(完整word版)变量之间的关系测试题及答案

合集下载

变量之间的关系(含答案)

变量之间的关系(含答案)

变量之间的关系试卷简介:变量的相关概念,用表格、关系式、图象表示变量之间的关系一、单选题(共12道,每道7分)1.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y与所挂物体质量x的一组对应值:下列有关表格的分析中,不正确的是( )A.表格中两个变量是所挂物体质量和弹簧长度B.自变量是所挂物体质量C.在允许范围内,所挂物体质量越大,弹簧长度就越长D.所挂物体质量随弹簧长度的变化而变化答案:D解题思路:所挂物体质量x是自变量,弹簧长度y是因变量,弹簧长度y随着所挂物体质量的变化而变化,故正确选项是D试题难度:三颗星知识点:变量之间的关系2.中国电信公司电话收费标准:前3分钟(不足3分钟按3分钟计算)为0.2元,3分钟后每分钟收0.1元,则通话时间x分钟(x>3)与通话费用y之间的函数关系是( )A.y=0.1x+0.2B.y=0.1xC.y=0.1x-0.1D.y=0.1x+0.5答案:C解题思路:当通话时间超过3分钟时,计费分为两段,第一段是前3分钟话费为0.2元,第二段是超过3分钟的部分,超出部分时间为(x-3),超出部分的话费为0.1(x-3),故总的话费为y=0.2+0.1(x-3),化简的结果为y=0.1x-0.1,故正确选项为C试题难度:三颗星知识点:变量之间的关系3.如图,当输入数值x为-2时,输出数值y是( )A.4B.6C.8D.10答案:B解题思路:输入-2,-2<1则代入y=-0.5x+5=-0.5×(-2)+5=6,故正确选项是B试题难度:三颗星知识点:变量之间的关系4.一天,小军和爸爸去登山,已知山脚到山顶的路程为200米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的时间t(分钟)的图象关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( )A.爸爸开始登山时,小军已走了50米B.爸爸走了5分钟,小军仍在爸爸的前面C.小军比爸爸晚到山顶D.10分钟以后小军还在爸爸的前面答案:D解题思路:横轴表示时间,纵轴表示小军和爸爸离开山脚登山的路程,由于小军先出发,所以当时小军先出发,10分钟时2人相遇,之前小军在爸爸前面,之后爸爸赶超小军先到达山顶.试题难度:三颗星知识点:变量之间的关系5.如图所示的图象描述了某汽车在行驶过程中速度与时间的变化关系,下列说法中错误的是( )A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第9分到第12分,汽车速度从60千米/时减少到0千米/时D.从第3分到第6分,汽车行驶了120千米答案:D解题思路:横轴表示时间,纵轴表示对应时间汽车的速度,0-3汽车由0千米/时加速到40千米/时,3-6以40千米/时匀速行驶,行驶路程为千米,9-12汽车由60千米/时逐渐减速到0千米/时.试题难度:三颗星知识点:变量之间的关系6.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A.1个B.2个C.3个D.4个答案:C解题思路:由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,乙追上甲,此时都跑了10千米;乙比甲先到达终点;求得乙跑的直线的解析式,即可求得两人跑的距离,则可求得答案.试题难度:三颗星知识点:变量之间的关系7.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )A. B.C. D.答案:C解题思路:父亲先到车站,2人最后一起回家,终点应在x轴上试题难度:三颗星知识点:变量之间的关系8.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是( )A. B.C. D.答案:A解题思路:水池上款下窄,所以在相等的时间内,水的高度为开始下降慢之后下降快.试题难度:三颗星知识点:变量之间的关系9.如图1,在长方形ABCD中,动点P从点B出发,以每秒2个单位的速度沿BC,CD,DA运动至点A停止.设点P运动的时间为x,△ABP的面积为y,如果y与x的关系图象如图2所示,则m的值是( )A.3B.5C.6D.8答案:B解题思路:x=2时,P点位于C处,BC=4.P位于DC上时,三角形面积为12,可求出AB长,DC=AB,由速度可求出时间.试题难度:三颗星知识点:变量之间的关系10.小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟答案:D解题思路:首先求得上坡,下坡,平路时的速度分别为80米/分,200米/分,100米/分,所以小高从学校到家需要的时间为,即可所求.试题难度:三颗星知识点:变量之间的关系11.某村新修建一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个结论:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的结论是( )A.①③B.②③C.③D.①②③答案:C解题思路:根据图1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.试题难度:三颗星知识点:变量之间的关系12.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示.给出下列说法:(1)甲的平均速度为km/h;(2)乙的平均速度为8km/h;(3)甲、乙两人同时到达目的地;(4)从开始到相遇这一段时间内,甲的平均速度=乙的平均速度.根据图象信息,以上说法正确的有( )A.1个B.2个C.3个D.4个答案:B解题思路:首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.6小时到达离出发地20千米的目的地;甲比乙早到0.6小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.试题难度:三颗星知识点:变量之间的关系二、填空题(共2道,每道8分)13.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的关系.则根据图象信息,快车的速度为____km/h.答案:160解题思路:由图象看出两地距离,两车相遇时y=0,C点表示快车到站,慢车继续行驶,D 点慢车到站,可以求出慢车速度,两车相遇路程之和等于甲乙两地距离,列出关系式,算出快车速度.试题难度:知识点:变量之间的关系14.小聪和小明沿同一条路同时从学校出发到市图书馆查阅资料,学校与市图书馆之间的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达市图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的距离s(千米)与所经过的时间t(分钟)之间的关系,根据图象信息,则当小聪与小明迎面相遇时,他们离学校的路程是____千米.答案:3解题思路:由BC段可求出小聪回学校的速度,OD可求出小明的速度,要求他们相遇时距学校的速度,可利用逆向思维,转化为相遇问题,利用速度和总路程可求出时间,最终算出距离.试题难度:知识点:变量之间的关系。

第三章 变量之间的关系单元测试卷(含答案)

第三章 变量之间的关系单元测试卷(含答案)

初中数学七年级下册第三章《变量之间的关系》测试卷(总分:100分,用时:40分钟)学校:___________姓名:___________班级:___________得分:___________一、单选题:(共10题,30分)1.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A B C D3.已知变量y与x的函数图象如图所示,则函数关系式为()。

A、()B、C、()D、4.下列各曲线中表示y是x的函数的是()A B C D5.用圆的半径r来表示圆的周长C,其式子为C=2πr。

则其中的常量为()A.rB.πC.2D.2π6.如图,AB是半圆O的直径,点P从点A出发,沿半圆弧AB顺时针方向匀速移动至点B,运动时间为t,△ABP的面积为S,则下列图象能大致刻画S与t之间的关系的是()A. B. C. D.7.一枝蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的关系用下图中_________图象表示.( )8.假定甲、乙两人在一次赛跑中,速度v与时间t的关系如图6-4所示,则下列说法正确的是()A.甲的速度逐渐增大B.乙越跑越快C.甲、乙两人的速度相同D.开始甲比乙速度快,最终两人速度相同了9.从北京向泰安打长途电话3分钟之内收费2.4元,每增加1分钟加收1元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分钟)之间的关系式为( )A.y=t+2.4B.y=t-0.6C.y=2.4t+tD.y=2.4t+110.鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时,x 小时后鲁老师距省城y千米,则y与x之间的函数关系式为( )A.y=80x-200B.y=-80x-200C.y=80x+200D.y=-80x+200二、填空题:(共6题,24分)11.一三角形的一边长为a cm,这边上的高为8 cm,该三角形的面积为S cm2,试写出S与a之间的关系式:_________________.12.某航空公司托运行李的费用y元与托运行李的质量x(kg)之间的函数关系如图所示,根据图中的信息可知:免费托运行李质量应不超过______kg.13.如图6-3-20是某水库的蓄水量和蓄水时间的关系图,依据图象完成下列问题:(1)该水库原有存水__________万立方米;(2)按此规律第45天水库蓄水__________万立方米.14.面积是200 m2的长方形,它的长为y m,宽为x m,则y与x之间的关系式为_____________.15.如图6-3-10所示是在压力不变的情况下,某物体承受压强P(Pa)与它的受力面积S(m2)的变化关系图.那么P随S的增大______________.图6-1516.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,(图6-15)图象刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).图中A点表示的意义是____________________.三、问答题:(共3题,30分)17.(10分)某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50 000元,且每售出一套软件,软件公司还需支付安装调试费用200元.(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式;(2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本?18.(10分)某种长途电话收费方式为按时收费,前3分钟收费1.8元,以后每加一分钟收费1元,不足1分钟按1分钟计算.求(1)当时间t≥3分钟时的电话费y(元)与t(分)之间的关系.(2)计算当时间分别为5分、10分、30分、50分的电话费.19.(10分)有一边长为2 cm的正方形,若边长增加,则其面积也随之改变.(1)在这个变化过程中,自变量和因变量各是什么?(2)如果边长增加了x cm,则其面积y(cm2)关于x的关系式是什么?(3)若边长增加了4 cm,求此时正方形的面积.四、综合题:(共1题,16分)20.(16分)春天来了,小颖要用总长为12米的篱笆围一个长方形花圃,其一边靠墙(墙长9米),另外三边是篱笆,其中BC不超过9米.设垂直于墙的两边AB,CD的长均为x米,长方形花圃的面积为y米2.(1)(8分)用x表示花圃的一边BC的长,判断x=1是否符合题意,并说明理由;(2)(8分)求y与x之间的关系式;根据关系式补充表格:x(米)… 1.5 2 2.5 3 3.5 4 4.5 …y(米2)…13.5 16 17.5 17.5 13.5 …观察表中数据,写出y随x变化的一个特征:.参考答案与试题解析一、选择题1-5、CBCDD 6-10、CBDBD二、填空题11:S=4a 12、19 13.:20 、80 14:y=15.:而减小16.:亏损2万元17.正确答案:(1)y=200x+50 000(2)100(2)确保不亏本就是销售额要大于或者等于总费用,所以我们可以列出关于x的不等式700x≥200x+50 000,解得x≥100.18.正确答案:(1)y=t-1.2.(2)当t=5时,y=3.8;当t=10时,y=8.8;当t=30时,y=28.8;当t=50时,y=48.8.19.正确答案:(1)自变量是:边长增加的长度;因变量是:正方形的面积;(2)y=(2+x)2;(3)当x=4 cm 时,y=(2+4)2=36 (cm2).20.(1).正确答案:BC=12-2x,x=1不符合题意,∵当x=1时,BC=12-2=10>9,∴x=1不符合题意.(2).正确答案:解:y=AB·BC=x(12-2x)=-2x²+12x,由表可知,y随x的增大先增大后减小,故答案为:y随x的增大先增大后减小。

北师大版七年级下册数学第三章变量之间的关系单元测试卷(Word版,含答案)

北师大版七年级下册数学第三章变量之间的关系单元测试卷(Word版,含答案)

第 1 页 共 10 页 北师大版七年级下册数学第三章变量之间的关系单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q (升)与流出时间t (分钟)的关系式是( )A .()0.20100Q t t =≤≤B .()200.20100Q t t =-≤≤C .()0.2020t Q Q =≤≤D .()200.2020t Q Q =-≤≤2.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式3520y x =+来表示,则y 随x 的增大而( ).A .增大B .减小C .不变D .以上答案都不对3.小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数y (元)与购买彩笔的支数x (支)之间的关系式为( )A .23y x =B .32y x =C .12y x =D .18=y x4.在△ABC 中,它的底边是a ,底边上的高是h ,则三角形面积S =12ah ,当a 为定长时,在此函数关系式中( ) A .S ,h 是变量,12,a 是常量 B .S ,h ,a 是变量,12是常量 C .a ,h 是变量,12,S 是常量 D .S 是变量,12,a ,h 是常量 5.为积极响应振兴乡村的号召,某工作队步行前往某乡村开展入户调查.队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地.设行进时间为t (单位:min ),行进的路程为x (单位:m ),则能近似刻画x 与t 之间的函数关系的大致图象是( )A .B .C.D.6.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A.S和p B.S和a C.p和a D.S,p,a7.甲、乙两人在一次赛跑中,路程s(米)与时间t(秒)的关系如图所示,则下列结论错误的是()A.甲的速度为8米/秒B.甲比乙先到达终点C.乙跑完全程需12.5秒D.这是一次100米赛跑8.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8679.刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y(米)第2页共10页。

变量之间的关系,附练习题含答案

变量之间的关系,附练习题含答案

变量之间的关系学案知识梳理:1.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量;变量分为自变量和因变量.2.表示变量之间的关系通常有三种方法,它们是列表法、图像法、表达式法.1.看图的方法:一看轴;二看点;三看线练习题1. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x /kg 0 1 2 3 4 5 弹簧长度y /cm 182022242628(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体质量为3 kg 时,弹簧多长?不挂重物时,弹 簧多长?(3)若所挂物体质量为7 kg (在允许范围内),你能说出此时 的弹簧长度吗?2. 如图,若输入x 的值为-5,则输出的结果是_______;若输入x 的值为5,则输出的结果是_______.3. 如图是某地一天的气温随时间变化的图象,根据图象回答:(1)在这一天中,什么时间气温最高?什么时间气温最低? 最高气温和最低气温各是多少? (2)20 h 的气温是多少? (3)什么时间气温为6 ℃? (4)哪段时间内气温保持不变?4. 一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,过了一段时间后,汽车减速到达下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面哪一个图可以近似地刻画出汽车在这段时间内的速度变化情况?( )A .B .C .D .时间O速度时间速度O时间速度O时间速度O是 否 y =x +1输入xx 大于0吗? y =x 1输出yt /hT /°C-4-22468100242220161814121086425.某蓄水池的横断面示意图如图所示,分深水区和浅水区.如果这个注满水的蓄水池以固定的流量把水全部放出,下列图象中能大致表示水的深度和放水时间之间的关系的是()A.B.C.D.6.如图所示,向放在水槽底部的烧杯注水,注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的关系大致是图中的()A.B.C.D.7.星期天晚饭后,小红从家里出发去散步,图中反映了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家里出发到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了C.从家里出发一直散步(没有停留),然后回家了D.从家里出发散一会儿步,就找同学去了,18分钟后才开始返回8.小李讲了一个龟兔赛跑的故事,并用图象描绘了比赛过程中路程随时间的变化情况,请先回答下列问题,再讲述这个故事.(1)兔子和乌龟是否在同一地点同时出发?(2)兔子和乌龟在比赛途中相遇过几次?(3)哪一个先到达终点?9.男、女运动员在100米跑道的两端同时起跑,往返练习跑步,测得男运动员每跑一百米用12秒,女运动员每跑一百米用15秒,图中实线和虚线分别为这两名运动员距女运动员起跑点的距离s(米)与时间t(秒)之间的关系图象,请根据图象回答问题:(1)图中实线是_____运动员跑步的图象,虚线是_____运动员跑步的图象(填“男”或“女”);(2)在百米跑道上两运动员第一次在同一端点相遇时,两人均跑了________秒,其中男运动员跑了________米,女运动htt员跑了________米;(3)两运动员从开始起跑到第一次在同一端点相遇止,共相 遇了__________次.10. 甲、乙两人在一次赛跑中,路程s (米)与时间t (秒)的关系如图所示,则下列结论错误的是( ) A .这是一次100米赛跑B .甲比乙先到达终点C .乙跑完全程需12.5秒D .甲的速度为8米/秒第10题图第11题图11. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s (千米)与时间t (分)之间的关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为( ) A .12分B .13分C .14分D .15分12. 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关闭进水管.在打开进水管到关闭进水管这段时间内,容器内的水量y (升)与时间x (分钟)之间的关系如图所示,则关闭进水管后,经过______分钟,容器中的水恰好放完.13. 如图,小明从家骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买一本练习册,于是又折回到刚经过的一家书店,买到书后继续赶去学校,他离家的距离s (米)与时间t (分)之间的关系如图所示,根据图中提供的信息回答下列问题: (1)小明家到学校的距离是多少米?书店到学校的距离是多少米? (2)小明在书店停留了多少分钟?本次上学途中,小明一共行驶了多少米? (3)在整个上学的途中,哪个时间段小明骑车速度最快?最快速度是多少?(4)如果小明不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?x /分钟14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离.......为y(km),图中的折线表示y与x之间的关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为________km;(2)请解释图中点B的实际意义;(3)求慢车和快车的速度.15.如图是某空蓄水池的横断面示意图,分为深水区和浅水区.若以固定的流量往这个空蓄水池中注水,则下列图象中,能大致表示水的深度h与时间t之间的关系的是()A.B.C.D.16.小明某天上午9时骑车离家,15时回家,如图描绘了他离家的距离与时间的具体变化情况,请结合图象回答以下问题:(1)小明经过多长时间到达离家最远的地方?此时他离家多远?(2)11时到12时,他行驶了多少千米?(3)他由离家最远的地方返回的平均速度是多少?【思路分析】读图,从图象中提取信息.①看轴:明确横轴、纵轴表示的意义.横轴表示____________,纵轴表示___________________.②看点:看起点、终点、状态转折点,与实际情景对应.起点表示上午9时从家出发,终点表示15时回家,与实际情景相符.状态转折点:10时离家__________,10.5时离家___________,11时离家________,12时离家________,13时离家_________.③看线,观察线段的变化趋势.线的变化较为复杂,9时—10时,距离增加了_________,此段的速度为________;10时—10.5时,速度为________;10.5时—11时,距离未发生变化;11时—12时,距离增加了________,此段的速度为________;12时—13时,距离未发生变化;13时—15时,距离减少了________,此段的速度为________.【过程书写】解:时浅水区深水区17.在利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器18.如图,当输入数值x为-2时,输出的结果是()A.-2B.3C.-3D.2t y t y t O yt【参考答案】1.(1)表中反应了弹簧长度与所挂物体质量之间的关系;所挂物体质量是自变量;弹簧长度是因变量(2)当所挂物体质量为3kg时,弹簧长24cm;不挂重物时,弹簧长18cm(3)32cm2.-6;63.(1)16h气温最高;4h气温最低;最高气温是10℃;最低气温是-4℃;(2)20h的气温是8℃;(3)10h和22h的气温是6℃;(4)12h到14h的气温持续不变4. B5. A6. B7. B8.(1)否;(2)两次;(3)乌龟9.(1)男;女;(2)60;500;400;(3)510. D11. C12.813.(1)1500米;900米;(2)4分钟;2700米;(3)12-14分钟小明骑车速度最快;450米/分钟;(4)如果不买书需要7.5分钟;本次比往常多用了6.5分钟14.(1)900;(2)点B的实际意义是甲、乙两车在出发4h时相遇;(3)慢车的速度是75km/h;快车的速度是150km/h15. C16.(1)3小时,30千米(2)13千米(3)15千米/小时思路分析:①时间,离家的距离②10千米,17千米,17千米,30千米,30千米③10千米,10千米/小时14千米/小时13千米,13千米/小时30千米,15千米/小时17.B18.B19.(1)时间,气温(2)16,2,10,-2(3)5(4)9和2220.B21.D22.C23.D24.(1)甲教师的平均速度是0.25千米/分钟,乙教师的平均速度是1千米/分钟(2)乙出发后追上甲所用的时间是6分钟25.(1)a=20,b=1 100,c=50(2)60分钟。

变量之间的关系程度测试及答案

变量之间的关系程度测试及答案

支数,那么 y 与 x 之间的关系应该是
2
A.y= 12x B.y=18x C.y= x
3
3
D.y= x
2
3. 一辆汽车由韶关匀速驶往广州,下 列图象中大致能反映汽车距离广州的路程 s (千米)
和行驶时间 t (小时)的关系的是
A
o
s
t
o
B
s
t
s
o
4.在一定条件下,若物体运动的路程 s(米)与时间 t(秒)的关系式为 s 3t 2 2t 1 ,
班级
第六章《变量之间的关系》水平测试
学号
一、选一选,看完四个选项后再做决定呀!(每小题 3 分 ,共 30 分)
1.下面说法中正确的是
A.两个变量间的关系只能用关系式表示
B.图象不能直观的表示两个变量间的数量关系
C.借助表格可以表示出因变量随自变量的变化情况
D.以上说法都不对
2.如果一盒圆珠笔有 12 支,售价 18 元,用 y(元)表示圆珠笔的售价,x 表示圆珠笔的
3
3
10
【 】.
B.第 12 分 时汽车的速度是 0 千米/时 图2
C.从第 3 分到第 6 分,汽车行驶了 120 千米
D.从第 9 分 到第 12 分,汽车的速度从 60 千米/时减少到 0 千米/时 10. 向高为 10 厘米的容器中注水,注满为止,若注水量 V(厘米 3)与水深 h(厘米)之
8.小王利用计算机设计了一个程序,输入和输出的数据如下表:
输入 …
输出 …
1
1
2
那么,当输入数据 8 时,输出的数据是 【 】.
8
A.
61
8
B.
63

完整)七年级数学下册-变量之间的关系测试题

完整)七年级数学下册-变量之间的关系测试题

完整)七年级数学下册-变量之间的关系测试题1.给定一个圆珠笔盒子,其中有12支圆珠笔,售价为18元。

用y表示圆珠笔的售价,x表示圆珠笔的支数,则y与x 之间的关系为y=1.5x。

2.如果物体运动的路程s与时间t的关系式为s=3t+2t+1,则当t=4时,该物体所经过的路程为28米。

3.给定两个变量m和v之间的4组对应数据,求m与v 之间的关系。

根据数据,最接近的关系式为v=2m-2.4.龟兔赛跑的故事中,兔子睡觉后被乌龟追上,最终乌龟先到达终点。

用S1和S2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相符的图象为S1-S2随时间t的变化曲线,前半段曲线较平缓,后半段曲线较陡峭。

5.给定XXX一天内的体温变化情况,图象反映了24小时内小红的体温变化。

下列说法错误的是B,即下午5时体温最高。

6.小王设计了一个程序,输入和输出数据如表所示。

根据数据,当输入数据8时,输出的数据为xxxxxxxx。

7.给定某汽车在行驶过程中的速度与时间的关系曲线,描述了汽车在不同时间的速度变化情况。

根据图象,说法错误的是B,即第12分时汽车的速度是千米/时。

8.给定一个,向其中注水,注满为止。

注水量V与水深h 之间的关系的图象大致如图3所示,则这个是图中的D。

18.XXX晨骑车从家到学校,路程如图7所示,先上坡后下坡。

如果他返回时上下坡的速度不变,那么他从学校骑车回家需要多长时间?(答案需要填写在空白处)19.一根弹簧的原长为13厘米,挂物体质量不得超过16千克,每挂1千克就会伸长0.5厘米。

当挂物体质量为10千克时,弹簧长度为多少厘米?挂物体质量X(千克)与弹簧长度y(厘米)的关系式是什么?(不考虑X的取值范围)20.如图6-31,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶的图像,两地间的距离是100千米。

请回答以下问题:1)谁出发的时间更早?早了多少时间?谁先到达乙地?提前了多少时间?2)两人在途中行驶的速度分别是多少?3)在什么时间段内,两辆车都在途中行驶?在这段时间内,自行车在摩托车前面,两辆车相遇,自行车在摩托车后面分别是什么时候?21.下表是三家电器厂2007年上半年每个月的产量:x/月 | y/台。

变量之间关系专项练习(含答案)

变量之间关系专项练习(含答案)

变量之间的关系专项练习一.选择题(共25小题)1.下列各图能表示y是x的函数是()A.B.C.D.2.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20C︒时,声音5s可以传播1740mD.当温度每升高10C︒,声速增加6/m s3.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.4.在下列各图象中,y不是x函数的是()A .B .C .D .5.在圆的周长2C R π=中,常量与变量分别是( ) A .2是常量,C 、π、R 是变量 B .2π是常量,C 、R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量6.弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .所挂物体质量为4kg 时,弹簧长度为12cmC .弹簧不挂重物时的长度为0cmD .物体质量每增加1kg ,弹簧长度y 增加0.5cm7.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )A .B .C .D .8.以固定的速度0v (米/秒)向上抛一个小球,小球的高度h (米)与小球的运动的时间t (秒)之间的关系式是20 4.9h v t t =-,在这个关系式中,常量、变量分别为( ) A .4.9是常量,t 、h 是变量 B .0v 是常量,t 、h 是变量 C .0v 、 4.9-是常量,t 、h 是变量D .4.9是常量,0v 、t 、h 是变量9.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额B.数量C.单价D.金额和数量10.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.11.均匀地向如图所示的容器中注满水,下列图象中,能反映在注水过程中水面高度h随时间t变化的函数关系的图象大致是()A.B.C.D.D次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),12.如图,3081火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.13.某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中,下列说法正确的是( ) A .数100和η,t 都是变量 B .数100和η都是常量 C .η和t 是变量D .数100和t 都是常量14.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v (个/秒)与时间t (秒)之间的函数图象大致为( )A .B .C .D .15.一个蓄水池有315m 的水,以每分钟30.5m 的速度向池中注水,蓄水池中的水量3()Q m 与注水时间t (分)间的函数表达式为( ) A .0.5Q t =B .15Q t =C .150.5Q t =+D .150.5Q t =-16.某批发市场对外批发某品脾的玩具,其价格与件数关系如图所示,请你根据图中描述判断:下列说法中错误的是( )A .当件数不超过30件时,每件价格为60元B .当件数在30到60之间时,每件价格随件数增加而减少C .当件数为50件时,每件价格为55元D .当件数不少于60件时,每件价格都是45元17.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个18.如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()A.B.C.D.19.匀速地向一个容器内注水,在注满水的过程中,水面的高度h与时间t之间的函数关系如图所示,则该容器可能是()A.B.C.D.20.弹簧挂重物会伸长,测得弹簧长度()x kg间有下面y cm最长为20cm,与所挂物体重量()的关系.下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm21.某天,某同学早上8点坐车从余姚图书馆出发去宁波大学,汽车离开余姚图书馆的距离S(千米)与所用时间t(分)之间的函数关系如图所示.已知汽车在途中停车加油一次,则下列描述不正确的是()A.汽车在途中加油用了10分钟B.若//OA BC,则加满油以后的速度为80千米/小时C.若汽车加油后的速度是90千米/小时,则25a=D.该同学8:55到达宁波大学22.下列曲线反映了变量y随变量x之间的关系,其中y是x的函数的是() A.B.C.D.23.已知函数6(2)2(2)x xyx x-+⎧=⎨>⎩,则当函数值8y=时,自变量x的值是()A.2-或4B.4C.2-D.2±或4±24.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为() A.216y x=+B.2(4)y x=+C.28y x x=+D.2164y x=-25.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC.||y x=D.||y x=二.填空题(共3小题)26.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程()S km 随时间t (分)变化的函数图象.以下说法: ①乙比甲提前12分钟到达; ②甲的平均速度为15千米/小时; ③乙走了8km 后遇到甲; ④乙出发6分钟后追上甲. 其中正确的有 (填所有正确的序号)27.圆周长C 与圆的半径r 之间的关系为2C r π=,其中变量是 ,常量是 . 28.某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程(3)x x 时,车费y (元)与路程x (千米)之间的关系式为: . 三.解答题(共10小题)29.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图. 根据图中提供的信息回答下列问题: (1)小明家到学校的路程是 米. (2)小明在书店停留了 分钟.(3)本次上学途中,小明一共行驶了 米.一共用了 分钟.(4)在整个上学的途中 (哪个时间段)小明骑车速度最快,最快的速度是 米/分.30.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图. 根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分? (3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?31.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?32.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?33.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费. 下表是超出部分国内拨打的收费标准(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x 表示超出时间,y 表示超出部分的电话费,那么y 与x 的表达式是什么? (3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?34.已知动点P 以每秒2cm 的速度沿如图甲所示的边框按从B C D E F A -----的路径移动,相应的ABP ∆的面积S 与关于时间t 的图象如图乙所示,若6AB cm =,求: (1)BC 长为多少cm ? (2)图乙中a 为多少2cm ? (3)图甲的面积为多少2cm ? (4)图乙中b 为多少s ?35.国家规定个人发表文章、 出版图书所得稿费的纳税计算方法是:①稿费不高于 800 元的不纳税;②稿费高于 800 元, 而低于 4000 元的应缴纳超过 800 元的那部分稿费的14%的税; ③稿费为 4000 元或高于 4000 元的应缴纳全部稿费的11%的税 . 试根据上述纳税的计算方法作答:(1) 若王老师获得的稿费为 2400 元, 则应纳税 元, 若王老师获得的稿费为 4000 元, 则应纳税 元;(2) 若王老师获稿费后纳税 420 元, 求这笔稿费是多少元?36.一列快车、一列慢车同时从相距300km 的两地出发,相向而行.如图,分别表示两车到目的地的距离()s km 与行驶时间()t h 的关系.(1)快车的速度为 /km h ,慢车的速度为 /km h ; (2)经过多久两车第一次相遇?(3)当快车到达目的地时,慢车距离目的地多远?37.如图,正方形ABCD 的边长为6cm ,动点P 从A 点出发,在正方形的边上由A B C D →→→运动,设运动的时间为()t s ,APD ∆的面积为2()S cm ,S 与t 的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,APD的面积为210cm.38.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?变量之间的关系专项练习一.选择题(共25小题)1.【解答】解:A 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故A 选项错误;B 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故B 选项错误;C 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故C 选项错误;D 、对于x 的每一个取值,y 都有唯一确定的值与之对应关系,所以y 是x 的函数,故D 选项正确.故选:D .2.【解答】解:在这个变化中,自变量是温度,因变量是声速,∴选项A 正确;根据数据表,可得温度越高,声速越快,∴选项B 正确;34251710()m ⨯=,∴当空气温度为20C ︒时,声音5s 可以传播1710m ,∴选项C 错误;3243186(/)m s -=,3303246(/)m s -=,3363306(/)m s -=,3423366(/)m s -=,3483426(/)m s -=,∴当温度每升高10C ︒,声速增加6/m s ,∴选项D 正确.故选:C .3.【解答】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y 随x 的增大而增大, 小明的妈妈开始给你小明送作业到追上小明这段时间,y 随x 的增大而减小, 小明妈妈追上小明到各自继续行走这段时间,y 随x 的增大不变,小明和妈妈分别去学校、回家的这段时间,y 随x 的增大而增大,故选:B .4.【解答】解:函数的一个变量不能对应两个函数值,故选:C .5.【解答】解:在圆的周长公式2C r π=中,C 与r 是改变的,π是不变的; ∴变量是C ,r ,常量是2π.故选:B .6.【解答】解:A .x 与y 都是变量,且x 是自变量,y 是因变量,故A 正确; B .所挂物体质量为4kg 时,弹簧长度为12cm ,故B 正确;C .弹簧不挂重物时的长度为10cm ,故C 错误;D .物体质量每增加1kg ,弹簧长度y 增加0.5cm ,故D 正确.故选:C .7.【解答】解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以只有选项C 不满足条件.故选:C .8.【解答】解:20 4.9h v t t =-中的0v (米/秒)是固定的速度, 4.9-是定值,故0v 和 4.9-是常量,t 、h 是变量,故选:C .9.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:C .10.【解答】解:小李距家3千米,∴离家的距离随着时间的增大而增大,途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合,故选:C .11.【解答】解:最下面的容器较细,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最大,那么用时最长.故选:A .12.【解答】解:根据题意可知火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系具体可描述为:当火车开始进入时y 逐渐变大,火车完全进入后一段时间内y 不变,当火车开始出来时y 逐渐变小,故反映到图象上应选A .故选:A .13.【解答】解:某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中:η和t 是变量,零件的个数100是常量.故选:C .14.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y 随时间x 的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y 随时间x 的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y 随时间x 的增加而增加,故选:C .15.【解答】解:一个蓄水池有315m 的水,以每分钟30.5m 的速度向池中注水, ∴蓄水池中的水量3()Q m 与注水时间t (分)间的函数表达式是:150.5Q t =+,故选:C .16.【解答】解:由图象可得,当件数不超过30件时,每件价格为60元,故选项A 正确,当件数在30到60之间时,每件价格随件数增加而减少,故选项B 正确,当件数为50件时,每件价格为:604560(5030)506030--⨯-=-(元),故选项C 错误, 当件数不少于60件时,每件价格都是45元,故选项D 正确,故选:C .17.【解答】解:读图可得,在40x =时,速度为0,故(1)(4)正确;AB 段,y 的值相等,故速度不变,故(2)正确;30x =时,80y =,即在第30分钟时,汽车的速度是80千米/时;故(3)错误; 故选:C .18.【解答】解:根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢.故选:C .19.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面立方体的体积应大于下面立方体的体积.故选:D .20.【解答】解:A 、正确.x 与y 都是变量,x 是自变量,y 是因变量;B 、正确.所挂物体为6kg ,弹簧长度为11cm ;C 、正确.物体每增加1kg ,弹簧长度就增加0.5cm ;D 、错误,弹簧长度最长为20cm ;故选:D .21.【解答】解:A 、图中加油时间为25至35分钟,共10分钟,故本选项正确;B 、因为//OA BC ,所以602520a a -=,解得1003a =,所以加满油以后的速度1003802560==千米/小时,故本选项正确.C 、由题意:60902060a -=,解得30a =,本选项错误. D 、该同学8:55到达宁波大学,正确.故选:C .22.【解答】解:对于x 的每一个取值,y 都有唯一确定的值,A 、对于x 的每一个取值,y 都有两个值,故A 错误;B 、对于x 的每一个取值,y 都有两个值,故B 错误;C 、对于x 的每一个取值,y 都有两个值,故C 错误;D 、对于x 的每一个取值,y 都有唯一确定的值,故D 正确;故选:D .23.【解答】解:把8y =代入函数6(2)2(2)x x y x x -+⎧=⎨>⎩, 先代入上边的方程得2x =-,2x ,故2x =-;再代入下边的方程4x =,2x >,故4x =,综上,x 的值为4或2-.故选:A .24.【解答】解:新正方形边长是4x +,原正方形边长是4,∴新正方形面积是2(4)x +,原正方形面积是16,∴增加的面积2(4)16y x =+-即28y x x =+故选:C .25.【解答】解:A 、对于x 的每一个取值,y 都有唯一确定的值,故A 正确; B 、对于x 的每一个取值,y 都有唯一确定的值,故B 正确;C 、对于x 的每一个取值,y 都有唯一确定的值,故C 正确;D 、对于x 的每一个取值,y 没有唯一确定的值,故D 错误;故选:D .二.填空题(共3小题)26.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度40101560=÷=千米/时;故②正确; ④设乙出发x 分钟后追上甲,则有:1010(18)281840x x ⨯=⨯+-,解得6x =,故④正确; ③由④知:乙第一次遇到甲时,所走的距离为:10662818km ⨯=-,故③错误; 所以正确的结论有三个:①②④,故答案为:①②④.27.【解答】解:在圆的周长公式2C r π=中,C 与r 是改变的,π是不变的; ∴变量是C ,r ,常量是2π.故答案为:C ,r ;2π.28.【解答】解:根据题意得出:当03x <时,5y =当3x >时,5(3) 1.2y x =+-⨯5 1.2 3.6x =+-1.2 1.4x =+,故答案为: 1.2 1.4y x =+.三.解答题(共10小题)29.【解答】解:(1)y 轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)150060022700+⨯=(米)即:本次上学途中,小明一共行驶了 2700米.一共用了 14分钟.(4)折回之前的速度12006200=÷=(米/分)折回书店时的速度(1200600)2300=-÷=(米/分),从书店到学校的速度(1500600)2450=-÷=(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中 从12分钟到14分钟小明骑车速度最快,最快的速度是 450 米/分30.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0, 故小明家到学校的路程是1500米;(2)根据图象,1214x 时,直线最陡,故小明在1214-分钟最快,速度为15006004501412-=-米/分. (3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了12006009002700++=米,共用了14分钟.31.【解答】解:(1)乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC 表示赛跑过程中兔子的路程与时间的关系;线段OD 表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;故答案为:兔子、乌龟、1500;(2)结合图象得出:兔子在起初每分钟跑700米.15003050÷=(米)乌龟每分钟爬50米.(3)7005014÷=(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)48千米48000=米4800060800∴÷=(米/分)(1500700)8001-÷=(分钟)300.51228.5+-⨯=(分钟)兔子中间停下睡觉用了28.5分钟.32.【解答】解:(1)由图可得农民自带的零钱为50元.(2)(41050)100-÷360100=÷3.6=(元).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530410)(3.6 1.6)-÷-1202=÷60=(千克), 10060160+=(千克). 答:他一共批发了160千克的黄瓜;(4)530160 2.150144-⨯-=(元).答:李大爷一共赚了144元钱.33.【解答】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)由题意可得:0.36y x =;(3)当25x =时,0.36259y =⨯=(元),即如果打电话超出25分钟,需付1869195+=(元)的电话费;(4)当54y =时,541500.36x ==(分钟). 答:小明的爸爸打电话超出150分钟.34.【解答】解:(1)由图象可得,点P 从点B 到点C 运动的时间是4s ,运动的速度是每秒2cm ,故BC 的长度是:428cm ⨯=,即BC 长是8cm ;(2)8BC cm =,6AB cm =,2862422BC AB S cm ⨯∴===, 即图乙中a 的值为224cm ;(3)由图可知, 428BC cm =⨯=,(64)24CD cm =-⨯=,(96)26DE cm =-⨯=,6AB cm =, 14AF BC DE cm ∴=+=,∴图甲的面积是:261446842460AB AF CD DE cm ⋅-⋅=⨯-⨯=-=;(4)由题意可得,846(64)(68)1722BC CD DE EF FA b s +++++++-++===, 即b 的值是17s . 35.【解答】解: (1) 若王老师获得的稿费为 2400 元, 则应纳税 224 元, 若王老师获得的稿费为 4000 元, 则应纳税 440 元;(2) 因为王老师纳税 420 元, 所以由 (1) 可知王老师的这笔稿费高于 800 元, 而低于 4000 元,设王老师的这笔稿费为x 元, 根据题意得:14%(800)420x -=3800x =元 .答: 王老师的这笔稿费为 3800 元 .36.【解答】解:(1)快车的速度为2030045/3km h ÷=,慢车的速度为3001030/km h ÷=, 故答案为:45,30;(2)30044530h =+ 答:经过4h 两车第一次相遇; (3)20(10)301003km -⨯=, 答:当快车到达目的地时,慢车距离目的地多100km .37.【解答】解:(1)根据图象得:点P 在BC 上运动的时间范围为612t ;(2)点P 在AB 上时,APD ∆的面积1632S t t =⨯⨯=; 点P 在BC 时,APD ∆的面积166182=⨯⨯=; 点P 在CD 上时,62(12)302PD t t =--=-,APD ∆的面积116(302)90622S AD PD t t =⋅=⨯⨯-=-; ∴当06t 时,3S t =,APD ∆的面积为210cm ,即10S =时,310t =,103t =, 当1215t 时,90610t -=,403t =, ∴当t 为103s 或403s 时,APD ∆的面积为210cm . 38.【解答】解:(1)0.1100y x =+甲,0.2y x =乙;(2)由题意得:y y =乙甲,0.11000.2x x ∴+=解之得:1000x =答:当印刷1000份时,两个印刷厂费用一样多.(3)当800x =时,0.1800100180y =⨯+=甲;0.2800160y =⨯=乙; 180160>∴选择乙印刷厂划算.。

高中数学 变量间的相关关系 练习题(含答案)

高中数学  变量间的相关关系 练习题(含答案)

型号二手车时车辆的使用年数不得超过多少年?
参考公式:回归方程
中斜率和截距的最小二乘估计公式分别为:
,
,
. 【答案】(1) 万元;(2)11. 【解析】
(1)由题意,计算

, 12.某地级市共有 200000 中小学生,其中有 7%学生在 2017 年享受了“国家精准扶贫”政策,在享受“国家精 准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为 5:3:2,为进一
,后因某未知原因使第 5 组数据的 值模糊不清,此位置数据记为 (如下表所示),则利用回 归方程可求得实数 的值为( )
196
197
200
203
204
1
3
6
7
A. 8.3 B. 8.2 【答案】D 【解析】 由题意可得:
C. 8.1
D. 8


回归方程过样本中心点,则:
,解得: . 本题选择 D 选项. 学.科.网
(Ⅱ)(1)
(2)
(2)由(1)得:


时 取最大
时,收益 预报值最大.
16.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,
每小时生产有缺点零件的多少,随机器运转速度而变化,下表为抽样试验的结果:
转速 x(转/秒)
16
14
12
8
每小时生产有缺点的零件数 y(件)
严重污染(六级),指数大于 300 .某气象站观测点记录了某市五月 1 号—4 号连续 4 天里,AQI 指数 M 与
当天的空气水平可见度 (单位 cm)的情况如下表 1:
M
900
700

第三章 变量之间的关系单元测试题(附答案)

第三章  变量之间的关系单元测试题(附答案)

第3章:变量之间的关系一、选择题1.圆的周长公式为C=2πr,下列说法正确的是()A. 常量是2B. 变量是C、π、rC. 变量是C、rD. 常量是2、r2.函数y=中自变量x的取值范围是()A. x≤2B. x≥2C. x<2D. x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A. y=0.05xB. y=5xC. y=100xD. y=0.05x+1004.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A. B点表示此时快车到达乙地B. B﹣C﹣D段表示慢车先加速后减速最后到达甲地C. 快车的速度为km/hD. 慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A. B. C. D.6.一个长方体木箱的长为4㎝,宽为,高为宽的2倍,则这个长方体的表面积S与的关系及长方体的体积V与的关系分别是()A. ,B. ,C. ,D. ,7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()A. B.C. D.8.自行车以10千米/小时的速度行驶,它所行走的路程S(千米)与所用的时间t(时)之间的关系为()A. S=10+tB.C. S=D. S=10t9.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是()A. 弹簧不挂重物时的长度为0cmB. x与y都是变量,且x是自变量,y是因变量C. 随着所挂物体的重量增加,弹簧长度逐渐边长D. 所挂物体的重量每增加1kg,弹簧长度增加0.5cm10.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A. B. C. D.11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B.C. D.二、填空题12.在函数中,自变量x的取值范围是________ .13.为鼓励居民节约用电,某市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.该市一位同学家2015年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.如果该同学家4月份用电410千瓦时,那么电费为________ 元.14.观察下列数据:a2,,,,…,它们是按一定规律排列的,试用一个函数解析式表示此变化规律为________ .15.在匀速运动公式S=3t中,3表示速度,t表示时间,S表示在时间t内所走的路程,则变量是________ ,常量是________ .16.函数的三种表示方式分别是________ .17.函数的自变量x的取值范围是________ .18.如图1,在长方形ABCD中,动点R从点B出发,沿B→C→D→A方向运动至点A处停止,在这个变化过程中,变量x表示点R运动的路程,变量y表示△ABR的面积,图2表示变量y随x的变化情况,则当y=9时,点R所在的边是________19.一辆汽车以40千米/时的速度行驶,则行驶的路程S(千米)与行驶的时间t(时)两变量之间的关系式是________ 。

变量之间的关系测试题及答案

变量之间的关系测试题及答案

第六章《变量之间的关系》测试题一、填空题(每空2分,共46分)1、一个弹簧,不挂物体时长10厘米,挂上物体以后弹簧会变长,每挂上一千克物体,弹簧就会伸长1.5厘米,如果所挂物体总质量为X(千克),那么弹簧伸长的长度y(CM)可以表示为___,在这个问题中自变量是___,因变量是___;如果所挂物体总质量为X(千克)那么弹簧的总长度Y(CM)可以表示为___,在这个问题中自变量是___,因变量是___。

2、为了美化校园,学校共划出84米2的土地修建4个完全相同的长方形花坛,如果每个花坛的一条边为X (米),那么另一条边y(米)可以表示为___。

3、一辆汽车正常行驶时每小时耗油8升,油箱内现有52升汽油,如果汽车行驶时间为t (时),那么油箱中所存油量Q(升)可以表示为___,行驶3小时后,油箱中还剩余汽油___升,油箱中的油总共可供汽车cm 行驶___小时。

4.一圆锥的底面半径是5cm,当圆锥的高由2cm变到10cm时,圆锥的体积由________3cm.变到_________35.梯形上底长16,下底长x,高是10,梯形的面积s与下底长x间的关系式是_______.当x=0时,表示的图形是_______,其面积________.4.如图6—1,甲、乙二人沿相同的路线前进,横轴表示时间,纵轴表示路程。

(1)刚出发时乙在甲前面___千米。

(2)两人各用了___小时走完路程。

(3)甲共走了___千米,乙共走了___千米。

5、如图6—2是我国某城市春季某一天气温随时间变化的图象,根据图象回答,在这一天中,最低气温出现在___时,温度为___°C,在___时到___时的时段内,温度持续上升,这一天的温差是___°C。

图6—1 图6—2 图6—36、如图6—3,a//b,直线c与a、b分别交于A、B两点,当直线b绕B点旋转时,∠1的大小会发生变化。

直线a为保证与b平行,相应的∠2的大小也会发生变化,如果∠1度数为x度,那么∠2的度数y可以表示为___,在这个问题中自变量是___,因变量是___,当∠1为70°时,角∠2的度数为___。

第三章 变量之间的关系(答案版)

第三章  变量之间的关系(答案版)

第三章 变量之间的关系一、选择题(本大题共10小题,每小题3分,共30分) 1.在圆的面积公式S =πr 2中,常量为( B ) A .S B.πC.rD.S 和r2.用总长50 m 的篱笆围成长方形场地,长方形的面积S (m 2)与一边长l (m)之间的关系式为S =l (25-l ),那么下列说法正确的是( C ) A .l 是常量,S 是变量 B.25是常量,S 与l 是变量,l 是因变量 C .25是常量,S 与l 是变量,S 是因变量 D.以上说法都不对3.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的总售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( D ) A .y =12xB.y =18xC.y =23xD.y =32x4.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是( C )A .37.8 ℃ B.38 ℃ C.38.7 ℃D.39.1 ℃5.变量x 与y 之间的关系式是y = 12 x 2-3,当自变量x =4时,因变量y 的值是( C ) A.-1B.-5C.5D.16.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( C )A .b =d 2B.b =2dC.b =d2D.b =d +257.如图,各图象所反映的是两个变量之间的关系,表示匀速运动的是( B )A.①②B.②C.①③D.无法确定8.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y 与x 之间的关系式是( A ) A.y =-x +8B.y =-x +4C.y =x -8D.y =x -49.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:下列说法不正确的是( C )A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4 kg时,弹簧长度为12 cmC.弹簧不挂重物时的长度为0 cmD.物体质量每增加1 kg,弹簧长度y增加0.5 cm10.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是( C )二、填空题(本大题共7小题,每小题4分,共28分)11.大家知道,冰层越厚,所承受的压力越大,其中自变量是___冰层的厚度____,因变量是_冰层所承受的压力______.12.某机器工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为Q=40-6t.当t=3时,Q=_22______ .13.如图是桂林冬季某一天的气温随时间变化的图象,则这一天的温差是__12____℃.14.1~6个月的婴儿生长发育得非常快,出生体重为4 000克的婴儿,他们的体重y(克)和月龄x(月)之间的关系如下表:则6个月大的婴儿的体重约为_8200__克__ .15.如图所示的图象反映的过程是:小明从家去书店看书,又去学校取封信后马上回家,其中x表示时间,y表示小明离开家的距离,则小明从学校回家的平均速度为__6_____千米/时.16.如图,在△ABC中,边BC长为10,BC边上的高AD'为6,点D在BC上运动,设BD 长为x(0<x<10),则△ACD的面积y与x之间的关系式为__y=30-3x ____.17.(创新题)新冠疫情下,某医药研究院实验一种新药缓解病情,根据其药效发现,成人如果按规定剂量服用,每毫升血液中含药量y(微克)随时间x(时)的变化情况如图所示.如果每毫升血液中含药量达到3微克以上(含3微克)时治疗疾病为有效,那么有效时长是__4___小时.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.如图是某港口在某天从0时到12时的水位情况变化曲线.(1)在这一问题中,自变量是什么?(2)大约在什么时间水位最深,最深是多少?(3)大约在什么时间段水位是随着时间推移不断上涨的?解:(1)由图象可得,在这一问题中,自变量是时间.(2)大约在3时水位最深,最深是8米.(3)由图象可得,在0到3时和9到12时,水位是随着时间推移不断上涨的.19.如图,在一个半径为18 cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?2)如挖去的圆半径为x(cm),圆环的面积y(cm2)与x的关系式是y=324π-πx2;(3)当挖去圆的半径由1 cm变化到9 cm时,圆环面的面积由323πcm2变化到243πcm2.解:(1)自变量是小圆的半径,因变量是圆环的面积.20.日常生活中,我们经常要煮开水,下表为煮开水的时间与水的温度的描述.(1)根据上表的数据,我们得到什么信息?(2)在第9分钟时,水可以喝吗?为什么?在11分钟时呢?3)根据表格的数据判断:在第15分钟时,水的温度为多少呢?(4)随着加热时间的增长,水的温度是否会一直上升?说明你判断的依据.解:(1)随着时间的加长,水的温度在逐渐升高,11分钟时达到开水温度.(2)在第9分钟时,水不可以喝,因为水还没有烧开;在11分钟时,水烧开,可以喝.(3)第15分钟时,水的温度为100 ℃.(4)随着加热时间的增长,水的温度不会一直上升,因为水温升高到100 ℃时,水温不再升高.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:(1)蜡烛未点燃前的长度是多少厘米?(2)写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式;(3)求这根蜡烛能燃烧多长时间.解:(1)30厘米(2)h=30-0.5t(3)这根蜡烛能燃烧60分22.某水库初始的水位高度为5米,水位在10小时内持续匀速上涨,测量可知,经过4小时,水位上涨了1米.(1)写出水库的水位高度y(米)与时间x(小时)(0≤x≤10)之间的关系式;2)经过____6____小时,水库的水位上涨到6.5米;(3)当时间由1小时变化到10小时时,水库的水位高度由___5.25______米变化到_7.5____米.解:y=0.25x+5(0≤x≤10)23.小明从家骑自行车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后,继续去学校.如图是他本次上学所用的时间t(分钟)与离开家的距离y(米)的图象.根据图象提供的信息回答下列问题:(1)小明家到学校的距离是__1500______米;(2)小明在书店停留了__4___分钟;(3)本次上学途中,小明一共骑行了多少米?(4)整个上学的途中,哪个时间段小明骑车速度最快?解:(3)1 200+(1 200-600)+(1 500-600)=2 700(米),答:本次上学途中,小明一共骑行了2 700米.(4)设小明离家时间为t分钟,当0≤t≤6时,小明骑车的速度为1 200÷6=200(米/分);当6<t≤8时,小明骑车的速度为(1 200-600)÷(8-6)=300(米/分);当12≤t≤14时,小明骑车的速度为(1 500-600)÷(14-12)=450(米/分).因为200<300<450,所以在12≤t≤14段,小明骑车速度最快.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中2≤x≤20):(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?解:(1)表格反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系.(2)当x=10时,y=59,所以时间是10分钟时,学生的接受能力是59.(3)当x=13时,y的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4)当x在2分钟至13分钟的范围内时,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内时,学生的接受能力逐步降低.25.如图,棱长为a的小正方体,按照如图所示的方法继续摆放,自上而下分别叫第一层、第二层、…、第n层.第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?解:(2)S=n(n+1)2.当n=10时,S=10×(10+1)2=55.。

(典型题)初中数学七年级数学下册第三单元《变量之间的关系》检测卷(包含答案解析)

(典型题)初中数学七年级数学下册第三单元《变量之间的关系》检测卷(包含答案解析)

一、选择题1.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度()A.保持不变B.越来越慢C.越来越快D.快慢交替变化2.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系3.甲、乙两同学从A地出发,骑自行车在同一条公路上行驶到距A地60千米的B地,他们距出发地的距离s(千米)和行驶时间t(小时)之间的关系如图所示,根据图中提供的信息,符合图象描述的说法是()A.乙在行驶过程中休息了一会儿B.甲在行驶过程中没有追上乙C.甲比乙先出发1小时D.甲行驶的速度比乙行驶的速度快4.某商店进了一批玩具,出售时要在进价的基础上加一定的利润,其销售个数x与售价y 如下表:个数x/个1234…售价y/元8+0.316+0.624+0.932+1.2…下列用销售个数x表示售价y的关系式中,正确的是 ( )A.y=(8+0.3)x B.y=8x+0.3 C.y=8+0.3x D.y=8+0.3+x5.某地海拔高度h与温度T的关系可用T=21-6h来表示(其中温度单位为℃,海拔高度单位为km),则该地区某海拔高度为2 000 m的山顶上的温度为 ( )A.9 ℃B.7 ℃C.6 ℃D.3 ℃6.已知圆柱的高为3 cm,当圆柱的底面半径r(cm)由小变大时,圆柱的体积V(cm3)随之变化,则V与r的关系式是 ( )A.V=πr2B.V=9πr2C.V=13πr2D.V=3πr27.已知△ABC的底边BC上的高为8 cm,当底边BC从16 cm变化到5 cm时,△ABC的面积 ( )A.从20 cm2变化到64 cm2B.从40 cm2变化到128 cm2C.从128 cm2变化到40 cm2D.从64 cm2变化到20 cm28.已知变量x,y满足下面的关系:x…-3-2-1123…y…1 1.53-3-1.5-1…则x,y之间的关系用函数表达式表示为()A.y=3xB.y=-3xC.y=-3xD.y=3x9.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为()A.B.C.D.10.根据图示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为( )A.-2 B.2 C.-1 D.011.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数关系,则以下判断错误..的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时.12.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.二、填空题13.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.14.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要km h的平均速度行驶20min到达单位,下班按原路返的聚集.小华爸爸早上开车以60/km h)之回,若返回时平均速度为v,则路上所用时间t(单位:h)与速度v(单位:/间的关系可表示为________.15.一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm.如果挂上的物体的总质量为x千克时,弹簧的长度为为ycm,那么y 与x的关系可表示为y=______.16.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.17.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x的取值范围)18.某兴趣小组从学校出发骑车去植物园参观,先经过一段上坡路后到达途中一处景点,停车10分钟进行参观,然后又经一段下坡路到达植物园,行程情况如图,若他们上、下坡路速度不变,则这个兴趣小组的同学按原路返回所用的时间为________分钟.(途中不停留)19.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y(千克)与同一物体在地球上的重量x(千克)之间的关系式为y=16x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克.20.函数+3x的定义域是________.三、解答题21.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?(5)你能将图象中得到信息,编个故事吗?22.某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图,根据图象回答:(1)该市自来水收费时,若使用不足5吨,则每吨收费多少元?超过5吨部分每吨收费多少元?(2)若某户居民每月用水3.5吨,应交水费多少元?若某月交水费17元,该户居民用水多少吨?23.小明家在下白石,他很想一个人去穆阳白云山玩,不过他要先到赛岐停留下,然后在接着去穆阳白云山,他把一天的时间做了一个规划,下面是小明一天从0点到15点的离家距离的情况.(1)小明什么时候从家出发?(2)小明在赛岐停留了多久,赛岐距离小明家多远?(3)点A,B分别表示什么意思?(4)小明在什么时间范围内,从白云山回到家?(5)这次出游,小明从出发到回到家,一共用时多长?24.青春期男、女生身高变化情况不尽相同,如图是小军和小蕊青春期身高的变化情况.(1)如图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?(2)A,B两点表示什么?(3)小蕊10岁时身高多少?25.蛇的体温随外部环境温度的变化而变化.如图表示一条蛇在一昼夜体温的变化情况.问题:(1)蛇体温的变化范围是什么?它的体温从最低上升到最而需要多少时间?(2)在什么时间范围内蛇的体温是上升的?在什么时间范围内蛇的体温是下降的?26.某电影院地面的一部分是扇形,座位按下列方式设置:排数1234座位数60646872(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由;(4)若某排有136座,则该排的排数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】此容器不是一个圆柱体,从下到上直径越来越小,因为相同体积的水在直径较大的地方比在直径较小的地方的高度低,因此,若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快.【详解】由图可知:此容器不是一个圆柱体,从下到上直径越来越小∵相同体积的水在直径较小的地方比在直径较大的地方的高度更高∴若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快故答案选:C【点睛】本题考查了体积、直径、高之间的关系,寻找出三者之间的变化关系是解题关键.2.B解析:B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.3.D解析:D【解析】【分析】如图,依题意,该图象是路程与时间的关系,而且甲线的倾斜度比乙的大,故甲行驶的速度比乙的快.【详解】根据题意和图象可知:图象时连续的乙在行驶过程中没有休息;甲在行驶过程中追上乙,并超过了乙;甲比乙晚出发1小时;甲行驶速度比乙行驶的速度快.故选:D.【点睛】本题考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.A解析:A【解析】【分析】本题通过观察表格内的x与y的关系,可知y的值相对x=1时是成倍增长的,由此可得出方程.【详解】依题意得:y=(8+0.3)x;故选A.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.A解析:A【分析】把h=2000米=2千米代入T=21-6h即得.【详解】2000米=2千米,T=21-6h=21-6×2=9℃.故选B.【点睛】本题考查函数值的知识,根据题目的信息代入运算即可.6.D解析:D【分析】圆柱的底面积是一个圆,根据体积=底面积×高即可列出关系式.【详解】∵圆柱的底面积是一个圆,∴底面积S=πr2,根据圆柱体积=底面积×高可得:V=3πr2.故选D.【点睛】本题主要考查了函数关系式的知识点,熟悉圆柱的体积公式,即圆柱的体积=底面积×高,难度不大,注意基础概念的掌握.7.D解析:D【分析】根据S=12(底×高)计算分别计算得出最值即可.【详解】当△ABC的底边BC上的高为8cm,底边BC=16cm时,S1=(8×16)÷2=64cm2;底边BC=5cm时,S2=(5×8)÷2=20cm2.故选D.【点睛】此题主要考查了函数关系,利用极值法得出△ABC的最大值和最小值是解题关键.8.C解析:C【解析】【分析】由x、y的关系可求得其满足反比例关系,再由待定系数法即可得出解析式.【详解】设此函数的解析式为y=kx(k≠0),把x=-3,y=1,代入得k=-3,故x,y之间用关系式表示为y=-3x.故选:C.【点睛】本题考查了用待定系数法求反比例函数的解析式,即图象上点的横纵坐标积为一定值.9.B解析:B【分析】先根据两车并非同时出发,得出D选项错误;再根据高铁从甲地到乙地的时间以及动车从甲地到乙地的时间,得出两车到达乙地的时间差,结合图形排除A、 C选项,即可得出结论.【详解】解:由题可得,两车并非同时出发,故D选项错误;高铁从甲地到乙地的时间为615÷300=2.05h 动车从甲地到乙地的时间为615÷200+16≈3.24h,动车先出发半小时,∴两车到达乙地的时间差为3.24-2.05-0.5=0.69h,该时间差小于动车从甲地到乙地所需时间的一半,故C选项错误;0.69>0.5,∴两车到达乙地的时间差大于半小时,故A选项错误,动车行驶180千米所需的时间为180÷200=0.9h,而高铁迟出发0.5h,∴0.9>0.5,故B选项符合题意,A选项不合题意.所以B选项是正确的.【点睛】本题主要考查函数与函数的图像.10.B解析:B【解析】当x=−1时,y=x2+1=(−1)2+1=1+1=2,故选B.11.B解析:B【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B不正确;C. 由图知,骑车的同学从出发到追上步行的同学用了20分钟,故C正确;D. 由图知,步行的速度是6千米/小时,故D正确;故选B12.C解析:C【解析】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.二、填空题13.变为【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算即可得到答案【详解】解:三角形的面积最小值为最大值为故三角形的面积变化范围是三角形的面积由15变为50故答案为:变为【点睛】解析:15变为50【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算,即可得到答案.【详解】解:三角形的面积最小值为1310 2⨯⨯,最大值为1101050 2⨯⨯=,故三角形的面积变化范围是三角形的面积由15变为50.故答案为:15变为50.【点睛】本题主要考查了三角形的面积公式,能利用三角形面积公式计算三角形面积的是解题的关键.14.【分析】根据路程=速度×时间可计算出家与单位之间的总路程再根据速度v=路程÷时间t即可得出答案【详解】解:∵∴小华爸爸下班时路上所用时间(单位:)与速度v(单位:)之间的关系可表示为:故答案为:【点解析:20 tv =【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v=路程÷时间t即可得出答案.【详解】解:∵20602060km ⨯=∴小华爸爸下班时路上所用时间t(单位:h)与速度v(单位:/km h)之间的关系可表示为:20tv =.故答案为:20tv =.【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.15.10+15x【解析】【分析】根据所挂物体与弹簧长度之间的关系得出函数解析式即可根据函数的定义判断自变量及因变量弹簧的总长度y(cm)可以表示为y=10+15x【详解】y=10+15x所挂物体总质量x解析:10+1.5x【解析】【分析】根据所挂物体与弹簧长度之间的关系得出函数解析式即可,根据函数的定义判断自变量及因变量.弹簧的总长度y(cm)可以表示为y=10+1.5x【详解】y=10+1.5x,所挂物体总质量x,弹簧的总长度y【点睛】此题考查二元一次函数的应用,难度不大16.900【解析】【分析】根据图象可知火车的长度为150米火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减解析:900【解析】【分析】根据图象可知,火车的长度为150米,火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒,列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减去火车的长度,可列式为35×30-150,列式计算即可得到答案.【详解】解:由图象可直接得到火车的长度为150米,火车的速度是:150÷(35−30)=150÷5=30(米/秒),隧道的长度:35×30−150=1050−150=900(米).故答案为:900.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.17.y=-x2+15x【分析】由AB边长为x米根据已知可以推出BC=(30-x)然后根据矩形的面积公式即可求出函数关系式【详解】∵AB边长为x米而菜园ABCD是矩形菜园∴BC=(30-x)菜园的面积=A解析:y=-12x2+15x【分析】由AB边长为x米,根据已知可以推出BC=12(30-x),然后根据矩形的面积公式即可求出函数关系式.【详解】∵AB边长为x米,而菜园ABCD是矩形菜园,∴BC=12(30-x),菜园的面积=AB×BC= 12(30-x)•x,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为:y=-12x2+15x,故答案为y=-12x2+15x.【点睛】本题考查了二次函数的应用,正确分析,找准各量间的数量关系列出函数关系式是解题的关键.18.【解析】试题分析:去植物园上坡路120×25=3000(米)下坡路180×(45-35)=1800(米)返回时的上坡路是1800米下坡路是3000米返回时的时间是=(分钟)故答案为点睛:本题考查了函解析:95 3【解析】试题分析:去植物园上坡路120×25=3000(米),下坡路180×(45-35)=1800(米),返回时的上坡路是1800米,下坡路是3000米,返回时的时间是18003000120180+=953(分钟),故答案为953.点睛:本题考查了函数图象,从函数图象获得上坡的时间、速度,下坡的时间、速度是解题关键,注意去时的上坡路是返回时的下坡路,去时的下坡路是返回时的上坡路.19.100【解析】当x=120时y=x==20120-20=100即在月求上重量减少了100千克故答案为:100解析:100【解析】当x=120时,y=16x=11206⨯=20,120-20=100,即在月求上重量减少了100千克,故答案为:100.20.x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0即x≥-3且x≠2解析:x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0,即x≥-3且x≠2.三、解答题21.(1)8点;(2)9点;13米;(3)乙;(4)12点;(5)甲8时骑车从家出发,3小时后改乘汽车;乙骑摩托车9时开始追赶,12时追上甲.【分析】从图象可知:甲做变速运动,8时到11时走了20千米,速度为每小时208,11时到12时走了20千米,速度为每小时20千米;乙做的是匀速运动,9时到12时走了40千米,速度是每小时403千米,结合图表的信息即可得到答案;【详解】解:根据图象信息可知:(1)甲8点出发;(2)乙9点出发,到10时他大约走了13千米;(3)到10时为止,乙的速度快;(4)在12时时,两人路程一样,故两人最终在12时相遇;(5)甲8时骑车从家出发,3小时后改乘汽车,乙骑摩托车9时开始追赶,12时追上甲.【点睛】本题主要考查从图像得到信息,图中反映的是甲乙两人行驶的路程与时间之间的关系,甲的速度有变化,乙是匀速运动的,能看懂图中的信息是解题的关键.22.(1)水不足5吨时,每吨收费2(元);超过5吨部分每吨收费3.5(元).(2)每月用水3.5吨应交水费7(元);交17元水费,则用水7(吨).【分析】(1)因为此统计图是两条直线;从图中看出每户使用不足5吨时,每吨收费10÷5=2元,超过5吨时,每吨收费(20.5-10)÷(8-5)=3.5元;(2)居民每月用水3.5吨,应按照每吨2元的标准交水费;若某月交水费17元,说明此用户的用水量超过5吨,由此先减去5吨的钱数,再用剩下的钱数除以3.5即可.【详解】(1)每户使用不足5吨时,每吨收费:10÷5=2(元),超过5吨时,每吨收费:(20.5-10)÷(8-5)=3.5(元)(2)3.5×2=7(元)(17-10)÷3.5=2(吨)5+2=7(吨)答:某户居民每月用水3.5吨,应交水费7元;若某月交水费17元,该户居民用水7吨.【点睛】关键是分析统计图,得出两个不同的直线表示的意义,再结合问题进行解答.23.(1)小明早上9点从家出发;(2)小明在赛岐停留了30分钟,赛岐距离小明家20千米;(3)15千米, 30千米;(4)小明在13点到15点,从白云山回到家;(5)一共用时6个小时.【解析】分析:从函数图像可知小明9时从家出发,约10:30到离家约20千米的地方,休息约30分钟到11时,继续出发到12时到离家30千米的目的地,游玩1小时后匀速返回,15时到家.详解:(1)由图可得,小明早上9点从家出发;(2)根据图象得,小明在赛岐停留了30分钟,赛岐距离小明家20千米;(3)A点表示10点时离家15千米,B点表示12点时离家30千米;(4)根据图象得小明在13点到15点,从白云山回到家;(5)15-9=6(小时),这次出游,小明从出发到回到家,一共用时6个小时.点睛:本题考查了函数图像.24.(1)反映了身高和年龄的关系,自变量是年龄,因变量是身高;(2)A点表示小军和小蕊在11岁半时身高都是143 cm,B点表示小军和小蕊在15岁时身高都是156 cm;(3)127cm【解析】试题分析:(1)根据横坐标与纵坐标表示的量解答;(2)根据交点的纵坐标相等可知二人身高相等;(3)根据平面直角坐标系确定横坐标为10时的身高值即可.试题解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高;(2)A点表示小军和小蕊在11岁半时身高都是143厘米,B点表示小军和小蕊在15岁时身高都是156厘米;(3)小蕊10岁时身高127厘米.点睛:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的解决.25.答案见解析【解析】试题分析:(1)找到一天中最高点与最低点的坐标,进而可得蛇体温的变化范围与它的体温从最低上升到最高需要时间;(2)观察图象,找函数图象上升与下降的区域,对应的就是蛇的体温上升与下降的时间.试题(1)观察图象可得,横坐标在0到24之间,其间最高点的坐标是(16,40),最低点的坐标是(4,35);故蛇体温的变化范围是:35℃~40℃,它的体温从最低上升到最高需要16-4=12小时;(2)根据图象,4时~16时,函数图象上升,对应蛇的体温是上升;0时~4时,16时~24时,函数图象下降,对应蛇的体温是下降的;答:4时~16时,蛇的体温是上升;0时~4时,16时~24时,蛇的体温是下降的.26.(1)排数与座位数在变化.自变量是排数,因变量是座位数;(2)第5排有76座,第6排有80座;(3)第n排有60+4×(n-1)座,理由见解析;(4)该排的排数是20.【解析】【分析】(1)根据变量的定义得出变化的量,再根据座位数随着排数的变化而变化,从而确定自变量和因变量.(2)从具体数据中,不难发现:后一排总比前一排多4,由此得出第5排、第6排的座位数即可;(3) 根据(2)中的规律,第n排有60+4(n-1)个,再化简即可.(4)根据第n排的座位数列出方程即可.【详解】(1)排数与座位数在变化.其中自变量是排数,因变量是座位数.(2) ∵后一排总比前一排多4个座,∴第5排有76个座,第6排有80个座.(3) 第n排有(4n+56)个座;理由如下:∵第1排有60座,即60+4×(1-1);第2排有64个座,即60+4×(2-1);第3排有68个座,即60+4×(3-1);…;第n排有60+4×(n-1) 个座.∴第n排有60+4×(n-1)=(4n+56)个座.(4) ∵第n排有(4n+56)个座,∴4n+56=136.解得n=20.∴该排的排数是20.【点睛】本题主要考查了函数的定义,列函数关系式,以及解一元一次方程,本题的关键规律是“后一排总比前一排多4个座”.。

变量之间的关系(含答案)-

变量之间的关系(含答案)-

暑假专题——变量之间的关系教学目标:使学生能够从表格、关系式、图象中尽可能多地获取信息,解决一些实际问题,从而培养分析问题和解决问题的能力。

二. 重点、难点从表格、关系式、图象中获取信息,解决一些实际问题是本节的重点与难点。

知识点归纳总结:1. 因变量随自变量的变化而变化;2. =平均速度总路程总时间.【典型例题】例1. 小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图像。

(1)根据图像回答:小明到达离家最远的地方需几小时?此时离家多远? (2)求小明出发两个半小时离家多远? (3)求小明出发多长时间距家12千米?解:(1)小明到达离家最远的地方需3小时,此时离家30千米 ()在小时他的平均速度为千米时22330153215 ~/--=∴=+⨯=S 151512225.千米 ()在小时他的平均速度为=千米时30115115 ~/ ∴==t 1121545小时 又在小时他的平均速度为-=千米时 46306415~/ ∴=+-=+1=t 243012154815265小时∴小明出发小时或小时距家千米。

4526512例2. 某批发商欲将一批海产品由A 地运往B 地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别为60千米/小时、100千米/注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费。

(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为y 1(元)和y 2(元),试求y 1与x 的函数关系和y 2与x 的函数关系; (2)通过计算说明当待运的海产品有100吨时,选择哪种货运公司更省钱? 解:()1y x x 12120512060200=⨯+⨯+ =+250200xy x x 21812051201001600=⨯+⨯+. =+2221600x(2)把x =100分别代入y 1与y 2y 12501002002500020025200=⨯+=+=()元 y 2222100160022200160023800=⨯+=+=()元 y y 12>∴选择铁路货运公司更省钱。

(完整word版)20172018北师大版七年级数学下册变量之间的关系单元测试题含答案

(完整word版)20172018北师大版七年级数学下册变量之间的关系单元测试题含答案

2017-2018 北师大版七年级数学下册第三章变量之间的关系单元测试题(检测时间:120分钟满分:120分)一、选择题(3分×10=30分)1.某超市某种商品的单价为70元/件,若买x件该商品的总价为y元,则其中的常量是( ) A.70 B.xC.y D.不确定2.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器3.变量x与y之间的关系是y=2x-3,当因变量y=6时,自变量x的值是( )A.9 B.15C.4.5 D.1.54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的关系式为( )A.y=-12x B.y=12xC.y=-2x D.y=2x5.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )6.根据图示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为( ) A.-2 B.2C.-1 D.07.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:排数(x)1234…座位数(y)50535659…y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )A.1个B.2个C.3个D.4个8.李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的关系式是( )A.y=-2x+24(0<x<12) B.y=-12x+12(0<x<24)C.y=2x-24(0<x<12) D.y=12x-12(0<x<24)9.在关系式y=5x+3中,有下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x的值无关;④用关系式表示的,不能用图象表示;⑤y与x的关系还可以用列表如图象法表示.其中,正确的是( )A.①②③B.①②④C.①②⑤D.①④⑤10.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s(千米)与行驶时间t(小时)的关系如图所示,则下列结论中错误的是( )A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地二、填空题(3分×8=24分)11.在求补角的计算公式y=180°-x中,变量是,常量是.12.“早穿皮袄,午穿纱,围着火炉吃西瓜”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.13.若一个长方体底面积为60cm2,高为h cm,则体积V(cm3)与h(cm)的关系式为,若h从1cm变化到10cm时,长方体的体积由cm3变化到cm3.14.李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=.15.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.16.某种储蓄的月利率是0.2%,存入100元本金后,不扣除利息税,本息和y(元)与所存月数x(x为正整数)之间的关系为,4个月的本息和为.17.如图是小明从学校到家里行进的路程s(米)与时间t(分)的图象,观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有(填序号).18.如图(1),在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止.设点P运动的路程为x,三角形ABP的面积为y,如果y关于x的函数图象如图(2)所示,则三角形BCD的面积是.三、解答题(共66分)19.(8分)某商场经营一批进价为a元/台的小商品,经调查得如下数据:销售价(x元/台)35404550日销售量(y/台)5727日销售额(t/元)1680600(1)(2)用语言描述日销售量y和日销售额t随销售价x变化而变化的情况.20.(8分)温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况.(1)这一天的最高温度是多少?是在几时到达的?最低温度呢?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?21.(8分)科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关:当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?22.(10分)汽车在山区行驶过程中,要经过上坡、下坡、平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快乐,平路上保持匀速行驶,如图表示了一辆汽车在山区行驶过程中,速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶?时速分别是多少?(2)汽车遇到了几个上坡路段?几个下坡路段?在哪个下坡路段上所花时间最长?(3)用自己的语言大致描述这辆汽车的行驶情况,包括遇到的山路,在山路上的速度变化情况等.23.(10分)某机动车出发前油箱内有油42L.行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答问题.(1)机动车行驶几小时后加油?(2)中途加油________L;(3)如果加油站距目的地还有240km,车速为40km/h,要到达目的地,油箱中的油是否够用?并说明原因.24.(10分)如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层…第n层,第n层的小正方体的个数记为S.解答下列问题:n 1234…S 13…(1)按要求填写上表:(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?25.(12分)从有关方面获悉,在我市农村已经实行了农村新型合作医疗保险制度.享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标准:医疗费用范围门诊住院0~5000元5001~20000元20000元以上每年报销比例标准30%30%40%50%(说明:住院医疗费用的报销分段计算.如:某人住院医疗费用共30000元,则5000元按30%报销、15000元按40%报销、余下的10000元按50%报销;题中涉及的医疗费均指允许报销的医疗费).(1)某农民2016年在门诊看病共报销医疗费180元,则他在这一年中门诊医疗费用共________元;(2)设某农民一年中住院的实际医疗费用为x元(5001≤x≤20000),按标准报销的金额为y元,试求出y与x的关系式;(3)若某农民一年内本人自付住院医疗费17000元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费用共多少元?答案:一、1---10 ABCDA BBBCC二、11. x和y180°12. 温度时间时间温度13. V=60h60 60014. 10x+2015. 1816. y=100+0.2x100.8元17. ①②④18. 3三、19. 解:(1)42,12,1995,1215(从上到下);(2)y随x的增大而减小,t随x的增大而减小.20. 解:(1)37℃,15时,23℃;(2)14℃,12小时;(3)从0时到3时气温在下降,从3时到15时气温在上升,15时以后气温下降.21. 解:(1)(2)(3)352米/秒;(4)y=331+3 5x.22. 解:(1)汽车在0.2~0.4h,0.6~0.7h,及0.9~1h三个时间段保持匀速行驶,速度分别是70km/h,80km/h和70km/h;(2)汽车遇到CD、FG两个上坡路段,AB、DE、GH三个下坡路段,在AB下坡路段上所花时间最长;(3)汽车下坡行驶0.2h后转入平路行驶至0.4h,转入上坡行驶至0.5h,接着转入下坡行驶至0.6h,转入平路行驶至0.7h后又上坡行驶至0.8h,紧接着转入下坡行驶至0.9h,最后平路行驶至1h结束.23. 解:(1)5小时(2)24(3)机动车每小时耗油42-125=6(L),∴24040×6=36(L),∴油箱中的油刚好够用.24. 解:(1)6,10(2)S=n n+12;当n=10时,S=n n+12=55.25. 解:(1)600(2)y=0.4x-500(3)依题意得,17000+5000×30%+15000×40%+50%(x-20000)=x,解得x=29000(元).。

变量之间关系专项练习(含答案)

变量之间关系专项练习(含答案)

变量之间的关系专项练习一.选择题(共25小题)1.下列各图能表示y是x的函数是()A.B.C.D.2.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20C︒时,声音5s可以传播1740mD.当温度每升高10C︒,声速增加6/m s3.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.4.在下列各图象中,y不是x函数的是()A .B .C .D .5.在圆的周长2C R π=中,常量与变量分别是( ) A .2是常量,C 、π、R 是变量 B .2π是常量,C 、R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量6.弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .所挂物体质量为4kg 时,弹簧长度为12cmC .弹簧不挂重物时的长度为0cmD .物体质量每增加1kg ,弹簧长度y 增加0.5cm7.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )A .B .C .D .8.以固定的速度0v (米/秒)向上抛一个小球,小球的高度h (米)与小球的运动的时间t (秒)之间的关系式是20 4.9h v t t =-,在这个关系式中,常量、变量分别为( ) A .4.9是常量,t 、h 是变量 B .0v 是常量,t 、h 是变量 C .0v 、 4.9-是常量,t 、h 是变量D .4.9是常量,0v 、t 、h 是变量9.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额B.数量C.单价D.金额和数量10.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.11.均匀地向如图所示的容器中注满水,下列图象中,能反映在注水过程中水面高度h随时间t变化的函数关系的图象大致是()A.B.C.D.D次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),12.如图,3081火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.13.某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中,下列说法正确的是( ) A .数100和η,t 都是变量 B .数100和η都是常量 C .η和t 是变量D .数100和t 都是常量14.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v (个/秒)与时间t (秒)之间的函数图象大致为( )A .B .C .D .15.一个蓄水池有315m 的水,以每分钟30.5m 的速度向池中注水,蓄水池中的水量3()Q m 与注水时间t (分)间的函数表达式为( ) A .0.5Q t =B .15Q t =C .150.5Q t =+D .150.5Q t =-16.某批发市场对外批发某品脾的玩具,其价格与件数关系如图所示,请你根据图中描述判断:下列说法中错误的是( )A .当件数不超过30件时,每件价格为60元B .当件数在30到60之间时,每件价格随件数增加而减少C .当件数为50件时,每件价格为55元D .当件数不少于60件时,每件价格都是45元17.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个18.如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()A.B.C.D.19.匀速地向一个容器内注水,在注满水的过程中,水面的高度h与时间t之间的函数关系如图所示,则该容器可能是()A.B.C.D.20.弹簧挂重物会伸长,测得弹簧长度()x kg间有下面y cm最长为20cm,与所挂物体重量()的关系.下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm21.某天,某同学早上8点坐车从余姚图书馆出发去宁波大学,汽车离开余姚图书馆的距离S(千米)与所用时间t(分)之间的函数关系如图所示.已知汽车在途中停车加油一次,则下列描述不正确的是()A.汽车在途中加油用了10分钟B.若//OA BC,则加满油以后的速度为80千米/小时C.若汽车加油后的速度是90千米/小时,则25a=D.该同学8:55到达宁波大学22.下列曲线反映了变量y随变量x之间的关系,其中y是x的函数的是() A.B.C.D.23.已知函数6(2)2(2)x xyx x-+⎧=⎨>⎩,则当函数值8y=时,自变量x的值是()A.2-或4B.4C.2-D.2±或4±24.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为() A.216y x=+B.2(4)y x=+C.28y x x=+D.2164y x=-25.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC.||y x=D.||y x=二.填空题(共3小题)26.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程()S km 随时间t (分)变化的函数图象.以下说法: ①乙比甲提前12分钟到达; ②甲的平均速度为15千米/小时; ③乙走了8km 后遇到甲; ④乙出发6分钟后追上甲. 其中正确的有 (填所有正确的序号)27.圆周长C 与圆的半径r 之间的关系为2C r π=,其中变量是 ,常量是 . 28.某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程(3)x x 时,车费y (元)与路程x (千米)之间的关系式为: . 三.解答题(共10小题)29.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图. 根据图中提供的信息回答下列问题: (1)小明家到学校的路程是 米. (2)小明在书店停留了 分钟.(3)本次上学途中,小明一共行驶了 米.一共用了 分钟.(4)在整个上学的途中 (哪个时间段)小明骑车速度最快,最快的速度是 米/分.30.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图. 根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分? (3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?31.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?32.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?33.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费. 下表是超出部分国内拨打的收费标准(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x 表示超出时间,y 表示超出部分的电话费,那么y 与x 的表达式是什么? (3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?34.已知动点P 以每秒2cm 的速度沿如图甲所示的边框按从B C D E F A -----的路径移动,相应的ABP ∆的面积S 与关于时间t 的图象如图乙所示,若6AB cm =,求: (1)BC 长为多少cm ? (2)图乙中a 为多少2cm ? (3)图甲的面积为多少2cm ? (4)图乙中b 为多少s ?35.国家规定个人发表文章、 出版图书所得稿费的纳税计算方法是:①稿费不高于 800 元的不纳税;②稿费高于 800 元, 而低于 4000 元的应缴纳超过 800 元的那部分稿费的14%的税; ③稿费为 4000 元或高于 4000 元的应缴纳全部稿费的11%的税 . 试根据上述纳税的计算方法作答:(1) 若王老师获得的稿费为 2400 元, 则应纳税 元, 若王老师获得的稿费为 4000 元, 则应纳税 元;(2) 若王老师获稿费后纳税 420 元, 求这笔稿费是多少元?36.一列快车、一列慢车同时从相距300km 的两地出发,相向而行.如图,分别表示两车到目的地的距离()s km 与行驶时间()t h 的关系.(1)快车的速度为 /km h ,慢车的速度为 /km h ; (2)经过多久两车第一次相遇?(3)当快车到达目的地时,慢车距离目的地多远?37.如图,正方形ABCD 的边长为6cm ,动点P 从A 点出发,在正方形的边上由A B C D →→→运动,设运动的时间为()t s ,APD ∆的面积为2()S cm ,S 与t 的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,APD的面积为210cm.38.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?变量之间的关系专项练习一.选择题(共25小题)1.【解答】解:A 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故A 选项错误;B 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故B 选项错误;C 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故C 选项错误;D 、对于x 的每一个取值,y 都有唯一确定的值与之对应关系,所以y 是x 的函数,故D 选项正确.故选:D .2.【解答】解:在这个变化中,自变量是温度,因变量是声速,∴选项A 正确;根据数据表,可得温度越高,声速越快,∴选项B 正确;34251710()m ⨯=,∴当空气温度为20C ︒时,声音5s 可以传播1710m ,∴选项C 错误;3243186(/)m s -=,3303246(/)m s -=,3363306(/)m s -=,3423366(/)m s -=,3483426(/)m s -=,∴当温度每升高10C ︒,声速增加6/m s ,∴选项D 正确.故选:C .3.【解答】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y 随x 的增大而增大, 小明的妈妈开始给你小明送作业到追上小明这段时间,y 随x 的增大而减小, 小明妈妈追上小明到各自继续行走这段时间,y 随x 的增大不变,小明和妈妈分别去学校、回家的这段时间,y 随x 的增大而增大,故选:B .4.【解答】解:函数的一个变量不能对应两个函数值,故选:C .5.【解答】解:在圆的周长公式2C r π=中,C 与r 是改变的,π是不变的; ∴变量是C ,r ,常量是2π.故选:B .6.【解答】解:A .x 与y 都是变量,且x 是自变量,y 是因变量,故A 正确; B .所挂物体质量为4kg 时,弹簧长度为12cm ,故B 正确;C .弹簧不挂重物时的长度为10cm ,故C 错误;D .物体质量每增加1kg ,弹簧长度y 增加0.5cm ,故D 正确.故选:C .7.【解答】解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以只有选项C 不满足条件.故选:C .8.【解答】解:20 4.9h v t t =-中的0v (米/秒)是固定的速度, 4.9-是定值,故0v 和 4.9-是常量,t 、h 是变量,故选:C .9.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:C .10.【解答】解:小李距家3千米,∴离家的距离随着时间的增大而增大,途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合,故选:C .11.【解答】解:最下面的容器较细,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最大,那么用时最长.故选:A .12.【解答】解:根据题意可知火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系具体可描述为:当火车开始进入时y 逐渐变大,火车完全进入后一段时间内y 不变,当火车开始出来时y 逐渐变小,故反映到图象上应选A .故选:A .13.【解答】解:某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中:η和t 是变量,零件的个数100是常量.故选:C .14.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y 随时间x 的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y 随时间x 的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y 随时间x 的增加而增加,故选:C .15.【解答】解:一个蓄水池有315m 的水,以每分钟30.5m 的速度向池中注水, ∴蓄水池中的水量3()Q m 与注水时间t (分)间的函数表达式是:150.5Q t =+,故选:C .16.【解答】解:由图象可得,当件数不超过30件时,每件价格为60元,故选项A 正确,当件数在30到60之间时,每件价格随件数增加而减少,故选项B 正确,当件数为50件时,每件价格为:604560(5030)506030--⨯-=-(元),故选项C 错误, 当件数不少于60件时,每件价格都是45元,故选项D 正确,故选:C .17.【解答】解:读图可得,在40x =时,速度为0,故(1)(4)正确;AB 段,y 的值相等,故速度不变,故(2)正确;30x =时,80y =,即在第30分钟时,汽车的速度是80千米/时;故(3)错误; 故选:C .18.【解答】解:根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢.故选:C .19.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面立方体的体积应大于下面立方体的体积.故选:D .20.【解答】解:A 、正确.x 与y 都是变量,x 是自变量,y 是因变量;B 、正确.所挂物体为6kg ,弹簧长度为11cm ;C 、正确.物体每增加1kg ,弹簧长度就增加0.5cm ;D 、错误,弹簧长度最长为20cm ;故选:D .21.【解答】解:A 、图中加油时间为25至35分钟,共10分钟,故本选项正确;B 、因为//OA BC ,所以602520a a -=,解得1003a =,所以加满油以后的速度1003802560==千米/小时,故本选项正确.C 、由题意:60902060a -=,解得30a =,本选项错误. D 、该同学8:55到达宁波大学,正确.故选:C .22.【解答】解:对于x 的每一个取值,y 都有唯一确定的值,A 、对于x 的每一个取值,y 都有两个值,故A 错误;B 、对于x 的每一个取值,y 都有两个值,故B 错误;C 、对于x 的每一个取值,y 都有两个值,故C 错误;D 、对于x 的每一个取值,y 都有唯一确定的值,故D 正确;故选:D .23.【解答】解:把8y =代入函数6(2)2(2)x x y x x -+⎧=⎨>⎩, 先代入上边的方程得2x =-,2x ,故2x =-;再代入下边的方程4x =,2x >,故4x =,综上,x 的值为4或2-.故选:A .24.【解答】解:新正方形边长是4x +,原正方形边长是4,∴新正方形面积是2(4)x +,原正方形面积是16,∴增加的面积2(4)16y x =+-即28y x x =+故选:C .25.【解答】解:A 、对于x 的每一个取值,y 都有唯一确定的值,故A 正确; B 、对于x 的每一个取值,y 都有唯一确定的值,故B 正确;C 、对于x 的每一个取值,y 都有唯一确定的值,故C 正确;D 、对于x 的每一个取值,y 没有唯一确定的值,故D 错误;故选:D .二.填空题(共3小题)26.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度40101560=÷=千米/时;故②正确; ④设乙出发x 分钟后追上甲,则有:1010(18)281840x x ⨯=⨯+-,解得6x =,故④正确; ③由④知:乙第一次遇到甲时,所走的距离为:10662818km ⨯=-,故③错误; 所以正确的结论有三个:①②④,故答案为:①②④.27.【解答】解:在圆的周长公式2C r π=中,C 与r 是改变的,π是不变的; ∴变量是C ,r ,常量是2π.故答案为:C ,r ;2π.28.【解答】解:根据题意得出:当03x <时,5y =当3x >时,5(3) 1.2y x =+-⨯5 1.2 3.6x =+-1.2 1.4x =+,故答案为: 1.2 1.4y x =+.三.解答题(共10小题)29.【解答】解:(1)y 轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)150060022700+⨯=(米)即:本次上学途中,小明一共行驶了 2700米.一共用了 14分钟.(4)折回之前的速度12006200=÷=(米/分)折回书店时的速度(1200600)2300=-÷=(米/分),从书店到学校的速度(1500600)2450=-÷=(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中 从12分钟到14分钟小明骑车速度最快,最快的速度是 450 米/分30.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0, 故小明家到学校的路程是1500米;(2)根据图象,1214x 时,直线最陡,故小明在1214-分钟最快,速度为15006004501412-=-米/分. (3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了12006009002700++=米,共用了14分钟.31.【解答】解:(1)乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC 表示赛跑过程中兔子的路程与时间的关系;线段OD 表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;故答案为:兔子、乌龟、1500;(2)结合图象得出:兔子在起初每分钟跑700米.15003050÷=(米)乌龟每分钟爬50米.(3)7005014÷=(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)48千米48000=米4800060800∴÷=(米/分)(1500700)8001-÷=(分钟)300.51228.5+-⨯=(分钟)兔子中间停下睡觉用了28.5分钟.32.【解答】解:(1)由图可得农民自带的零钱为50元.(2)(41050)100-÷360100=÷3.6=(元).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530410)(3.6 1.6)-÷-1202=÷60=(千克), 10060160+=(千克). 答:他一共批发了160千克的黄瓜;(4)530160 2.150144-⨯-=(元).答:李大爷一共赚了144元钱.33.【解答】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)由题意可得:0.36y x =;(3)当25x =时,0.36259y =⨯=(元),即如果打电话超出25分钟,需付1869195+=(元)的电话费;(4)当54y =时,541500.36x ==(分钟). 答:小明的爸爸打电话超出150分钟.34.【解答】解:(1)由图象可得,点P 从点B 到点C 运动的时间是4s ,运动的速度是每秒2cm ,故BC 的长度是:428cm ⨯=,即BC 长是8cm ;(2)8BC cm =,6AB cm =,2862422BC AB S cm ⨯∴===, 即图乙中a 的值为224cm ;(3)由图可知, 428BC cm =⨯=,(64)24CD cm =-⨯=,(96)26DE cm =-⨯=,6AB cm =, 14AF BC DE cm ∴=+=,∴图甲的面积是:261446842460AB AF CD DE cm ⋅-⋅=⨯-⨯=-=;(4)由题意可得,846(64)(68)1722BC CD DE EF FA b s +++++++-++===, 即b 的值是17s . 35.【解答】解: (1) 若王老师获得的稿费为 2400 元, 则应纳税 224 元, 若王老师获得的稿费为 4000 元, 则应纳税 440 元;(2) 因为王老师纳税 420 元, 所以由 (1) 可知王老师的这笔稿费高于 800 元, 而低于 4000 元,设王老师的这笔稿费为x 元, 根据题意得:14%(800)420x -=3800x =元 .答: 王老师的这笔稿费为 3800 元 .36.【解答】解:(1)快车的速度为2030045/3km h ÷=,慢车的速度为3001030/km h ÷=, 故答案为:45,30;(2)30044530h =+ 答:经过4h 两车第一次相遇; (3)20(10)301003km -⨯=, 答:当快车到达目的地时,慢车距离目的地多100km .37.【解答】解:(1)根据图象得:点P 在BC 上运动的时间范围为612t ;(2)点P 在AB 上时,APD ∆的面积1632S t t =⨯⨯=; 点P 在BC 时,APD ∆的面积166182=⨯⨯=; 点P 在CD 上时,62(12)302PD t t =--=-,APD ∆的面积116(302)90622S AD PD t t =⋅=⨯⨯-=-; ∴当06t 时,3S t =,APD ∆的面积为210cm ,即10S =时,310t =,103t =, 当1215t 时,90610t -=,403t =, ∴当t 为103s 或403s 时,APD ∆的面积为210cm . 38.【解答】解:(1)0.1100y x =+甲,0.2y x =乙;(2)由题意得:y y =乙甲,0.11000.2x x ∴+=解之得:1000x =答:当印刷1000份时,两个印刷厂费用一样多.(3)当800x =时,0.1800100180y =⨯+=甲;0.2800160y =⨯=乙; 180160>∴选择乙印刷厂划算.。

第3章_变量之间的关系测试卷

第3章_变量之间的关系测试卷

第3章《变量之间的关系》一、选择题(每题3分, 共30分)1.已知△ABC的底边BC上的高为8cm, 当它的底边BC从16cm变化到5cm时, △ABC的面积()(A)从20cm2变化到64cm2(B)从64cm2变化到20cm2(C)从128cm2变化到40cm2(D)从40cm2变化到128cm22. 小王利用计算机设计了一个程序, 输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么, 当输入数据8时, 输出的数据是()(A)861(B)863(C)865(D)8673. “龟兔赛跑”讲述了这样的故事: 领先的兔子看着缓慢爬行的乌龟, 骄傲起来, 睡了一觉。

当它醒来时, 发现乌龟快到终点了, 于是急忙追赶, 但为时已晚, 乌龟还是先到达了终点……。

用S1.S2分别表示乌龟和兔子所行的路程, t 为时间, 则下列图象中与故事情节相吻合的是 ( )4. 下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时, 弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( ) d 50 80 100 150 b25405075(A )2b d =(B )2b d =(C )2db =(D )25b d =+ 5. 小明骑自行车上学, 开始以正常速度匀速行驶, 但行至中途自行车出了故障, 只好停下来修车。

车修好后, 因怕耽误上课, 他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s(米)关于时间t(分)的函数图像, 那么符合这个同学行驶情况的图像大致是 ( )(1) 6. 甲、乙两同学从A 地出发, 骑自行车在同一条路上行驶到B 地, 他们 离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示, 根据图中提供的信息, 有下列说法: ( )(2) 他们都行驶了18千米; (3)甲在途中停留了0.5小时;AB C D(4)乙比甲晚出发了0.5小时;(5)相遇后, 甲的速度小于乙的速度;(6)甲、乙两人同时到达目的地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《变量之间的关系》单元测试题
一、填空题(每空2分,共46分)
1、一个弹簧,不挂物体时长10厘米,挂上物体以后弹簧会变长,每挂上一千克物体,弹簧就会伸长1.5厘米,如果所挂物体总质量为X (千克),那么弹簧伸长的长度y (CM )可以表示为___,在这个问题中自变量是___,因变量是___;如果所挂物体总质量为X (千克)那么弹簧的总长度Y (CM )可以表示为___,在这个问题中自变量是___,因变量是___。

2、为了美化校园,学校共划出84米²的土地修建4个完全相同的长方形花坛,如果每个花坛的一条边为X (米),那么另一条边y (米)可以表示为___。

3、一辆汽车正常行驶时每小时耗油8升,油箱内现有52升汽油,如果汽车行驶时间为t (时),那么油箱中所存油量Q (升)可以表示为___,行驶3小时后,油箱中还剩余汽油___升,油箱中的油总共可供汽车行驶___小时。

4.一圆锥的底面半径是5cm ,当圆锥的高由2cm 变到10cm 时,圆锥的体积由________3
cm 变到_________3
cm .
5.梯形上底长16,下底长x ,高是10,梯形的面积s 与下底长x 间的关系式是_______.当x =0时,表示的图形是_______,其面积________.
4.如图6—1,甲、乙二人沿相同的路线前进,横轴表示时间,纵轴表示路程。

(1)刚出发时乙在甲前面___千米。

(2)两人各用了___小时走完路程。

(3)甲共走了___千米,乙共走了___千米。

5、如图6—2是我国某城市春季某一天气温随时间变化的图象,根据图象回答,在这一天中,
最低气温出现在___时,温度为___°C ,在___时到___时的时段内,温度持续上升,这一天的温差是___°C 。


时间
10121416182022 1
2
B
A
c b
a
图6—1 图6—2 图6—3
6、如图6—3,a //b ,直线c 与a 、b 分别交于A 、B 两点,当直线 b 绕B 点旋转时,∠1的
大小会发生变化。

直线a 为保证与b 平行,相应的∠2的大小也会发生变化,如果∠1度数为x 度,那么∠2的度数y 可以表示为___,在这个问题中自变量是___,因变量是___,当∠1为70°时,角∠2的度数为___。

二、选择(每题5分,共30分)
1、某种储蓄的月利率是0.36%,现存入本金100元,本金与利息和y (元)与所存月数x(月)
之间的关系式为( )。

A. y=100+0.36x
B. y=100+3.6x
C. y=1+136x
D. Y=1+100.36X
2、某次实验中,测得两个变量v 和m 的对应数据如下表,则v 和m 之间的关系最接近于下列
关系中的( )。

A.v=m ²+1
B. v=2m
C. v=3m-1
D. v=2/ m
3、某市1960年只有5%的成年工作者在家工作,至1970年在家工作的人数增 到8%,1980年大约有15%的人在家工作,而在1990年则有30%,试问图6—4中( )是这种情形的最佳说明。


时间年时间1960年
时间1960年
时间(A)
(B)
(C)(D)
图6—4
4、某同学骑自行车上学,开始以正常速度匀速行驶,但行至中途因车出了毛病,只好停下修车,车修好后,因怕耽误上课,他比修车前加快了骑车速度,继续匀速行驶,图6—5是行驶路程S 关于行驶时间t 的图象。

其中横轴表示行驶时间,纵轴表示行驶路程,那么符合这个同学形式情况的图象大致是( )。

(D)
(C)(B)(A)
图6—5
5、报载:我省人均耕地已从1951年的2.93亩减少到1999年的1.02亩,平均每年约减少0.04亩。

若不采取措施,继续按此速度减下去,若干年后我省将无地可耕。

无地可耕的情况最早会发生在( )
A 、2022年
B 、2023年
C 、2024年
D 、2025年 6根据图示的程序计算变量y 的对应值,若输入变量x 的值为
2
3
,则输出的结果为( ) D.
32
C.
12
B.
94
A.
72
1<x ≤2
y=-x+2-1≤x ≤1y=x 2-2≤x<-1
y=x+2输出y的值
输入x的值
三、某种药物服下后,血液中含药量随时间的变化如图6—7所示,横轴表示时间,纵轴表示每毫升血液中的含药量,读图象回答下列问题。

(12分)
图6—7
(1) 服药___小时时,血液中的含药量最大,最大的含药量是___微克/毫升。

(2) 血液含药量4微克/毫升为有效期,这种药物的有效期大约有___小时。

(3) 血液大约___小时后,血液中将不再含有该药物。

四、小明在同样的两个容器中盛满水,加热到相同温度,然后用厚度相同的1,2两种保温材料包好,每隔5分钟测量一次两个容器的水的温度,实验过程中室温保持不变。

最后他把记录的温度画成了如图6—8的图象,其中横轴表示时间,纵轴表示温度,仔细观察图象,然后回答问题。

(12分)
图6—8
(1)小明把水加热到了多少度,后来降到了多少度?
(2)过半小时时,哪个容器中水的温度稍高些,你是怎样看出来的,(3)你估计当时室温可能是多少度?说一说你估计的依据。

(4)你认为那种保温材料保温性能更好些,说说你的理由。

五.声音在空气中传播的速度y(m/s)与气温x(ºC)之间在如下关系:
331
5
3
+
=x
y。

(1)当气温x=15 ºC时,声音的速度是多少?
(2)当气温x=22 ºC时,某人看到烟花燃放5s后才听到声音响,则此人与燃放的烟花所在地相距多少米?。

相关文档
最新文档