2020--2021学年八年级数学下册北师大版第一章第2节《直角三角形》同步练习(有答案)

合集下载

最新北师大版八年级数学下册《直角三角形》精品教学课件

最新北师大版八年级数学下册《直角三角形》精品教学课件

∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?

北师大版八年级数学下册专题-1.1

北师大版八年级数学下册专题-1.1

2020-2021学年八年级数学下册尖子生同步培优题典【北师大版】专题1.1等腰三角形的性质姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•长春期末)如图,在△ABC中,∠A=45°,∠B=60°,点D在边AB上,且BD=BC,连结CD,则∠ACD的大小为()A.30°B.25°C.15°D.10°【分析】先根据三角形内角和定理求出∠ACB,再根据等腰三角形的性质求出∠BCD,再根据角的和差关系即可求解.【解析】在△ABC中,∠A=45°,∠B=60°,∴∠ACB=180°﹣45°﹣60°=75°,∵BD=BC,∴∠BCD=(180°﹣60°)÷2=60°,∴∠ACD=∠ACB﹣∠BCD=75°﹣60°=15°.故选:C.2.(2020秋•建华区期末)下列四个说法:①等腰三角形的腰一定大于其腰上的高;②等腰三角形的两腰上的中线长相等;③等媵三角形的高、中线、角平分线互相重合;④等腰三角形的一边为5,另一边为10,则它的周长为20或25.其中正确的个数为()A.1个B.2C.3D.4【分析】根据直角三角形性质即可判断①,画出图形证△BDC ≌△CEB ,即可判断②,根据直角三角形性质即可判断根据等腰三角形的三线合一性质即可判断③,根据三角形的三边关系定理即可判断④.【解析】如图1,∵在△ABD 中,∠BDA =90°,则AC =AB ≥BD ,∴等腰三角形的腰一定大于或等于其腰上的高,故①错误;如图2,∵AB =AC ,AD =DC ,AE =EB ,∴DC =BE ,∠DCB =∠EBC .在△BDC 和△CEB 中,{BC =BC ∠BCD =∠CBE CD =BE,∴△BDC ≌△CEB (SAS ).∴BD =CE ,故②正确;∵等腰三角形的顶角的平分线,底边上的高,底边上的中线互相重合,故③错误;∵等腰三角形的一边长为5,一边长为10,∴只能三边是10,10,5,∴它的周长是25,故④错误.故选:A .3.(2020秋•喀什地区期末)下列说法错误的是( )A .等腰三角形的两个底角相等B .等腰三角形的高、中线、角平分线互相重合C .三角形两边的垂直平分线的交点到三个顶点距离相等D .等腰三角形顶角的外角是其底角的2倍【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解析】A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.4.(2020秋•香坊区期末)等腰三角形的一边等于3,一边等于7,则此三角形的周长为() A.10B.13C.17D.13或17【分析】①当等腰三角形的三边长是3,3,7时,②当等腰三角形的三边长是3,7,7,看看是否符合三角形的三边关系定理,若符合,求出三角形的周长即可.【解析】①当等腰三角形的三边长是3,3,7时,3+3<7,不符合三角形的三边关系定理,此时不能组成等腰三角形;②当等腰三角形的三边长是3,7,7时,符合三角形的三边关系定理,能组成等腰三角形,此三角形的周长是3+7+7=17;综合上述:三角形的周长是17,故选:C.5.(2020秋•武都区期末)已知等腰三角形的一个内角为50°,则它的另外两个内角是() A.65°,65°B.80°,50°C.65°,65°或80°,50°D.不确定【分析】根据等腰三角形的性质推出∠B=∠C,分为两种情况:①当底角∠B=50°时,②当顶角∠A =50°时,根据∠B=∠C和三角形的内角和定理求出即可.【解析】∵AB=AC,∴∠B=∠C,①当底角∠B=50°时,则∠C=50°,∠A=180°﹣∠B﹣∠C=80°;②当顶角∠A=50°时,∵∠B+∠C+∠A=180°,∠B=∠C,∴∠B=∠C=12×(180°﹣∠A)=65°;即其余两角的度数是50°,80°或65°,65°,故选:C.6.(2020秋•肇州县期末)如图,在△ABC中,D、E分别为AB、AC边上的点,DA=DE,DB=BE=EC.若∠ABC=130°,则∠C的度数为()A.20°B.22.5°C.25°D.30°【分析】可设∠C=x,根据等腰三角形的性质可得∠EBC=x,则∠DBE=130°﹣x,根据等腰三角形的性质可得∠EDB=25°+12x,再根据三角形外角的性质和等腰三角形的性质可得∠A=12.5°+14x,再根据三角形内角和为180°,列出方程即可求解.【解析】设∠C=x,根据等腰三角形的性质得∠EBC=x,则∠DBE=130°﹣x,根据等腰三角形的性质得∠EDB=25°+12x,根据三角形外角的性质和等腰三角形的性质得∠A=12.5°+14x,依题意有12.5°+14x+x+130°=180°,解得x=30°.故选:D.7.(2020秋•崆峒区期末)如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°【分析】根据等腰三角形的性质和平行线的性质,由角的和差关系可求∠BCO,再根据等腰三角形的性质可求∠B.【解析】∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.8.(2020秋•松桃县月考)若等腰三角形的一个内角是40°,则这个等腰三角形的其他内角的度数为() A.40°100°B.70°70°C.40°100°或70°70°D.以上都不对【分析】题中没有指明这个角是底角还是顶角,故应该分情况进行分析,从而求解.【解析】①当这个角为顶角时,底角=(180°﹣40°)÷2=70°;②当这个角是底角时,底角=40°,顶角为180°﹣2×40°=100°;综上:其它两个内角的度数为70°,70°或40°,100°.故选:C .9.(2020秋•西湖区校级期中)如图,在△ABC 中,∠BAC =α,点D 在BC 上,且BD =BA ,点E 在BC 的延长线上,且CE =CA ,则∠DAE 的大小为( )A .αB .34αC .23αD .12α 【分析】由AB =BD ,AC =CE ,可得∠BAD =∠BDA ,∠E =∠CAE ,设∠BAD =∠BDA =x ,∠E =∠CAE =y ,∠DAC =z ,则{x +z =αx =z +2y ,解得y +z =35°,由此即可解决问题.【解析】∵AB =BD ,AC =CE ,∴∠BAD =∠BDA ,∠E =∠CAE ,设∠BAD =∠BDA =x ,∠E =∠CAE =y ,∠DAC =z ,则{x +z =αx =z +2y ,解得y +z =12α,∴∠DAE =∠DAC +∠CAE =12α;故选:D .10.(2020秋•江州区期中)已知等腰三角形的底边长为8cm ,一腰上的中线把其周长分成的两部分的差为3cm ,则腰长为( )A .5cmB .10cmC .11cmD .5cm 或11cm 【分析】根据分成的两个部分的周长的差等于腰长与底边的差,再分两种情况求出腰长,然后根据三角形的三边关系判断即可.【解析】设腰长为xcm ,根据题意得x ﹣8=3或8﹣x =3,解得x =11或x =5,当x=11时,三角形的三边分别为11cm、11cm、8cm,能组成三角形,当x=5时,三角形的三边分别为5cm、5cm、8cm,能组成三角形.综上所述,腰长为5cm或11cm.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•沙河口区期末)等腰三角形两边长分别为2cm,5cm,该三角形的周长是12cm.【分析】题目给出等腰三角形有两条边长为2cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解析】当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,舍去;当腰长是5cm时,因为2+5>5,符合三角形三边关系,此时周长是12cm.故答案为:12cm.12.(2020秋•南关区期末)如图,在△ABC中,点D在边BC上,AB=AD=CD.若∠BAD=40°,则∠C 的大小为35度.【分析】在△ABD中利用等边对等角的性质以及三角形内角和定理求出∠ADB的度数,然后利用∠ADB 是三角形ADC的一个外角即可求得答案.【解析】∵AB=AD,∠BAD=40°,∴∠B=∠ADC=12(180°﹣40°)=70°,∵在三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵AD=CD,∴∠C=∠DAC,∴∠C=12×70°=35°,故答案为:35.13.(2020秋•讷河市期末)已知等腰三角形的一个外角等于130˚,则它的顶角等于50˚或80˚.【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【解析】∵等腰三角形的一个外角等于130˚,∴与其相邻的内角为50°.当50°为顶角时,其他两角为65°、65°;当50°为底角时,其他两角为50°、80°.所以等腰三角形的顶角可以是50°,也可以是80°.故答案为:50°或80°.14.(2020秋•宽城区期末)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D.若∠A=36°,则∠BDC的大小为72度.【分析】根据等腰三角形的性质和三角形内角和,可以得到∠ABC和∠ACB的度数,再根据BD平分∠ABC,即可得到∠ABD的度数,然后根据∠BDC=∠A+∠ABD,即可得到∠BDC的度数.【解析】∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故答案为:72.15.(2020秋•香坊区期末)如图,△ABC中,点P、点Q是边BC上的两个点,若BP=PQ=QC=AP=AQ,则∠P AC的度数为90°.【分析】根据等边三角形的性质,得∠P AQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP=∠CAQ=30°,从而求解.【解析】∵BP=PQ=QC=AP=AQ,∴∠P AQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°,∴∠P AC=∠P AQ+∠QAC=60°+30°=90°,故答案为:90.16.(2020秋•绿园区期末)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是80°.【分析】由等腰三角形的性质可得∠O=∠CDO,∠DCE=∠DEC,由外角性质可得∠O=25°,即可求解.【解析】∵OC=CD=DE,∴∠O=∠CDO,∠DCE=∠DEC,∵∠DCE=∠O+∠CDO=2∠O,∴∠DEC=2∠O,∴∠BDE=∠O+2∠DEC=3∠O=75°,∴∠O=25°,∴∠DCE=∠DEC=50°,∴∠CDE=80°,故答案为:80°.17.(2020秋•二道区期末)我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若k=2,则该等腰三角形的顶角为90度.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】∵k=2,∴设顶角=2α,则底角=α,∴α+α+2α=180°,∴α=45°,∴该等腰三角形的顶角为90°,故答案为:90.18.(2020秋•定西期末)如图,已知∠AOB =α,在射线OA 、OB 上分别取点A 1、B 1,使OA 1=OB 1,连接A 1B 1,在A 1B 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连接A 2B 2,…,按此规律下去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θn = (2n −1)⋅180°+α2n .(用含α的式子表示)【分析】设∠A 1B 1O =x ,根据等腰三角形性质和三角形内角和定理得α+2x =180°,x =180°﹣θ1,即可求得θ1=180°+α2,同理求得θ2=180°+θ12,即可发现其中的规律,按照此规律即可求得答案. 【解析】设∠A 1B 1O =x ,则α+2x =180°,x =180°﹣θ1,∴θ1=180°+α2, 设∠A 2B 2B 1=y ,则θ2+y =180°①,θ1+2y =180°②,①×2﹣②得:2θ2﹣θ1=180°,∴θ2=180°+θ12=(22−1)⋅180°+α22, …θn =(2n−1)⋅180°+α2n . 故答案为:(2n −1)⋅180°+α2n .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•南关区期末)如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,∠B =40°.求:(1)∠ADC的大小;(2)∠BAD的大小.【分析】由已知AB=AC,D是BC边上的中点,可得AD为三角形的高,在直角三角形中,可求解各个角的大小.【解析】(1)∵AB=AC,D是BC边上的中点,∴AD⊥BC,即∠ADC=90°;(2)∵∠B=40°,∴∠BAD=50°.20.(2020秋•莫旗期末)如图,在△ABC中,AB=BC=AD,BD=CD,求∠ABC的度数.【分析】由BD=CD得∠BCD=∠CBD,由AB=BC=AD得∠ABD=∠ADB=2∠DBC,∠A=∠C,从而可推出∠ABC=3∠C,根据三角形的内角和定理即可求得∠C的度数,从而不难求得∠ABC的度数.【解析】∵BD=CD,∴∠BCD=∠CBD,设∠BCD=∠CBD=x°,∵AB=BC=AD,∴∠ABD=∠ADB=∠BCD+∠CBD=2x°,∠A=∠C=x°,∴∠ABC=3∠C=3x°,∵∠B+∠ABC+∠C=180°,∴5x=180,解得x=36,∴∠C=36°∴∠ABC=3∠C=108°.21.(2020秋•船营区期末)如图,在△ABC中,AB=AC,AD⊥BC,∠BAD=28°,且AD=AE,求∠EDC 的度数.【分析】由条件可先求得∠DAE,再根据等腰三角形的性质可求得∠ADC,则可求得∠EDC.【解析】∵AB=AC,AD⊥BC,∴∠DAE=∠BAD=28°,∵AD=AE,∴∠ADE=12(180°﹣∠DAE)=12×(180°﹣28°)=76°,∴∠EDC=90°﹣∠ADE=90°﹣76°=14°.22.(2020秋•乐亭县期末)若a、b是△ABC的两边且|a﹣3|+(b﹣4)2=0(1)试求a、b的值,并求第三边c的取值范围.(2)若△ABC是等腰三角形,试求此三角形的周长.(3)若另一等腰△DEF,其中一内角为x°,另一个内角为(2x﹣20)°试求此三角形各内角度数.【分析】(1)利用非负数的性质可求得a、b的值,根据三角形三边关系可求得c的范围;(2)分腰长为3或4两种情况进行计算;(3)分这两个内角一个为顶角和两个都是底角三种情况,结合三角形内角和定理可求得x,可得出三个角的度数.【解析】(1)∵|a﹣3|+(b﹣4)2=0,∴a=3 b=4,∵b﹣a<c<b+a,∴1<c<7;(2)当腰长为3时,此时三角形的三边为3、3、4,满足三角形三边关系,周长为10;当腰长为4时,此时三角形的三边长为4、4、3,满足三角形三边关系,周长为11;综上可知等腰三角形的周长为10或11;(3)当底角为x°、顶角为(2x﹣20)°时,则根据三角形内角和为180°可得x+x+2x﹣20=180,解得x=50,此时三个内角分别为50°、50°、80°;当顶角为x°、底角为(2x﹣20)°时,则根据三角形内角和为180°可得x+2x﹣20+2x﹣20=180,解得x=44,此时三个内角分别为44°、68°、68°;当底角为x°、(2x﹣20)°时,则等腰三角形性质可得x=2x﹣20,解得x=20,此时三个内角分别为20°、20°、140°;综上可知三角形三个内角为50度、50度、80度或44度、68度、68度或20度、20度、140度.23.(2020秋•萧山区月考)在等腰△ABC中,AB=AC,BC=8,∠BAC=90°,AD是∠BAC的平分线,交BC于D,AD=4,点E是AB的中点,连接DE.(1)求∠B的度数;(2)求三角形BDE的面积.【分析】(1)根据等腰三角形的两个底角相等和三角形的内角和定理就可求解;(2)根据等腰三角形的三线合一的性质,得到AD是等腰△ABC底边BC上的高,根据中线的性质求得答案即可..【解析】(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=12(180°﹣∠BAC)=45°;(2)∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,∵点E是AB的中点,∴S△AED=S△BED=12S△ABD=12×12AD•BD=12×12×4×4=4.24.(2020秋•朝阳区校级期中)如图,在△ABC中,∠B=∠C,D,E分别是线段BC、AC上的一点,且AD =AE.(1)如图1,若∠BAC=90°,D为BC中点,则∠2的度数为22.5°;(2)如图2,用等式表示∠1与∠2之间的数量关系,并给予证明.【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,进而得出∠BAD=2∠CDE.(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,进而得出∠BAD=2∠CDE.【解析】(1)∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵∠B=∠C,∠BAC=90°,D是BC中点,∴∠BAD=45°,∴∠B+∠BAD=∠EDC+∠C+∠CDE,即∠BAD=2∠CDE,∴∠2=22.5°;故答案为:22.5°.(2)∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠CDE,即∠BAD=2∠CDE,∠1=2∠2.。

北师大版数学八年级下册第1章第2节直角三角形(教案)

北师大版数学八年级下册第1章第2节直角三角形(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.注意引导学生围绕教学目标进行讨论,避免偏离主题。
3.关注发言不够积极的学生,鼓励他们参与讨论,提高他们的自信心。
-举例:通过几何图形的拼凑或代数方法,引导学生发现并理解勾股定理的推导。
-勾股定理的应用:将勾股定理应用于实际问题,解决如斜边长度计算等问题。
-举例:给出实际情景,如测量墙壁高度等,让学生运用勾股定理解决问题,注意单位的转换和计算过程的准确性。
-直角三角形的判定:在给定三条边长的情况下,准确判断一个三角形是否为直角三角形。
北师大版数学八年级下册第1章第2节直角三角形(教案)
一、教学内容
本节课选自北师大版数学八年级下册第1章第2节,主要内容为直角三角形。具体内容包括:
1.直角三角形的定义与性质:了解直角三角形的定义,掌握直角三角形的三个内角之和为180度,其中一个角为直角(90度)。
2.勾股定理:探讨直角三角形中,直角边与斜边的关系,推导并掌握勾股定理(a²+b²=c²)。
5.情感与价值观:激发学生对数学学习的兴趣,培养学生的数学美感,树立正确的数学价值观,认识到数学在科学、技术和社会发展中的重要作用。
三、教学难点与重点
1.教学重点
-直角三角形的定义与性质:理解直角三角形的定义,掌握直角三角形的内角和为180度,其中一个角为直角(90度)。

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)1.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?并证明;(2)过点C作AB边上的高CG,试猜想DE,DF,CG的长之间存在怎样的等量关系?(直接写出你的结论)2.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.3.如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.4.请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)5.如图,在长方形ABCD中,AB=12cm,BC=8cm,动点P从点A出发,沿AB以2cm/s 的速度向终点B匀速运动;动点Q从点B出发,沿BC以1cm/s的速度向终点C匀速运动;两点同时出发多少秒时,△PBQ是等腰三角形?6.如图,已知在△ABC中,∠B=20°,∠C=40°,EF是线段AB的垂直平分线交BC于点D,连接AD.求证:△ADC是等腰三角形.7.如图的直角△ABC中,∠BAC=90°,AF⊥BC于点F,BD平分∠ABC交AF于点E,交AC于点D,试判定△ADE的形状并说明理由.8.已知:如图,△ABC中,BC边上有D、E两点,∠BAD=∠CAE,∠ADE=∠AED,求证:△ABC是等腰三角形.9.如图,已知AD是△ABC的角平分线,DE∥AB交AC于点E.那么△ADE是等腰三角形吗?请说明理由.10.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.11.已知一个等腰三角形的两边长分别为2cm和4cm,那么该等腰三角形的周长为()A.8cm B.10cm C.8cm或10cm D.不能确定12.等腰三角形两边长分别为5和8,则这个等腰三角形的周长为()A.18B.21C.20D.18或2113.在所给网格中,以格点(网格线的交叉点)A、B连线为一边构造格点等腰三角形ABC,则符合的点C的个数是()A.6B.7C.8D.914.线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()A.4B.5C.6D.715.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个16.如图,在△ABC中,∠B=∠C,∠ADE =∠AED,∠EDC=20°,则∠BAD为()度.A.20B.30C.35D.4017.如图,在△ABC中,AB=AD=DC,∠B=64°,则∠C的度数为()A.30°B.32°C.40°D.48°18.如图,已知OC=CD=DE,且∠BDE=72°,则∠CDE的度数是()A.63°B.65°C.75°D.84°19.已知:如图∠BAC=69°,BD=AD=AC,则∠DAC的度数为()A.32°B.40°C.52°D.36°20.如图,∠ACD=120°,AB=BC=CD,则∠A等于()A.10°B.15°C.20°D.30°21.如图,D,E分别是△ABC的边BC,AC上的点,若AB=AC,AD=AE,则()A.当β为定值时,∠CDE为定值B.当α为定值时,∠CDE为定值C.当γ为定值时,∠CDE为定值D.无法确定22.如图,在△ABC中,AB=AC,过点A作AD⊥AB,交BC于点D.设∠ADB=α,∠CAD =β,则下列结论正确的是()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°23.如图,△ABC中,AB=AC,AD⊥BC,∠BAC=80°,AD=AE.则∠CDE=()A.10°B.20°C.30°D.40°24.如图,AB=AC,∠BAD=α,且AE=AD,则∠EDC的度数等于()A.B.αC.90°﹣D.90°﹣α25.如图,直线PQ上有一点O,点A为直线外一点,连接OA,在直线PQ上找一点B,使得△AOB是等腰三角形,这样的点B最多有个.26.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=45°,当∠A=时,△AOP为等腰三角形.27.如图,已知点P是射线BM上一动点(P不与B重合),∠AOB=30°,∠ABM=60°,当∠OAP=时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形.28.如图,AC=BC,∠C=36°,AD平分∠BAC,则图中等腰三角形(不含△ABC)的个数是.29.如图,在△ABC中,∠B=30°,∠C=∠B,AB=2cm,点P从点B开始以1cm/s 的速度向点C移动,当△ABP要以AB为腰的等腰三角形时,则运动的时间为.30.如图所示,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当三角形APQ是以PQ为底的等腰三角形时,运动的时间是.31.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.32.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为.参考答案1.解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)CG=DE+DF证明:连接AD,∵S三角形ABC=S三角形ADB+S三角形ADC,∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.2.解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC =2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=∠BAD3.1)解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BEG=∠AGC'=48°,由折叠的性质得:∠CEF=∠C'EF,∴∠CEF=(180°﹣48°)=66°;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠CEF,由折叠的性质得:∠CEF=∠C'EF,∴∠GFE=∠C'EF,即△EFG是等腰三角形.4.解:如图所示:5.解:设两点同时出发x秒时,△PBQ是等腰三角形,∵长方形ABCD,∴∠B=90°,∵△BPQ是等腰三角形,∴BP=BQ,∴12﹣2x=x,解得:x=4,即两点同时出发4秒时,△PBQ是等腰三角形.6.证明:∵EF是线段AB的垂直平分线,∴AD=BD,∴∠B=∠BAD=20°,∴∠ADC=∠B+∠BAD=20°+20°=40°,∵∠C=40°,∴∠ADC=∠C,∴AD=AC,即△ADC是等腰三角形.7.解:△ADE是等腰三角形.理由如下:∵BD平分∠ABC,∴∠ABD=∠CBD,∵∠BAC=90°,AF⊥BC,∴∠ABD+∠BDA=90°,∠CBD+∠BEF=90°,∴∠BDA=∠BEF,∵∠AED=∠BEF(对顶角相等),∴∠BDA=∠AED,∴AD=AE.故△ADE是等腰三角形.8.证明:∵∠ADE=∠AED,∠BAD=∠CAE,∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.9.答:△ADE是等腰三角形,理由如下:∵AD是△ABC的角平分线,∴∠1=∠2,∵DE∥AB,∴∠1=∠3,∴∠2=∠3,∴AE=DE,∴△ADE是等腰三角形.10.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.11.解:当4cm的边长为腰时,三角形的三边长为:4cm、4cm、2cm,满足三角形的三边关系,其周长为4+2+4=10(cm),当2cm的边长为腰时,三角形的三边长为:2cm、2cm、4cm,此时4=2+2,不满足三角形的三边关系,所以此时不存在三角形,故选:B.12.解:当8的边长为腰时,三角形的三边长为:8、8、5,满足三角形的三边关系,其周长为8+8+5=21,当5的边长为腰时,三角形的三边长为:5、8、5,满足三角形的三边关系,其周长为8+5+5=18,故选:D.13.解:如图:故选:C.14.解:如图所示:使△ABC是以∠B为顶角的等腰三角形,所以所有符合条件的点C的个数是6个.故选:C.15.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选:A.16.解:∵∠AED=∠C+∠EDC=∠C+20°,∠ADE=∠AED,∴∠ADC=∠ADE+∠EDC=∠AED+∠EDC=∠C+40°.又∵∠ADC=∠B+∠BAD,∠B=∠C,∴∠C+40°=∠BAD+∠C,∴∠BAD=40°.故选:D.17.解:∵△ABD中,AB=AD,∠B=64°,∴∠B=∠ADB=64°,∴∠ADC=180°﹣∠ADB=116°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣116°)÷2=32°,故选:B.18.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°﹣∠BDE=108°,∴∠CDE=108°﹣∠ODC=84°.故选:D.19.解:∵DB=DA,∴∠B=∠BAD,∵DA=CA,∴∠ADC=∠C,而∠ADC=∠B+∠BAD=2∠B,∴∠C=2∠B,∵∠BAC=69°,∴∠C+∠B=3∠B=111°,∴∠B=37°,∴∠DAC=180°﹣2∠ADC=180°﹣37°×4=32°.故选:A.20.解:∵AB=BC,∴∠A=∠ACB,∵∠DBC=∠A+∠ACB,∴∠DBC=2∠A,∵BC=CD,∴∠D=∠DBC=2∠A,∵∠ACD=120°,∴∠A+∠D=∠A+2∠A=180°﹣120°=60°,∴∠A=20°,故选:C.21.解:∵AB=AC,∴∠B=∠C,∵AD=AE,∴∠ADE=∠AED,又∵∠ADC=∠B+∠BAD=∠B+∠α,∠AED=∠C+∠CDE,∴∠ADE+∠CDE=∠B+∠BAD=∠B+∠α,即∠C+∠CDE+∠CDE=∠B+∠α,∴2∠CDE=∠α,∴∠CDE=∠α.即当∠α为定值时,∠CDE为定值,故选:B.22.解:∵AB=AC,∴∠B=∠C,∵AD⊥AB,∴∠DAB=90°,∵∠ADB=α,∴∠B=∠C=90°﹣α,∵∠CAD=β,∴α=β+90°﹣α,∴2α﹣β=90°.故选:D.23.解:∵AB=AC,AD⊥BC,∠BAC=80°,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.故选:B.24.解:设∠EDC=x,∠B=∠C=y,∴∠AED=∠EDC+∠C=x+y,又∵AD=AE,∴∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又∵∠ADC=∠B+∠BAD,∴2x+y=y+α,解得x=.∴∠EDC=.故选:A.25.解:如图所示,分别以A、O为圆心,AO长为半径画弧,与直线PQ的交点B1,B2,B3符合题意;作AO的垂直平分线,与直线PQ的交点B4符合题意,若B2,B3,B4不重合,则最多有4个.故答案为:4.26.解:若△AOP为等腰三角形则有AO=AP、AO=OP和OP=AP三种情况,①当AO=AP时,则有∠O=∠APO=45°,∴∠A=90°;②当AO=OP时,则∠A=∠APO==67.5°;③当OP=AP时,则∠A=∠AON=45°,综上可知∠A为45°或67.5°或90°,故答案为:45°或67.5°或90°.27.解:分为以下5种情况:①OA=OP,∵∠AOB=30°,OA=OP,∴∠OAP=∠OP A=(180°﹣30°)=75°;②OA=AP,∵∠AOB=30°,OA=AP,∴∠APO=∠AOB=30°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣30°=120°;③AB=AP,∵∠AOM=60°,AB=AP,∴∠APO=∠ABM=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;④AB=BP,∵∠ABM=60°,AB=BP,∴∠BAP=∠APO=(180°﹣60°)=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;⑤AP=BP,∵∠ABM=60°,AP=BP,∴∠ABO=∠P AB=60°,∴∠APO=180°﹣60°﹣60°=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;所以当∠OAP=75°或120°或90°时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形,故答案为:75°或120°或90°.28.解:由图可知,∵AC=BC,∠C=36°,∴∠BAC=∠ABC=72°,∵AD平分∠BAC,∴∠CAD=∠BAD=∠C=36°∴△CAD为等腰三角形,∵∠BDA=∠C+∠CAD=72°=∠B,∴△BAD为等腰三角形,∴则图中等腰三角形(不含△ABC)的个数是2个.故答案为2.29.解:当AB=AP时,点P与点C重合,如图1所示,过点A作AD⊥BC于点D,∵∠B=30°,AB=2cm,∴BD=AB•cos30°=2×=3cm,∴BC=6cm,即运动的时间6s;当AB=BP时,∵AB=2cm,∴BP=2cm,∴运动的时间2s.故答案为:2s或6s.30.解:设运动的时间为x,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=18﹣3x,AQ=2x,即18﹣3x=2x,解得x=3.6.故答案为:3.6s.31.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.32.解:如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°。

2020-2021学年北师大版八年级数学下册第1章三角形的证明课后提升作业题

  2020-2021学年北师大版八年级数学下册第1章三角形的证明课后提升作业题

2020-2021年度北师大版八年级数学下册第1章三角形的证明课后提升作业题(附答案)1.A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,为拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB中点B.BC中点C.AC中点D.∠C的平分线与AB的交点2.如图,在△ABC中,BC=10cm,AB的垂直平分线交AB于点D,交边AC于点E,若△BCE的周长等于22cm,则AC的长度等于()A.10cm B.12cm C.22cm D.32cm3.能把三角形分割成面积相等两部分的一定是()A.三角形的中线B.三角形的角平分线C.三角形的高线D.三角形一边上的垂直平分线4.如图,若记北京为A地,莫斯科为B地,雅典为C地,若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.三边垂直平分线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点5.如图,直线l是线段AB的垂直平分线,点C在直线l外,且与A点在直线l的同一侧,点P是直线l上的任意点,连接AP,BC,CP,则BC与AP+PC的大小关系是()A.>B.<C.≥D.≤6.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A 端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断7.下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等B.有一个锐角和一条边相等C.有一条斜边相等D.有一直角边和斜边上的高分别相等8.如图,Rt△ABC中,∠C=90°,∠B=30°,∠BAC的平分线AD交BC于点D,CD =,则BD的长是()A.2B.2C.3D.39.如图,点P在∠ABC的平分线上,PD⊥BC于点D,若PD=4,则P到BA的距离为()A.3B.4C.5D.610.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25°B.25°或40°C.25°或35°D.40°11.如图,在Rt△ABC中,∠ACB=90°,AC≠BC.点P是直角边所在直线上一点,若△P AB为等腰三角形,则符合条件的点P的个数最多为()A.3个B.6个C.7个D.8个12.下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍13.如图在第一个△A1BC中,∠B=40°,A1B=BC,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第二个△A1A2D,再在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E.……如此类推,可得到第n个等腰三角形.则第n个等腰三角形中,以A n为顶点的内角的度数为()A.B.C.D.14.如图,点P在∠AOB的平分线上,PC⊥OA于点C,∠AOB=30°,点D在边OB上,且OD=DP=2.则线段PC的长度为()A.3B.2C.1D.15.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.10C.8D.616.如图是由一副三角尺拼成的四边形ABCD,E为斜边AC的中点,则∠DBE等于()A.10°B.15°C.20°D.22.5°17.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有()①OE平分∠AOD;②∠AOC=∠BOD;③∠AOC﹣∠CEA=15°;④∠COB+∠AOD=180°.A.0B.1C.2D.318.如图,在△ABC中,线段AB的垂直平分线交AC于点D,连接BD,若∠C=80°,∠CBD=40°,则∠A的度数为°.19.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有个.20.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.21.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.22.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE =3cm,则BF=cm.23.△ABC中,AB=AC,∠B=30°,点P在BC边上运动(P不与B、C重合),连接AP,作∠APQ=∠B,PQ交AB于点Q.(1)如图1,当PQ∥CA时,判断△APB的形状并说明理由;(2)在点P的运动过程中,△APQ的形状可以是等腰三角形吗?若可以,请直接写出∠BQP的度数;若不可以,请说明理由.24.如图,已知:AD是∠BAC的平分线,AB=BD,过点B作BE⊥AC,与AD交于点F.(1)求证:AC∥BD;(2)若AE=2,AB=3,BF=,求△ABF中AB边上的高.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:CE=CF;(2)若CD=2,求DF的长.26.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.27.如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E、F.(1)试说明△CEF是等腰三角形;(2)若点E恰好在线段AB的垂直平分线上,猜想:线段AC与线段AB的数量关系,并说明理由;(3)在(2)的条件下,若AC=2.5,求△ABE的面积.28.如图,△ABC中AB=AC,BD和CD分别平分△ABC的内角∠CBA和外角∠ECA,BD 交AC于F,连接AD.(1)求证:AD平分∠GAC;(2)求证:AD∥BC.29.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD 于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.参考答案1.解:∵AB2=10002=1000000,BC2=6002=360000,AC2=8002640000,∴AB2=BC2+AC2,∴△ABC为以AB为斜边的直角三角形,当点P在AB的中点时,CP=AB=P A=PB,故选:A.2.解:∵DE是线段AB的垂直平分线,∴EA=EB,∵△BCE的周长等于22cm,∴BC+CE+BE=22(cm),∴BC+CE+EA=BC+AC=22(cm),∵BC=10cm,∴AC=12(cm),故选:B.3.解:能把三角形分割成面积相等两部分的一定是三角形的中线,故选:A.4.解:∵中转仓到A、B两地的距离相等,∴中转仓的位置应选在边AB的垂直平分线上,同理,中转仓的位置应选在边AC、BC的垂直平分线上,∵中转仓到A、B、C三地的距离相等,∴中转仓的位置应选在三边垂直平分线的交点上,故选:A.5.解:连接BP,∵直线l是线段AB的垂直平分线,∴AP=BP,∴AP+PC=BP+PC,当点P在BC与l的交点处时,AP+PC=CB,当点P不在BC与l的交点处时,AP+PC=BP+PC>BC,∴BC≤AP+PC,故选:D.6.解:在木棍滑动的过程中,点P到点O的距离不发生变化,理由是:连接OP,∵∠AOB=90°,P为AB中点,AB=2a,∴OP=AB=a,即在木棍滑动的过程中,点P到点O的距离不发生变化,永远是a;故选:B.7.解:A、两边分别相等,但是不一定是对应边,不能判定两直角三角形全等,故此选项不符合题意;B、一条边和一锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C、有一条斜边相等,两直角边不一定对应相等,不能判定两直角三角形全等,故此选项不符合题意;D、有一条直角边和斜边上的高对应相等的两个直角三角形全等,故此选项符合题意;故选:D.8.解:∵∠C=90°,∠B=30°,∴∠CAB=60°,∵∠BAC的平分线AD交BC于点D,∴∠CAD=∠BAD=CAB=30°,∴∠DAB=∠B,∴BD=AD,∵CD=,∴BD=AD=2CD=2,故选:B.9.解:∵BP是∠ABC的平分线,PD⊥BC于点D,∴点P到边AB的距离等于PD=4.故选:B.10.解:当50°为底角时,∵∠B=∠ACB=50°,∴∠BCD=90°﹣50°=40°;当50°为顶角时,∵∠A=50°,∴∠B=∠ACB=65°,∴∠BCD=90°﹣65°=25°.故选:B.11.解:①以B为圆心,以BA为半径作圆,此圆与直线BC交于两点,与直线AC交于一点(A除外),此时BP=AB;②以A为圆心,以AB为半径作圆,此圆与直线AC交于两点,与直线AB交于一点(B除外),此时AP=AB;③作线段AB的垂直平分线,交直线AC于一点,交直线BC于一点,此时AP=BP;(1+2)+(1+2)+1+1=8,故选:D.12.解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.13.解:在△CBA1中,∠B=40°,A1B=CB,∴∠BA1C==70°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×70°,同理可得∠EA3A2=()2×70°,∠F A4A3=()3×70°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×70°.故选:C.14.解:过P作PE⊥OB于E,∵点P在∠AOB的平分线上,PC⊥OA,∴PC=PE,∠AOP=∠BOP,∵OD=DP,∴∠BOP=∠DPO,∴∠AOP=∠DPO,∴PD∥OA,∴∠PDE=∠AOB,∵∠AOB=30°,∴∠PDE=30°,∵∠PEO=90°,DP=2,∴PE=DP=1,∴PC=1,故选:C.15.解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.16.解:在直角△ACD中,∠ADC=90°,∠DAC=30°,则∠ACD=60°.又∵E为斜边AC的中点,∴DE=EC=AC.∴∠DEC=∠ECD=60°.∵∠BED=90°,∴∠BED=150°.在直角△ABC中,E为斜边AC的中点,则BE=AC.∴DE=BE,∴∠DBE=EDB=×(180°﹣150°)=15°.故选:B.17.解:∵∠DOC=∠AOB=90°,∴∠DOC﹣∠BOC=∠AOB﹣∠COB,即∠AOC=∠BOD,故②正确;∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确;如图,AB与OC交于点P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A =180°,∴∠AOC﹣∠CEA=15°.故③正确;没有条件能证明OE平分∠AOD,故①错误.故选:D.18.解:∵∠C=80°,∠CBD=40°,∴∠CDB=180°﹣∠C﹣∠CBD=60°,∵线段AB的垂直平分线交AC于点D,∴DA=DB,∴∠A=∠DBA=∠CDB=30°,故答案为:30.19.解:如图,△ABC是等腰三角形,这样的格点C有8个.故答案为8.20.解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.21.解:在Rt△AEC和Rt△DAB中∴Rt△AEC≌Rt△DAB(HL),∴∠ACE=∠ABD,∵∠EAC+∠ACE=90°,∴∠EAC+∠ABD=90°,∴∠AFB=90°,即∠CFD=90°,∴∠ACD+∠BDC=90°,故答案为90.22.解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.23.解:(1)△APB是直角三角形,理由如下:∵AB=AC,∠B=30°,∴∠C=30°=∠B=∠APQ,∵PQ∥AC,∴∠BPQ=∠C,∴∠APB=60°,∴∠BAP=90°,∴△APB是直角三角形;(2)当AQ=QP时,∴∠QAP=∠APQ=30°,∴∠BQP=∠QAP+∠APQ=60°,当AP=PQ时,则∠AQP=∠P AQ=75°,∴∠BQP=105°,当AQ=AP时,则∠AQP=∠APQ=30°,∵P不与B、C重合,∴不存在,综上所述:∠BQP=105°或60°.24.(1)证明:∵AD是∠BAC的平分线,∴∠CAD=∠BAD,∵AB=BD,∴∠BDA=∠BAD,∴∠CAD=∠BDA,∴AC∥BD;(2)解:作FG⊥AB于G,在Rt△ABE中,AE=2,AB=3,∴BE===,∴FE=BE﹣BF=﹣=,∵AD是∠BAC的平分线,BE⊥AC,作FG⊥AB,∴FG=FE=,即△ABF中AB边上的高为.25.证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF.(2)由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=2.又∵CE=CF,∴CF=2.∴DF=DC+CF=2+2=4.26.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.27.解:(1)∵CD⊥AB,∴∠CDB=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠B,∵AE平分∠BAC,∴∠CAE=∠BAE,∴∠ACD+∠CAE=∠B+∠BAE,即∠CFE=∠CEF,∴CF=CE,即△CEF是等腰三角形;(2)AB=2AC,理由是:∵E在线段AB的垂直平分线上,∴AE=BE,∴∠B=∠BAE,∵∠CAE=∠BAE,∠ACB=90°,∴3∠B=90°,∴∠B=30°,∴AB=2AC;(3)方法一、过E作EM⊥AB于M,∵AC=2.5,∠ACB=90°,∠B=∠CAE=30°,∴AE=2CE,设CE=2,则AE=2x,由勾股定理得:AC2+CE2=AE2,即2.52+x2=(2x)2,解得:x=,即CE=,∵AE平分∠CAB,∠ACB=90°,EM⊥AB,∴EM=CE=,∴△ABE的面积S==5×=;方法二、由勾股定理得:BC=2.5,∵CE=,∴BE=BC﹣CE=,∴△ABE的面积S==××2.5=.28.(1)证明:过点D作DN⊥BA,DK⊥AC,DM⊥BC,垂足分别为点N、K、M.∵BD、CD分别平分∠EBA、∠ECA,DN⊥BA,DK⊥AC,DM⊥BC,∴DM=DN=DK,∴AD平分∠GAC,∠ABD=∠DBC,∴∠GAD=∠DAC,∴AD平分∠GAC.(2)证明:∵∠GAC=∠ABC+∠ACB,∠GAD=∠DAC,又∵AB=AC,∴∠ABC=∠ACB,∴∠GAD=∠ABC,∴AD∥BC.29.证明:连接DF,∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC,BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,∵AC=CB,∴△ACD≌△CBF.∴CD=BF.∵CD=BD=BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF,即BA是∠FBD的平分线.∴BA是FD边上的高线,BA又是边FD的中线,即AB垂直平分DF.。

2020-2021学年八年级数学北师大版下册第一章:三角形的证明 培优达标卷

2020-2021学年八年级数学北师大版下册第一章:三角形的证明  培优达标卷

2020-2021学年八年级数学北师大版下册第一章三角形的证明培优达标卷一、单选题1.下列各组数,能够作为直角三角形的三边长的是( )A .4,6,8B .3,4,5C .5,12,14D .23,22,252.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .63.如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且120ADC =∠︒,20cm BC =,则AM 的长度为( )A .20cmB .10cmC .5cmD .15cm4.如图,△ABC 的三边长分别是6,9,12,其三条角平分线将其分为三个三角形,则::ABO BCO CAO S S S ∆∆∆等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:55.在等边三角形ABC 中,D E ,分别是BC AC ,的中点,点P 是线段AD 上的一个动点, 当PC PE +的长最小时,P 点的位置在( )A .A 点处B .AD 的中点处C .ABC ∆的重心处D .D 点处6.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB,若BE=2,则AE 的长为( )A .3B .1C .2D .27.如图,在△ABC 中,∠ABC 和∠ACB 的角平分线交于点E ,过点E 作MN ∥BC 交AB 于点M ,交AC 于点N .若BM+CN=7,则MN 的长为( )A .6B .7C .8D .98.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( ) A .4个 B .3个C .2个D .1个 9.已知:如图,点D ,E 分别在△ABC 的边AC 和BC 上,AE 与BD 相交于点F ,给出下面四个条件:①∠1=∠2;②AD=BE ;③AF=BF ;④DF=EF ,从这四个条件中选取两个,不能判定△ABC 是等腰三角形的是( )A .①②B .①④C .②③D .③④αCE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-11.如图,在△ABC 中,AC =AB ,∠BAC =90°,BD 平分∠ABC ,与AC 相交于点F ,CD ⊥BD ,垂足为D ,交BA 的延长线于点E ,AH ⊥BC 交BD 于点M ,交BC 于点H ,下列选项不正确的是( )A .∠E =67.5°B .∠AMF =∠AFMC .BF =2CD D .BD =AB +AF12.如图,已知∠MON=30°,点123......A A A 、、在射线ON 上,点123......B B B 、、在射线OM 上,111OA A B =,12B A OM ⊥,222OA A B =,23B A OM ⊥,以此类推,若11OA =,则66A B 的长为( )A .6B .152C .32D .72964二、填空题 13.一个等腰三角形的两边长分别为3cm 和7cm ,则它的周长为______cm .14.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____15.如图,在△ABC 中,直线l 垂直平分BC ,射线m 平分∠ABC ,且l 与m 相交于点P ,若∠A =60°,∠ACP =24°,则∠ABP =_____°.16.如图,在△ABC 中,AB =AC ,∠BAC =120°,P 是BC 上一点,且∠BAP =90°,CP =4cm .则BP 的长=________.17.如图,射线OC 是AOB ∠的平分线,Р是射线C 上一点,PD OA ⊥于点,6D DP =,若E 是射线OB 上一点,4,OE =则OPE 的面积是_______________________.18.如图,△ABC 中,∠C =90°,AB =6,AD 平分∠BAC ,CD =2,DE ⊥AB 于E ,则ABD S 等于_____________.19.如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .20.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第4个三角形中以A 4为顶点的底角度数是_____.第n 个三角形中以A n 为顶点的底角度数是_____.三、解答题21.已知ABC 的三边长分别为a 、b 、c ,且18a =,32b =,50c =.(1)判断ABC 的形状,并说明理由;(2)如果一个正方形的面积与ABC 的面积相等时,求这个正方形的边长.22.如图,在Rt ABC ∆中,90ACB ∠=︒,12AC =,13AB =,点D 是Rt ABC ∆外一点,连接DC ,DB ,且4CD =,3BD =.(1)求证:90D ∠=︒(2)求:四边形ABDC 的面积.23.如图所示,已知AB AC =,AD 是中线,BE CF =.(1)求证:BDE CDF ≌;(2)当60B ∠=︒时,过AB 的中点G ,作//GH BD ,求证:4GH AB 1=. 24.已知:如图,在ABC 中,AB AC >,45B ∠=,点D 是BC 边上一点,且AD AC =,过点C 作CF AD ⊥于点E ,与AB 交于点F(1) 若CAD α∠=,求:①BAC ∠的大小;②BCF ∠的大小;(用含α的式子表示)(2)求证:AC FC =25.如图,在ABC ∆中,D 是BC 边上一点,且,//,AD AB AE BC BAD CAE =∠=∠,连接,DE 交AC 于点F .(1)若65B ∠=︒,求C ∠的度数.(2)若AE AC =,则AD 平分BDE ∠是否成立?判断并说明理由.26.如图,AE 、BD 是ABM 的高,AE ,BD 交于点C ,且AE BE =.(1)求证;AME BCE ≌△△;(2)当BD 平分ABM ∠时,求证:2BC AD =;(3)求MDE ∠的度数.27.在平面直角坐标系中,点A 坐标(5,0)-,点B 坐标(0,5),点 C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为(3,0),求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上运动,且5OC <,其它条件不变,连接DO ,求证:DO 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当OC CD AD +=时,则OBC ∠的度数为________.28.(1)如图①,D 是等边ABC 的边AB 上一动点(点D 与点B 不重合),连接CD ,以CD 为边,在BC 上方作等边DCE ,连接AE ,你能发现AE 与BD 之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D 运动至等边ABC 边BA 的延长线时,其他作法与(1)相同,猜想AE 与BD 在(1)中的结论是否仍然成立?若成立,请证明;(3)如图③,当动点D 在等边ABC 边BA 上运动时(点D 与B 不重合),连接DC ,以DC 为边在BC 上方和下方分别作等边DCE 和等边DCE ',连接AE ,BE ',探究AE ,BE '与AB 有何数量关系?并证明你的探究的结论.参考答案1.DA. 4,6,8,468<<,∴2224+6=16+36=5264=8<,∴A 选项不能够作为直角三角形的三边长; B. 3,4,5,345<<,∴2223+4=3+4=75=5>,∴B 选项不能够作为直角三角形的三边长;C. 5,12,14, 51214<<,∴2225+12=25+144=169196=14<,∴C 选项不能够作为直角三角形的三边长;D. 23,22,25,222325<<,∴()()()22222+23=8+12=20=25, ∴D 选项不能够作为直角三角形的三边长,2.C连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=,在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒,∴9030EOF OEF ∠=︒-∠=︒,∴122EF OE ==, ∴10CF CE EF =-=, ∴8BE BC CE =-=;3.A解:作MN ⊥AD 于N ,如图,∵∠B =∠C =90°,∠ADC =120°,∴∠DAB =60°,∵DM 平分∠ADC ,MC ⊥CD ,MN ⊥AD ,∴MC =MN ,∵M 点为BC 的中点,∴MC =MB=12BC=12×20=10cm , ∴MN =MB ,∴AM平分∠DAB,∴∠MAB=12∠DAB=12×60°=30°,∴AM=2MB=20cm,4.C过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=6,BC=9,AC=12,∴S△ABO:S△BCO:S△CAO=2:3:4,故选C.【点睛】本题主要考查了角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.5.C解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,当PC PE的长最小时,即PB+PE最小则此时点B、P、E在同一直线上时,又∵BE为中线,∴点P为△ABC的三条中线的交点,也就是△ABC的重心,6.B∵BC的垂直平分线交AB于点E,垂足为D,∴∠B=∠ECD,BE=CE,∠BDE=∠CDE=90o,又∵∠B=30°,BE=2,∴∠ECD=30°,CE=2,DE=12BE=1,又∵CE平分∠ACB,∴∠ECD=∠ACE=30°,∴∠ACB=60°,又∵在△ABC中,∠B=30°,∴∠BAC=90°,在Rt△ACE,CE=2,∠ACE=30°,∴AE=12CE=1;7.B【详解】解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∴MN=ME+EN,即MN=BM+CN,∵BM+CN=7,∴MN=7,8.D【解析】如图,根据角平分线的意义,可由∠AOC=∠BOC,知OC是∠AOB的平分线;如图,此时,∠AOB=2∠BOC ,∠BOC=12∠AOB ,但OC 不是∠AOB 的平分线; 由于∠AOC+∠COB=∠AOB ,但是∠AOC 与∠COB 不一定相等,所以OC 不一定是∠AOB 的平分线. 所以只有①能说明OC 是∠AOB 的角平分线.9.C选取①②:在ADF ∆ 和BEF ∆ 中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF ∆ 和BEF ∆ 中 1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴= 10.B解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图, DAC α∠=,αDAB 902∠=︒-,αEAM 902∠∴=︒-, AE ∴平分MAD ∠,EM EN ∴=,CE 平分ACB ∠,EM EH ∴=,EN EH ∴=,DE ∴平分ADB ∠,11ADB 2∠∠∴=, 由三角形外角可得:1DEC 2∠∠∠=+,12ACB 2∠∠=,11DEC ACB 2∠∠∠∴=+, 而ADB DAC ACB ∠∠∠=+, 11DEC DAC α22∠∠∴==, 故选:B .11.D【详解】解:∵AC =AB ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵BD 平分∠ABC ,∴∠ABF =∠CBF =22.5°,∵BD ⊥CD ,∴∠E =67.5°,故选项A 正确,∵AH ⊥BC ,∴∠AHB =∠BAC =90°,∴∠ABF+∠AFB =90°,∠CBF+∠BMH =90°,∴∠AFB =∠BMH ,∴∠AFM =∠BMH =∠AMF ,故选项B 正确,∵CD ⊥BD ,∴∠BDE =∠BAC =90°,∴∠E+∠EBD =90°,∠E+∠ACE =90°,∴∠EBD =∠ACE ,在△ABF 和△ACE 中,BAC CAE AB ACABF ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△ACE (ASA ),∴AE =AF ,BF =CE ,∴AB+AF =AB+AE =BE ,∵Rt △BED 中,BE >BD ,∴AB+AF >BD ,故选项D 错误,在△EBD 和△CBD 中,EBD CBD BD BDBDC BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△EBD ≌△CBD (ASA ),∴BF =CE =2CD ,故选项C 正确,12.C【详解】∵=30MON ∠︒,111OA A B =,12B A OM ⊥∴1=30∠︒,∴===60︒∠3∠4∠12,∵11OA =,∴111A B =,∴21121A B A A ==,∴22OA =,∵222OA A B =,∴22122A B B A =∵23B A OM ⊥,∴122334////B A B A B A∴1===30︒∠∠6∠7,==90︒∠5∠8∴3323324A B B A OA ===,∴331244A B B A ==,441288A B B A ==,55121616A B B A ==,以此类推:66123232A B B A ==.故选:C .13.17【详解】解:当7为腰时,周长=7+7+3=17cm ;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17cm .故答案为:17.解:连接DA、EA,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF是AB的垂直平分线,EG是AC的垂直平分线,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EAC,∴∠DAB +∠EAC =∠B+∠C=45°,∴∠DAE=∠BAC –(∠DAB +∠EAC)=135°-45°=90°.15.32解:∵BP平分∠ABC,∴∠ABP=∠CBP,∵直线l是线段BC的垂直平分线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,∵∠A+∠ACB+∠ABC=180°,∠A=60°,∠ACP=24°,∴3∠ABP+24°+60°=180°,解得:∠ABP=32°,16.8cm解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵∠BAC=120°,∠BAP=90°,∴∠PAC=30°,∴∠C=∠PAC,∴PA=PC=4cm,∵∠BAP=90°,∠B=30°,∴BP=2AP=8cm.故答案为:8cm17.12【详解】解:作PH⊥OB于点H,∵OC是∠AOB的角平分线,DP⊥OA,PH⊥OB,∴PH=DP=6,∴△OPE的面积=12×OE×PH=12×4×6=12,故答案为:12.18.6解:∵AD平分∠BAC,∠C=90°,DE⊥AB,CD=2,∴CD=DE=2,∵AB=6,∴16262ABDS=⨯⨯=.故答案为:6.19.①②③④①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,故①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C ,∴2∠BEF=∠BAF+∠C ,故②正确;③∠ABD=90°-∠BAC ,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC , ∵∠CBD=90°-∠C ,∴∠DBE=∠BAC-∠C-∠DBE ,由①得,∠DBE=∠F ,∴∠F=∠BAC-∠C-∠DBE ,∴∠F=12(∠BAC ﹣∠C ),故③正确; ④∵∠AEB=∠EBC+∠C ,∵∠ABE=∠CBE ,∴∠AEB=∠ABE+∠C ,∵BD ⊥FC ,FH ⊥BE ,∴∠FGD=∠FEB ,∴∠BGH=∠ABE+∠C ,故④正确.20.758 11()752n -⨯︒ 【详解】在1CBA 中,30B ∠=︒,1A B CB =, ∴1118030752BAC BCA ︒-︒∠=∠==︒, 又∵121A A A D =,1BA C ∠是12A A D 的外角. ∴21211117522DA A A DA BAC ∠=∠=∠=⨯︒. 同理可得:2323221111175()752222EA A A EA DA A ∠=∠=∠=⨯⨯︒=⨯︒, 34343321175()75228FA A A FA EA A ︒∠=∠=∠=⨯︒=, 综上可知规律:第n 个三角形中以n A 为顶点的底角度数是11()752n -⨯︒ 故答案为758,11()752n -⨯︒. 21.解:(1)在ABC <<222250a b +=+=,2250c ==,222a b c ∴+=,ABC ∴是直角三角形;(2)设这个正方形的边长为x ,∵一个正方形的面积与ABC 的面积相等,∴212x =,解得:x =±0x ,x ∴=答:这个正方形的边长为x =22.解:(1)在Rt △ABC 中,∠BCA=90°,AC=12,AB=13, ∴BC 2=AB 2-AC 2=132-122=25,∴BC=5,∵CD=4,BD=3,∴CD 2+BD 2=42+32=25,∵BC=5,即BC 2=25,∴CD 2+BD 2=BC 2,∴△DBC 是直角三角形,∴∠D=90°.(2)∵△DBC 是直角三角形,且∠D=90°, ∴1134622S ∆=⨯=⨯⨯=DBC BD DC , ∵在Rt △ABC 中,∠BCA=90°,AC=12,BC=5, ∴115123022S ∆=⨯=⨯⨯=ABC BC AC , ∴S 四边形ABCD =S △ABC +S △DBC =30+6=36.23..证明(1)如图:∵AB=AC ,AD 是中线,∴∠B=∠C ,BD=CD ,在△BDE 与△CDF 中,BE CF B C BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF ;(2)∵GH ∥BD ,∠B=60°,∴∠AGH=60°,∵AB=AC ,AD 是中线,∴AD ⊥BC ,∴∠BAD=30°∠AHG=90°,∴GH=12AG , ∵AG=12AB , ∴GH=14AB . 24.(1)解:①AD AC =,CAD α∠=, 11(180)9022BCA ,②过点A 作AG BC ⊥于点G ,如图所示:90DAG ADG ∴∠+∠=︒,1122CAG DAG CAD ,CF AD ⊥于点E ,90DCE ADG , 1122DCE DAG CAD ,即12BCF ; (2)证明:45B ∠=︒,AG BC ⊥,45BAG =∴∠︒,45BAC CAG ,45AFC DCE ,DCE DAG ,CAG DAG ∠=∠,BAC AFC ,AC FC .25.解:(1)∵∠B=65°,AB=AD ,∴∠ADB=∠B=65°,∵∠B+∠BAD+∠BAD=180°,∴∠BAD=50°,∵∠CAE=∠BAD ,∴∠CAE=50°,∵AE ∥BC ,∴∠C=∠CAE=50°;(2)AD 平分∠BDE ,理由是:∵∠BAD=∠CAE ,∴∠BAD+∠CAD=∠CAE+∠CAD ,即∠BAC=∠DAE ,在△BAC 和△DAE 中,ABADBAC DAE AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△DAE (SAS )∴∠B=∠ADE ,∵∠B=∠ADB ,∴∠ADE=∠ADB ,即AD 平分∠BDE .26.(1)证明:∵AE 、BD 是ABM 的高,∴90ADB AEB AEM ∠=∠=∠=︒,∵ACD ECB ∠=∠,180MAE ADC ACD ∠+∠+∠=︒,180CBE ECB CEB ∠+∠+∠=︒,∴MAE CBE ∠=∠,在AME △和BCE 中,MAE CBE AE BE AEM BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()AME B ASA CE ≌.(2)∵BD 平分ABM ∠,BD 是高,∴ABD MBD ∠=∠,90ADB MDB ∠=∠=︒,∵在ABD △和MBD 中,ADB MDB BD BD ABD MBD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABD MBD ASA ≌△△, ∴12AD DM AM ==, ∵AME BCE ≌△△,∴AM BC =,∴2BC AD =.(3)∵45MDE ∠=︒,过点E 作EF ED ⊥交BC 于点F ,∵DEF AEB ∠=∠,∴DEA BEF ∠=∠;∵MAE CBE ∠=∠,且AE BE =,∴AED BEF △≌△;∴ED EF =,∴45EDF EFD ∠=∠=︒;∵90BDM ∠=︒,∴45MDE ∠=︒.27.证明:(1)AD BC ⊥,AO BO ⊥,90AOE BDE BOC ∠∠∠∴===︒.又AEO BED ∠=∠,OAE OBC ∴∠=∠.(5,0)A -,(0,5)B ,5OA OB ∴==.在AOE △和BOC 中OAE OBC OA OBAOE BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, (ASA)AOE BOC ∴≌,OE OC ∴=. C 点坐标(3,0),3OE OC ∴==,(0,3)E ∴.(2)过O 作OM AD ⊥于M ,ON BC ⊥于N ,AOE BOC ≌,AOE BOC S S ∴=,AE BC =,1122AE OM BC ON ∴⨯⨯=⨯⨯, OM ON ∴=,OM AD ⊥,ON BC ⊥,DO ∴平分ADC ∠.(3)如所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,∴△OPD ≌△OCD ,∴OC=OP ,∠OPD=∠OCD ,∵OC CD AD +=,∴OC=AD-CD∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∵OAP OBC ∠=∠∴∠OBC=∠PAO =30°.28.(1)AE=BD .证明:∵△ABC 和△DCE 都是等边三角形, ∴ BC=AC ,∠BCA=60︒,DC=CE ,∠DCE=60︒,∴ ∠BCA −∠DCA=∠DCE −∠DCA ,即 ∠BCD=∠ACE , 在△BCD 和△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩∴ △BCD ≌△ACE ,∴ AE=BD ;(2)AE=BD 仍然成立.证明:∵△ABC 和△DCE 都是等边三角形, ∴CB=CA ,CD=CE ,∠BCA=∠DCE=60︒, ∴ ∠BCA+∠DCA=∠DCE+∠DCA , ∴∠BCD=∠ACE ,∴△BCD ≌△ACE (SAS ),∴ AE=BD ;(3) AE+BE ′=AB .证明:由(1)知:△BCD ≌△ACE , 则 BD=AE ,在△BCE ′和△ACD 中,BC AC BCE ACD E C DC =⎧⎪'∠=∠⎨⎪'=⎩,∴△BCE ′≌△ACD (SAS ),则 BE ′=AD ,又∵BD=AE ,∴ AE+BE ′=BD+AD=AB ,即 AE+BE ′=AB .。

2020-2021学年北师大版八年级数学下册第一章 1.3-1.4 同步练习题

2020-2021学年北师大版八年级数学下册第一章 1.3-1.4 同步练习题

2020-2021学年北师大版八年级数学下册第一章 1.3-1.4 同步练习题一、选择题1.如图,∠MON=60°,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若OP=4,则PQ的最小值为( )A.2 3 B.4 C.2 D. 32.如图,已知∠AOB=60°,点P在边OA上,OP =12,点M,N在边OB上,PM=PN.若MN=2,则OM=( )A.3 B.4 C.5 D.63.如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( ) A.80°B.75°C.65° D.45°4.如图,在△ABC中,∠ABC=90°,∠A=30°,BC=1,M,N分别是AB,AC上的任意一点,则MN+NB的最小值为( )A.1.5 B.2 C.32+34D.325.已知正方形桌子桌面边长为80 cm,要买一块正方形桌布,如图铺设时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,那么要买桌布的边长是(精确到个位,备用数据:2≈1.4,3≈1.7)( )A.56 cm B.112 cm C.124 cm D.136 cm二、填空题6.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是_______.7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=1,点D在AC上,将△ADB沿直线BD翻折后,点A落在点E处.如果AD⊥ED,那么△ABE的面积是_______.8.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC.若AN=1,则BC的长为_______.9.如图,在平面直角坐标系中,已知A(0,4),B(2,0),在第一象限内的点C,使△ABC为等腰直角三角形,则点C的坐标为_______.三、解答题10.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,D是AC上一点.若∠AEB =45°.求证:CE⊥BD.11.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,D是AC上一点.若CE⊥BD于点E,连接AE.求证:∠AEB=45°.12.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别是AB,AC 上的点,且BE=AF.求证:△DEF为等腰直角三角形.13.如图,∠CAB=40°,点D为∠CAB的平分线与线段BC的垂直平分线的交点,连接CD,试求∠DCB的度数.14.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别在AC,AB 上,且DE⊥DF.试判断DE,DF的数量关系,并说明理由.15.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别为AB,CA 延长线上的点,且BE=AF,那么△DEF是否仍为等腰直角三角形?证明你的结论.16.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD.17.已知,在△ABC中,BD为∠ABC的平分线.(1)如图1,若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)如图2,若∠BAC=100°,∠C=40°,求证:BC=BD+AD.18.如图,在四边形ABCD中,若对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22,求CD的长和四边形ABCD的面积.19.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于点D,过点C作CE⊥BD,交直线BD于点E.(1)请直接写出线段BD与CE的数量关系_______;(2)在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.20.感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:(1)如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC;(2)如图3,AD平分∠BAC,BD=DC,AC≠AB,求证:∠ABD+∠ACD=180°.21.如图,在等腰Rt△ABC中,AB=AC,点D是斜边BC的中点,点E,F分别为AB,AC上的点,且DE⊥DF.(1)若设BE=a,CF=b,满足a-12+|b-5|=m-2+2-m,求BE及CF的长;(2)求证:BE2+CF2=EF2;(3)在(1)的条件下,求△DEF的面积.参考答案2020-2021学年北师大版八年级数学下册第一章 1.3-1.4 同步练习题一、选择题1.如图,∠MON=60°,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若OP=4,则PQ的最小值为(C)A.2 3 B.4 C.2 D. 32.如图,已知∠AOB=60°,点P在边OA上,OP =12,点M,N在边OB上,PM=PN.若MN=2,则OM=(C)A.3 B.4 C.5 D.63.如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为(D) A.80°B.75°C.65° D.45°4.如图,在△ABC中,∠ABC=90°,∠A=30°,BC=1,M,N分别是AB,AC上的任意一点,则MN+NB的最小值为(A)A.1.5 B.2 C.32+34D.325.已知正方形桌子桌面边长为80 cm,要买一块正方形桌布,如图铺设时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,那么要买桌布的边长是(精确到个位,备用数据:2≈1.4,3≈1.7)(B)A.56 cm B.112 cm C.124 cm D.136 cm二、填空题6.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是3<BC<23.7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=1,点D在AC上,将△ADB沿直线BD翻折后,点A落在点E处.如果AD⊥ED,那么△ABE的面积是1.8.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC.若AN=1,则BC的长为6.9.如图,在平面直角坐标系中,已知A(0,4),B(2,0),在第一象限内的点C,使△ABC为等腰直角三角形,则点C的坐标为(6,2)或(4,6)或(3,3).三、解答题10.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,D是AC上一点.若∠AEB =45°.求证:CE⊥BD.证明:过点A作AF⊥AE交BE于点F,得等腰直角△AFE,△ABF≌△ACE(SAS).∴∠ABE=∠ACE.∴∠BEC=∠BAC=90°,即CE⊥BD.11.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,D是AC上一点.若CE⊥BD于点E,连接AE.求证:∠AEB=45°.证明:在BE上截取BF=CE,连接AF.易证∠ABF=∠ACE,△ABF≌△ACE(SAS),得等腰Rt△AFE,∴∠AEB=45°.12.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别是AB,AC 上的点,且BE=AF.求证:△DEF为等腰直角三角形.证明:连接AD ,∵AB =AC ,∠BAC =90°,D 为BC 中点,∴AD =BD =CD ,∠BAD =∠CAD =∠B =45°,AD ⊥BC. 在△BDE 和△ADF 中,⎩⎪⎨⎪⎧BD =AD ,∠B =∠DAF ,BE =AF ,∴△BDE ≌△ADF(SAS).∴DE =DF ,∠BDE =∠ADF. ∵∠BDE +∠ADE =90°,∴∠ADF +∠ADE =90°,即∠EDF =90°. ∴△EDF 为等腰直角三角形.13.如图,∠CAB =40°,点D 为∠CAB 的平分线与线段BC 的垂直平分线的交点,连接CD ,试求∠DCB的度数.解:过点D 作DE ⊥AC 于点E ,DF ⊥AB 于点F ,连接BD. ∵AD 平分∠BAC ,DE ⊥AC ,DF ⊥AB , ∴DE =DF ,∠DEC =∠DFB =90°. ∵∠CAB =40°,∴∠EDF =140°. ∵点D 在线段BC 的垂直平分线上, ∴DC =DB.∴Rt △DEC ≌Rt △DFB(HL). ∴∠EDC =∠FDB.∴∠CDB =∠CDF +∠FDB =∠CDF +∠EDC =∠EDF =140°. ∴∠DCB =12×(180°-40°)=20°.14.如图,在△ABC 中,∠BAC =90°,AB =AC ,D 为BC 的中点,E ,F 分别在AC ,AB 上,且DE ⊥DF.试判断DE ,DF 的数量关系,并说明理由.解:DE =DF ,理由如下:连接AD ,∵∠BAC =90°,AB =AC ,D 为BC 中点,∴CD =AD ,∠C =∠DAF =45°,AD ⊥BC. ∴∠CDE +∠EDA =∠ADF +∠EDA =90°. ∴∠CDE =∠ADF.在△CDE 和△ADF 中,⎩⎪⎨⎪⎧∠C =∠DAF ,CD =AD ,∠CDE =∠ADF ,∴△CDE ≌△ADF(ASA).∴DE =DF.15.如图,在△ABC 中,∠BAC =90°,AB =AC ,D 为BC 的中点,E ,F 分别为AB ,CA 延长线上的点,且BE =AF ,那么△DEF 是否仍为等腰直角三角形?证明你的结论.解:△DEF 仍为等腰直角三角形. 证明:连接AD , ∵AB =AC ,∴△ABC 为等腰三角形.∵∠BAC =90°,D 为BC 的中点, ∴AD =BD ,AD ⊥BC. ∴∠DAC =∠ABD =45°. ∴∠DAF =∠DBE =135°. 又∵AF =BE ,∴△DAF ≌△DBE(SAS). ∴FD =ED ,∠FDA =∠EDB.∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90°. ∴△DEF 仍为等腰直角三角形.16.如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC =AB +CD.证明:在BC 上截取BF =AB ,连接EF. ∵BE 平分∠ABC ,CE 平分∠BCD , ∴∠ABE =∠FBE ,∠FCE =∠DCE. 在△ABE 和△FBE 中, ⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE(SAS).∴∠A =∠BFE.∵AB ∥CD ,∴∠A +∠D =180°.∴∠BFE +∠D =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠D.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠D ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE(AAS).∴CF =CD.∴BC =BF +CF =AB +CD.17.已知,在△ABC 中,BD 为∠ABC 的平分线.(1)如图1,若∠A =100°,∠C =50°,求证:BC =BA +AD;(2)如图2,若∠BAC =100°,∠C =40°,求证:BC =BD +AD.图1 图2证明:(1)在边BC 上截取BE =BA ,连接DE.∵BD 为∠ABC 的平分线,∴∠ABD =∠DBE.又∵BA =BE ,BD =BD ,∴△ABD ≌△EBD(SAS).∴AD =DE ,∠A =∠BED.∵∠A =100°,∴∠BED =100°.∵∠C =50°,∴∠CDE =50°.∴∠C =∠CDE.∴DE =CE.∴AD =CE.∵BC =BE +CE ,∴BC =BA +AD.(2)以BC 为边作等边△A ′BC ,在A ′C 上截取CD ′=BD ,连接AA ′,AD ′. ∵∠BAC =100°,∠ACB =40°,∴∠ABC =40°.∴∠ABC =∠ACB.∴AB =AC.∵BD 为∠ABC 的平分线,∴∠ABD =12∠ABC =20°.∴△A ′BC 为等边三角形. ∴A ′B =A ′C =BC ,∠A ′BC =∠A ′CB =∠BA ′C =60°.∴∠A ′CA =∠A ′CB -∠ACB =20°.∵A ′B =A ′C ,AB =AC ,A ′A =A ′A ,∴△A ′BA ≌△A ′CA(SSS).∴∠BA ′A =∠CA ′A =30°.∵AB =AC ,∠ABD =∠ACD ′,BD =CD ′,∴△ABD ≌△ACD ′(SAS).∴∠BAD =∠CAD ′=100°,AD =AD ′.∴∠AD ′C =180°-∠CAD ′-∠ACD ′=60°.∴∠D ′AA ′=∠AD ′C -∠D ′A ′A =30°.∴∠D ′AA ′=∠DA ′A.∴A ′D ′=AD ′.∴A ′D ′=AD.∴BC =A ′C =A ′D ′+CD ′=AD +BD.18.如图,在四边形ABCD 中,若对角线AC ,BD 交于点E ,∠BAC =90°,∠CED =45°,∠DCE =30°,DE =2,BE =22,求CD 的长和四边形ABCD 的面积.解:过点D 作DH ⊥AC 于点H.∵∠CED =45°,∴△DEH 是等腰直角三角形.∴EH =DH.∵EH 2+DH 2=ED 2=2,∴EH =DH =1.又∵∠DCE =30°,∴DC =2,HC = 3.∵∠AEB =∠DEC =45°,∠BAC =90°,BE =22,∴AB =AE =2.∴AC =AE +EH +CH =3+ 3.∴S 四边形ABCD =S △ABC +S △ADC =12×2×(3+3)+12×1×(3+3)=33+92. 19.如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,∠ABC 的平分线交直线AC 于点D ,过点C 作CE ⊥BD ,交直线BD 于点E.(1)请直接写出线段BD 与CE 的数量关系BD =2CE ;(2)在(1)中,如果把BD 改为∠ABC 的外角∠ABF 的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.解:结论BD =2CE 仍然成立.证明:延长CE ,AB 交于点G .∵BD 平分∠ABF ,∴∠DBF =∠DBA.又∵∠DBF =∠CBE ,∠DBA =∠GBE ,∴∠CBE =∠GBE.∵CE ⊥BD ,∴∠GEB =∠CEB =90°.又∵BE =BE ,∴△GBE ≌CBE(ASA).∴GE =CE.∴CG =2CE.∵∠D +∠DCG =∠G +∠DCG =90°,∴∠D =∠G.又∵∠DAB =∠GAC =90°,AB =AC ,∴△DAB ≌△GAC(AAS).∴BD =CG.∴BD =2CE.20.感知:如图1,AD 平分∠BAC ,∠B +∠C =180°,∠B =90°,易知:DB =DC. 探究:(1)如图2,AD 平分∠BAC ,∠ABD +∠ACD =180°,∠ABD <90°,求证:DB =DC ;(2)如图3,AD 平分∠BAC ,BD =DC ,AC ≠AB ,求证:∠ABD +∠ACD =180°.图1 图2图3证明:(1)过点D 作DE ⊥AB 于点E ,DF ⊥AC 交AC 的延长线于点F.∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠F =∠DEB =90°.∵∠EBD +∠ACD =180°,∠ACD +∠FCD =180°,∴∠EBD =∠FCD.在△DFC 和△DEB 中,⎩⎪⎨⎪⎧∠F =∠DEB ,∠FCD =∠EBD ,DF =DE ,∴△DFC ≌△DEB(AAS).∴DC =DB.(2)过点D 作DE ⊥AB 于点E ,DF ⊥AC 交AC 的延长线于点F.∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠DFC =∠DEB =90°.在Rt △DEB 和Rt △DFC 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF , ∴Rt △DEB ≌Rt △DFC(HL).∴∠ABD =∠DCF.∵∠DCF +∠ACD =180°,∴∠ABD +∠ACD =180°.21.如图,在等腰Rt △ABC 中,AB =AC ,点D 是斜边BC 的中点,点E ,F 分别为AB ,AC 上的点,且DE ⊥DF.(1)若设BE =a ,CF =b ,满足a -12+|b -5|=m -2+2-m ,求BE 及CF 的长;(2)求证:BE 2+CF 2=EF 2;(3)在(1)的条件下,求△DEF 的面积.解:(1)由题意,得⎩⎪⎨⎪⎧m -2≥0,2-m ≥0, 解得m =2. ∴a -12+|b -5|=0.∴a -12=0,b -5=0.∴a =12,b =5,即BE =12,CF =5.(2)证明:延长ED 到P ,使DP =DE ,连接FP ,CP.∵D 是BC 的中点,∴BD =CD.在△BED 和△CPD 中,∵ED =PD ,∠EDB =∠PDC ,BD =CD ,∴△BED ≌△CPD(SAS).∴BE =CP ,∠B =∠DCP.在△EDF 和△PDF 中,∵DE =DP ,∠EDF =∠PDF =90°,DF =DF ,∴△EDF ≌△PDF(SAS).∴EF =FP.∵∠BAC =90°,∠B +∠ACB =90°,∠B =∠DCP ,∴∠ACB +∠DCP =90°,即∠FCP =90°.在Rt △FCP 中,根据勾股定理,得CF 2+CP 2=PF 2.又∵BE =CP ,PF =EF ,∴BE 2+CF 2=EF 2.(3)连接AD ,∵△ABC 为等腰直角三角形,D 为BC 的中点,∴∠BAD =∠FCD =45°,AD =BD =CD ,AD ⊥BC.∴∠ADF +∠FDC =90°.∵ED ⊥FD ,∴∠EDA +∠ADF =90°.∴∠EDA =∠FDC.在△AED 和△CFD 中,∵∠EAD =∠FCD ,AD =CD ,∠ADE =∠CDF ,∴△AED ≌△CFD(ASA).∴AE =CF =5,DE =DF.∴△EDF 为等腰直角三角形.∴AB =AE +EB =5+12=17.∴AF =AC -FC =AB -CF =17-5=12.在Rt △EAF 中,根据勾股定理,得EF =AE 2+AF 2=13.设DE =DF =x ,在Rt △DEF 中,根据勾股定理,得x 2+x 2=132,解得x =1322,即DE =DF =1322, 则S △DEF =12DE ·DF =12×1322×1322=1694.。

2020-2021学年北师大版八年级下册数学 第一章 三角形的证明 单元测试(含解析)

2020-2021学年北师大版八年级下册数学 第一章 三角形的证明 单元测试(含解析)

第一章三角形的证明单元测试一.选择题1.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°2.如图,在等腰三角形△ABC中,AC=BC,AC边上的垂直平分线分别交AC,BC于点D 和点E,若∠BAE=45°,DE=2,则AE的长度为()A.2B.3C.3.5D.43.如图,△ABC是等边三角形,点D是AC的中点,DE⊥BC,CE=3,则AB等于()A.11B.12C.13D.144.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.105.如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,则AB等于()A.2B.3C.4D.67.如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA的延长线于F,连接AD,CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A.32°B.64°C.77°D.87°8.如图,DE是△ABC中AC边的垂直平分线,若BC=4cm,AB=5cm,则△EBC的周长为()A.8cm B.9cm C.10cm D.11cm9.如图,在△ABC中,∠B=15o,∠C=30o,MN是AB的中垂线,PQ是AC的中垂线,已知BC的长为,则阴影部分的面积为()A.B.C.3D.10.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠F AG=∠FCB;③AF=AG;④BH=CH.A.①②③④B.①②③C.②④D.①③二.填空题11.如图,已知△ABC中,AB=AC,BD⊥AC于D,∠A=50°,则∠DBC的度数是.12.等腰三角形ABC中,∠A=4∠B.若∠A为底角,则∠C=°.13.如图,在△ABC中,AB=AC.AD是BC边上的中线,点E在边AB上,且BD=BE.若∠BAC=100°,则∠ADE的大小为度.14.如图,在Rt△ABC中,∠ABC=90°,CD⊥AB,垂足为点D,∠DCB=30°,BD=1,则AB的长为.15.如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为.16.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC=6cm,则AC=,DE=.17.如图所示,在△ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F.(1)若∠B=20°,则∠BAE=;(2)若∠EAN=40°,则∠F=;(3)若AB=8,AC=9,设△AEN周长为m,则m的取值范围为.18.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是.19.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB=.20.如图,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P 为CE中点,连结PF,若CP=2,S△BFP=15,则AB的长度为.三.解答题21.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=40°.求:(1)∠ADC的大小;(2)∠BAD的大小.22.如图,△ABC中,∠ABC=∠ACB,点D、E分别在AB、AC上,DE∥BC,BE,CD 交于点F.(1)求证:DC=EB;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.23.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB 于点D,交AC于E.求:(1)∠BCD的度数;(2)若DE=3,求AB的长.24.如图,在Rt△ABC中,∠ACB=90°,∠CAB=2∠B,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DB=DE.25.如图,在△ABC中,∠ACB为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AC=20,求△ABC的两锐角及AD、DE、EB各为多少?26.(1)如图1,求证:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,若∠BAC=62°,则∠P AC是度.27.如图,已知四边形ABCD中,∠ABC与∠BCD的平分线交于点O,作OE⊥AB于点E,OF⊥CD于点F.求证:OE=OF.28.如图(1)将三角板ABC与∠DAE摆放在一起,射线AE与AC重合,射线AD在三角形ABC外部,其中∠ACB=30°,∠B=60°,∠BAC=90°,∠DAE=45°.固定三角板ABC,将∠DAE绕点A按顺时针方向旋转,如图(2),记旋转角∠CAE=α.(1)当α为60°时,在备用图(1)中画出图形,并判断AE与BC的位置关系,并说明理由;(2)在旋转过程中,当0°<α<180°,∠DAE的一边与BC平行时,求旋转角α的值;(3)在旋转过程中,当0°<α≤90°时,探究∠CAD与∠BAE之间的关系.(温馨提示:对于任意△ABC,都有∠A+∠B+∠C=180°)参考答案一.选择题1.解:当∠A=∠C时,∠C=70°;当∠A=∠B=70°时,∠C=180°﹣∠A﹣∠B=40°;当∠B=∠C时,∠C=∠B=(180°﹣∠A)=55°;即∠C的度数可以是70°或40°或55°,故选:C.2.解:设∠C=x.∵DE垂直平分线段AC,∴EA=EC,∴∠EAC=∠C=x,∴∠AEB=∠EAC+∠C=2x,∵CA=CB,∴∠B=∠CAB=45°+x,在△ABE中,∵∠BAE+∠B+∠AEB=180°,∴45°+45°+x+2x=180°,∴x=30°,∵∠EDC=90°,DE=2,∴AE=EC=2DE=4,故选:D.3.解:∵△ABC是等边三角形,∴AB=AC,∠C=60°,∵DE⊥BC,∴∠DEC=90°,∴CD=2CE=6,∵点D是AC的中点,∴AC=2CD=12,∴AB=AC=12,故选:B.4.解:如图:延长AB,CD交于点E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC最大,即S△BDC最大=××10×4=10.故选:D.5.解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.6.解:∵在Rt△ABC中,∠A=30°,BC=2,∴AB=2CB=4,故选:C.7.解:如图,取CF的中点T,连接DT,AT.∵∠BAC=90°,FD⊥BC,∴∠CAF=∠CDF=90°,∴AT=DT=CF,∴TD=TC=TA,∴∠TDA=∠TAD,∠TDC=∠TCD,∵∠ADB=45°,∴∠ADT+∠TDC=135°,∴∠ATC=360°﹣2×135°=90°,∴AT⊥CF,∵CT=TF,∴AC=AF,∴∠AFC=45°,∴∠BFD=45°﹣32°=13°,∵∠BDF=90°,∴∠B=90°﹣∠BFD=77°,故选:C.8.解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=5cm,∴△EBC的周长=BC+BE+CE=5+4=9(cm).故选:B.9.解:∵MN是AB的中垂线,PQ是AC的中垂线,AN=BN,AQ=CQ,∴∠BAN=∠B=15°,∠CAQ=∠C=30°,∴∠ANQ=∠B+∠BAN=30°,∠AQN=∠C+∠CAQ=60°,∴∠NAQ=90°,∴BN=AN=NQ,AQ=CQ=NQ,∵BC=,∴NQ+NQ+NQ=3+,∴NQ=2,∴AN=,AQ=1,∴阴影部分的面积=AN•AQ==,故选:B.10.解:∵BE是AC边的中线,∴AE=CE,∵△ABE的面积=,△BCE的面积=AB,∴△ABE的面积=△BCE的面积,故①正确;∵AD是BC边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠F AG+∠DAC=90°,∴∠F AG=∠ACB,∵CF是∠ACB的角平分线,∴∠ACF=∠FCB,∠ACB=2∠FCB,∴∠F AG=2∠FCB,故②错误;∵在△ACF和△DGC中,∠BAC=∠ADC=90°,∠ACF=∠FCB,∴∠AFG=180°﹣∠BAC﹣∠ACF,∠AGF=∠DGC=180°﹣∠ADC﹣∠FCB,∴∠AFG=∠AGF,∴AF=AG,故③正确;根据已知不能推出∠HBC=∠HCB,即不能推出HB=HC,故④错误;即正确的为①③,故选:D.二.填空题11.解:∵AB=AC,∴∠C=∠ABC,∵∠A=50°.∴∠C=∠ABC===65°,∵BD⊥AC,∴∠BDC=90°,∴∠DBC=90°﹣∠C=90°﹣65°=25°.故答案为:25°.12.解:设∠B=x°,当∠A是底角时,∠A=∠C=4∠B=4x°,∵∠A+∠B+∠C=180°,∴4x+x+4x=180,解得x=20,∴∠C=80°故答案为:80.13.解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣∠BAC)=40°,∵BD=BE,∴∠BDE=∠BED=(180°﹣∠B)=70°,∵AB=AC,AD⊥BC,∴∠ADB=90°,∴∠ADE=∠ADB﹣∠BDE=90°﹣70°=20°,故答案为:20.14.解:在Rt△ABC中,∠ABC=90°,∠DCB=30°,∴2BD=BC,∵CD⊥AB,∴∠A=∠DCB=30°,∴2BC=AB,∴AB=4BD,∵BD=1,∴AB=4.故答案为:4.15.解:在Rt△ABC中,∠A=90°,∠B=30°,∴∠ACB=60°,∵MN∥BC,∴∠AMN=∠B=30°,∵∠A=90°,AN=1,∴MN=2AN=2,∵MN平分∠AMC,∠AMN=30°,∴∠AMC=∠NMC=60°,∵CM平分∠ACB,∠ACB=60°,∴∠ACM=ACB=30°,∴∠ACM=∠NMC,∴MNCN=2,∴AC=AN+CN=1+2=3,∵在Rt△ABC中,∠A=90°,∠B=30°,∴BC=2AC=2×3=6,16.解:∵BC=6cm,∴BD=DC=3(cm),∵AD⊥BC,BD=DC,AB=5cm,∴AC=AB=5(cm),∵点C在AE的垂直平分线上,∴EC=AC=5(cm),∴DE=DC+EC=8(cm),故答案为:5cm;8cm.17.解:(1)∵DE是线段AB的垂直平分线,∴EA=EB,∴∠BAE=∠B=20°;(2))∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴∠BAE=∠B,∠CAN=∠C,∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,∴∠BAE+∠CAN=70°,∴∠BAC=∠BAE+∠CAN+∠EAN=110°,∵∠ADF=∠AMF=90°,∴∠F=360°﹣∠ADF﹣∠AMF﹣∠BAC=360°﹣90°﹣90°﹣110°=70°;(3)∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴△AEN的周长=AE+EN+AN=BE+EN+CN=BC,在△ABC中,AB=8,AC=9,∴9﹣8<BC<9+8,∴1<m<17.故答案为:(1)20°;(2)70°;(3)1<m<17.18.解:∵DE是AB的垂直平分线,∴EA=EB,∴△ACE的周长=AC+CE+EA=AC+CE+EB=AC+CB=11,19.解:∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.20.解:过E作EG⊥AB于G,连接CF,∵P为CE中点,∵S△EFP=S△CFP,设S△EFP=S△CFP=y,∵BD是AC边上的中线,∴设S△CDF=S△AFD=z,∵S△BFP=15,∴S△BCD=15+y+z,∴S△ABC=2S△BCD=30+2y+2z,∵S△ACE=S△ACF+S△CEF=2y+2z,∴S△ABE=S△ABC﹣S△ACE=30+2y+2z﹣(2y+2z)=30,∵AE是∠CAB的角平分线,∴EG=CE=2CP=4,∴S△ABE=AB•EG=30,∴AB=15,故答案为:15.三.解答题21.解:(1)∵AB=AC,D是BC边上的中点,∴AD⊥BC,即∠ADC=90°;(2)∵∠B=40°,∴∠BAD=50°.22.(1)证明:∵∠ABC=∠ACB,∴AB=AC,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴AB=AD=AC=AE,即BD=CE,在△DBC和△ECB中,,∴△DBC≌△ECB(SAS),∴DC=EB;(2)解:图中所有的等腰三角形为△ABC、△ADE、△DEF、△BCF,理由如下:由(1)得:AB=AC,AD=AE,△DBC≌△ECB,∴△ABC、△ADE是等腰三角形,∠BCD=∠CBE,∴△BCF是等腰三角形,BF=CF,∵DE∥BC,∴∠FDE=∠BCD,∠FED=∠CBE,∴∠FDE=∠FED,∴△DEF是等腰三角形,FE=FD.23.解:(1)∵AC边上的垂直平分线是DE,∴CD=AD,DE⊥AC,∴∠A=∠DCA=30°,∵∠ACB=90°,∴∠BCD=∠ACB﹣∠DCA=90°﹣30°=60°,(2)∵∠B=60°∴∠BCD=∠B=60°∴BD=CD,∴BD=CD=AD=AB,∵DE=3,DE⊥AC,∠A=30°,∴AD=2DE=6,∴AB=2AD=12.24.证明:(1)∵∠ACB=90°,∴∠CAB+∠B=90°,又∵∠CAB=2∠B,∴∠B=30°,∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°;(2)∵∠DAB=30°=∠B,∴AD=DB,∵AC=EC,∠ACB=90°,∴AD=DE,∴DE=DB.25.解:∵△ABC中,∠C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,∴∠ACD=∠DCE=∠ECB=30°,又∵CD⊥AB,AC=20,∴∠A=60°,AD=10,∵∠ACB为直角,∴∠B=30°∵AC=20,∴AB=40,∵CE是△ABC中线,∴AE=BE=20,∴DE=10.26.解:(1)已知:△ABC.求证:∠ABC、∠BCA、∠ACB三个角的平分线相交于点F,且点F到三边的距离相等.证明:如图,作∠ABC的角平分线FB,作∠BCA的角平分线FC,两条线相交于点F,作FG⊥AB于点G,FD⊥BC边于点D,FE⊥AC于点E,∵点F是∠ABC平分线上的一点,∴FG=FD,同理可得,FD=FE,∴FG=FD=FE(等量代换),∴点F在∠BAC的平分线上,∴三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)解:延长BA,作PN⊥BD于N,PF⊥BA于F,PM⊥AC于M,∵CP平分∠ACD,∴∠ACP=∠PCD,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∴∠F AP=∠P AC,∴∠F AC=2∠P AC,∵∠F AC+∠BAC=180°,∴2∠P AC+∠BAC=180°,∴∠P AC=(180°﹣∠BAC)=(180°﹣62°)=59°.故答案为:59.27.证明:作OG⊥BC,∵∠ABC的平分线,OE⊥AB,OG⊥BC,∴OE=OG,∵∠BCD的平分线,OF⊥CD,OG⊥BC,∴OF=OG,∴OE=OF.28.解:(1)当α为60°时,AE⊥BC,如图(1),设AE与BC交于点F,∵∠CAE=α=60°,∠ACB=30°,∴∠AFC=90°,∴AE⊥BC;(2)当AD∥BC时,如图(2),∠DAC=∠C=30°,∵∠DAE=45°,∴∠CAE=α=15°;当AE∥BC时,如图(3),∠B=∠EAB=60°,∴∠CAE=α=∠BAC+∠EAB=150°,故旋转角α的值为15°或150°;(3)①如(2),当α≤45°时,α+∠BAE=90°,α+∠CAD=45°,∴∠BAE﹣∠CAD=45°;②如图(1),当45°<α<90°时,∵∠DAE+∠CAD+∠BAE=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.。

北师大版数学八年级下册1.2《直角三角形》说课稿

北师大版数学八年级下册1.2《直角三角形》说课稿

北师大版数学八年级下册1.2《直角三角形》说课稿一. 教材分析《直角三角形》是北师大版数学八年级下册第1章第2节的内容。

本节课主要介绍直角三角形的性质,包括直角三角形的定义、直角三角形的边角关系、直角三角形的应用等。

通过学习本节课,学生能够理解直角三角形的概念,掌握直角三角形的性质,并能运用直角三角形的性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念和性质,对三角形有一定的认识。

但是,学生可能对直角三角形的性质和应用还不够了解。

因此,在教学过程中,教师需要通过引导学生观察、思考、讨论等方式,帮助学生理解和掌握直角三角形的性质。

三. 说教学目标1.知识与技能目标:学生能够理解直角三角形的概念,掌握直角三角形的性质,并能运用直角三角形的性质解决实际问题。

2.过程与方法目标:学生能够通过观察、思考、讨论等方式,培养自己的观察能力和思维能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学科的兴趣和自信心。

四. 说教学重难点1.教学重点:直角三角形的性质及其应用。

2.教学难点:直角三角形的边角关系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等。

2.教学手段:利用多媒体课件、几何画板等辅助教学。

六. 说教学过程1.导入:通过复习三角形的基本概念和性质,引出直角三角形的定义。

2.探究直角三角形的性质:引导学生观察、思考直角三角形的性质,并通过几何画板软件进行演示。

3.小组讨论:学生分组讨论直角三角形的应用,分享自己的解题心得。

4.总结直角三角形的性质:引导学生总结直角三角形的性质,并进行解释。

5.练习与拓展:布置一些有关直角三角形的练习题,帮助学生巩固所学知识,并拓展学生的思维。

七. 说板书设计板书设计如下:1.定义:有一个角是直角的三角形a.两个锐角的和为90度b.直角对边最长c.直角三角形的一条直角边等于另一条直角边的平方根乘以斜边d.计算直角三角形的边长e.证明几何命题八. 说教学评价教学评价主要通过学生的课堂表现、练习题的完成情况和课后作业的完成情况进行评估。

(教学课件)第5讲 8下- §1.2 直角三角形(1)@停课不停学中学精品

(教学课件)第5讲 8下- §1.2 直角三角形(1)@停课不停学中学精品
折叠问题找到相等的量,如图
5
四、拓展练习精析
2.把两个等腰直角三角形△ABC与△DEF如图摆放,直角顶点D在斜边的AB边上,AB、EF的中点均为 O,连接FB,CD,CO,显然点C,F,O在同一条直线上。 (1)判断线段BF与CD的数量关系,并证明。 (2)将图中的Rt△DEF绕点O旋转得到图2,此时(1)中的结论是否成立?并证明。
(1)∵AC=BC, ∠C =900,∴∠A=450 ∵O是AB、EF的中点,∴∠1=450,OC=OA,
OF=OD
∴CF=AD,△BCF≌△CAD(SAS),∴BF=CD (2)连接OC、OD,∵AC=BC, ∠C =900,O是AB中

∴OC=OB,∠BOC=∠AOC=900,同理:OF=OD ,∠DOF=900
遇求尝∴ AB常 长 角 作∵ C=到试长∠ ∴S作 度 , 垂特作度BAAC四殊垂=C,高 , 可 线A=E9角线边无+0E0,; 无 尝,,H,直形如+B常C求 直 试E角HA=B=C=作图D3=,+高可,;S∴△AB=ACAD+E=2 S △
4
四、拓展练习精析
1.如图,矩形 ABCD 中,E 是 AD 的中点,将△ABE 沿直线 BE 折叠后 得到△GBE,延长 BG 交 CD 于点 F。若 AB=6,BC=4 ,求 FD 的长
(1)利用直角三角形斜边上的中线性质来找到两三角形 全等的条件
(2)利用全等来证明线段相等如图
6
2.把两个等腰直角三角形△ABC与△DEF如图摆放,直角顶点D在斜边的AB边上,AB、EF的中点均为O,连接FB, CD,CO,显然点C,F,O在同一条直线上。 (1)判断线段BF与CD的数量关系,并证明。 (2)将图中的Rt△DEF绕点O旋转得到图2,此时(1)中的结论是否成立?并证明.

北师大版2020-2021学年度八年级数学下册1.2直角三角形自主学习同步练习题4(含答案)

北师大版2020-2021学年度八年级数学下册1.2直角三角形自主学习同步练习题4(含答案)

北师大版2020-2021学年度八年级数学下册1.2直角三角形自主学习同步练习题4(含答案)1.如图,Rt△ABC中,∠A=90°,∠B=30°,CD=CA,D在BC上,∠ADE=45°,E 在AB上,则∠BED的度数是()A.60°B.75°C.80°D.85°2.如图,Rt△ABC中,CD是斜边AB上的高,∠A=30°,BD=2cm,则AB的长度是()A.2cm B.4cm C.8cm D.16cm3.如图,在△ABC中,∠C=90°,∠B=30°,点D是线段AB的垂直平分线与BC的交点,连接AD,则△ACD与△ADB的面积比为()A.1B.C.D.4.如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若AD=4,则DC的值为()A.1B.1.5C.2D.35.如图,在△ABC中,∠C=60°,AD是BC边上的高,点E为AD的中点,连接BE并延长交AC于点F.若∠AFB=90°,EF=2,则BF长为()A.4B.6C.8D.106.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°7.如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为()A.2B.C.8D.98.如图,在平面直角坐标系中,点O为坐标原点,将含30°角的Rt△ABC放在第一象限,其中30°角的对边BC长为1,斜边AB的端点A,B分别在y轴的正半轴,x轴的正半轴上滑动,连接OC,则线段OC的长的最大值是()A.B.C.2D.9.如图,在△ABC中,BD、CE是高,点G、F分别是BC、DE的中点,则下列结论中错误的是()A.GE=GD B.GF⊥DE C.∠DGE=60°D.GF平分∠DGE10.如图,在△ABC中,AB=AC,∠ABC=30°,点P在△ABC内,连结P A,PB,PC,若∠1=∠2=∠3,且P A=1,则PB的长是.11.在Rt△ABC中,∠C=90°,∠A=30°,BC=2,以△ABC的边AC为一边的等腰三角形,它的第三个顶点在△ABC的斜边AB上,则这个等腰三角形的腰长为.12.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.13.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=35°,则∠BAE的度数为°.14.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠2=70°,∠1=.15.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=.16.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连结ME、MD、ED.设AB=4,∠DBE=30°,则△EDM的面积为.17.如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.18.如图,∠AOB=30°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE ⊥OA于E,OD=4cm,则PE=.19.如图,点C为线段AB的中点,∠AMB=∠ANB=90°,则△CMN是三角形.20.如图,△ABC中,AB=AC,BC=6,△DEF的周长是11,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,则AF=.21.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边△ABC,如图,并在边AC上任意取了一点F(点F不与点A、点C重合),过点F作FH⊥AB交AB于点H,延长CB到G,使得BG=AF,连接FG交AB于点I.(1)若AC=10,求HI的长度;(2)延长BC到D,再延长BA到E,使得AE=BD,连接ED,EC,求证:∠ECD=∠EDC.22.如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.23.如图,在△ABC中,∠ACB=90°,过点C作CD⊥AB于D,∠A=30°,BD=1,求AB的值.24.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,(1)求证:M是BE的中点.(2)若CD=1,DE=,求△ABD的周长.25.如图,△ABC是等边三角形,P是△ABC的角平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.(1)若BQ=2,求PE的长(2)连接PF,EF,试判断△EFP的形状,并说明理由.26.直角三角形ABC中,∠ABC=90°,点D为AC的中点,点E为CB延长线上一点,且BE=CD,连接DE.(1)如图1,求证∠C=2∠E;(2)如图2,若AB=6,BE=5,△ABC的角平分线CG交BD于点F,求△BCF的面积.27.已知:如下图,△ABC和△BCD中,∠BAC=∠BDC=90°,E为BC的中点,连接DE、AE.若DC∥AE,在DC上取一点F,使得DF=DE,连接EF交AD于O.(1)求证:EF⊥DA.(2)若BC=4,AD=2,求EF的长.28.如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连结DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.(3)当∠A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.29.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.30.(1)如图,D是△ABC的边BC上一点,且CD=AB,E,F分别是BD,AC的中点,G,H分别是AD,EF的中点,求证:GH⊥EF.(2)若(1)中的∠ABC=90°,其它条件不变,求的值.参考答案1.解:∵Rt△ABC中,∠A=90°,∠B=30°,∴∠C=60°,又∵CD=CA,∴△ACD中,∠DAC=(180°﹣60°)=60°,∴∠DAE=90°﹣60°=30°,又∵∠ADE=45°,∴∠BED=∠ADE+∠DAE=45°+30°=75°,故选:B.2.解:∵在Rt△ABC中,CD是斜边AB上的高,∠A=30°,∴∠A=∠BCD=30°,∴BC=2BD=4cm,AB=2BC=8cm,故选:C.3.解:∵D是AB的垂直平分线与BC的交点,∴BD=AD,∴∠B=∠BAD=30°,∵∠C=90°,∠B=30°,∴∠CAD=60°﹣30°=30°,∴Rt△ACD中,CD=AD=BD,∴△ACD与△ADB的面积比为,故选:B.4.解:∵∠C=90°,∠A=30°,∴∠ABC=60°,∵DE垂直平分AB,∴AD=BD=4,∴∠ABD=∠A=30°,∴∠CBD=30°,∴CD=BD=2,故选:C.5.解:∵在△ABC中,∠C=60°,AD是BC边上的高,∴∠DAC=180°﹣∠C﹣∠ADC=180°﹣60°﹣90°=30°,∵∠AFB=90°,EF=2,∴AE=2EF=4,∵点E为AD的中点,∴DE=AE=4,∵∠C=60°,∠BFC=180°﹣90°=90°,∴∠EBD=30°,∴BE=2DE=8,∴BF=BE+EF=8+2=10,故选:D.6.解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故选:C.7.解:连接EF、DF,∵BD⊥AC,F为BC的中点,∴DF=BC=9,同理,EF=BC=9,∴FE=FD,又G为DE的中点,∴FG⊥DE,GE=GD=DE=5,由勾股定理得,FG==2,故选:A.8.解:取AB的中点F,连接CF、OF.在Rt△ABC中,∵∠ACB=90°,∠BAC=30°,BC=1,∴AB=2BC=2,∵∠AOB=90°,AF=FB,∴OF=FC=AB=1,∵OC≤OF+CF,∴当O、F、C共线时,OC的值最大,最大值为2.故选:C.9.解:∵BD、CE是高,点G是BC的中点,∴GE=BC,GD=BC,∴GE=GD,A正确,不符合题意;∵GE=GD,F是DE的中点,∴GF⊥DE,B正确,不符合题意;∠DGE的度数不确定,C错误,符合题意;∵GE=GD,F是DE的中点,∴GF平分∠DGE,D正确,不符合题意;故选:C.10.解:∵AB=AC,∴∠ABC=∠ACB=30°,∵∠1=∠2=∠3,∴∠PBC=∠ACP,∴△APC∽△CPB,∴==,在等腰△ABC中,=,∵AP=1,∴PC=,∴PB=3,故答案为3.11.解:如图,在Rt△ACB中,∵∠ACB=90°,∠A=30°,BC=2,∴AB=2BC=4,AC=BC=2,当MA=MC时,作MT⊥AC,∵MT∥BC,AT=TC,∴AM=MB=2,∴等腰三角形AMC的腰长为2,当AC=AM′=2时,等腰三角形ACM的腰长为2,故答案为2或2.12.解:∵AX⊥AC,∴∠P AQ=90°,∴∠C=∠P AQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.13.解:∵ED是AC的垂直平分线,∴AE=CE,∴∠EAC=∠C=35°,在Rt△ABC中,∠B=90°,∴∠BAC=90°﹣∠C=55°,∴∠BAE=∠BAC﹣∠EAC=20°.故答案为:20.14.解:∵a∥b,∴∠3=∠2=70°,∴∠1=180°﹣90°﹣70°=20°,故答案为:20°.15.解:∵DE⊥BC,∴∠DEC=90°,由三角形的外角的性质可知,∠C=∠ADE﹣∠DEC=50°,∴∠B=∠C=50°,∵EF⊥AB,∴∠EFC=90°,∴∠FEB=90°﹣50°=40°,则∠FED=180°﹣40°﹣90°=50°,故答案为:50°.16.解:∵在△ABC中,AD⊥BC,BE⊥AC,∴△ABE,△ADB是直角三角形,∴EM,DM分别是它们斜边上的中线,∴EM=DM=AB,∵ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE,同理,MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME﹣∠BMD=2∠MAE﹣2∠MAD=2∠DAC=60°,所以△DEM是边长为2的正三角形,所以S△DEM=.故答案为:.17.解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.18.解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.故答案为:2cm.19.解:∵点C为线段AB的中点,∠AMB=∠ANB=90°,∴CM=AB,CN=AB,∴CM=CN,∴△CMN是等腰三角形;故答案为:等腰.20.解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=BC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=11,∴AB=8,由勾股定理知AF====.故答案为:.21.(1)解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,如图1,过F作FD∥AB,交BC于D,过F作FN∥BC,交AC于N,∴∠FDC=∠ABC=60°,∴∠FDC=∠ACB=∠CFD=60°,∴△CDF是等边三角形,∴CD=CF,∵AC=BC,∴AF=BD,∵BG=AF,∴BD=BG,∵BI∥DF,∴GI=FI,∵FN∥BG,∴∠FNI=∠GBI,在△FNI和△GBI中,∵,∴△FNI≌△GBI(AAS),∴NI=BI,FN=BG,∴FN=AF,∵FH⊥AB,∴AH=HN,∴HI=HN+NI=AB=×10=5;(2)证明:解法一:如图2,延长CD至P,使BC=DP,连接AP、EP,∴BD=CP,∵AE=BD,∴AE=CP,在△ACP和△CAE中,∵,∴△ACP≌△CAE(SAS),∴AP=CE,∵BE=AB+AE,BP=BC+CP,∴BE=BP,∵∠ABC=60°,∴△EBP是等边三角形,∴BP=EP,∠EPD=60°,∴∠EPD=∠ABC,在△ABP和△DPE中,∵,∴△ABP≌△DPE(SAS),∴AP=ED=EC,∴∠ECD=∠EDC.解法二:如图3,延长CD至P,使BC=DP,连接EP,∴BD=PC=AE,∵BE=AB+AE,BP=BC+CP,∴BE=BP,∵∠ABC=60°,∴△EBP是等边三角形,∴EB=EP,∠EPD=60°,∴∠EPD=∠ABC,在△EBC和△EPD中,∵,∴△EBC≌△EPD(SAS)∴EC=ED,∴∠ECD=∠EDC.22.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=6cm,∴AD=2cm.23.解:∵△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,BD=1,可得BC=2BD=2,在Rt△ABC中,∠A=30°,BC=2,则AB=2BC=4.24.解:(1)连接BD,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC,∵D为AC的中点,∴∠DBC=ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB=60°,∴∠E=30°,∴∠DBC=∠E,∴BD=ED,∴DM⊥BE,∴M是BE的中点;(2)由题意可知,BD=DE=,∵D为AC的中点,∴AD=CD=1,AB=AC=2CD=2,则△ABD的周长AB+AD+BD=3+.25.解:(1)∵△ABC是等边三角形,BP是∠ABC的平分线,∴∠EBP=∠PBC=30°,∵PE⊥AB于点E,∴∠BEP=90°,∴PE=BP,∵QF为线段BP的垂直平分线,∴BP=2BQ=2×2=4,∴PE=×4=2;(2)△EFP是直角三角形.理由如下:连接PF、EF,如图所示:∵△ABC是等边三角形,BD平分∠ABC,∴∠ABC=60°,∠ABP=∠CBD=30°,∵PE⊥AB,∴∠PEB=90°,∴∠BPE=60°,∵FQ垂直平分线段BP,∴FB=FP,∴∠FBQ=∠FPQ=30°,∴∠EPF=∠EPB+∠BPF=90°,∴△EFP是直角三角形.26.解:(1)证明:∵∠ABC=90°,点D为AC的中点,∴BD=AC=CD=AD,∵CD=BE,∴BE=BD,∴∠BDE=∠E,∵BD=CD,∴∠C=∠DBC,∴∠C=∠DBC=∠BDE+∠E=2∠E;(2)过点F作FM⊥BC,FN⊥AC∵CG平分∠ABC∴FM=FN∵BE=5∴CD=AD=BE=5,AC=10又∵AB=6∴在Rt△ABC中,AB2+BC2=AC2∴BC=8∵BD为△ABC的中线∴S△BCD=S△ABC=×AB×BC=××6×8=12又∵S△BCD=S△BCF+S△CDF∴12=CD•FN+BC•FM∴×5×FM+×8×FM=12∴FM=∴S△BCF=BC•FM=×8×=.27.解:(1)∵△ABC和△BCD中,∠BAC=∠BDC=90°,E为BC的中点,∴DE=AE=BC,∴∠EDA=∠EAD,∵DC∥AE,∴∠ADC=∠EAD,∴∠ADC=∠EDA,∵DF=DE,∴EF⊥DA;(2)∵BC=4,∴DE=BC=2,∵DE=AE,,∴DO=AD=,在Rt△DEO中,EO==1,∵DF=DE,∴EF=2EO=2.28.(1)证明:如图(1),连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=BC,ME=BC,∴DM=ME,又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB),=360°﹣2(∠ABC+∠ACB),=360°﹣2(180°﹣∠A),=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,理由如下:连结DM,ME,在△ABC中,∠ABC+∠ACB=180°﹣∠BAC,∵DM=ME=BM=MC,∴∠BME+∠CMD=2∠ACB+2∠ABC,=2(180°﹣∠BAC),=360°﹣2∠BAC,∴∠DME=180°﹣(360°﹣2∠BAC),=2∠BAC﹣180°.29.(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB=×10=5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;(2)证明:∵DE=AE,DF=AF,∴EF垂直平分AD.30.解:(1)如图所示,连接EG,FG,∵E是BD的中点,G是AD的中点,∴EG是△ABD的中位线,∴EG=AB,同理可得,GF是△ACD的中位线,∴GF=CD,又∵CD=AB,∴GE=GF,又∵H是EF的中点,∴GH⊥EF;(2)如图所示,当∠ABC=90°时,∵EG是△ABD的中位线,∴EG∥AB,∴∠GEB+∠ABE=180°,∴∠GEB=90°,∵GF是△ACD的中位线,∴GF∥BC,∴∠EGF=∠GEB=90°,又∵GE=GF,∴△GEF是等腰直角三角形,又∵H是EF的中点,∴GH=EF,即的值为。

2020-2021年度北师大版八年级数学下册《1.1等腰三角形》同步提升训练(附答案)

2020-2021年度北师大版八年级数学下册《1.1等腰三角形》同步提升训练(附答案)

2020-2021年度北师大版八年级数学下册《1.1等腰三角形》同步提升训练(附答案)1.已知等腰三角形的两边长分别为2和5,则该等腰三角形的周长为()A.7B.9C.9或12D.122.如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,则∠A=()度.A.30B.36C.45D.503.如图,AB=BC=CD=DE=EF,如果∠DEF=60°,则∠A的度数为()A.20°B.15°C.12°D.10°4.如图,在△ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC 延长线上一点,∠DAC=131°,则∠ECF的度数为()A.49°B.88°C.98°D.131°5.若一条长为24cm的细线能围成一边长等于6cm的等腰三角形,则该等腰三角形的腰长为()A.6cm B.9cm C.6cm或9cm D.12cm6.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,M,N经过点O,且MN∥BC,若AB=5,△AMN的周长等于12,则AC的长为()A.7B.6C.5D.47.在等腰三角形ABC中,BC边上的高恰好等于BC边长的一半,则∠BAC等于()A.90°B.90°或75°C.90°或15°D.90°或75°或15°8.如图所示,在平面直角坐标系中,点A(3,1),点P在x轴上,若以P、O、A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2 个B.3 个C.4 个D.5 个9.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.610.如图,在等腰△ABC中,AB=AC,∠A=40°,D是AC边上的一点,且AD=BD,则∠CBD=()A.30°B.40°C.50°D.60°11.如图,△ABC中,AB=8,AC=2,∠BAC的外角平分线交BC延长线于点E,BD⊥AE 于D,若AE=AC,则AD的长为.12.如图,在四边形ABCD中,AB=BC,点E为对角线AC与BD的交点,∠AEB=70°,若∠ABC=2∠ADB=4∠CBD,则∠ACD=°.13.如图,△ABC为等腰三角形,AB=AC,∠A=100°,D为BC的中点,点E在AB上,∠BDE=15°,P是等腰△ABC腰上的一点,若△EDP是以DE为腰的等腰三角形,则∠EDP的大小为.14.如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.则∠3=°.15.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.16.如图,△ABC的面积为16cm2,BP平分∠ABC,且AP⊥BP于P,则△PBC的面积为cm2.17.若等腰三角形一腰上的高与另一腰的夹角为40°,腰长为6,则这个等腰三角形的底角度数是.18.如图,在△ABC中,AB=BC,中线AD将这个三角形的周长分成18和15两部分,则AC的长为.19.在Rt△ABC中,∠ACB=90°,点D为斜边AB上的一点,∠ACD=35°,若△ACD 为等腰三角形,那么∠B的度数为.20.如图,在等边△ABC中,AB=8,E是BA延长线上一点,且EA=4,D是BC上一点,且DE=EC,则BD的长为.21.已知,如图,在△ABC中,AB=AC,D,E分别在CA,BA的延长线上,且BE=CD,连BD,CE.(1)求证:∠D=∠E;(2)若∠BAC=108°,∠D=36o,则图中共有个等腰三角形.22.如图,在△ABC中,AB=AC,∠BAC=36°,BD平分∠ABC交AC于点D,过点A 作AE∥BC,交BD的延长线于点E.(1)求∠ADB的度数;(2)求证:△ADE是等腰三角形.23.在△ABC中,AB=AC,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于F.(1)证明:△ADF是等腰三角形;(2)若AB=6,求DE的长.24.△ABC中,AB=AC,∠B=30°,点P在BC边上运动(P不与B、C重合),连接AP,作∠APQ=∠B,PQ交AB于点Q.(1)如图1,当PQ∥CA时,判断△APB的形状并说明理由;(2)在点P的运动过程中,△APQ的形状可以是等腰三角形吗?若可以,请直接写出∠BQP的度数;若不可以,请说明理由.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:CE=CF;(2)若CD=2,求DF的长.26.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.27.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.参考答案1.解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选:D.2.解:设∠EBD=x,∵DE=BE,∴∠AED=2x,又∵AD=DE,∴∠A=2x,∴∠BDC=x+2x=3x,而BC=BD,则∠C=3x,∵AB=AC,∴∠ABC=3x,∴3x+3x+2x=180°,∴∠A=2x=45°.故选:C.3.解:∵DE=EF,∠DEF=60°,∴△DEF为等边三角形,∴∠EDF=60°,∵AB=BC=CD.∴△ABC和△BCD为等腰三角形,∠A=∠ACB,∠CBD=∠CDB,∵∠CBD=∠A+∠ACB=2∠A,∴∠CDB=2∠A,∵∠ECD=∠A+∠CDB=3∠A,CD=DE,∴△CDE为等腰三角形,∴∠ECD=∠DEC=3∠A,∠EDF=∠A+∠DEC=4∠A=60°,∴∠A=15°.故选:B.4.解:∵∠DAC=131°,∠DAC+∠CAB=180°,∴∠CAB=49°,∵AC=BC,∴∠CBA=49°,∠ACB=180°﹣49°﹣49°=82°,∴∠ECF=180°﹣82°=98°,故选:C.5.解:若6cm为底时,腰长=(24﹣6)=9cm,三角形的三边分别为6cm、9cm、9cm,能围成等腰三角形,若6cm为腰时,底边=24﹣6×2=12,三角形的三边分别为6cm、6cm、12cm,∵6+6=12,∴不能围成三角形,综上所述,腰长是9cm,故选:B.6.解:∵BO平分∠CBA,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=5,△AMN的周长等于12,∴△AMN的周长=AM+MN+AN=AB+AC=5+AC=12,∴AC=7,故选:A.7.解:如下图,分三种情况:①如图1,AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°,∠C=(180°﹣∠B)=75°,∴∠BAC=∠C=75°;②如图2,AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∵sin∠ACD==,∴∠ACD=30°=∠B+∠CAB,∵∠B=∠CAB,∴∠BAC=∠ACD=15°;③如图3,AC=BC,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高与底边上中线,顶角的平分线重合,可得点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°,∴∠BAC的度数为90°或75°或15°,故选:D.8.解:如图,以点O、A为圆心,以OA的长度为半径画弧,OA的垂直平分线与x轴的交点有4个.故选:C.9.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.10.解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵AD=BD,∴∠ABD=∠A=40°,∴∠CBD=70°﹣40°=30°,故选:A.11.解:延长AD至点G,使DG=AD,连接BG,延长BA至F,∵BD垂直平分AG,∴BA=BG=8,∠BAG=∠G∵∠BAG=∠EAF,∠BAC的外角平分线交BC延长线于点E,∴∠EAF=∠G,∠CAE=∠EAF,∴∠G=∠CAE,∴AC∥GB,∴∠ACE=∠GBE,∵AE=AC=2,∴∠ACE=∠E,∴∠GBE=∠E,∴GB=GE=8,∵DG+d=G﹣AE,∴2AD=6,∴AD=3.故答案为3.12.解:设∠CBD=x,由题意得:∠ABC=2∠ADB=4∠CBD=4x,∵AB=BC,∴∠BAC=∠ACB=(180°﹣4x)=90°﹣2x,∵∠ABE+∠BAE+∠AEB=180°,∴3x+90°﹣2x+70°=180°,∴x=20°,∴∠BDC=20°,∴∠ACD=180°﹣∠DEC﹣∠BDC=90°,故答案为:90.13.解:∵AB=AC,∠A=100°,∴∠B=(180°﹣∠A)=40°,∵∠BDE=15°,∴∠AED=55°,∵当△DEP是以DE为腰的等腰三角形,①当点P在AB上,∵DE=DP1,∴∠DP1E=∠AED=55°,∴∠EDP1=180°﹣55°﹣55°=70°,②当点P在AC上,∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,过D作DG⊥AB于G,DH⊥AC于H,∴DG=DH,在Rt△DEG与Rt△DP2H中,,∴Rt△DEG≌Rt△DP2H(HL),∴∠AP2D=∠AED=55°,∵∠BAC=100°,∴∠EDP2=150°,③当点P在AC上,同理证得Rt△DEG≌Rt△DPH(HL),∴∠EDG=∠P3DH,∴∠EDP3=∠GDH=180°﹣100°=80°,④当点P在AB上,EP=ED时,∠EDP=(180°﹣55°)=62.5°.故答案为:62.5°或70°或80°或150°.14.解:∵AD为BC边上的高,∴∠ADB=90°,∵AD=BD,∴∠ABD=∠BAD=(180°﹣∠ADB)=45°,∵BE平分∠ABC,∴∠1=∠2=∠ABD=22.5°,BE⊥AC,∴∠BEA=90°=∠ADB,∵∠3+∠BEA+∠AHE=180°,∠2+∠ADB+∠BHD=180°,∠AHE=∠BHD,∴∠3=∠2=22.5°.故答案为:22.5°.15.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故答案为:8.16.解:延长AP交BC于点E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×16cm2=8cm2,故答案为:8.17.解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=(180°﹣50°)=65°;当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB=∠BAD=25°,综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.18.解:设AB=BC=2x,AC=y,则BD=CD=x,∵BC上的中线AD将这个三角形的周长分成18和15两部分,∴有两种情况:1、当3x=18且x+y=15时,解得x=6,y=9,即AC的长为9;2、当x+y=18且3x=15时,解得x=5,y=13,此时腰为10,即AC的长为13.综上所述,AC的长为9或13.故答案为:9或13.19.解:如图1,当DA=DC时,∵∠ACD=35°,∴∠A=35°,∵∠ACB=90°,∴∠B=55°;如图2,当CA=CD时,∵∠ACD=35°,∴∠A=(180°﹣35°)÷2=72.5°,∵∠ACB=90°,∴∠B=17.5°.综上所述,∠B的度数为55°或17.5°.故答案为:55°或17.5°.20.解:过点E作EF⊥BC于F;如图所示:则∠BFE=90°,∵△ABC是等边三角形,∴∠B=60°,BC=AB=8,∴∠FEB=90°﹣60°=30°,∵BE=AB+AE=8+4=12,∴BF=BE=6,∴CF=BC﹣BF=2,∵ED=EC,EF⊥BC,∴DF=CF=2,∴BD=BF﹣DF=4;故答案为:4.21.(1)证明:∵AB=AC,∴∠ABC=∠ACB,在△EBC和△DCB中,,∴△EBC≌△DCB(SAS),∴BE=CD.(2)图中共有5个等腰三角形.∵∠BAC=108°,AB=AC,∴∠ABC=∠ACB=36°,∵∠D=∠E=36°,∴∠D=∠BCD,∠E=∠CBE,∴∠DAB=∠EAC=72°,∴∠DBA=∠DAB=72°,∠EAC=∠ECA=72°,∴DB=DA,EA=EC,∴△ABD,△AEC,△BCD,△BCE,△ABC是等腰三角形.故答案为:5.22.(1)解:∵AB=AC,∠BAC=36°,∴∠ABC=∠C=(180°﹣∠BAC)=72°,∵BD平分∠ABC,∴∠DBC=∠ABC=36°,∴∠ADB=∠C+∠DBC=72°+36°=108°;(2)证明:∵AE∥BC,∴∠EAC=∠C=72°,∵∠C=72°,∠DBC=36°,∴∠ADE=∠CDB=180°﹣72°﹣36°=72°,∴∠EAD=∠ADE,∴AE=DE,∴△ADE是等腰三角形.23.证明:(1)∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,即∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∴△ADF是等腰三角形;(2)∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∴∠DAE=∠EAB=30°,在Rt△ADB中,∠B=30°,AB=6,∴AD=3,在Rt△ADE中,AD=3,∠DAE=30°,∴DE=.24.解:(1)△APB是直角三角形,理由如下:∵AB=AC,∠B=30°,∴∠C=30°=∠B=∠APQ,∵PQ∥AC,∴∠BPQ=∠C,∴∠APB=60°,∴∠BAP=90°,∴△APB是直角三角形;(2)当AQ=QP时,∴∠QAP=∠APQ=30°,∴∠BQP=∠QAP+∠APQ=60°,当AP=PQ时,则∠AQP=∠P AQ=75°,∴∠BQP=105°,当AQ=AP时,则∠AQP=∠APQ=30°,∵P不与B、C重合,∴不存在,综上所述:∠BQP=105°或60°.25.证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF.(2)由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=2.又∵CE=CF,∴CF=2.∴DF=DC+CF=2+2=4.26.解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=2,∴Rt△ABC中,AB=2AC=4,∴BD=AB﹣AD=4﹣1=3.27.(1)解:如图1中,在等边三角形△ACD中,∠CAD=∠ADC=60°,AD=AC.∵E为AC的中点,∴∠ADE=∠ADC=30°,∵AB=AC,∴AD=AB,∵∠BAD=∠BAC+∠CAD=160°,∴∠ADB=∠ABD=10°,∴∠BDF=∠ADF﹣∠ADB=20°.(2)①补全图形,如图所示.②证明:连接AN.∵CM平分∠ACB,∴设∠ACM=∠BCM=α,∵AB=AC,∴∠ABC=∠ACB=2α.在等边三角形△ACD中,∵E为AC的中点,∴DN⊥AC,∴NA=NC,∴∠NAC=∠NCA=α,∴∠DAN=60°+α,在△ABN和△ADN中,∴△ABN≌△ADN(SSS),∴∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∴∠BAC=60°+2α,在△ABC中,∠BAC+∠ACB+∠ABC=180°,∴60°+2α+2α+2 α=180°,∴α=20°,∴∠NBC=∠ABC﹣∠ABN=10°,∴∠MNB=∠NBC+∠NCB=30°,∴∠MNB=∠MBN,∴MB=MN。

2020-2021学年北师大版八年级数学下册 第一章三角形的证明 易错题之角平分线综合专练(三)

2020-2021学年北师大版八年级数学下册 第一章三角形的证明 易错题之角平分线综合专练(三)

八年级数学下册第一章《三角形的证明》易错题之角平分线综合专练(三)1.如图,BD是∠ABC的平分线,AD=CD.求证:∠DAB+∠BCD=180°.2.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ACB的平分线交AD于E,交AB于F,FG⊥BC于G,请猜测AE与FG之间有怎样的关系,并说明理由.3.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.4.在△ABC中,AE、BF是角平分线,交于O点.(1)如图1,AD是高,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.(2)如图2,若OE=OF,AC≠BC,求∠C的度数.(3)如图3,若∠C=90°,BC=8,AC=6,AB=10,求S△AOB.5.如图,在△ABC中,AD平分∠BAC,则=吗?请说明理由.6.如图①,在平面直角坐标系中,点A的坐标为(0,4),OC=4OB.(1)若△ABC的面积为10,分别求点B、C的坐标;(2)如图①,向x轴正方向移动点B,使∠ABC﹣∠ACB=90°,作∠BAC的平分线AD交x轴于点D,求∠ADO的度数;(3)如图②,在(2)的条件下,线段AD上有一动点Q,作∠AQM=∠DQP,它们的边分别交x、y轴于点M、P,作∠FMG=∠DMQ,试判断FM与PQ的位置关系,并说明理由.7.如图,在Rt△ABC中,∠ACB=90°,D是BC上一点,DF∥AB交AC于点F,BD =DF=AF,DE⊥AB于点E.求证:(1)AD平分∠BAC;(2)CF=BE.8.小明采用如图所示的方法作∠AOB的平分线OC:将带刻度的直角尺DEMN按如图所示摆放,使EM边与OB边重合,顶点D落在OA边上并标记出点D的位置,量出OD 的长,再重新如图放置直角尺,在DN边上截取DP=OD,过点P画射线OC,则OC 平分∠AOB.请判断小明的做法是否可行?并说明理由.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.10.如图所示,OC平分∠AOB,OA=OB,P为OC上一点,PE⊥AC,PF⊥BC,垂足分别为E,F.求证:PE=PF.11.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC 相交于M、N两点,其它条件不变,那么又有相等关系AM+ =2AF,请加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC 交BC于D,∠MDN=120°,ND∥AB,求四边形AMDN的周长.12.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.13.如图直线EF∥GH,点A、点B分别在EF、GH上,连接AB,∠FAB的角平分线AD 交GH于D,过点D作DC⊥AB交AB延长线于点C,若∠CAD=36°,求∠BDC的度数.14.在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图①,当点D是BC边上的中点时,S△ABD:S△ACD=;(2)如图②,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代数式表示);(3)如图③,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S△BDE=6,求S△ABC的值.15.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.16.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.参考答案1.证明:作DE⊥BA于E,DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥BA,DF⊥BC,∴DE=DF,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠DAE=∠DCB,∵∠DAB+∠DAE=180°,∴∠DAB+∠BCD=180°.2.解:AE=FG,AE∥FG.理由如下:∵CF是∠ACB的平分线,∠BAC=90°,FG⊥BC,∴FA=FG,∠AFC=∠CED,∵∠AEF=∠CED,∴∠AEF=∠AFC,∴AE=AF,∴AE=FG,∵AD⊥BC,FG⊥BC,∴AE∥FG,∴AE=FG,AE∥FG.3.证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.4.解:(1)∵AD⊥BC,∴∠ADC=90°,∵∠C=70°,∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°,∴∠BAO=25°,∠ABC=60°,∵BF是∠ABC的角平分线,∴∠ABO=30°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°;(2)连接OC,∴AE、BF是角平分线,交于O点,∴OC是∠ACB的角平分线,∴∠OCF=∠OCE,过O作OM⊥BC,ON⊥AC,则OM=ON,在Rt△OEM与Rt△OFN中,,∴Rt△OEM≌Rt△OFN,(HL),∴∠EOM=∠FON,∴∠MON=∠EOF=180°﹣∠ACB,∵AE、BF是角平分线,∴∠AOB=90°+∠ACB,即90°+∠ACB=180°﹣∠ACB,∴∠ACB=60°;(3)连接OC,过O作OD⊥AB于D,OG⊥BC于G,OH⊥AC于H,∵AE、BF是角平分线,交于O点,∴OD=OG=OE,∴S△ABC=×8×6=×10OD+6×OG+8×OH,∴OD=2,∴S△AOB=10×2=10.5.解:=,理由如下:过点D作DE⊥AB于点E,作DF⊥AC于点F,过点A作AH⊥BC于点H,如图所示.∵AD平分∠BAC,∴DE=DF.∵S△ABD=AB•DE=BD•AH,S△ACD=AC•DF=CD•AH,∴===.6.解:(1)∵点A的坐标为(0,4),∴OA=4,∵△ABC的面积为10,∴×AO×BC=10,∴BC=5,∵OC=4OB,∴OB=,OC=,∴点B(,0),点C(,0);(2)∵∠ABC﹣∠ACB=90°,∠ABC=90°+∠BAO,∴∠BAO=∠ACB,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAD+∠DAC=∠BAO+∠BAD,∴∠DAO=∠ADO,∵∠DAO+∠ADO=90°,∴∠DAO=∠ADO=45°;(3)FM⊥PQ,理由如下:延长FM交QP于H,设∠DQP=∠AQM=x,∠FMG=∠DMQ=y,则∠DMH=∠FMG=y,∠AQM=∠QMD+∠QDM,即x=y+45°,∴∠1=180°﹣∠DQP﹣∠ADO=90°﹣y,则∠2=∠1=90°﹣y,∴∠2+∠DMH=y+90°﹣y=90°,∴∠MHQ=90°,即FM⊥PQ.7.证明:(1)∵DF=AF,∴∠FAD=∠FDA,∵DF∥AB,∴∠BAD=∠FDA,∴∠FAD=∠BAD,即AD平分∠BAC;(2)∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DC=DE,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL),∴CF=BE.8.解:小明的做法可行.理由如下:在直角尺DEMN中,DN∥EM,∴∠DPO=∠POM,∵DP=OD,∴∠DPO=∠DOP,∴∠POM=∠DOP,∴OC平分∠AOB.9.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.10.证明:在△AOC和△BOC中,,∴△AOC≌△BOC,∴∠ACO=∠BCO,又PE⊥AC,PF⊥BC,∴PE=PF.11.(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在△ADE和△ADF中,,∴△ADE≌△ADF(AAS),∴DE=DF,AE=AF;(2)解:AM+AN=2AF;证明如下:由(1)得DE=DF,∵∠MDN=∠EDF,∴∠MDE=∠NDF,在△MDE和△NDF中,,∴△MDE≌△NDF(ASA),∴ME=NF,∴AM+AN=(AE+ME)+(AF﹣NF)=AE+AF=2AF;(3)由(2)可知AM+AN=2AC=2×6=12,∵∠BAC=60°,AD平分∠BAC交BC于D,∴∠BAD=∠CAD=30°,∵ND∥AB,∴∠ADN=∠BAD=30°,∴∠CAD=∠ADN,∴AN=DN,在Rt△CDN中,DN=2CN,∵AC=6,∴DN=AN=×6=4,∵∠BAC=60°,∠MDN=120°,∴∠CDE=∠MDN,∴DM=DN=4,∴四边形AMDN的周长=12+4×2=20.12.证明:∵DE⊥AB,DF⊥AC,∴Rt△BDE和Rt△CDF是直角三角形.,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是角平分线.13.解:∵∠FAB的角平分线AD,∠CAD=36°,∴∠DAF=∠CAD=36°,∵DC⊥AB,∴∠ACD=90°,∴∠ADC=90°﹣36°=54°,∵EF∥GH,∴∠ADB=∠DAF=36°,∴∠BDC=∠ADC﹣∠ADB=54°﹣36°=18°.14.解:(1)如图1中,过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(×BD×AE):(×CD×AE)=1:1,故答案为:1:1;(2)如图2中,过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(×AB×DE):(×AC×DF)=m:n;(3)如图3中,∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=6,∴S△ABD=6,∵AC=2,AB=4,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,∴S△ACD=3,∴S△ABC=3+6=9.15.证明:延长AD交BC于F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠DFE=∠B+∠BAD,∠DAE=∠EAC+∠CAD,∵∠B=∠EAC,∴∠DFE=∠DAE,∴AE=FE,∵ED⊥AD,∴ED平分∠AEB.16.证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,∵P在∠BAC的平分线AD上,∴PM=PQ,P在∠ABC的平分线BE上,∴PM=PN,∴PQ=PN,∴点P在∠C的平分线.。

2020-2021学年 北师大版八年级数学下册 第一章 三角形的证明 之直角三角形综合练(一)

2020-2021学年 北师大版八年级数学下册 第一章 三角形的证明 之直角三角形综合练(一)

北师大版下册第一章《三角形的证明》之直角三角形综合练(一)1.如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.2.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE ∥DF.3.如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足D,延长CE 与外角∠ABG的平分线交于点F.(1)若∠A=60°,求∠DCE和∠F的度数;(2)若∠A=n°(0<n<90)直接写出用含n的代数式表示∠DCE和∠F.(3)在图中画△FCB高FH和∠DCB的角平分线交于点Q,在(2)的条件下求∠CQH的度数,请直接写出∠CQH的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠DEC=25°,求∠B的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是;(2)下面我们来证明这个逆命题:已知:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程:6.如图在正方形ABCD中,E,F,G,H分别是AD,BC,AB,CD上的点,连接EF,GH.①若EF⊥GH,则必有EF=GH.②若EF=GH,则必有EF⊥GH.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.7.在△AOB中,∠AOB=90°,点C为直线AO上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E.(1)若点C在线段AO上,如图1.①依题意补全图1;②求∠BEC的度数;(2)当点C在直线AO上运动时,∠BEC的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出∠BEC的度数.8.已知△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G的度数;(2)如图2,若∠ACB≠90°,试判断∠G与∠A的数量关系,并证明你的结论;(3)如图3,若FE∥AD,求证:∠DFE=∠ABC+∠G.9.如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.(1)若∠A=∠AOC=30°,则BC BO(填“>”“=”“<”);(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO=α,求∠AOE的度数(用含α的代数式表示);(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB绕O点旋转时(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.10.锐角三角形ABC中,AC>BC,点D是边AC的中点,点E在边AB上.①如果DE∥BC,那么DE=BC②如果DE=BC,那么DE∥BC.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.11.如图,在△ABC中,AC=CB,∠ACB=90°,在AB上取点F,过A作AB的垂线,使得AD=BF,连接BD,CD、CF,CE是∠ACB的角平分线,交BD于点M,交AB于点E.(1)若AC=6,AF=4.求BD的长:(2)求证:2CM=AF12.如图,在△ABC中,BD是∠ABC的平分线,过点C作CE⊥BD,交BD的延长线于点E,∠ABC=60°,∠ECD=15°.(1)直接写出∠ADB的度数是;(2)求证:BD=AB;(3)若AB=2,求BC的长.13.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点A,C重合,那么当点P 运动到什么位置时,才能使△ABC与△APQ全等?参考答案1.证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE.2.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=36°,∴∠ABC=90°﹣∠A=54°,∴∠CBD=126°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=63°;(2)∵∠ACB=90°,∠CBE=63°,∴∠CEB=90°﹣63°=27°.又∵∠F=27°,∴∠F=∠CEB=27°,∴DF∥BE3.解:(1)∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣30°=15°,∵∠ABG=∠A+∠ACB=150°,∵BF平分∠ABG,∴∠FBG=∠ABG=75°,∵∠FBG=∠F+∠FCB,∴∠F=75°﹣45°=30°.(2)∵CD⊥AB,∠A=n°,∴∠ADC=90°,∠ACD=90°﹣n°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣90°+n°=n°﹣45°,∵∠ABG=∠A+∠ACB=90°+n°,∵BF平分∠ABG,∴∠FBG=∠ABG=45°+n°∵∠FBG=∠F+∠FCB,∴∠F=n°.(3)如图,∵FH⊥CG,∴∠FHC=90°,∵∠A+∠ACD=90°,∠ACD+∠DCB=90°∴∠A=∠DCB=n°,∵CQ平分∠DCB,∴∠QCH=n°,∴∠CQH=90°﹣n°.4.解:(1)∵∠ACB=90°,AD平分∠BAC,DE⊥AB,∴DE=DC,∴∠DEC=∠DCE=25°,∴∠BDE=50°,又∵DE⊥AB,∴Rt△BDE中,∠B=90°﹣∠BDE=90°﹣50°=40°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又∵DE=DC,AD=AD,∴△AED≌△ACD(HL),∴AE=AC,∴点D在CE的垂直平分线上,点A在CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.5.解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)∵CD是△ABC的中线∴AD=BD=AB,∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠DCB,在△ABC中,∠A+∠B+∠ACD+∠DCB=180°∴∠A+∠B+∠A+∠B=180°,∴∠A+∠B=90°,∴∠ACB=∠ACD+∠DCB=90°,∴△ABC为直角三角形.6.解:①成立,②不成立;理由如下:①作GM⊥CD于M,FN⊥AD于N,如图1所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∴∠OGQ+∠OQG=90°,∵EF⊥GH,∴∠PFQ+∠PQF=90°,∵∠OQG=∠PQF,∴∠OGQ=∠PFQ,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在△EFN和△HGM中,,∴△EFN≌△HGM(ASA),∴EF=GH;②作GM⊥CD于M,FN⊥AD于N,如图2所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在Rt△EFN和Rt△HGM中,,∴Rt△EFN≌Rt△HGM(HL),∴∠OGQ=∠PFQ,∵∠OGQ+∠OQG=90°,∠OQG=∠PQF,∴∠PQF+∠PFQ=90°,∴∠FPQ=90°,∴EF⊥GH;作GH关于GM的对称线段GH',则GH'=GH=EF,显然EF与GH'不垂直;综上所述,若EF=GH,则必有EF⊥GH.不成立.7.解:(1)①图形如图所示.②设∠EBO=∠EBC=x,∠OCE=∠ECK=y.则有:,可得∠E=×90°=45°.(2)如图,当点C在OA的延长线上时,结论∠BEC=135°.理由:∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵∠EBC=∠OBC,∠ECB=∠OCB,∴∠EBC+∠ECB=×90°=45°,∴∠BEC=180°﹣45°=135°.如图当点C在AO的延长线上时,同法可证:∠BEC=135°.8.解:(1)如图1,∵∠ACB=90°,∠A=50°,∴∠ABC=40°,∵BG平分∠ABC,∴∠CBG=20°,∵DE∥BC,∴∠CDE=∠BCD=90°,∵DG平分∠ADE,∴∠CDF=45°,∴∠CFD=45°,∴∠BFD=180°﹣45°=135°,∴∠G=180°﹣20°﹣135°=25°;(2)如图2,∠A=2∠G,理由是:由(1)知:∠ABC=2∠FBG,∠CDF=∠CFD,设∠ABG=x,∠CDF=y,∵∠ACB=∠DCF,∴∠A+∠ABC=∠CDF+∠CFD,即∠A+2x=2y,∴y=,同理得∠A+∠ABG=∠G+∠CDF,∴∠A+x=∠G+y,即∠A+x=∠G++x,∴∠A=2∠G;(3)如图3,∵EF∥AD,∴∠DFE=∠CDF,由(2)得:∠CFD=∠CDF,△FBG中,∠G+∠FBG+∠BFG=180°,∠BFG+∠DFC=180°,∴∠DFC=∠G+∠FBG,∴∠DFE=∠CFD=∠FBG+∠G=+∠G.9.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC=30°,∴∠B=∠BOC=60°∴△BOC是等边三角形,∴BC=BO故答案为:=;(2)∵OD⊥AB,∠AEO=α,∴∠DOE=90°﹣α,∵∠DOB=∠BOE,∴∠BOE==(90°﹣α)=45°﹣α,∴∠AOE=∠AOB+∠BOE=90°+45°﹣=135°﹣;(3)∠R的度数不变,∠R=27°.理由如下:设∠AOM=β,则∠AOC=90°﹣β,∵OF平分∠AOM,∴∠FOM=∠RON=,∴∠COR=∠CON+∠RON=90°+,∵∠OCB=∠A+∠AOC=36°+90°﹣β=126°﹣β,∵CR平分∠BCO,∴∠OCR==63°﹣,∴∠R=180°﹣(∠OCR+∠COR)=180°﹣63°+﹣90°﹣=27°,∴∠R的度数不变,∠R=27°.10.解:①∵锐角三角形ABC中,AC>BC,点D是边AC的中点,DE∥BC,∴AE=EB,即DE是△ABC的中位线,∴DE=BC故①正确;②令E为AB中点,可以在AB上取到一点F,使DF=DE,但DF与BC不平行.故②错误.11.解:(1)∵AC=CB=6,∠ACB=90°,∴AB=12∵AF=4,∴BF=AB﹣AF=12﹣4=8,∴AD=BF=8,在Rt△ADB中,BD==4;(2)∵AC=CB,∠ACB=90°,CE平分∠ACB,∴AE=BE=CE=AB,CE⊥AB,∵∠DAB=∠MEB=90°,∠DBA=∠MBE,∴△MBE∽△DBA,∴==,∴ME=AD,∴ME=BF,∵CE=AB,∴CM+ME=(BF+AF),∴CM+BF=BF+AF,∴CM=AF,即AF=2CM.12.解:(1)∵CE⊥BE,∴∠E=90°,∵∠ECD=15°,∴∠ADB=∠CDE=90°﹣15°=75°故答案为75°.(2)证明:∵BD平分∠ABC,∠ABC=60°,∴∠ABD=∠DBC=30°,∵∠ADB=75°,∴∠A=75°,∴∠A=∠ADB,∴AB=DB.(3)过点D作DF⊥BC,交BC于F点.∵DF⊥BC,∴∠DFB=∠DFC=90°,∵∠DBF=30°,∴DF=BD,∵BD=AB=2,∴DF=1,∴FB=,∵CE⊥BE,∴∠E=90°,∵∠DBC=30°,∴∠ECB=60°,∵∠ECD=15°,∴∠DCB=45°,∴∠DCF=∠FDC=45°,∴FD=FC=1,∴BC=.13.解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=10;②当P运动到与C点重合时,AP=AC,不合题意.综上所述,当点P运动到距离点A为10时,△ABC与△APQ全等.。

2020-2021学年八年级数学北师大版下册第一章三角形的证明 满分专项训练

2020-2021学年八年级数学北师大版下册第一章三角形的证明 满分专项训练

北师大八年级数学第一章三角形的证明满分专项训练一.填空题1.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC于点E,交AD于点F,若AD = 9,则DF长为 _________ .2.“如果两个实数的平方相等,那么这两个实数也相等”是 _________ 命题.(填“真”或“假”)3.写出命题“圆内接四边形的对角互补”的逆命题: _________ .4.如图,BD、CE是等边三角形ABC的中线,则∠EFD = _________ .5.如图,在△ABC中,AB = BC,BE平分∠ABC,AD为BC边上的高,且AD= BD.则∠3 = _________ °6.等腰三角形的两边长分别为2和4,则这个三角形的周长为 _________ .7.如果等腰三角形的一个内角是80°,那么它的顶角的度数是_________ °8.如图,已知在四边形ABCD中,∠BCD= 90°,BD平分∠ABC,AB= 12,BC= 18,CD = 8,则四边形ABCD的面积是 _________ .9.如图,在△ABC中,AB = AC,D为BC的中点,∠BAD = 20°,且AB = AD,则∠CDE的度数是 _________ .10.如图,已知△ABC中,CD⊥AB,垂足为D.CE为△ACD的角平分线,若CD= 12,BC = 13,且△BCE的面积为48,则点E到AC的距离为 _________ .11.如图是4 × 4的正方形图格,每个小正方形的顶点称为格点,且边长为1,点A,B均在格点上,在网格中建立平面直角坐标系.如果点C也在此4 × 4的正方形网格的格点上,且△ABC是等腰三角形,请写出一个满足条件的点C的坐标 _________ ;满足条件的点C一共有 _________ 个.12.如图,在△ABC中,边AB、AC的垂直平分线交于点O,若∠BOC= 80°,则∠A = _________ .13.如图,在△ABC中,∠BAC= 124°,分别作AC,AB两边的垂直平分线PM,PN,垂足分别是点M,N.以下说法正确的是 _________ (填序号).①∠P = 56°;②∠EAF = 68°;③PE = PF;④点P到点B和点C的距离相等.14.用一个a的值说明命题“如果a2> 1,那么a≥1”是错误的,这个值可以是a= _________ .15.含30°角的直角三角板与直线l,b的位置关系如图所示,已知山∥b,∠A= 30°,∠1 = 60°,若AB = 6,CD的长为 _________ .16.如图,在R△ABC中,∠ACB= 90°,CD⊥AB,垂足为点D,∠DCB= 30°,BD = 1,则AB的长为 _________ .17.如图,在等边△ABC中,F是AB的中点,FE⊥AC于点E,如果△ABC的边长是12,则AB = _________ .18.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B = 60°,∠ME = 21°,则∠C = _________ 度.19.如图,在Rt△ABC中,∠A = 90°,∠B = 30°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN= 1,则BC的长为_________ .20.如图,在△ABC中,∠B= ∠C,D,E分别是线段BC、AC上的一点,且AD= AB.用等式表示∠1和∠2之间的数量关系是 _________ .二.解答题21.如图,△ABC中,∠ABC = 25°,∠ACB = 55°,DB,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若BC的长为30,求△DAF的周长.22.在△ABC中,AB= AC,∠BAC= 120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于F.(1)证明:△ADF是等腰三角形;(2)若AB = 6,求DE的长.23.如图,OP平分∠AOB,P A⊥OA,PB⊥OB,在OA上取一点C联结PC,使PC = OC,BP = 1 2 PC.(1)求证:PC∥OB;(2)求∠CPO的度数.24.如图,△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,连接AE,AG.(1)若△AEG的周长为10,求线段BC的长;(2)若∠BAC = 104°,求∠EAG的度数.25.如图,在△ABC中,点B、F分别在AB、AC上,AD是EF的垂直平分线,DE⊥AB,DF⊥AC,BF交AD于点G.(1)求证:AD平分∠BAC;(2)若∠BAC = 60°,求证:DE = 2DG.26.如图,在Rt△ABC中,∠ACB = 90°,∠A= 30°,BC = 1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.(1)求证:△BDF是等边三角形;(2)若移动点D使EF∥AB时,求AD的长.27.如图,在△ABC中,AB = AC,M,N分别是AB,AC边上的点,并且MN∥BC.(1)△AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.①求证:△BPM是等腰三角形;②若△ABC的周长为a,BC= b(a> 2b),求△AMN的周长(用含a,b的式子表示).28.在△ABC中,AB的垂直平分线山交BC于点D,AC的垂直平分线.交BC于点E,h与b相交于点O,△ADE的周长为6.(1)AD与BD的数量关系为 _________ .(2)求BC的长.(3)分别连接OA,OB,OC,若△OBC的周长为16,求OA的长.29.如图1,点D、E在△ABC的边BC上,AB = AC,AD = AE,(1)求证:BD = CE;(2)如图2,若∠BAC = 90°,∠DAE = 60°,AB = 2\sqrt2,求线段BD的长. 30.∠B = ∠C = 90°,EB = EC,DE平分∠ADC,求证:AE是∠DAB平分线.。

2020-2021学年北师大版八年级数学下册《第1章三角形的证明》单元综合培优提升训练

2020-2021学年北师大版八年级数学下册《第1章三角形的证明》单元综合培优提升训练

2021年北师大版八年级数学下册《第1章三角形的证明》单元综合培优提升训练(附答案)1.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB=80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°2.能将一个三角形分成面积相等的两个三角形的一条线段是()A.三角形的高线B.边的中垂线C.三角形的中线D.三角形的角平分线3.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B.CH=CE=EF C.AC=AF D.CH=HD4.如图,在△ABC中,E为边AC的中点,CD⊥AB于点D,AB=2,BC=1,DE=,则∠CDE+∠BCD=()A.60°B.75°C.90°D.105°5.若一条长为31cm的细线能围成一边长等于7cm的等腰三角形,则该等腰三角形的腰长为()A.7cm B.9cm C.7cm或12cm D.12cm6.如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α7.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AB,交AC于点E,则下列结论不正确的是()A.∠CAD=∠BAD B.BD=CD C.AE=ED D.DE=DB8.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.B.C.D.9.如图,在Rt△ABC中,∠ABC=90°.AB=5,AC=13,BC=12,∠BAC与∠ACB的角平分线相交于点D,点M、N分别在边AB、BC上,且∠MDN=45°,连接MN,则△BMN的周长为.10.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E 从A点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动秒时,△DEB与△BCA全等.11.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.(1)求证:△BDF是等边三角形;(2)若移动点D使EF∥AB时,求AD的长.12.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.13.如图,△ABC中AB=AC,BD和CD分别平分△ABC的内角∠CBA和外角∠ECA,BD 交AC于F,连接AD.(1)求证:AD平分∠GAC;(2)求证:AD∥BC.14.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.15.在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,则BE=CE吗?说明理由;(2)若∠BAC=45°,BE的延长线与AC垂直相交于点F时,如图2,BD=AE吗?说明理由.16.如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.17.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE 交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.18.如图,已知在△ABC中,BD⊥AC于D,CE⊥AB于E,M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若BC=10,DE=6,求△MDE的面积.19.如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.20.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.21.在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系.参考答案1.解:如图1,∵DE垂直平分AB,∴AE=BE,∴∠BAC=∠ABE,∵∠AEB=80°,∴∠BAC=∠ABE=50°,∵AB=AC,∴∠ABC==65°,∴∠EBC=∠ABC﹣∠ABE=15°如图2,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠ABE,∵∠AEB=80°,∴∠BAE=∠EBA=50°,∴∠BAC=130°∵AB=AC,∴∠ABC==25°∴∠EBC=∠EBA+∠ABC=75°故选:C.2.解:三角形的中线平分三角形的面积,故选:C.3.解:A、∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故正确;B、∵CD⊥AB,EF⊥AB,∴EF∥CD∴∠AEF=∠CHE,∴∠CEH=∠CHE∴CH=CE=EF,故正确;C、∵角平分线AE交CD于H,∴∠CAE=∠BAE,又∵∠ACB=∠AFE=90°,AE=AE,∴△ACE≌△AEF,∴CE=EF,∠CEA=∠AEF,AC=AF,故正确;D、点H不是CD的中点,故错误.故选:D.4.解:∵CD⊥AB,E为AC边的中点,∴AC=2DE=,∵AB=2,AC=1,∴BC2+AC2=12+()2=4=22=AB2,∴∠ACB=90°,∴∠B=60°,∴∠BCD=∠A=30°,∴∠DCE=60°,∵DE=CE,∴∠CDE=60°,∴∠CDE+∠BCD=90°,故选:C.5.解:若腰长为7cm,设底边长为xcm,则7+7+x=31,解得x=17,此时三边长7cm、7cm、17cm,∵7+7<17∴此三角形不成立;若底边长为7cm,设腰长为xcm,由题意得7+x+x=31,解得x=12,此时三边长7cm、12cm、12cm.答:该等腰三角形的腰长为12cm.故选:D.6.解:根据题意:在△ABC中,AB=AC∴∠B=∠C∵AE=AD∴∠ADE=∠AED,即∠B+∠α﹣∠EDC=∠C+∠EDC化简可得:∠α=2∠EDC∴∠EDC=α.故选:A.7.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD,A正确,不符合题意;BD=CD,B正确,不符合题意;∵DE∥AB,∴∠EDA=∠BAD,∵∠EAD=∠BAD,∴∠EAD=∠EDA,∴AE=ED,C正确,不符合题意;DE与DB的关系不确定,D错误,符合题意;故选:D.8.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠F A4A3=()3×75°,∴第n个三角形中以A n为顶点的底角度数是()n﹣1×75°.故选:C.9.解:过D点作DE⊥AB于E,DF⊥BC于F,DH⊥AC于H,如图,∵DA平分∠BAC,∴DE=DH,同理可得DF=DH,∴DE=DF,∵∠DEB=∠B=∠DFB=90°,∴四边形BEDF为正方形,∴BE=BF=DE=DF,在Rt△ADE和Rt△ADH中,∴Rt△ADE≌Rt△ADH(HL),∴AE=AH,同理可得Rt△CDF≌Rt△CDH(HL),∴CF=CH,设正方形BEDF的边长为x,则AE=AH=5﹣x,CF=CH=12﹣x,∵AH+CH=AC,∴5﹣x+12﹣x=13,解得x=2,即BE=2,在FC上截取FP=EM,如图,∵DE=DF,∠DEM=∠DFP,EM=FP,∴△DEM≌△DFP(SAS),∴DM=DP,∠EDM=∠FDP,∴∠MDP=∠EDF=90°,∵∠MDN=45°,∴∠PDN=45°,在△DMN和△DPN中,,∴△DMN≌△DPN(SAS),∴MN=NP=NF+FP=NF+EM,∴△BMN的周长=MN+BM+BN=EM+BM+BN+NF=BE+BF=2+2=4.故答案为4.10.解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:0,2,6,8.11.(1)证明:∵∠A=30°,∠ACB=90°,∴∠B=60°,∵DE⊥AB,∴∠EDB=90°,∵∠EDF=30°,∴∠FDB=60°=∠B,∴DF=BF,∴△BDF是等边三角形;(2)解:∵EF∥AB,DE⊥AB,∴EF⊥DE,∴∠DEF=90°,∵∠EDF=30°,∴DF=2EF,DE=EF,设EF=x,则DE=x,DF=2x,∵∠ACB=90°,∠A=30°,BC=1,∴AB=2BC=2,∵△BDF是等边三角形,∴DF=BF=BD=2x,∴AD=AB﹣BD=2﹣2x,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AD=DE,即2﹣2x=•x,解得:x=,∴AD=2﹣2×=.12.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD﹣CD=BF﹣EF.即BC=BE.13.(1)证明:过点D作DN⊥BA,DK⊥AC,DM⊥BC,垂足分别为点N、K、M.∵BD、CD分别平分∠EBA、∠ECA,DN⊥BA,DK⊥AC,DM⊥BC,∴DM=DN=DK,∴AD平分∠GAC,∠ABD=∠DBC,∴∠GAD=∠DAC,∴AD平分∠GAC.(2)证明:∵∠GAC=∠ABC+∠ACB,∠GAD=∠DAC,又∵AB=AC,∴∠ABC=∠ACB,∴∠GAD=∠ABC,∴AD∥BC.14.证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.15.解:(1)成立.理由:∵AB=AC,D是BC的中点,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)成立.理由:∵∠BAC=45°,BF⊥AF.∴△ABF为等腰直角三角形∴AF=BF,由(1)知AD⊥BC,∴∠EAF=∠CBF在△AEF和△BCF中,,∴△AEF≌△BCF(ASA),∴AE=BC,∵BD=BC,∴BD=AE.16.证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠F AD=∠FDA,∵AD是∠BAC平分线,∴∠F AD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD=∠CAD,∠EAD =∠EDA,∴∠EAC=∠B.17.证明:(1)∵AE∥BC,∴∠B=∠DAE,∠C=∠CAE.∵AE平分∠DAC,∴∠DAE=∠CAE.∴∠B=∠C.∴AB=AC.∴△ABC是等腰三角形.(2)∵F是AC的中点,∴AF=CF.∵AE∥BC,∴∠C=∠CAE.由对顶角相等可知:∠AFE=∠GFC.在△AFE和△CFG中,∴△AFE≌△CFG.∴AE=GC=8.∵GC=2BG,∴BG=4.∴BC=12.∴△ABC的周长=AB+AC+BC=10+10+12=32.18.(1)证明:连接ME、MD,∵BD⊥AC,∴∠BDC=90°,∵M是BC的中点,∴DM=BC,同理可得EM=BC,∴DM=EM,∵N是DE的中点,∴MN⊥DE;(2)解:∵BC=10,ED=6,∴DM=BC=5,DN=DE=3,由(1)可知∠MND=90°,∴MN===4,∴S△MDE=DE•MN=×6×4=12.19.解:(1)DE⊥DP,理由如下:∵PD=P A,∴∠A=∠PDA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°﹣90°=90°,∴DE⊥DP;(2)连接PE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠PDE=90°,∴PC2+CE2=PE2=PD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.20.解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=2,∴Rt△ABC中,AB=2AC=4,∴BD=AB﹣AD=4﹣1=3.21.解:(1)如图(1),∵AB∥CD,∴∠1=∠EGD,又∵∠2=2∠1,∴∠2=2∠EGD,又∵∠FGE=60°,∴∠EGD=(180°﹣60°)=40°,∴∠1=40°;(2)如图(2),∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°,又∵∠FEG+∠EGF=90°,∴∠AEF+∠FGC=90°.。

2020-2021学年八年级数学北师大版下册 第一章 三角形的证明 专项训练二(附答案)

2020-2021学年八年级数学北师大版下册 第一章 三角形的证明 专项训练二(附答案)

第一章三角形的证明专项练习(二)一、选择题1.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.6,8,10B.2,2,C.1,2D.8,15,1745”,第一步应假设这个三角形中2.用反证法证明“直角三角形中的两个锐角不能都大于()A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°3.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°4.不能判断两个直角三角形全等的条件是()A.两锐角对应相等的两个直角三角形B.一锐角和斜边对应相等的两个直角三角形C.两条直角边对应相等的两个直角三角形D.一条直角边和斜边对应相等的两个直角三角形5.如图,在△ABC中,△ABC和△ACB的角平分线交于点E,过点E作MN△BC交AB于点M,交AC于点N.若BM+CN=7,则MN的长为()A.6B.7C.8D.96.已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是( )A.22cm和16cm B.16cm和22cmC.20cm和16cm D.24cm和12cm7.若等边△ABC的边长为2cm,那么△ABC的面积为()A cm2B.2cm C.3cm2D.4cm28.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD△AB于点D,PE△AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.59.如图,△ACB=90°,AC=BC,AE△CE于点E,BD△CD于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cm B.5 cm C.3 cm D.2 cm10.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm11.如图,在△ABC中,AB=AC,AD是中线,DE△AB,DF△AC,垂足分别为E,F,则下列四个结论中:△AB上任一点与AC上任一点到D的距离相等;△AD上任一点到AB,AC的距离相等;△△BDE=△CDF;△△1=△2;其中正确的有( )A.1个B.2个C.3个D.4个12.如图,已知AB△CD,PE△AB,PF△BD,PG△CD,垂足分别E、F、G,且PF=PG=PE,则△BPD=().A.60°B.70°C.80°D.90°13.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A.8B.9C.10D.1114.如图一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B 地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距()A.30海里B.40海里C.50海里D.60海里15.如图,在等腰Rt△ABC中,△C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC 边上运动,且保持AD=CE;连接DE,DF,EF;在此运动变化的过程中,下列结论:△△DFE是等腰直角三角形;△DE长度的最小值为4;△四边形CDFE的面积保持不变;△△CDE面积的最大值为8;其中正确的结论是()A.△△△B.△△△C.△△△D.△△二、填空题1.如图,在△ABC中.BC=5cm,BP、CP分别是△ABC和△ACB的平分线,且PD△AB,PE△AC,则△PDE的周长是______cm2.如图,△C=90°,AC=10,BC=5,AX△AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=_______________时,△ABC与△QPA 全等.3.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到AGE,若3∠30=︒AE厘米,则△ABC的边BC的长为____________厘米.=EG2=4.如图,若△A=15°,AB=BC=CD=DE=EF,则△DEF等于_____.5.如图,MN△PQ,AB△PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=_____.6.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为__cm.7.点P在线段AB的垂直平分线上,PA=7,则PB=_______.8.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为________.9.用反证法证明“一个三角形不可能有两个直角”时,第一步应假设:_______________________;10.如图,在△ABC中,AB=AC,△A=120°,BC=9cm,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,则MN的长为______cm.三、解答题1.如图,已知△A=△D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE =CF.求证:Rt△ABF△Rt△DCE.2.如图所示、△AOB和△COD均为等腰直角三角形,△AOB=△COD=90°,D在AB上.(1)求证:△AOC△△BOD;(2)若AD=1,BD=2,求CD的长.3.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF△AC,垂足为F,△BAC=45°,原题设其它条件不变.求证:△AEF△△BCF.4.如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE△AC,BF△AC,若AB=CD,试证明BD平分EF.5.如图所示,直线1l 、2l 、3l 为围绕区域A 的三条公路,为便于公路维护,需在区域A 内筹建一个公路养护处P ,要求P 到三条公路的距离相等,请利用直尺和圆规确定符合条件的点P 的位置(保留作图痕迹,不写作法).6.如图,在△ABC 中,AB=AC=10 cm ,△B=15°,CD 是AB 边上的高,求CD 的长.7.已知,如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点求作:点E ,使直线DE△AB ,且点E 到B 、D 两点的距离相等(在题目的原图中完成作图)结论:BE=DE8.如图,△ABC 中,AB=BC ,BE△AC 于点E ,AD△BC 于点D ,△BAD=45°,AD 与BE 交于点F ,连接CF .(1)求证:BF=2AE ;(2)若AD 的长.9.如图,Rt△ABC 中,△C=90°,AD 平分△CAB ,DE△AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.10.如图所示,ABC ∆是边长为1的等边三角形,BDC ∆是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60︒的角,角的两边交AB 、AC 于M 、N ,连结MN ,求AMN ∆周长.11.如图,AB 与CD 相交于O ,OE 平分△AOC ,OF△AB 于O ,OG△OE 于O ,若△BOD=40°,求△AOE 和△FOG 的度数.12.如图,AD为△ABC的角平分线,DE△AB于点E,DF△AC于点F,连接EF交AD于点O.(1)求证:AD垂直平分EF;(2)若△BAC=60 ,写出DO与AD之间的数量关系,不需证明.13.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE 平分△AOD.(1)若△COE=20°,则△BOD=;若△COE=α,则△BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测△COE与△BOD之间有怎样的数量关系?并说明理由.14.(1)如图1,△ABC与△ADE均是顶角为40°的等腰三角形,BC、DE分别是底边,求证:BD=CE;(2)如图2,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:△AEB的度数为;线段BE与AD之间的数量关系是.(3)拓展探究如图3,△ACB和△DCE均为等腰直角三角形,△ACB=△DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断△AEB的度数及线段CM、AE、BE 之间的数量关系,并说明理由.参考答案1.B【解析】【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】A、△62+82=100=102,△能够成直角三角形,故本选项不符合题意;B、△22+22=8≠(2,△不能够成直角三角形,故本选项符合题意.C、△12+2=4=22,△能够成直角三角形,故本选项不符合题意;D、△82+152=289=172,△能够成直角三角形,故本选项不符合题意;故选B.【点睛】本题考查了勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.D【解析】【分析】熟记反证法的第一步,根据反证法第一步首先从结论的反面假设结论不成立,即可得出答案.【详解】用反证法证明直角三角形中的两个锐角不能都大于45°,应先假设每一个锐角都大于45°.故选D.【点睛】此题主要考查了反证法的第一步,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3.A【解析】【分析】据已知条件和等边三角形的性质可知:△1=△2=12△ABC=30°,所以△3=△1+△2=60°.【详解】如图,△等边三角形ABC中,AD,BE分别是△BAC,△ABC的角的平分线,交于点F,△△1=△2=12△ABC=30°,△△3=△1+△2=60°,故选A.【点睛】本题考查了等边三角形的性质,角的平分线的定义,三角形外角的性质,熟练掌握各性质定理是解题的关键.4.A【解析】A、两锐角对应相等的两个直角三角形,是AAA,不能判定全等,B、一锐角和斜边对应相等的两个直角三角形,符合AAS,能判定全等,C、两条直角边对应相等的两个直角三角形,符合SAS,能判定全等,D、一条直角边和斜边对应相等的两个直角三角形,符合HL,能判定全等,故选A.5.B【解析】【分析】由△ABC、△ACB的平分线相交于点E,可得△MBE=△EBC,△ECN=△ECB,利用两直线平行,内错角相等及等量代换可得△MBE=△MEB,△NEC=△ECN,根据等腰三角形的判定定理可得BM=ME,EN=CN,由此可得MN=ME+EN,再结合已知条件即可求得结论.【详解】解:△△ABC、△ACB的平分线相交于点E,△△MBE=△EBC,△ECN=△ECB,△MN△BC,△△EBC=△MEB,△NEC=△ECB,△△MBE=△MEB,△NEC=△ECN,△BM=ME,EN=CN,△MN=ME+EN,即MN=BM+CN,△BM+CN=7,△MN=7,故选B.【点睛】本题考查了等腰三角形的判定和平行线性质.证明△BME,△CNE是等腰三角形是解决本题的关键.6.A【分析】根据已知条件作出图像,连接BD,根据垂直平分线的性质可得BD=AD,可知两三角形的周长差为AB,结合条件可求出腰长,再由周长可求出BC,即可得出答案.【详解】如图,连接BD,△D在线段AB的垂直平分线上,△BD=AD,△BD+DC+BC=AC+BC=38cm,且AB+AC+BC=60cm,△AB=60-38=22cm,△AC=22cm,△BC=38-AC=38-22=16cm,即等腰三角形的腰为22cm,底为16cm,故选A.【点睛】此题主要考查垂直平分线的性质,解题的关键是正确作出辅助线再来解答. 7.A【解析】【分析】根据等边三角形面积公式2,即可解题.【详解】解:△△ABC为等边三角形,边长=2,,△S=224故选A【点睛】本题考查求等边三角形的面积,属于简单题,熟悉等边三角形面积公式是解题关键.8.A【分析】过A点作AF△BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【详解】解:过A点作AF△BC于F,连结AP,△△ABC中,AB=AC=5,BC=8,△BF=4,△△ABF中,AF=3,△1118355222PD PE ⨯⨯=⨯⨯+⨯⨯,12=12×5×(PD+PE)PD+PE=4.8.故选A.【点睛】考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.9.C【分析】利用等腰直角三角形的性质和已知条件易证△AEC△△CDB ,进而可得AE=CD ,CE=BD ,所以DE 可求出.【详解】解:△△ACB=90°,△△ACE+△DCB=90°,△AE△CD 于E ,△△ACE+△CAE=90°,△△CAE=△DCB ,△BD△CD 于D ,△△D=90°,在△AEC 和△CDB 中090CAE DCB AEC D AC BC ∠=∠⎧⎪∠==⎨⎪=⎩,△△AEC△△CDB ,(AAS ),△AE=CD=5cm ,CE=BD=2cm ,△DE=CD -CE=3cm ,故答案为C .【点睛】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,解答本题的关键是根据已知条件判定三角形的全等.10.C【解析】试题分析:△MN是线段AB的垂直平分线,△AN=BN,△△BCN的周长是7cm,△BN+NC+BC=7(cm),△AN+NC+BC=7(cm),△AN+NC=AC,△AC+BC=7(cm),又△AC=4cm,△BC=7﹣4=3(cm).故选C.考点:线段垂直平分线的性质.11.C【解析】试题分析:根据等腰三角形的三线合一定理可得:△1=△2,△BDE=△CDF,根据角平分线的性质可知:AD上任一点到AB、AC的距离相等,故正确的有3个,选C.12.D【解析】△PE△AB,PF△BD,PF=PE,△PB平分△ABD,△△PBD=12△ABD,同理△PDB=12△CDB,△AB△CD,△△ABD+△CDB=180°,△2△PBD+2△PDB=180°,△△PBD+△PDB=90°,△△BPD=180°-△PBD-△PDB=90°.故选D.点睛:本题最后求的是角度,关键是利用角平分线的判定将PF=PG=PE转化为角度的关系. 13.C【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC 的周长=AD+BC+CD=AC+BC.【详解】解:△ED是AB的垂直平分线,△AD=BD,△△BDC的周长=DB+BC+CD,△△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.14.B【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】由题意得△ABC=60°,AB=BC=40△△ABC是等边三角形△AC=AB=40海里.故选B .15.C【解析】【分析】连结CF ,如图,根据等腰直角△ABC 的性质得CF=AF=BF ,CF△AB ,△1=45°,则可根据“SAS”判断△ADF△△CEF ,得到DF=EF ,△3=△2,由△3+△CFD=90°可得△CFD+△2=90°,即△DFE=90°,所以△DEF 为等腰直角三角形,于是可对△进行判断;利用△DEF 为等腰直角三角形得到,利用垂线段最短,当FD△AC 时,FD 的长度最小,此时FD=12AC=4,所以DE 长度的最小值为,则可对△进行判断;利用S △ADF =S △CEF 可得四边形CDFE 的面积=S △ACF =12S △ABC =16,于是可对△进行判断;由于S △CDE =S 四边形CDFE -S △DEF =16-S △DEF ,FD 的长度的最小值为4,则S △DEF 的最小值值为8,所以△CDE 面积的最大值为8,则可对△进行判断.【详解】连结CF ,如图,△△ABC 为直角三角形,△△A=45°,△F 是等腰直角△ABC 斜边上的中点,△CF=AF=BF ,CF△AB ,△1=45°,在△ADF 和△CEF 中,1AD CE A AF CF =⎧⎪∠=∠⎨⎪=⎩,△△ADF△△CEF(SAS),△DF=EF,△3=△2,△△3+△CFD=90°,△△2+△CFD=90°,即△DFE=90°,△△DEF为等腰直角三角形,所以△正确;△△DEF为等腰直角三角形,FD,当FD△AC时,FD的长度最小,此时FD=12AC=4,△DE长度的最小值为△错误;△△ADF△△CEF,△S△ADF=S△CEF,△四边形CDFE的面积=S△ACF=12S△ABC=12×12×8×8=16,所以△正确;△S△CDE=S四边形CDFE-S△DEF=16-S△DEF,而当FD△AC时,FD的长度最小,此时FD=12AC=4,△S△DEF的最小值为12×4×4=8,△△CDE面积的最大值为16-8=8,所以△正确.故答案为△△△.【点睛】本题考查了全等三角形的判定与性质,以及等腰直角三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.二、填空题1.5【分析】分别利用角平分线的性质和平行线的性质,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC的长,即5cm.【详解】解:△BP、CP分别是△ABC和△ACB的平分线,△△ABP=△PBD,△ACP=△PCE,△PD△AB,PE△AC,△△ABP=△BPD,△ACP=△CPE,△△PBD=△BPD,△PCE=△CPE,△BD=PD,CE=PE,△△PDE的周长=PD+DE+PE=BD+DE+EC=BC=5cm.故答案为5.【点睛】此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定和性质等知识点.解题的关键是将△PDE的周长转化为BC边的长.2.5或10【分析】分两种情况:△当AP=BC=5时;△当AP=CA=10时;由HL证明Rt△ABC△Rt△PQA(HL);即可得出结果.【详解】解:△AX△AC,△△PAQ=90°,△△C=△PAQ=90°,分两种情况:△当AP=BC=5时,在Rt△ABC和Rt△QPA中,AB PQ BC AP =⎧⎨=⎩, △Rt△ABC△Rt△QPA (HL );△当AP=CA=10时,在△ABC 和△PQA 中,AB PQ AP AC=⎧⎨=⎩, △Rt△ABC△Rt△PQA (HL );综上所述:当点P 运动到AP=5或10时,△ABC 与△APQ 全等;故答案为5或10.【点睛】本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法,本题需要分类讨论,难度适中.3.【解析】【分析】过点E 作EH△AG 于H ,由△AGE=30°可求得AG 的长,由翻折可知AE=BE 、AG=CG ,根据BC=BE+EG+CG ,将数据代入相加即可得.【详解】过点E 作EH△AG 于H ,,△AGE=30°,,由翻折得6BE AE GC GA ====,△6BC BE EG GC =++=+故答案为:【点睛】本题考查了解直角三角形的应用、折叠的性质等,解题的关键是正确添加辅助线构造直角三角形.4.60°【解析】试题解析:△AB=BC=CD=DE=EF,△A=15°,△△BCA=△A=15°,△△CBD=△BDC=△BCA+△A=15°+15°=30°,△△BCD=180°-(△CBD+△BDC)=180°-60°=120°,△△ECD=△CED=180°-△BCD-△BCA=180°-120°-15°=45°,△△CDE=180°-(△ECD+△CED)=180°-90°=90°,△△EDF=△EFD=180°-△CDE-△BDC=180°-90°-30°=60°,△△DEF=180°-(△EDF+△EFD)=180°-120°=60°.点睛:三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.5.7【解析】由MN△PQ,AB△PQ,可知△DAE=△EBC=90°,可判定△ADE△△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.6.12【解析】连接BE,△D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,△△A=△BDE=90°,△在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),△Rt△DBE△Rt△ABE(HL),△AE=ED,又△AE=12cm,△ED=12cm.故填12.7.7【分析】根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.【详解】△点P在线段AB的垂直平分线上,PA=7,△PB=PA=7,故答案为7.【点睛】本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8.1或3【详解】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF△BD,垂足为F点,可得△EFB=90°,△EC=ED,△F为CD的中点,即CF=DF=12 CD,△△ABC为等边三角形,△△ABC=60°,△△BEF=30°,△BE=AB+AE=1+2=3,△FB=12EB=32,△CF=FB−BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF△BD,垂足为F点,可得△EFC=90°,△EC=ED,△F为CD的中点,即CF=DF=12 CD,△△ABC为等边三角形,△△ABC=△EBF=60°,△△BEF=30°,△BE=AE−AB=2−1=1,△FB=12BE=12,△CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或39.在一个三角形中,有两个角是直角【解析】【详解】用反证法证明命题“在一个三角形中,不能有两个内角为直角”时,应假设“在一个三角形中,可以有两个内角为直角”.故答案为:在一个三角形中,可以有两个内角为直角.【点睛】反证法:第一步应假设假设结论不成立.10.3【解析】试题分析:连接AM,AN,△AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,△BM=AM,CN=AN,△△MAB=△B,△CAN=△C,△△BAC=120°,AB=AC,△△B=△C=30°,△△BAM+△CAN=60°,△AMN=△ANM=60°,△△AMN是等边三角形,△AM=AN=MN,△BM=MN=NC,△BC=9cm,△MN=3cm.故答案为3cm.考点:1.线段垂直平分线的性质;2.等腰三角形的性质;三、解答题1.证明见解析.【解析】【分析】由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定的方法即可证明.【详解】△BE=CF ,△BE+EF=CF+EF ,即BF=CE ,△△A=△D=90°,△△ABF 与△DCE 都为直角三角形,在Rt△ABF 和Rt△DCE 中,BF=CE ,AB=CD ,△Rt△ABF△Rt△DCE (HL ).2.(1)证明见解析;(2)CD【分析】(1)因为△AOB=△COD=90°,由等量代换可得△DOB=△AOC ,又因为△AOB 和△COD 均为等腰直角三角形,所以OC=OD ,OA=OB ,则△AOC△△BOD ;(2)由(1)可知△AOC△△BOD ,所以AC=BD=2,△CAO=△DBO=45°,由等量代换求得△CAB=90°,则CD ==【详解】(1)证明:△△DOB=90°-△AOD ,△AOC=90°-△AOD ,△△BOD=△AOC ,又△OC=OD ,OA=OB ,在△AOC 和△BOD 中, OC OD AOC BOD OA OB ⎪∠⎪⎩∠⎧⎨===△△AOC△△BOD (SAS );(2)解:△△AOC△△BOD ,△AC=BD=2,△CAO=△DBO=45°,△△CAB=△CAO+△BAO=90°,△CD==3.(1)证明见解析;(2)证明见解析【分析】(1)根据等腰三角形三线合一的性质可得△BAE=△EAC,然后利用“边角边”证明△ABE和△ACE全等,再根据全等三角形对应边相等证明即可.(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出△EAF=△CBF,然后利用“角边角”证明△AEF和△BCF全等即可.【详解】(1)证明:△AB=AC,D是BC的中点,△△BAE=△EAC.在△ABE和△ACE中,△AB AC{BAE EAC AE AE=∠=∠=,△△ABE△△ACE(SAS).△BE=CE.(2)△△BAC=45°,BF△AF,△△ABF为等腰直角三角形.△AF=BF.△AB=AC,点D是BC的中点,△AD△BC.△△EAF+△C=90°.△BF△AC,△△CBF+△C=90°.△△EAF=△CBF.在△AEF和△BCF中,△EAF CBF{AF BFAFE BFC90∠=∠=∠=∠=︒,△△AEF△△BCF(ASA).4.详见解析.【分析】根据已知条件证明AB=CD,AF=CF,证明Rt△ABF△Rt△CDE(HL),得BF=DE,进而证明△BFG△△DEG(AAS),即可证明.【详解】证明△DE△AC,BF△AC,△△DEG=△BFE=90°,△AE=CF,AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CF,△Rt△ABF△Rt△CDE(HL),△BF=DE.在△BFG和△DEG中,△BFG=△DEG,△BGF=△DGE,BF=DE△△BFG△△DEG(AAS),△FG=EG,即BD平分EF【点睛】本题考查了三角形全等的判定与性质,中等难度,将中点问题转化成证明全等问题是解题关键.5.画图见解析【解析】试题分析:要使P到三条公路的距离相等,那么P点必然在这三条公路夹角的角平分线上,因此,分别作出l1与l3、l2与l3夹角的角平分线,在区域A内的交点即为点P.试题解析:如图,点P即为所求.点睛:本题关键在于利用角平分线的逆定理解题,掌握尺规作图作角平分线的方法. 6.CD的长是5 cm.【解析】试题分析:根据等边对等角和三角形的外角求出△CAD的度数,然后根据30°角的直角三角形的性质可求解.试题解析:在△ABC中,因为AB=AC=10 cm,△B=15°,所以△B=△ACB=15°.所以△DAC=△B+△ACB=30°.因为CD是AB边上的高,所以△D=90°.所以CD=AC=×10=5(cm),即CD的长是5 cm.7.见解析【分析】因为点E到B、D两点的距离相等,所以,点E一定在线段BD的垂直平分线上,首先以D为顶点,DC为边作一个角等于△ABC,再作出DB的垂直平分线,即可找到点E.【详解】解:作图如下:结论:点E为所求8.(1)见解析(2)【解析】试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出△CAD=△CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AF,从而得证.(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.解:(1)证明:△AD△BC,△BAD=45°,△△ABD是等腰直角三角形.△AD=BD.△BE△AC,AD△BC,△△CAD+△ACD=90°,△CBE+△ACD=90°.△△CAD=△CBE.在△ADC 和△BDF 中,△CAD=△CBF ,AD=BD ,△ADC=△BDF=90°,△△ADC△△BDF (ASA ).△BF=AC .△AB=BC ,BE△AC ,△AC=2AE .△BF=2AE .(2)△△ADC△△BDF ,.在Rt△CDF 中,CF 2===.△BE△AC ,AE=EC ,△AF=CF=2..9.(1)DE=3;(2)ADB S 15∆=.【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)△AD 平分△CAB ,DE△AB ,△C=90°,△CD=DE ,△CD=3,△DE=3;(2)在Rt△ABC 中,由勾股定理得:AB 10==,△△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 10.△AMN 的周长为2.【分析】根据已知条件得△CDE△△BDM ,再利用DE=DM ,MDE EDN 60∠∠==︒证明△DMN△△DEN ,得到对应边相等即可解题.【详解】如图,延长NC 到E ,使CE=BM ,连接DE ,△△ABC 为等边三角形,△BCD 为等腰三角形,且△BDC=120°,△△MBD=△MBC+△DBC=60°+30°=90°,△DCE=180°﹣△ACD=180°﹣△ABD=90°,又△BM=CE ,BD=CD ,△△CDE△△BDM ,△△CDE=△BDM ,DE=DM ,△NDE=△NDC+△CDE=△NDC+△BDM=△BDC ﹣△MDN=120°﹣60°=60°,△在△DMN 和△DEN 中,60DM DE MDE EDN DN DN =⎧⎪∠=∠=︒⎨⎪=⎩,△△DMN△△DEN ,△MN=NE=CE+CN=BM+CN ,△△AMN的周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=1+1=2,故△AMN的周长为2.【点睛】本题考查等边三角形的性质与应用,截长补短的数学方法,中等难度,作辅助线证明全等是解题关键.11.△AOE=20°,△FOG=20°【解析】试题分析:根据对顶角相等得到△AOC=△BOD=40°,然后再根据角平分线的定义即可求得△AOE的度数,再根据同角的余角相等即可求得△FOG的度数.试题解析:△△AOC与△BOD是对顶角,△△AOC=△BOD=40°,△OE平分△AOC,△△AOE=12△AOC=20°,△OF△AB,OG△OE,△△AOF=△EOG=90°,即△AOG与△FOG互余,△AOG与△AOE互余,△△FOG=△AOE=20°.【点睛】本题考查了对顶角的性质、角平分线的定义、余角的性质等,在解题时根据对顶角的性质和角平分线,余角的性质进行解答是关键.12.(1)见解析;(2)14 DO AD【解析】试题分析:(1)由AD为△ABC的角平分线,得到DE=DF,推出△AEF和△AFE相等,得到AE=AF,即可推出结论;(2)由已知推出△EAD=30°,得到AD=2DE,在△DEO中,由△DEO=30°推出DE=2DO,即可推出结论.试题解析:(1)△AD为△ABC的角平分线,DE△AB,DF△AC,△DE=DF,△AED=△AFD=90°,△△DEF=△DFE,△△AEF=△AFE,△AE=AF,△点A、D都在EF的垂直平分线上,△AD垂直平分EF.(2)14DO AD=,理由:△△BAC=60°,AD平分△BAC,△△EAD=30°,△AD=2DE,△EDA=60°,△AD△EF,△△EOD=90°,△△DEO=30°△DE=2DO,△AD=4DO,△14DO AD=.【点睛】本题主要考查了角平分线的性质,线段垂直平分线的性质,含30°角的直角三角形的性质等知识点,解此题的关键是(1)证AE=AF和DE=DF;(2)证AD=2DE和DE=2DO.13.(1)40°;2α;(2)△BOD=2△COE.【解析】试题分析:(1)先根据直角计算△DOE的度数,再同角平分线的定义计算△AOD的度数,最后利用平角的定义可得结论;(2)设△BOD=β,则△AOD=180°-β,根据角平分线的定义表示△BOE,再利用互余的关系求△COE的度数,可得结论.试题解析:(1)若△COE=20°,△△COD=90°,△△EOD=90°﹣20°=70°,△OE平分△AOD,△△AOD=2△EOD=140°,△△BOD=180°﹣140°=40°;若△COE=α,△△EOD=90﹣α,△OE平分△AOD,△△AOD=2△EOD=2(90﹣α)=180﹣2α,△△BOD=180°﹣(180﹣2α)=2α;故答案为40°;2α;(2)如图2,△BOD=2△COE,理由是:设△BOD=β,则△AOD=180°﹣β,△OE平分△AOD,△△EOD=12△AOD=1802β-=90°﹣2β,△△COD=90°,△△COE=90°﹣(90°﹣2β)=2β, 即△BOD=2△COE .14.(1)详见解析;(2)△AEB 的度数为60°;线段BE 与AD 之间的数量关系是:BE=AD ;(3)详见解析.【解析】试题分析:(1) 根据已知条件可知,要想证明BD =CE ,可以证明△BAD 与△CAE 全等. 根据已知条件中关于等腰三角形的叙述,可以得到AB =AC ,AD =AE . 由于这两个等腰三角形的顶角均为40°,所以这两个顶角分别减去△DAC 也一定相等. 综合上述条件,利用SAS 可以证明△BAD 与△CAE 全等,进而证明BD =CE .(2) 根据已知条件不难利用SAS 证明△ACD 和△BCE 全等. 利用全等三角形的相关性质,可以得到AD =BE ,即线段BE 与AD 之间的数量关系是BE =AD . 同理,根据全等三角形的性质可知△ADC =△BEC . 根据等边三角形的性质和邻补角的相关结论可知,△BEC =△ADC =120°. 利用等边三角形的性质即可求得△AEB 的度数.(3) 通过两个直角与△DCB 的和差关系可以得到△ACD =△BCE ,再结合等腰直角三角形的性质,不难利用SAS 证明△ACD 和△BCE 全等. 利用全等三角形的性质可以得到AD =BE . 根据等腰直角三角形的性质,可以得到CM =DM =EM . 综上所述,AE =AD +DE =BE +2CM . 试题解析:(1) 证明:△△BAC =△DAE =40°,△△BAC -△DAC =△DAE -△DAC ,即△BAD =△CAE .△△ABC 与△ADE 分别是以BC 与DE 为底边的等腰三角形,△AB =AC ,AD =AE .△在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,△△BAD △△CAE (SAS),△BD =CE .(2) 本小题应依次填写:60°;BE =AD . 理由如下.△△ACB 和△DCE 均为等边三角形,△AC =BC ,CD =CE ,△ACB =△DCE =60°.△△ACB -△DCB =△DCE -△DCB ,即△ACD =△BCE .△在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,△△ACD △△BCE (SAS),△AD =BE ,△ADC =△BEC .△△DCE 为等边三角形,△△CDE =△CED =60°,△点A ,D ,E 在同一直线上,△△ADC =180°-△CDE =180°-60°=120°,△△BEC =△ADC =120°,△△AEB =△BEC -△CED =120°-60°=60°.综上所述,△AEB 的度数为60°;线段BE 与AD 之间的数量关系是:BE =AD .(3) △AEB 的度数为90°;线段CM ,AE ,BE 之间的数量关系是:AE =BE +2CM . 理由如下. △△ACB 和△DCE 均为等腰直角三角形且△ACB =△DCE =90°,△AC =BC ,CD =CE ,△CDE =△CED =45°.△△ACB =△DCE =90°,△△ACB -△DCB =△DCE -△DCB ,即△ACD =△BCE .△在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,△△ACD △△BCE (SAS),△AD =BE ,△ADC =△BEC ,△△CDE =45°,又△点A ,D ,E 在同一直线上,△△ADC =180°-△CDE =180°-45°=135°,△△BEC =△ADC =135°.△△BEC =135°,△CED =45°,△△AEB =△BEC -△CED =135°-45°=90°.△CM 为△DCE 中DE 边上的高,即CM △DE ,△在等腰直角三角形DCE 中,DM =EM .△CM △DE ,△CDE =45°,△△CMD 是等腰直角三角形,△CM =DM .△CM=DM=EM.△DE=DM+EM=2CM,又△AD=BE,△AE=AD+DE=BE+2CM.点睛:本题综合考查了全等三角形,等腰三角形以及等边三角形的相关知识. 根据各个相关角之间的位置关系,灵活运用角的和差获得相等的角. 这是本题解题的一个关键点. 另外,灵活运用等边三角形和等腰直角三角形的判定和性质也是解决本题的重要手段.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 直角三角形
一、选择题
1.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,则图中与∠A互余的角有( )
A.0个
B.1个
C.2个
D.3个
2.(2018四川绵阳三台期中)下列各组数中是勾股数的是( )
A.2,3,4
B.0.3,0.4,0.5
C.7,24,25
D.1
3,1 4 ,1
5
3.如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是( )
A.HL
B.SAS
C.ASA
D.AAS
4.下列条件中,能判定两个直角三角形全等的是( )
A.一组锐角对应相等
B.两组锐角对应相等
C.一组边对应相等
D.两组直角边对应相等
5.如图,在△ABC中,AB=AC,AE是经过点A的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E,AD=CE,则∠BAC的度数是( )
A.45°
B.60°
C.90°
D.120°
6.如图,△ABC的高BD,CE相交于点O,若OD=OE,AO的延长线交BC于点M,则图中全等的直角
..三角形共有( )
32
8
A.5对
B.6对
C.7对
D.8对
7.已知M 、N 是线段AB 上的两点,AM=MN=2,NB=1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是 ( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形 8.如图,在△ABC 中,AC=8,∠ABC=60°,∠C=45°,AD ⊥BC,垂足为D,∠ABC 的平分线交AD 于点E,则AE 的长为( )
A.22 
B.32 
C. 
D. 
二、填空题
9.下列命题中,逆命题是真命题的是 (只填写序号). ①在同一平面内,垂直于同一直线的两直线平行; ②有一个角是60°的等腰三角形是等边三角形; ③如果两个实数相等,那么它们的平方相等;
④如果三角形的三边长a 、b 、c(c 为最长边)满足a 2+b 2=c 2,那么这个三角形是直角三角形. 10.已知Rt △ABC 中,a,b,c 为三边长,∠C=90°,若a+b=14 cm,c=10 cm,则S △ABC = . 11.在△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为 .
324
12.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4 cm,CE=3 cm,则DE= cm.
13.如图,AB=12 m,CA⊥AB于点A,DB⊥AB于点B,且AC=4 m,点P从点B出发,沿BA向点A运动,每分钟运动1 m,点Q从点B出发,沿BD向点D运动,每分钟运动2 m,P、Q两点同时出发,运动分钟后,△CAP与△PQB全等.
三、解答题
14.如图,在一次夏令营活动中,小玲从营地A出发,沿北偏东60°方向走了500√3 m到达B点,然后再沿北偏西30°方向走了500 m到达目的地C点.求A,C两点之间的距离.
15.细心观察下面图形,认真分析各式,然后解答问题:(S
1,S
2
,S
3
,…表示各个三角形的面积)
O A22=(√1)2+12=2,S
1=√1 2
;
O A32=12+(√2)2=3,S
2=√2 2
;
O A42=12+(√3)2=4,S
3=√3 2
;
……
(1)请你直接写出O A102的值;
(2)请用含有n(n是正整数)的等式表示上述的两个变化规律;
(3)已知这些三角形中,有一个三角形的面积是√5,通过计算说明它是第几个三角形.
16.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的数量与位置关系,并证明你的结论.
答案
1.C
2.C
3.A
4.D
5.C
6.B
7.B
8.D
9.①②④ 10. 24 cm2 11. 32或42 12. 7 13. 4
14.如图,在A的正北方向上找一点D,在B的正南方向上找一点E,
∵30°+∠CBA+∠ABE=180°,∠DAB=∠ABE=60°,∴∠CBA=90°,即△ABC为直角三角形.
在Rt△ABC中,BC=500 m,AB=500√3 m, 由勾股定理可得AC2=BC2+AB2,
∴AC=1 000 m.
15.(1)结合已知数据可知O A102=10.
(2)结合已知数据可得O A n2=n,S
n =√n
2
.
(3)已知该三角形的面积是√5,根据S
n =√n
2
=√5,可得√n=2√5,
∴n=20,∴该三角形是第20个三角形.
16.CE=DE,CE⊥DE,理由如下:
∵AC⊥AB,DB⊥AB,∴∠A=∠B=90°,又AC=BE,AE=BD,∴△CAE≌△EBD,∴CE=DE,∠CEA=∠D. ∵∠D+∠DEB=90°,∴∠CEA+∠DEB=90°,∴∠CED=180°-(∠CEA+∠DEB)=90°,∴CE⊥DE.。

相关文档
最新文档