比原来的正方形的坐标大3。
2. 如果将一个长方形沿着y轴负方向平移5个单位,结果是什么?解答:这个问题和上一个问题类似,只是平移的方向和距离不同。
沿着y轴负方向平移5个单位,意味着将长方形的每个顶点都向下移动5个单位。
因此,结果是一个新的长方形,其每个顶点的y坐标都比原来的长方形的y坐标小5。
练习题二:旋转1. 将一个正方形绕原点逆时针旋转90度,结果是什么?解答:旋转是指将图形绕着指定的中心点旋转一定的角度。
对于正方形,绕原点逆时针旋转90度,意味着将正方形的每个顶点按照逆时针方向旋转90度。
因此,结果是一个新的正方形,其每个顶点的坐标都发生了变化,但是仍然是一个正方形。
2. 如果将一个长方形绕坐标轴上的一点顺时针旋转45度,结果是什么?解答:这个问题和上一个问题类似,只是旋转的方向和角度不同。
绕坐标轴上的一点顺时针旋转45度,意味着将长方形的每个顶点按照顺时针方向旋转45度。
因此,结果是一个新的长方形,其每个顶点的坐标都发生了变化,但是仍然是一个长方形。
通过以上练习题,我们可以看到平移和旋转对于图形的变化有着重要的作用。
通过平移,我们可以改变图形的位置,使其在平面上的不同位置出现;通过旋转,我们可以改变图形的方向,使其变得更加灵活和多样化。
这些变换不仅在数学中有着重要的应用,还在日常生活和工程设计中发挥着重要的作用。
总结起来,图形的平移与旋转是数学中常见的图形变换方式。
小学平移旋转练习题
小学平移旋转练习题平移和旋转是小学数学中的重要概念和技能,通过练习题的形式,可以帮助学生更好地理解和掌握这两个概念。
下面是一些小学平移旋转练习题,帮助学生巩固相关知识。
题目一:平移1. 将点A(-2, 3)通过向右平移5个单位得到点B,求点B的坐标。
2. 已知正方形ABCD,其中A的坐标为(2, 3),经过平移得到正方形A'B'C'D',求A'的坐标。
3. 将线段AB,其中A(1, 2),B(4, 5),通过平移向右移动3个单位得到线段A'B',求线段A'B'的坐标。
题目二:旋转1. 将点A(3, 2)绕原点逆时针旋转90度,求旋转后的点坐标。
2. 已知正方形ABCD,其中A的坐标为(2, 3),经过绕原点逆时针旋转180度得到正方形A'B'C'D',求A'的坐标。
3. 将线段AB,其中A(1, 2),B(4, 5),绕原点逆时针旋转45度得到线段A'B',求线段A'B'的坐标。
题目三:综合练习1. 平面图形P的顶点坐标为A(2, 3),B(-1, 4),C(0, -2),D(3, -1)。
分别进行以下操作:a) 将图形P向右平移5个单位;b) 将图形P绕点(-1, 2)顺时针旋转90度。
求操作完成后图形P各顶点的坐标。
2. 已知点A(3, 4)、B(6, 1),C(10, 2),D(7, 5)连成了一个四边形。
分别进行以下操作:a) 将四边形ABCD向下平移3个单位;b) 将四边形ABCD绕原点逆时针旋转60度。
求操作完成后四边形ABCD各顶点的坐标。
以上是一些小学平移旋转练习题,通过解答这些题目,学生可以更好地理解平移和旋转的概念,并提升相关技能。
希望这些练习能够对学生的数学学习有所帮助。
小学数学平移和旋转练习题
小学数学平移和旋转练习题(一)
二、操作
1、向( )平移了( )格。
2、把上面的小船图向上平移5格月
3、画出的另一半,使它成为轴对称图形
四、看图填一填。
1、长方形向()平移了()格。
2、六边形向()平移了()格。
3、五角星向()平移了()格。
三、按要求操
1、把图中长方形向上平移2格;
2、把图中三角形向右平移3格;
3、把图中平行四边形向左平移5格。
四、按要求填图
五、分别画出下面图形向下平移2格后再向右平移8格后得到的图形
六、画出拖拉机先向左平移4格,再向下平移3格后的图形。
本文由作者精心整理,校对难免有瑕疵之处,欢迎批评指正,如有需要,请关注下载。
图形的平移与旋转专项练习(含答案)
图形的平移与旋转专项练习(含答案)一、选择题(本大题共34小题,共102.0分)1.如图,在正方形网格中有△ABC,△ABC绕点O逆时针旋转90°后的图案应该是()A. B. C. D.2.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个3.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O()A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°4.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A. 30°B. 60°C. 90°D. 120°5.在平面直角坐标系中,将点A(−1,2)先向左平移2个单位长度,再向下平移3个单位长度后,得到的点的坐标为()A. (1,−1)B. (−1,5)C. (−3,−1)D. (−3,5)6.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO的方向平移后得到△O′A′B′,平移后点A′的横坐标为6√3,则点B′的坐标为()A. (8√3,−4√3)B. (8,−4√3)C. (8√3,−4)D. (8,−4)7.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字是()A.B.C.D.8.如图,将△ABC绕点A逆时针旋转90∘得到△ADE,点B,C的对应点分别为点D,E,AB=1,则BD的长为()A. 1B. √2C. 2D. 2√29.下列四个图形中,可以由下图通过平移得到的是()A. B. C. D.10.下列宣传图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.11.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m212.如图,在两个重叠的直角三角形中,将其中的一个直角三角形沿着BC方向平移BE距离得到此图形,其中AB=6,BE=5,DH=3,则四边形DHCF的面积为()A. 35B. 652C. 452D. 3113.如图,由△ABC平移得到的三角形有()A. 15个B. 5个C. 10个D. 8个14.将点A(1,−1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A. (−2,1)B. (−2,−1)C. (2,1)D. (2,−1)15.如图的四个图形中,由基础图形通过平移、旋转或轴对称这三种变换都能得到的是()A. B.C. D.16.如图,点A,B的坐标分别是(−3,1),(−1,−2),若将线段AB平移至A1B1的位置,则线段AB在平移过程中扫过的图形面积为()A. 18B. 20C. 36D. 无法确定17.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)18.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)19.将△ABC各顶点的纵坐标加“−3”,连接这三点所成的三角形是由△ABC()A. 向上平移3个单位长度得到的B. 向下平移3个单位长度得到的C. 向左平移3个单位长度得到的D. 向右平移3个单位长度得到的20.如图,将△OAB绕点O逆时针旋转70°,得到△OCD,若∠A=2∠D=100°,则α的度数是()A. 50°B. 60°C. 40°D. 30°21.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A. πcm2B. 4cm2)cm2C. (π−π2)cm2D. (π+π222.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个23.如图,在△ABC中,AB=12,将△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,则阴影部分的面积为()A. 24B. 48C. 36D. 7224.如图,P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A. 2√2B. 3√2C. 3D. 无法确定25.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是()A. 12B. 1 C. √3 D. √3226.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A. 2(√33+1)B. √33+1C. √3−1D. √3+127.如图,△ABC绕点A旋转至△ADE,则旋转角是()A. ∠BADB. ∠BACC. ∠BAED. ∠CAD28.如图,△ABC经过平移后得到△DEF,则下列说法中正确的有()①AB//DE,AB=DE;②AD//BE//CF,AD=BE=CF;③AC//DF,AC=DF;④BC//EF,BC=EF.A. 1个B. 2个C. 3个D. 4个29.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.30.如图,∠A=80∘,O是AB上一点,直线OD与AB所夹的∠AOD=82∘,要使OD//AC,直线OD绕点O按逆时针方向至少旋转()A. 8∘B. 10∘C. 12∘D. 18∘31.下列说法中,不正确的是()A. 图形平移是由移动的方向和距离所决定的B. 图形旋转是由旋转中心和旋转角度所决定的C. 任意两条相等的线段都成中心对称D. 任意两点都成中心对称32.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上()A. 向左平移了5个单位长度B. 向下平移了5个单位长度C. 向上平移了5个单位长度D. 向右平移了5个单位长度33.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称图形,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称图形;③将△ABC向下、向左各平移1个单位长度,再以AC的中点为中心作中心对称图形,其中正确的变换有()A. ①②B. ①③C. ②③D. ①②③34.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组二、填空题(本大题共25小题,共75.0分)35.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45∘,将△ADC绕点A顺时针旋转90∘后,得到△AFB,连接EF,下列结论: ①△AED≌△AEF; ②BE+DC=DE; ③BE2+DC2=DE2,其中正确的是.(填序号)36.如图,在平面直角坐标系中,已知点A(−3,−1),点B(−2,1),平移线段AB,使点A落在A1(0,−1),点B落在点B1,则点B1的坐标为37.如图,在△ABC中,∠C=90°,AC=8,BC=6,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为.38.在平面直角坐标系中,将点A(−1,2)向上平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是39.如图,将周长为8的△ABC沿BC边向右平移2个单位长度,得到△DEF,则四边形ABFD的周长为.40.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3、√2、4,则正方形ABCD的面积为.41.已知平面直角坐标内的点A(−2,5),如果将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是.42.根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.43.若将点P(m+2,2m+1)向右平移1个单位长度后,点P的对应点正好落在y轴上,则m=.44.有下列图形:①线段;②三角形;③平行四边形;④正方形;⑤圆.其中不是中心对称图形的是(填序号).45.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.46.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着__点_______旋转__度可得到△____.47.已知点A(1,−2),B(−1,2),E(2,a),F(b,3),若将线段AB平移至EF,点A,E为对应点,则a+b的值为________.48.钟表上的时针走1小时旋转了度.49.如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”“B”或“C”).50.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为.51.如图,将△ABC绕点A旋转一定角度后得到△ADE.若∠CAE=60∘,∠E=65∘,且AD⊥BC,则∠BAC=°.52.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.53.如图,四边形ABCD与四边形FGHE关于某一点成中心对称,则这个点是.54.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.55.如图,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=________°.56.点P(−4,y)先向左平移2个单位长度,再向下平移3个单位长度后得到点Q(x,−1),则x=,y=.57.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.58.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5cm,BC=8cm,∠BAC=130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.59.如图,在△ABC中,∠ACB=90∘,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为.三、解答题(本大题共23小题,共184.0分)60.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.61.如图,已知BC与CD重合,∠B=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是.62.如图,在4×3的网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.63.如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.64.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)平移△ABC,使得点A与点O重合,画出平移后的△A′B′C′;(2)画出△ABC关于点O成中心对称的△DEF;(3)判断△A′B′C′与△DEF是否成中心对称.65.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(−3,5),B(−2,1),C(−1,3).(1)若点C1的坐标为(4,0),画出△ABC经过平移后得到的△A1B1C1,并写出点B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称,画出△A2B2C2,并写出点B2的坐标;(3)若△ABC绕着坐标原点O按逆时针方向旋转90°得到△A3B3C3,画出△A3B3C3,并写出点B3的坐标.66.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.67.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论;(2)若EF//CD,求∠BDC的度数.68.如图,已知△ABC三个顶点的坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图: ①画出△ABC向左平移5个单位长度后得到的△A1B1C1; ②画出△ABC绕着原点O顺时针旋转90∘后得到的△A2B2C2;(2)请写出直线B1C1与直线B2C2的交点坐标.69.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置.(1)旋转中心是点,旋转角是度;(2)连接EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.70.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.71.如图,△ABC各顶点的坐标分别为A(−2,6),B(−3,2),C(0,3),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,得到△DEF.(1)画出△DEF,并分别写出△DEF各顶点的坐标;(2)在(1)中,若△ABC内有一点M(a,b),则其在△DEF中的对应点M′的坐标为______________;(3)如果将△DEF看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.72.如图 ①,在△ABC中,∠A=90∘,AB=AC=√2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0∘<α<360∘),如图 ②,连接CE,BD,CD.(1)当0∘<α<180∘时,求证:CE=BD;(2)如图 ③,当α=90∘时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.73.如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.74.如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.75.操作与探究如图,在平面直角坐标系中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为点A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.76.在平面直角坐标系中,将点向右平移2个单位长度,再向上平移1个单位长度记为一次“跳跃”.点A(−6,−2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标:A3______________;(2)写出点A n的坐标:____________________________(用含n的代数式表示).77.在如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,−2),C(5,1),D(4,4),画出将四边形ABCD向左平移3个单位长度后得到的四边形A1B1C1D1,并写出平移后四边形各个顶点的坐标.78.如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图 ①中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系(不要求证明);(2)当△DEF沿直线m向左平移到图 ②所示的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△ACE能否通过旋转重合.请证明你的猜想.79.如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.80.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.81.如图,在Rt△ABC中,∠C=90°,BC=AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′重叠部分的面积;(2)若平移距离为x(0≤x≤4),用含x的代数式表示△ABC与△A′B′C′重叠部分的面积.82.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC向下平移2个单位长度后得到的△A1B1C1,并写出点A1,B1,C1的坐标;(2)作出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出点C2的坐标.答案和解析1.【答案】A【解析】【分析】本题考查了旋转的性质,知道想要确定旋转后的图形①要确定旋转的方向②要确定旋转的大小是解题的关键.根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可.【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.2.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:图1是轴对称图形不是中心对称图形;图2、3、4既是轴对称图形,又是中心对称图形.故选B.3.【答案】C【解析】【分析】本题考查了图形的旋转,解题时注意旋转三要素:①旋转中心;②旋转方向;③旋转角度.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,据此即可解答.解:将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,这时如果使图形回到原来的位置,需要将图形绕着点O顺时针旋转110°.故选:C.4.【答案】C【解析】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.5.【答案】C【解析】将点(−1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是(−1−2,2−3),即(−3,−1),故选C.6.【答案】C【解析】∵等边三角形OAB的边长为4,点A在第二象限内,∴易得点A的坐标为(−2√3,2),B(0,4),∵平移后点A′的横坐标为6√3,∠AOB=60∘,∴平移规律为向右平移8√3个单位,向下平移8个单位,∴点B′的坐标为(8√3,−4),7.【答案】C【解析】原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有C 符合.故选C.8.【答案】B【解析】解:由旋转的性质可知AD=AB=1,∠BAD=90∘,∴BD=√AB2+AD2=√12+12=√2,故选B.9.【答案】D【解析】略10.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形;B、D不是轴对称图形,也不是中心对称图形;只有C选项符合题意,故选C.11.【答案】B【解析】略12.【答案】C【解析】略13.【答案】B14.【答案】A【解析】【分析】本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1−3=−2;纵坐标为−1+2=1,∴点B的坐标是(−2,1).故选:A.15.【答案】B【解析】略16.【答案】A【解析】略17.【答案】C【解析】解:∵A(1,3)的对应点的坐标为(−2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(−1,−1).故选:C.根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.18.【答案】D【解析】解:由题图可知点A的坐标为(4,2),向上平移一个单位后对应点的坐标为(4,3),再绕点P按逆时针方向旋转90∘后对应点的坐标为(−1,4),如图所示.19.【答案】B【解析】略20.【答案】C【解析】【分析】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于70°,则可以利用三角形内角和定理列出等式进行求解.【解答】解:∵将△OAB绕点O逆时针旋转70°,∴∠A=∠C,∠AOC=70°,∴∠DOC=70°−α,∵∠A=2∠D=100°,∴∠D=50°,∵∠C+∠D+∠DOC=180°,∴100°+50°+70°−α=180°,解得α=40°,故选:C.21.【答案】B【解析】略22.【答案】B【解析】略23.【答案】C【解析】解:∵△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,∴S△ABC=S△AB1C1,AB=AB1=12,∠BAB1=30∘,∴S阴影=S△ABB1+SΔAB1C1−S△ABC=SΔABB1,作BD⊥AB1于D,在Rt△ABD中,∵∠BAB1=30∘,∴BD=12AB=6,∴SΔABB1=12AB1⋅BD=12×12×6=36.故选C.24.【答案】B【解析】【分析】本题考查了旋转的性质,利用了旋转的性质:对应点到旋转中心的距离相等,旋转角相等,又利用了勾股定理,根据旋转的性质,可得BP′的长,∠PBP′的度数,根据勾股定理,可得答案.【解答】解:由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°.在Rt△PBP′中,由勾股定理,得PP′=√BP2+P′B2=√32+32=3√2.故选B.25.【答案】B【解析】由旋转的性质可知BM=BN,又∵∠MBN=60∘,∴△BMN为等边三角形,∴MN=BM,∵点M是高CH所在直线上的一个动点,∴当BM⊥CH时,BM的长取得最小值,即MN 的长取得最小值,此时点M与点H重合.又∵等边三角形ABC的边长是2,∴AB=BC=CA=2,AB=1.∵CH⊥AB,∴BH=12∴线段MN长度的最小值是1.故选B.26.【答案】D【解析】略27.【答案】A【解析】解:∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选A.28.【答案】D【解析】略29.【答案】B【解析】解:A中的图形既不是轴对称图形也不是中心对称图形;C中的图形为轴对称图形,但不是中心对称图形;D中的图形为中心对称图形,但不是轴对称图形,故选B.30.【答案】D【解析】如图,当OD绕点O旋转至OD′时,OD′//AC,则∠A+∠AOD′=180∘,∴∠AOD′= 180∘−∠A=100∘,∴∠DOD′=∠AOD′−∠AOD=100∘−82∘=18∘,故选D.31.【答案】C【解析】略32.【答案】D【解析】略33.【答案】A【解析】略34.【答案】C【解析】略35.【答案】 ① ③【解析】如图,由已知得,∠BAC=90∘,又∠DAE=45∘,∴∠1+∠2=45∘,由旋转的性质得,∠2=∠3,AD=AF,∴∠FAE=∠1+∠3=45∘=∠DAE,又∵AE=AE,∴△AED≌△AEF,故 ①正确.∵AB=AC,∠BAC=90∘,∴∠ABC+∠C=90∘,由旋转的性质知∠4=∠C,∴∠EBF=∠4+∠ABC=90∘,在Rt△EBF中,BE2+BF2=EF2,由△AED≌△AEF,得EF=ED,由旋转的性质得BF=DC,∴BE2+DC2=DE2,故 ③正确, ②不正确.综上, ① ③正确.36.【答案】(1,1)【解析】【分析】本题考查了坐标与图形变化−平移,熟练掌握网格结构准确找出点的位置是解题的关键.根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.【解答】解:通过平移线段AB,点A(−3,−1)落在(0,−1),即线段AB沿x轴向右移动了3格.如图,点B1的坐标为(1,1).故答案为(1,1).37.【答案】2√10【解析】【分析】本题主要考查旋转的性质,掌握旋转前后对应线段相等、对应角相等是解题的关键.由旋转的性质可求得AE、DE,由勾股定理可求得AB,则可求得BE,连接BD,在Rt△BDE 中可求得BD的长.【解答】解:如图所示:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∵△ABC绕点A逆时针旋转得到△AED,∴∠DEA=∠C=90°,AE=AC=8,DE=BC=6,∴BE=AB−AE=10−8=2,连接BD,在Rt△BDE中,由勾股定理可得BD=√DE2+BE2=√62+22=2√10,即B、D两点间的距离为2√10,故答案为2√10.38.【答案】(−1,−5)【解析】略39.【答案】12【解析】略40.【答案】14+4√3【解析】解:如图,将△ABP绕点B顺时针旋转90∘得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=√2,∠PBM=90∘,∴PM=√2PB=2,∵PC=4,PA=CM=2√3,∴PC2=CM2+PM2,∴∠PMC=90∘,∵∠BPM=∠BMP=45∘,∴∠CMB=∠APB=135∘,∴∠APB+∠BPM=180∘,∴A,P,M三点共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2√3+1,∴AB2=AH2+BH2=(2√3+1)2+12=14+4√3,∴正方形ABCD的面积为14+4√3.故答案为14+4√3.41.【答案】(−5,1)【解析】略42.【答案】16【解析】【分析】本题考查了平移变换的性质,通过平移,把不规则图形的周长转化为规则图形矩形的周长进行求解是解题的关键.根据平移的性质,不规则图形的周长正好等于长为5,宽为3的矩形的周长,再根据矩形的周长公式进行计算即可.【解答】解:如图所示,封闭图形的周长是:2×(5+3)=2×8=16.故答案为:16.43.【答案】−344.【答案】②【解析】略45.【答案】点B【解析】略46.【答案】C;逆时针方向;60;BCD【解析】【分析】本题考查了旋转的定义,等边三角形的性质和三角形全等的判定定理,难度适中.先根据等边三角形的性质,运用SAS证明△ACE≌△BCD,再由旋转的定义即可求解.【解答】解:∵△ABC和△DCE是等边三角形,∴CA=CB,CE=CD,∠DCE=∠ACB=60°,∴∠ACE=∠BCD=60°+∠ACD.∵在△ACE与△BCD中,{CA=CB∠ACE=∠BCDCE=CD,∴△ACE≌△BCD(SAS),∴△ACE绕点C逆时针方向旋转60度可得到△BCD.故答案为C;逆时针方向;60;BCD.47.【答案】−1【解析】【分析】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.解决本题的关键是通过点的坐标之间的关系确定线段平移的方向和距离.利用A点与E点的横坐标,B点与F点的纵坐标坐标可判定线段AB先向右平移1个单位,再向上平移1个单位得到EF,然后根据此平移规律得到−2+1=a,−1+1=b,则可求出a和b的值,从而得到a+b的值.解:∵线段AB平移至EF,即点A平移到E,点B平移到点F,而A(1,−2),B(−1,2),E(2,a),F(b,3),∴点A向右平移一个单位到E,点B向上平移1个单位到F,∴线段AB先向右平移1个单位,再向上平移1个单位得到EF,∴−2+1=a,−1+1=b,∴a=−1,b=0,∴a+b=−1+0=−1.故答案为−1.48.【答案】30【解析】略49.【答案】平移;A【解析】【分析】本题考查平移、旋转的性质.平移前后,对应边平行,故由①到②属于平移;旋转中心的确定方法是,两组对应点连线的垂直平分线的交点,即为旋转中心.【解答】解:根据题意:观察可得:图①与图②对应点位置不变,通过平移可以得到;根据旋转中心的确定方法,两组对应点连线的垂直平分线的交点,可确定图②经过旋转变换得到图③的旋转中心是A.故答案为平移,A.50.【答案】(7,0)【解析】解:∵点A(3,√3)的对应点D的坐标为(6,√3),∴平移的距离为6−3=3,∴BE=3,∵B(4,0),∴E(7,0).51.【答案】 85【解析】由旋转的性质可知,∠BAD=∠CAE=60∘,∠C=∠E=65∘,∵AD⊥BC,∴∠CAD=90∘−65∘=25∘,∴∠BAC=∠BAD+∠CAD=85∘,故答案为85.52.【答案】方块5【解析】略53.【答案】O1【解析】略54.【答案】2√2【解析】略55.【答案】46【解析】【分析】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.先根据三角形外角的性质求出∠ACD=67°,再由△ABC绕点C按顺时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACD=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=67°,∴∠ACE=180°−∠ACD−∠BCE=180°−67°−67°=46°.故答案为:46.56.【答案】−6 2【解析】略57.【答案】AC,E线段AC,CE,EA∠ACE60°【解析】略58.【答案】AB5 BC 8 BAD30°100°【解析】略59.【答案】272【解析】在△ABC中,∠ACB=90∘,AC=4,BC=3,∴AB=5.∵将△ABC绕点A顺时针旋转,使点B落在AC延长线上点D处,∴AD=AB=5,∴CD=AD−AC=1,∴S四边形AEDB =2×12×4×3+12×1×3=272.60.【答案】解:图略【解析】略61.【答案】解:如图示,旋转角为:90°.【解析】【分析】此题主要考查了旋转变换,得出旋转中心的位置是解题关键.分别作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.【解答】解:如图所示:旋转中心即为对应点连线的垂直平分线的交点,旋转角度是90°.故答案为90°.62.【答案】解:图略(答案不唯一).【解析】略63.【答案】解:如图,连接P′P,∵△ABC是正三角形,∴∠BAC=60∘,由旋转的性质得P′A=PA=5,P′B=PC=13,∠P′AP=∠CAB=60∘,∴△PAP′为等边三角形,∴PP′=PA=5,即点P与点P′之间的距离为5.在△PP′B中,PP′=5,PB=12,P′B=13,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠P′PB=90∘,又∵∠P′PA=60∘,∴∠APB=∠P′PB+∠P′PA=90∘+60∘=150∘.【解析】略64.【答案】解:(1)如图,△A′B′C′即为所求作.(2)如图,△DEF即为所求作.(3)△A′B′C′与△DEF成中心对称,对称中心是线段A′D与线段FC′的交点.【解析】略65.【答案】解:(1)如图,△A1B1C1即为所求作的图形.B1(3,−2).(2)如图,△A2B2C2即为所求作的图形.B2(2,−1).(3)如图,△A3B3C3即为所求作的图形.B3(−1,−2).【解析】略66.【答案】(1)∵将△ADF绕点A顺时针旋转90∘后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF.∵∠EAF=45∘,∴∠DAF+∠BAE=∠BAQ+∠BAE=45∘,∴∠QAE=45∘,∴∠QAE=∠FAE.在△AQE和△AFE中,{AQ=AF,∠QAE=∠FAE, AE=AE,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线.(2)由(1)得△AQE≌△AFE,∴QE=EF,由旋转知∠ADF=∠ABQ,又∠ABD+∠ADF=90∘,∴∠ABD+∠ABQ=90∘,即∠QBE=90∘.在Rt△QBE中,QE2=BE2+QB2,则EF2=BE2+DF2.【解析】略67.【答案】解:(1)∠CEF+∠ADC=180°.证明:∵线段CD绕点C按顺时针方向旋转90°后得CE,∴CE=CD,∠DCE=90°,∵∠ACB=90°,∴∠ECF=∠BCD,在△BCD和△FCE中,{CB=CF∠BCD=∠FCE CD=CE,∴△BCD≌△FCE,∴∠CDB=∠CEF,而∠CDB+∠ADC=180°,∴∠CEF+∠ADC=180°;(2)∵EF//CD,∴∠CEF+∠DCE=180°,而∠DCE=90°,∴∠CEF=90°,∴∠BDC=90°.【解析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.(1)根据旋转的性质得CE=CD,∠DCE=90°,则利用等角的余角相等可得∠ECF=∠BCD,于是可根据“SAS”判断△BCD≌△FCE,则∠CDB=∠CEF,然后利用邻补角的定义可得到∠CDB+∠ADC=180°,所以∠CEF+∠ADC=180°;(2)根据平行线的性质得∠CEF+∠DCE=180°,又∠DCE=90°,所以∠CEF=90°,于是得到∠BDC=90°.68.【答案】(1) ①如图所示,△A1B1C1即为所求作. ②如图所示,△A2B2C2即为所求作.。
2017小学六年级数学总复习练习题(34) 图形的旋转与平移
2017小学六年级数学总复习练习题(34)(时间:60分钟)姓名_____________成绩__________ 复习内容:图形的旋转、平移一、认真思考,准能填好。
1.变换图形的位置可以有()、()等方法;按比例放大或缩小图形可以改变图形的()而不改变它的()2.圆是轴对称图形,它有()条对称轴。
在我们学习认识过的平面图形中,是轴对称图形的还有()。
3.将一个三角形按2:1的比放大后,面积是原来的()倍。
4.下图中,将图中A平移到图B位置。
需要将图A向()平移()格。
A B5.一个30。
的角,将它的一条边旋转()。
可得到一个直角。
6.长方形有()条对称轴;正方形有()条对称轴;圆有()条对称轴。
二、仔细推敲,准确判断。
1.线段也是轴对称图形。
()2.将一个平行四边形木框拉成一个长方形后、周长不变,面积不变。
()3.把一个图按1:3的比缩小后,周长会比原来缩小3倍,面积会比原来缩小6倍。
()4.下图中,小鱼向右平移了3格。
()三、反复权衡,慎重选择。
1.下列图案中,是轴对称图形的是()。
2.一个长方形的长和宽各增加5cm,增加的面积()cm2。
①等于25 ②大于25 ③小于25 ④无法确定3.下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是()。
①三角形②长方形③圆④平行四边形4.下列各组图形,只通过平移或旋转,不能形成长方形的是( )。
① ② ③ ④5.通过( ),可以将图A 变换成图B 。
A B① 平移 ②旋转6.下面4幅图中,图框( )是下图按比例缩小的。
①② ③④2cm 6cm 1cm 3cm1cm5cm2cm 3cm 1cm2cm姓名7.将一个周长12cm 的正方形变换成面积为36cm 2的正方形。
实际是按( )的比放大的。
①1:3 ②2:1 ③3:1 ④4:四、 动手动脑,认真操作。
操作A :(1) 画出图①的另一半,使它成为一个轴对称图形。
再将画好的完整图形先向右平移8格,再向下平移1格。
第三章《图形的平移与旋转》专题复习(含答案)
第三章《图形的平移与旋转》专题专练专题一 图形的平移概念 重点知识回顾1.平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形变换称为平移.注意:(1)平移过程中,对应线段可能在一条直线上. (2)平移过程中,对应点所连的线段也可能在一条直线上. 2.平移的两个基本要素:“平移的方向”和“平移的距离”.图形的平移是由它的移动方向和移动距离决定的.当图形平移的方向没有指明时,就需要认真观察图形的形状和位置的变化特征,根据平移的性质先确定平移的方向,再确定对应点、对应线段和对应角.3.图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出平移性质的依据.典型例题剖析例1 生活中有很多平移的例子,下列物体的运动是平移的是( ) A.水中小鱼的游动 B.天空中划过的流星的运动 C.出膛的子弹沿水平直线的运动 D.小华在跳高时的运动分析:正确判断物体是否为平移运动关键是理解和掌握平移的概念和特征.看物体是否在同一个平面内运动,是否沿某个方向平行移动一定的距离,而“水中小鱼的游动”、“天空中划过的流星的运动”、“小华在跳高时的运动”显然不符合平移的概念,只有“出膛的子弹沿水平直线的运动”才是平移运动.点悟:识别平移现象的关键是抓住平移的特征:物体必须在平面内运动,在曲面上运动物体一定不是平移,平移是直线的运动,平移只与物体的位置有关,与速度无关,平移只关注物体的位置变化.例2 (2008年福建省泉州市)在图1的方格纸中,ABC △向右平移 格后得到111A B C △.分析:因为△A 1B 1C 1是△ABC 平移后得到的图形,所以点A 1与点A 、B 1与B 、C 1与C 分别是对应点,故只需随便数一数一对对应点之间的格数,即为平移图1的距离.正确答案为4.点悟:知道平移前后的图形,找出平移的距离(一般都在网格中),只要找出一对对应点后,数一数它们之间的格数即可.专项练习一:1.下列现象中不属于平移的是()A.大楼电梯在上下运动B.彩票大盘的转动C.滑雪运动员在平坦的雪地上滑行D.火车在平直的铁轨上行驶专题二图形的旋转概念知识要点回顾1.旋转的概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.注意:(1)旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定能通过旋转得到.(2)旋转的角度一般小于360°.2.旋转的三个要素:旋转中心、旋转角度和旋转方向(即顺时针或逆时针方向)典型例题剖析例1下列几种运动,只属于旋转运动的有()①发电的风车的转动;②在笔直的铁轨上运行的列车;③传送带上的灌装啤酒;④随风飘散的雪花.A.1种B.2种C.3种D.4种分析:根据旋转的概念和特征,可以看出只有“发电的风车的转动”是旋转运动,“在笔直的铁轨上运行的列车”和“传送带上的灌装啤酒”是平移运动,“随风飘散的雪花”的运动比较复杂,不只是旋转运动.故选A.点悟:旋转是在一个平面内,将一个图形绕一个定点沿某个方向转动一定的角度的运动.图形上的每一个点都按相同的方式转动相同的角度,旋转只改变图形的位置,不改变图形的大小和形状.例2(2008年江苏省盐城市)已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是()分析:旋转180°后得到图2与图1是一样的,而图1中只有方块5经旋转180°后与原来是一样的,而其它牌经旋转180°后与原来是不同的.故选 A.点悟:这是一道简单的图案旋转问题,求解时只要能准确地运用旋转的有关概念即可求解.旋转应注意旋转的方向和旋转的角度专项练习二:1.将图3绕点O 按逆时针方向旋转90°得到的图案是( )2. 3张扑克牌如图4(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图4(2)所示,则她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张 专题三 图形平移、旋转性质的应用 知识要点回顾 1.平移的基本性质有平移的基本概念知,结果平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此,平移具有下列性质:(1)平移后的图形与原图形的对应线段平行且相等,对于角相等. (2)平移后的图形与原图形的对应点所连的线段平行且相等. 2.旋转的基本性质(1)图形旋转后,任意一对对应点与旋转中心的连线所成的角都等于旋转角. (2)一个图形沿某一点旋转一个角度后,图形中的每一点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的大小与形状都没有发生变化.典型例题剖析A B C D图3 图1图2A B C D图4例1 (2008年广州市数学中考试题)将线段AB 平移1cm ,得到线段A /B /,则点A 到点A /的距离是 .分析:由于点A /是由线段AB 平移1cm 后点A 的对应点,根据平移的性质可知点A 到点A /的距离为1cm.点悟:本题考查平移的知识,在平移时要注意平移的方向及平移的距离,还应注意平移的特征.即对应点的距离等于线段平移的距离.例2 (2008年江苏省扬州市)如图1中的△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ABP /重合,如果AP=3,那么线段PP /的长等于________.分析:△ABP 绕点A 逆时针旋转后与△ABP /重合,即△ABP ≌△ABP /,所以AP /=AP=3,又因为△ABC 是等腰直角三角形,所以∠PAP /=900,利用勾股定理可得PP /=32.故应填32.点悟:旋转不改变图形的形状和大小,旋转前后的两个图形是全等形.例3 (2008湖北省荆门市)将两块全等的含30°角的三角尺如图2(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD 沿直线l 向左平移到图2(2)的位置,使E 点落在AB 上,则CC ′=______; (2)将△ECD 绕点C 逆时针旋转到图2(3)的位置,使点E 落在AB 上,则△ECD 绕点C 旋转的度数=______;(3)将△ECD 沿直线AC 翻折到图2(4)的位置,ED ′与AB 相交于点F ,求证AF =FD ′.解析:.(1) 3-3; (2)30°;(3)证明:在△AEF 和△D /BF 中,∵AE=AC-EC, D /B=D /C-BC , 又AC=D /C ,EC=BC ,∴AE=D /B .(2)图2A CBE4 D EA CB EDl(3) l D ’F A C BED(4)A CB EDl E ’ C ’ 图1D(1)又 ∠AEF=∠D’ BF=180°-60°=120°,∠A=∠CD /E=30°, ∴△AEF ≌△D /BF .∴AF=FD /.点评:本题以同学们熟悉的三角尺为背景,综合考查了平移、旋转、轴对称三种图形变换,解题时,要注意它们各自的区别.专项练习三:1.(2008年大连市)如图3,P 是正△ABC 内的一点,若将△P AB 绕点A 逆时针旋转到 △P ′AC ,则∠P AP ′的度数为________.2.(2008年河南省)如图4,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按顺时针转动一个角度到A 1BC 1的位置,使得点A 、B 、C 1在同一条直线上,那么这个角度等于( )A.120°B.90°C. 60°D. 30° 3.如图5所示,有一块花园为ABCD 中,有甬道(阴影部分),则其余部分的面积为( )m 2A.24B.26C.28D.304.如图6,已知△ABC 的面积为36,将△ABC 沿BC 平移到△A /B /C /,使B /和C 重合,连接AC /交A /C 于D ,则△C /DC 的面积为( )A.6B.9C.12D.18专题四 网格中进行轴对称、平移、旋转作图 知识要点回顾 1.平移作图的基本方法(1)找出已知图形上的关键点.如线段的端点、三角形的顶点等.(2)过关键点作与已知平移方向的线段,使这些线段的长度都等于平移的距离. (3)按原图的连接方式连接各对应点,得到新的图形,这个图形就是原图形平移后的图形.P′P CBA图 7图3图4ABCD图56m 8mAA 'C )(B 'C BD图6注意:①在进行平移作图时,首先要知道平移的距离和方向,其次要找出图形的关键点;②确定一个图形的平移前后的位置所需要的条件:图形原来的位置、平移的方向、平移的距离.2.旋转作图的基本方法(1)确定旋转中心,找出已知图形的关键点.(2)作出关键点的对应点.作关键点的对应点的方法是:将各关键点与旋转中心连接;以旋转中心为顶点,以上述连线为一边,向旋转方向作角,使所作的角都等于旋转角;在所作角的另一边截取长度分别等于各关键点与旋转中心所连线段的长度.即得到各关键点的对应点;按原图的连接方连接各对应点即得到旋转后的图形.由于网格具有其特殊的属性,因而利用网格进行变换作图问题已越来越受到中考命题专家的青睐.典型例题剖析例1 (2008年重庆市)作图题:(不要求写作法)如图1,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上) (1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形A 1B 1C 1D 1; (2)在给出的方格纸中,画出四边形ABCD 关于直线l 对称的四边形A 2B 2C 2D 2.分析:抓住四边形的四个关键点(顶点),分别作出它们的对应点,再顺次连接即可.如图6所示.点悟:平移时要搞清平移的方向和平移的距离.轴对称首先要找到对称轴,然后分别作已知点的对称点,连线即可得到所求图形.例2 (2008年甘肃省庆阳市)在如图3的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).(1) 画出ABC △绕点O 顺时针旋转90o后的111A B C △;D 2D 1C 2C 1B 2B 1A 2A 1图4图3AB C D llDCBA图1 图2(2)求点A 旋转到1A 所经过的路线长.分析:要画出画出ABC △绕点O 顺时针旋转90o后的111A B C △,根据旋转的性质,连接OA ,过O 作OA /⊥OA ,且使OA /=OA ,则得A 点的对应点A 1点.同理可作出点B 、C 的对应点B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1即得.(1)如图4所示.(2) ∵ 点A 旋转到1A 所经过的路线长为以OA 为半径圆的周长的14, ∴ 点A 旋转到1A 所经过的路线长为14×2r π=12π×2223+=132π. 点悟:确定一个图形旋转后的位置需要的条件有:旋转中心、旋转方向和旋转角.当这些条件都具备后,图形变换后的位置才可唯一确定.专项练习四1.(2008年吉林省长春市)如上图5,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.(1)作ABC △关于点P 的对称图形A B C '''△。
小学平移旋转练习题
小学平移旋转练习题一、选择题1. 平移是指图形在平面上沿着某一方向移动一定的距离,以下哪个图形没有发生平移?A. 直线向右平移5个单位B. 长方形向下平移3个单位C. 圆形向左平移4个单位D. 以上图形都发生了平移2. 旋转是指图形绕着某一点进行旋转,以下哪个图形发生了旋转?A. 正方形绕中心点顺时针旋转90度B. 三角形绕顶点逆时针旋转180度C. 圆形绕中心点旋转360度D. 以上图形都没有发生旋转3. 平移和旋转的共同点是:A. 都是图形的位置变化B. 形状和大小都会改变C. 都需要沿着直线移动D. 都需要绕着某一点旋转二、判断题1. 平移后,图形的形状和大小不会改变。
()2. 旋转后,图形的位置会发生变化,但形状和大小不会改变。
()3. 平移和旋转都是图形的变换,但平移是沿着直线移动,旋转是绕点转动。
()4. 一个图形可以同时进行平移和旋转。
()三、填空题1. 一个正方形的边长为4厘米,若将其向右平移2厘米,其边长变为______厘米。
2. 若一个图形绕中心点旋转90度后,图形的位置发生了变化,但图形的______和______没有改变。
3. 一个长方形的长为6厘米,宽为3厘米,若将其绕中心点顺时针旋转90度,旋转后的图形是一个______。
四、简答题1. 请简述平移和旋转在日常生活中的应用。
2. 请举例说明平移和旋转的区别。
五、操作题1. 请画出一个等边三角形,然后将其向右平移3个单位,并画出平移后的图形。
2. 请画出一个正方形,然后将其绕中心点顺时针旋转90度,并画出旋转后的图形。
六、计算题1. 一个长方形的长为10厘米,宽为5厘米,若将其向右平移6厘米,求平移后长方形的长和宽。
2. 若一个圆形的半径为3厘米,求其绕中心点旋转180度后,圆形的半径。
七、应用题1. 小明的房间是一个长方形,长为4米,宽为3米。
如果小明将房间的地毯向右平移1米,地毯的长和宽会如何变化?2. 小红的花园是一个圆形,半径为2米。
六年级数学图形的平移旋转与对称试题
六年级数学图形的平移旋转与对称试题1.钟面上的时针、分针的运动是,电梯的运动是(旋转、平移、旋转和平移)【答案】旋转,平移.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义可知:钟面上分针和时针是绕中心轴转动,根据旋转的意义,属于旋转现象;电梯是上、下运动,根据平移的意义,属于平移现象.解:钟面上的时针、分针的运动是旋转,电梯的运动是平移;故答案为:旋转,平移.【点评】此题是考查对平移与旋转的理解及在实际当中的运用.2.轴对称图形至少有一条对称轴..(判断对错)【答案】√【解析】根据对称轴的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.解:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.所以轴对称图形至少有一条对称轴,故答案为:√.【点评】本题考查轴对称图形的定义的灵活应用.3.下面各组合图形中,能画出3条对称轴的是()A. B. C.【答案】C【解析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此可以画出它们的对称轴.解:A中图形有2条对称轴;B中图形有2条对称轴;C中图形有3条对称轴;故选:C.【点评】解答此题的主要依据是:轴对称图形的意义及其特征.注意画对称轴要用虚线.4.等腰三角形有条对称轴,若它一个底角55°,它的顶角是.【答案】1,70°.【解析】(1)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴,由此可知等腰三角形有1条对称轴.(2)因为等腰三角形的两个底角的度数相等,知道了一个底角的度数,就等于知道了另一个底角的度数,再依据三角形的内角和是180度,从而可以求出顶角的度数.解:等腰三角形有1条对称轴,若它一个底角55°,它的顶角是:180°﹣55°×2=180°﹣110°=70°.故答案为:1,70°.【点评】此题主要考查轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴,以及三角形的内角和定理以及等腰三角形的特点.5.正方形有()条对称轴。
六年级数学图形的平移旋转与对称试题
六年级数学图形的平移旋转与对称试题1.(庐江县)(1)把圆平移到圆心是(6,8)的位置上.(2)把长方形绕A点顺时针旋转90°.(3)画出轴对称图形的另一半.【答案】【解析】分析:(1)圆心确定圆的位置,半径确定圆的大小,由此先找到此圆的圆心点为(3,3),半径是2格长,再由数对与位置找到平移后的圆心点是(6,8),以半径为2格长画圆即可得到平移后的位置;(2)根据图形旋转的方法,将与点A连接的两条边顺时针旋转90°,再作这两条边的平行线即可得出旋转后的图形;(3)根据轴对称图形的特征,对称点到对称轴的距离相等,找出三个对称点,然后连接即可.解答:解:(1)由数对与位置找到平移后的圆心点是(6,8),以半径为2格长画圆即可得到平移后的位置;(2)根据图形旋转的方法,将与点A连接的两条边顺时针旋转90°,再作这两条边的平行线即可得出旋转后的图形;(3)根据轴对称图形的特征,对称点到对称轴的距离相等,找出三个对称点,然后连接即可.作图如下:点评:此题考查了数对表示位置以及图形的平移、旋转的方法的灵活应用,根据轴对称图形的特征,作对称图形.2.钟面上的时针、分针的运动是,电梯的运动是(旋转、平移、旋转和平移)【答案】旋转,平移.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义可知:钟面上分针和时针是绕中心轴转动,根据旋转的意义,属于旋转现象;电梯是上、下运动,根据平移的意义,属于平移现象.解:钟面上的时针、分针的运动是旋转,电梯的运动是平移;故答案为:旋转,平移.【点评】此题是考查对平移与旋转的理解及在实际当中的运用.3.下面各组合图形中,能画出3条对称轴的是()A. B. C.【答案】C【解析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此可以画出它们的对称轴.解:A中图形有2条对称轴;B中图形有2条对称轴;C中图形有3条对称轴;故选:C.【点评】解答此题的主要依据是:轴对称图形的意义及其特征.注意画对称轴要用虚线.4.平行四边形都可以画出对称轴.【答案】×【解析】判断一个图形能不能画出对称轴,首先得满足一个前提条件,那就是该图形应是轴对称图形;否则有几条对称轴便无从谈起.解:一般的平行四边形不是轴对称图形,只有长方形,正方形是轴对称图形,故不能笼统的说平行四边形都可以画出对称轴.故答案为:×【点评】做此类题目,首先要对轴对称图形的定义及特点准确把握,判断题目中所给图形是否是对称图形,然后再解答.5.下列图形中,()一定是轴对称图形.A.平行四边形B.梯形C.长方形D.三角形【答案】C【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:根据轴对称图形的意义可知:长方形一定是轴对称图形,而梯形、平行四边形、三角形不一定是轴对称图形;故选:C.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.6.(1)写出三角形各个顶点的位置.A ,B ,C(2)画出三角形向上平移5个单位后的图形.(3)画出三角形绕点B顺时针旋转90°的图形.【答案】(1,2);(4,2);(2,4).【解析】(1)数对表示位置的方法是:第一个数字表示列,第二个数字表示行,据此即可标出各点的位置.(2)先把三角形ABC的三个顶点分别向向上平移5个单位,再依次连接起来即可得出平移后的三角形.(3)根据图形旋转的方法,以点B为旋转中心,把另外两个顶点分别绕点B顺时针旋转90度,找出旋转后的对应点,再把它们依次连接起来,即可得出旋转后的图形.解:(1)A的位置是(1,2),B的位置是(4,2),C的位置是(2,4).(2)(3)故答案为:(1,2);(4,2);(2,4).【点评】此题主要考查数对表示位置的方法以及图形的平移、旋转的知识,需要综合运用学过的知识进行解答.7.如图,这个图形共有()条对称轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017小学六年级数学总复习练习题(34)
(时间:60分钟)
姓名_____________成绩__________ 复习内容:图形的旋转、平移
一、认真思考,准能填好。
1.变换图形的位置可以有()、()等方法;按比例放大或缩小图形可以改变图形的()而不改变它的()
2.圆是轴对称图形,它有()条对称轴。
在我们学习认识过的平面图形中,是轴对称图形的还有()。
3.将一个三角形按2:1的比放大后,面积是原来的()倍。
4.下图中,将图中A平移到图B位置。
需要将图A向()平移()格。
A B
5.一个30。
的角,将它的一条边旋转()。
可得到一个直角。
6.长方形有()条对称轴;正方形有()条对称轴;圆有()条对称轴。
二、仔细推敲,准确判断。
1.线段也是轴对称图形。
()
2.将一个平行四边形木框拉成一个长方形后、周长不变,面积不变。
()
3.把一个图按1:3的比缩小后,周长会比原来缩小3倍,
面积会比原来缩小6倍。
()
4.下图中,小鱼向右平移了3格。
()
三、反复权衡,慎重选择。
1.下列图案中,是轴对称图形的是()。
2.一个长方形的长和宽各增加5cm,增加的面积()cm2。
①等于25 ②大于25 ③小于25 ④无法确定
3.下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是()。
①三角形②长方形③圆④平行四边形
4.下列各组图形,只通过平移或旋转,不能形成长方形的是( )。
① ② ③ ④
5.通过( ),可以将图A 变换成图B 。
A B
① 平移 ②旋转
6
.下面4幅图中,图框( )是下图按比例缩小的。
①
② ③
④
2cm 6cm 1cm 3cm
1cm
5cm
2cm 3cm 1cm
2cm
姓名
7.将一个周长12cm 的正方形变换成面积为36cm 2的正方形。
实际是按( )的比放大的。
①1:3 ②2:1 ③3:1 ④4:
四、 动手动脑,认真
操作。
操作A :
(1) 画出图①的另一半,使它成为一个轴对称图形。
再将画好的完整图形先向右平移8格,再
向下平移1格。
(2) 图中圆的圆心的位置用数对表示是( ),O 点的位置可用数对表示是( )。
将圆按3:
1的比放大,并以O 点为圆心画出放大后的圆。
原来圆的面积和放大后圆面积的比是( )。
(3) 请将图②绕A 点顺时针旋转90。
,画出旋转后的图形。
操作B :
下图中每个小方格表示边长是1厘米的正方形: (5分)
(1)用数对表示A 和A 1的位置:A ( ),A 1( )。
(2)左边平行的四边形经过怎样的位置变换,才成为右边的平行四边形?
先 ,再 。
(3)在方格图上按1︰2画出一个平行四边形缩小后的图形。
操作C :
海城文化宫广场周围环境如右图所示: ①文化宫北面300米处,有一条商业街 与人民路互相平行。
在图中画直线表
A
· ·
A 1
示这条街,并标上:商业街。
②体育馆在文化宫()偏()
45°方向大约()米处。
w W w .x K b 1.c o M
③李小明以60米/分的速度从学校沿着人民路向东走,3分钟后他在文化宫
正()方向()米处。
④苏果超市在文化宫的北偏西60度方向500米处,请在图中标出苏果超市的位置。
操作D:
某同学完成数学作业后,因不小心将墨水泼在作业纸上(见下图)。
请你根据提供的条件进行有关的计算,然后将统计图补充完整。
条件:
⑴这个班数学期末考试的合格率为95%。
⑵成绩优秀的人数占全班的35%。
⑶成绩“良好”的人数比“优秀”的人数多2 7
操作E:
画一画
(1)将三角形绕A点逆时针旋转90度。
(2)把梯形按1:2的比缩小,画出缩小后的图形。
A。