轴对称和轴对称图形(一)
《图形的运动(一) 轴对称图形》教案(七套)
![《图形的运动(一) 轴对称图形》教案(七套)](https://img.taocdn.com/s3/m/cdbb078589eb172ded63b7d1.png)
《图形的运动(一)轴对称图形》教案(一)【教学目标】经过深入研读教材,并结合新课标三维目标的理念,设定了如下的教学目标:(1)通过观察、操作、想象初步认识轴对称现象,知道对称轴,能判断一个图形是否为轴对称图形;(2)经历操作、观察、想象、交流等活动,增强观察能力、想象能力和表达能力,发展空间观念。
(3)感知现实世界中普遍存在的轴对称现象,体验到生活中处处有数学,感受无提供或者图形的对称美,激发对数学学习的积极情感。
【学情分析】学生已经学习过一些平面图形的特征,形成一定空间观念,并且在生活中经历过图形的运动,对轴对称图形的概念虽然不清楚,但是学生生活中有大量的素材,教学中需要借助身边有趣的现象,帮助学生理解图形运动这样抽象的概念。
鉴于学生思维发展的规律,低年级学生的思维以具体形象思维为主,因此在学习抽象的图形知识时,需要借助直观的形象支持。
比如观察、折一折、比一比、画一画、拼一拼等,为学生提供丰富的机会,在观察与动手操作中进行思考和发现,直观的感受图形的运动特征。
【重点难点】认识对称现象和轴对称图形,识别轴对称图形。
【教学过程】活动1【导入】一、游戏引入、紧扣主题1、今天孙老师和大家一起研究图形的运动。
2、你们喜欢玩游戏吗?孙老师这里有一个游戏,想玩吗?学生热情回应。
3、听清游戏规则:只看物体的一部分,你能猜出它是什么吗?男女生比赛,看谁猜的又快又准。
女生一次就猜对,男生的答案却要尝试几次。
4、为什每次女生都能异口同声的猜对呢?5、女生的简单在哪儿?6、原来,女生看到的部分和遮住的部分完全一样,所以女生猜的快。
【设计意图】以游戏的形式,将猜测图形分为两类,在这个看似不公平的游戏中,激发学生对图形设置的思考。
紧扣主题。
活动2【活动】二(一)、合作探究轴对称特征1、出示实物照片;这是四个不同的物品,却有一个共同的特征,先思考,再和小组里的同学交流你的想法。
2、点名学生全班交流。
3、我们把它们画下来(课件),再剪一剪就成了这样的图形(示手中的道具);每人一个这样的图形,先折一折,再比一比,然后在小组了说一说你发现了什么。
专题5.1-4轴对称图形及其性质精讲(解析版)
![专题5.1-4轴对称图形及其性质精讲(解析版)](https://img.taocdn.com/s3/m/09880e255fbfc77da369b14c.png)
B.角平分线的交点为三角形的内心,到各边距离相等,不符合题意;
C.高的交点为垂心,而到各顶点相等的只能是垂直平分线的交点,不符合题意;
D.△ABC 三边垂直平分线的交点上,符合题意.
故选 D.
2.(2020·湖北宜昌)如图,点 E,F,G,Q,H 在一条直线上,且 EF GH ,我们知道按如图所作的直
【答案】1:3 【解析】解:∵DE 垂直平分 AB, ∴AD=BD, ∴S△ADE=S△BDE, ∵∠1=∠2,∠C=∠BDE=90°,BE=BE, ∴△BDE≌△BCE(AAS), ∴S△BDE=S△BCE, ∴S△AED:S△ABC=1:3, 故答案为:1:3. 4.(2020·安徽砀山初二期末)如图,在△ABC 中,AC=5 cm,AB 的垂直平分线交 AC 于点 N,△BCN 的周长是 8 cm,则线段 BC 的长为________ cm.
二、考点点拨与训练
考点 1:轴对称图形的识别 典例:(2020·江苏新沂初三一模)剪纸艺术是我国古老的民间艺术之一,作为一种镂空艺术,它能给人以视 觉上的透空感觉和艺术享受.下列剪纸作品中,是轴对称图形的是( )
A.
B.
C.
D.
【答案】A 【解析】 解:A 选项能够关于一条直线对称,是轴对称图形,故 A 正确; B 选项不是轴对称图形,故 B 错误; C 选项不是轴对称图形,故 C 错误;
D.
【答案】C 【解析】解:A、B、D 中的图形不是轴对称图形, C 中的图形是轴对称图形, 故选:C. 6.(2020·全国初二课时练习)我们理应对我们所得的一切心怀感恩,这是我们强大的基础.少年强则国强, 中国强则中国少年更强,中国强就是因为少年强.为了庆祝祖国生日小强做了以下几幅剪纸作品,其中是轴 对称图形的是( )
轴对称与轴对称图形概念
![轴对称与轴对称图形概念](https://img.taocdn.com/s3/m/05b82e751711cc7931b716bf.png)
轴对称与轴对称图形概念(1)轴对称:如果把一个图形沿着一条直线对折后,与另一个图形重合,那么这两个图形成轴对称,两个图形中相互重合的点叫做对称点,这条直线叫做对称轴。
(2)轴对称图形:如果把一个图形沿某条直线对折,对折后图形的一部分与另一部分完全重合,我们把具有这样性质的图形叫做轴对称图形,这条直线叫做对称轴。
轴对称的性质①轴对称的两个图形是全等图形;轴对称图形的两个部分也是全等图形。
②轴对称(轴对称图形)对应线段相等,对应角相等。
③如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
④轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
⑤两个图形关于某条直线对称,那么如果它们的对应线段或延长线相交,那么交点一定在在对称轴上。
图形的平移定义(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。
(2)平移的性质:①对应点的连线平行(或共线)且相等②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)③对应角相等,对应角两边分别平行,且方向一致。
(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。
(4)平移的条件:图形的原来位置、方向、距离(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。
特殊的轴对称图形I线段的垂直平分线①定义:垂直并且平分已知线段的直线叫做线段的垂直平分线或中垂线②性质:a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;b、到线段两端点距离相等的点在线段的垂直平分线上;c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线。
第01讲 轴对称与轴对称图形(知识解读)
![第01讲 轴对称与轴对称图形(知识解读)](https://img.taocdn.com/s3/m/e3912af2fc0a79563c1ec5da50e2524de518d0cd.png)
第01讲轴对称与轴对称图形1.通过具体实例认识轴对称、轴对称图形、探索轴对称的基本性质.2.探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形关于给定对称轴对称图形.3.认识并欣赏自然界和现实生活中的轴对称图形.知识点轴对称图形⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线称为它的对称轴.注意:1.轴对称图形的对称轴是一条直线,2.轴对称图形是1个图形,3.有些对称图形的对称轴有无数条。
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形两个图形的对称轴.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.【题型1轴对称的相关概念】【典例1】(2022秋•昆明期末)如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中与△ABC成轴对称的格点三角形可以画出()A.6个B.5个C.4个D.3个【变式1-1】(2022秋•东港区期末)如图所示,△ABC是在2×2的正方形网格中以格点为顶点的三角形,那么图中与△ABC成轴对称且也以格点为顶点的三角形共有()A.3个B.4个C.5个D.6个【变式1-2】(2022秋•大连期末)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,在格纸中能画出与△ABC成轴对称且也以格点为顶点的三角形(不包括△ABC本身),这样的三角形共有个【题型2轴对称图形的相关概念】【典例2】(2023春•渝北区校级期中)下列图形不是轴对称图形的是()A.B.C.D.【变式2-1】(2023春•青秀区校级期中)下列四个图形分别是四届国际数学家大会的会标,其中是轴对称图形的是()A.B.C.D.【变式2-2】(2023春•南宁期中)学习轴对称图形中后,小乐画出如图四个图形,其中只有1条对称轴的图形是()A.B.C.D.【题型3确定轴对称图形对称轴的条数】【典例3】(2023•城阳区一模)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【变式3-1】下列图形中对称轴只有两条的是()A.B.C.D.【变式3-2】(2022秋•宝山区期末)圆是轴对称图形,它的对称轴有条.【题型4轴对称再镜面对称中的应用】【典例4】(2022秋•乳山市期中)小明在平面镜里看到背后墙上电子钟显示的时间如图所示,此刻的实际时间应该是()A.21:05B.20:15C.20:12D.21:50【变式4-1】(2021秋•播州区期末)如图是一只停放在平静水面上的小船,则它在水中的倒影表示正确的是()A.B.C.D.【变式4-2】(2021秋•恩施市校级期末)一轿车的车牌在水中的倒影是,则该车的牌照号码为.【题型5轴对称的操作应用】【典例5】(2022秋•桓台县期中)在图①中描涂2个小方块,在图②中描涂3个小方块,在图③中描涂4个小方块,在图④中描涂5个小方块,分别使图中的阴影图案成为轴对称图形.【变式5-1】(2022秋•永嘉县校级月考)在图①补充2个小方块,在图②、③、④中分别补充3个小方块,分别使它们成为轴对称图形.【变式5-2】(2021秋•船营区校级期中)下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充.(1)使得图①成为轴对称图形;(2)使得图②成为有4条对称轴且阴影部分面积等于3的图形;(3)使得图③成为至少有2条对称轴且面积不超过6的图形.【题型6与轴承对称相关的探索图形规律问题】【典例6】(2020春•顺德区校级期末)如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2,在射线AD上取点F 连接BF,CF,如图3,依此规律,第6个图形中全等三角形的对数是()A.10B.15C.21D.28【变式6-1】(2021秋•沂源县期末)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠2【变式6-2】(2021秋•罗庄区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q,第2次碰到矩形的边时的点为M,….第9次碰到矩形的边时的点为图中的()A.点P B.点Q C.点M D.点N【题型7与轴对称相关的开放性问题】【典例7】(2022秋•东营区校级期末)如图,AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是三角形,△ABC的周长=cm.【变式7-1】(2022秋•开封期末)如图,∠1=∠2,∠3=25°,击打白球,反弹后将黑球撞入袋中,∠1=.【变式7-2】(2022秋•青云谱区校级期中)图中阴影部分是由4个完全相同的正方形拼接而成的,若要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形可添加的区域有个.【题型8轴对称的实际应用】【典例8】(2022秋•乐清市月考)为迎接即将到来的国庆节,市区广场上设置了一个呈轴对称图形的平面造型(如图所示),其正中间为一个半径为b的半圆,摆放花草,其余部分为展板区.已知a=0.5米.b=2米.则展板的面积为,摆放花草造价为450元/平方米,展板造价为80元/平方米,那么制作整个造型的造价是(π取3)元.【变式8-1】(2022秋•栖霞市期末)已知:如图,CDEF是一个长方形的台球面,有A、B两球分别位于图中所在位置,试问怎样撞击球A,才能使A先碰到台边FC反弹后再击中球B?在图中画出A球的运动线路.【变式8-2】如图,台球运动中母球P击中桌边的点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹经过点C(提示:∠PAD=∠BAE,∠ABE=∠CBF).(1)若∠P AD=32°,求∠PAB的度数;(2)已知∠BAE+∠ABE=90°,母球P经过的路线BC与PA一定平行吗?请说明理由.1.(2023•平顶山二模)从“同一个世界,同一个梦想”的2008年夏季奥运会,到“一起向未来”的2022年冬季奥运会,北京成为世界上首座“双奥之城”,下列四幅图是两届奥运会的参选徽标,其中文字上方的图案是轴对称图形的是()A.B.C.D.2.(2023•蚌山区模拟)有一些含有特殊数学规律的车牌号码,如:皖C80808、皖C22222、皖C12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给人以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照.如果让你负责制作只以8或9开头且有五个数字的“数字对称”牌照,那么最多可制作()A.200个B.400个C.1000个D.2000个3.(海淀区)如图,把△ABC纸片沿着DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)4.(2020•薛城区模拟)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.1.(2022秋•河西区期末)2022年卡塔尔世界杯开幕式上中国元素闪耀登场.下面四幅与世界杯相关的图标中,可以看作是轴对称图形的是()A.B.C.D.2.(2022秋•东宝区期末)在以下四个图形中,对称轴条数最多的一个图形是()A..B.C..D.3.(2022春•淮阳区期末)如图下面镜子里哪个是他的像?()A.A B.B C.C D.D 4.(2023•雄县模拟)通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点C.点C D.点D 5.(2023春•海淀区校级月考)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.5B.6C.7D.8 6.(2022秋•婺城区期末)如图为一张锐角三角形纸片ABC,小明想要通过折纸的方式折出如下线段:①BC边上的中线AD;②∠A的平分线AE;③BC 边上的高AF.根据所学知识与相关活动经验可知:上述三条线中,能够通过折纸折出的有()A.①②③B.①②C.①③D.②③7.(2020秋•十堰期末)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋8.(2020春•兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点B.B点C.C点D.D点9.(2022秋•汤阴县期中)小红站在平面镜前,通过镜子看到电子钟的示数如图所示,这时的时刻应是.10.如图,△ABC是轴对称图形,且直线AD是△ABC的对称轴,点E,F是线段AD上的任意两点,若△ABC的面积为18cm2,则图中阴影部分的面积是cm2.11.(秋•西城区校级期中)如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.答案与解析【题型1轴对称的相关概念】【典例1】(2022秋•昆明期末)如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中与△ABC成轴对称的格点三角形可以画出()A.6个B.5个C.4个D.3个【答案】A【解答】解:如图,最多能画出6个格点三角形与△ABC成轴对称.故选:A.【变式1-1】(2022秋•东港区期末)如图所示,△ABC是在2×2的正方形网格中以格点为顶点的三角形,那么图中与△ABC成轴对称且也以格点为顶点的三角形共有()A.3个B.4个C.5个D.6个【答案】C【解答】解:如图,与△ABC成轴对称且也以格点为顶点的三角形共有5个.故选C.【变式1-2】(2022秋•大连期末)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,在格纸中能画出与△ABC成轴对称且也以格点为顶点的三角形(不包括△ABC本身),这样的三角形共有个【答案】见试题解答内容【解答】解:如图所示,与△ABC成轴对称且也以格点为顶点的三角形有3个:故答案为:3.【题型2轴对称图形的相关概念】【典例2】(2023春•渝北区校级期中)下列图形不是轴对称图形的是()A.B.C.D.【答案】D【解答】解:D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A、B、C选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.【变式2-1】(2023春•青秀区校级期中)下列四个图形分别是四届国际数学家大)A.B.C.D.【答案】A【解答】解:B,C,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【变式2-2】(2023春•南宁期中)学习轴对称图形中后,小乐画出如图四个图形,其中只有1条对称轴的图形是()A.B.C.D.【答案】C【解答】解:A.该图形有无数条对称轴,故此选项不合题意;B.该图形有4条对称轴,故此选项不合题意;C.该图形有1条对称轴,故此选项符合题意;D.该图形有2条对称轴,故此选项不合题意.故选:C.【题型3确定轴对称图形对称轴的条数】【典例3】(2023•城阳区一模)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【答案】B【解答】解:A.该图形是轴对称图形,共有1条对称轴;B.该图形是轴对称图形,共有3条对称轴;C.该图形是轴对称图形,共有2条对称轴;D.该图形是轴对称图形,共有2条对称轴.故选:B.【变式3-1】下列图形中对称轴只有两条的是()A.B.C.D.【答案】C【解答】解:A、圆有无数条对称轴,故本选项不符合题意;B、等边三角形有3条对称轴,故本选项不符合题意;C、矩形有2条对称轴,故本选项符合题意;D、等腰梯形有1条对称轴,故本选项不符合题意;故选:C.【变式3-2】(2022秋•宝山区期末)圆是轴对称图形,它的对称轴有条.【答案】见试题解答内容【解答】解:圆是轴对称图形,它的对称轴有无数条.故答案为:无数.【题型4轴对称再镜面对称中的应用】【典例4】(2022秋•乳山市期中)小明在平面镜里看到背后墙上电子钟显示的时间如图所示,此刻的实际时间应该是()A.21:05B.20:15C.20:12D.21:50【答案】B【解答】解:根据镜面对称的性质,题中所显示的时刻与20:15成轴对称,所以此时实际时刻为20:15.故选:B.【变式4-1】(2021秋•播州区期末)如图是一只停放在平静水面上的小船,则它在水中的倒影表示正确的是()A.B.C.D.【答案】A【解答】解:根据题意,它在水中的倒影表示正确的是A,故选:A.【变式4-2】(2021秋•恩施市校级期末)一轿车的车牌在水中的倒影是,则该车的牌照号码为.【答案】鄂Q•W6E01.【解答】解:如图所示:该车的牌照号码为鄂Q•W6E01..故答案为:鄂Q•W6E01.【题型5轴对称的操作应用】【典例5】(2022秋•桓台县期中)在图①中描涂2个小方块,在图②中描涂3个小方块,在图③中描涂4个小方块,在图④中描涂5个小方块,分别使图中的阴影图案成为轴对称图形.【答案】答案见解答.【解答】解:如图所示:.【变式5-1】(2022秋•永嘉县校级月考)在图①补充2个小方块,在图②、③、④中分别补充3个小方块,分别使它们成为轴对称图形.【答案】见试题解答内容.【解答】解:作轴对称图形如下(答案不唯一):【变式5-2】(2021秋•船营区校级期中)下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充.(1)使得图①成为轴对称图形;(2)使得图②成为有4条对称轴且阴影部分面积等于3的图形;(3)使得图③成为至少有2条对称轴且面积不超过6的图形.【答案】见解答.【解答】解:如图所示(答案不唯一):【题型6与轴承对称相关的探索图形规律问题】【典例6】(2020春•顺德区校级期末)如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2,在射线AD上取点F连接BF,CF,如图3,依此规律,第6个图形中全等三角形的对数是()A.10B.15C.21D.28【答案】C【解答】解:∵△ABD和△ACD关于直线AD对称,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE(SAS),∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有1+2=3对三角形全等;同理:图3中有1+2+3=6对三角形全等;由此发现:第n个图形中全等三角形的对数是.所以:第6个图形中全等三角形的对数是,故选:C.【变式6-1】(2021秋•沂源县期末)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠2【答案】A【解答】解:如图,由翻折的性质得,∠3=∠A′DE,∠AED=∠A′ED,∴∠3=(180°﹣∠1),在△ADE中,∠AED=180°﹣∠3﹣∠A,∠CED=∠3+∠A,∴∠A′ED=∠CED+∠2=∠3+∠A+∠2,∴180°﹣∠3﹣∠A=∠3+∠A+∠2,整理得,2∠3+2∠A+∠2=180°,∴2×(180°﹣∠1)+2∠A+∠2=180°,∴2∠A=∠1﹣∠2.故选:A.【变式6-2】(2021秋•罗庄区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q,第2次碰到矩形的边时的点为M,….第9次碰到矩形的边时的点为图中的()A.点P B.点Q C.点M D.点N【答案】D【解答】解:如图所示,小球反弹6次回到点P处,而9﹣6=3,∴第9次碰到矩形的边时的点为图中的点N.故选:D.【题型7与轴对称相关的开放性问题】【典例7】(2022AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是等边三角形,△ABC的周长=24cm.【答案】等边三角形,24.【解答】解:∵AD是△ABC的对称轴,∴BD=CD=4cm,AB=AC,∴BC=BD+CD=8cm,∵∠DAC=30°,∴∠C=60°,∴△ABC是等边三角形,∴△ABC的周长为=3BC=24cm.故答案为:等边三角形,24.【变式7-1】(2022秋•开封期末)如图,∠1=∠2,∠3=25°,击打白球,反弹后将黑球撞入袋中,∠1=65°.【答案】65°.【解答】解:∵∠2+∠3=90°,∠3=25°,∴∠2=65°.∵∠1=∠2,∴∠1=65°.故答案为:65°.【变式7-2】(2022秋•青云谱区校级期中)图中阴影部分是由4个完全相同的正方形拼接而成的,若要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形可添加的区域有2个.【答案】2.【解答】解:要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形应该添加在区域①⑤.故答案为:2.【题型8轴对称的实际应用】【典例8】(2022秋•乐清市月考)为迎接即将到来的国庆节,市区广场上设置了一个呈轴对称图形的平面造型(如图所示),其正中间为一个半径为b的半圆,摆放花草,其余部分为展板区.已知a=0.5米.b=2米.则展板的面积为12平方米,摆放花草造价为450元/平方米,展板造价为80元/平方米,那么制作整个造型的造价是(π取3)3660元.【答案】12平方米;3660.【解答】解:由题意:展板的面积=12a•b(平方米),当a=0.5米,b=2米时,展板的面积=12(平方米).制作整个造型的造价=12×80+π×4×450=3660(元).故答案是:12平方米;3660.【变式8-1】(2022秋•栖霞市期末)已知:如图,CDEF是一个长方形的台球面,有A、B两球分别位于图中所在位置,试问怎样撞击球A,才能使A先碰到台边FC反弹后再击中球B?在图中画出A球的运动线路.【答案】如图所示,运动路线:A→P→B.【解答】解:如图所示:运动路线:A→P→B.【变式8-2】如图,台球运动中母球P击中桌边的点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹经过点C(提示:∠PAD=∠BAE,∠ABE=∠CBF).(1)若∠PAD=32°,求∠PAB的度数;(2)已知∠BAE+∠ABE=90°,母球P经过的路线BC与PA一定平行吗?请说明理由.【答案】(1)116°.(2)BC∥PA.证明见解析部分.【解答】解:(1)∵∠PAD=32°,∠P AD=∠BAE,∠PAD+∠PAB+∠BAE=180°,∴∠PAB=180°﹣32°﹣32°=116°.(2)BC∥PA,理由如下:∵∠PAD=∠BAE,∠P AB=180°﹣∠PAD﹣∠BAE,∴∠PAB=180°﹣2∠BAE.同理:∠ABC=180°﹣2∠ABE.∵∠BAE+∠ABE=90°,∴∠PAB+∠ABC=360°﹣2(∠BAE+∠ABE)=180°.∴BC∥PA.1.(2023•平顶山二模)从“同一个世界,同一个梦想”的2008年夏季奥运会,到“一起向未来”的2022年冬季奥运会,北京成为世界上首座“双奥之城”,下列四幅图是两届奥运会的参选徽标,其中文字上方的图案是轴对称图形的是()A.B.C.D.【答案】C【解答】解:A,B,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C.2.(2023•蚌山区模拟)有一些含有特殊数学规律的车牌号码,如:皖C80808、皖C22222、皖C12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给人以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照.如果让你负责制作只以8或9开头且有五个数字的“数字对称”牌照,那么最多可制作()A.200个B.400个C.1000个D.2000个【答案】A【解答】解:根据题意,若以8开头,则第五个也是8,只需考虑中间3位,又因为第二位和第四位是相等的,只需考虑第二位和第三位,共有10×10=100种情况.同样地,以9开头只需考虑中间3位,又因为第二位和第四位是相等的,只需考虑第二位和第三位,共有10×10=100种情况,所以最多可制作200个.故选:A.3.(2003•海淀区)如图,把△ABC纸片沿着DE折叠,当点A落在四边形BCED 内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【答案】B【解答】解:∵把△ABC纸片沿着DE折叠,点A落在四边形BCED内部,∴∠1+∠2=180°﹣∠ADA′+180°﹣∠AEA′=180°﹣2∠ADE+180°﹣2∠AED=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣∠A)=2∠A.故选:B.4.(2020•薛城区模拟)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.【答案】674.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+2=674(次),故答案为:674.1.(2022秋•河西区期末)2022年卡塔尔世界杯开幕式上中国元素闪耀登场.下面四幅与世界杯相关的图标中,可以看作是轴对称图形的是()A.B.C.D.【答案】D【解答】解:选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:D.2.(2022秋•东宝区期末)在以下四个图形中,对称轴条数最多的一个图形是()A..B.C..D.【答案】B【解答】解:A有2条对称轴,B有4条,C有0条,D有1条.则对称轴条数最多的一个图形是B.故选:B.3.(2022春•淮阳区期末)如图下面镜子里哪个是他的像?()A.A B.B C.C D.D【答案】B【解答】解:由镜面对称的性质,连接对应点的线段与镜面垂直并且被镜面平分,即可得出只有B与原图形成镜面对称.故选:B.4.(2023•雄县模拟)通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点B C.点C D.点D【答案】B【解答】解:如图,过点P,点B的射线交于一点O,故选:B.5.(2023春•海淀区校级月考)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.5B.6C.7D.8【答案】A【解答】解:如图,连接OP1,PP1,OP2,PP2,P1P2,∵P1是P关于直线l的对称点,∴直线l是PP1的垂直平分线,∴OP1=OP=2.8,∵P2是P关于直线m的对称点,∴直线m是PP2的垂直平分线,∴OP2=OP=2.8,当P1,O,P2不在同一条直线上时,OP1﹣OP2<P1P2<OP1+OP2,即0<P1P2<5.6,当P1,O,P2在同一条直线上时,P1P2=OP1+OP2=5.6,∴P1,P2之间的距离可能是5,故选:A.6.(2022秋•婺城区期末)如图为一张锐角三角形纸片ABC,小明想要通过折纸的方式折出如下线段:①BC边上的中线AD;②∠A的平分线AE;③BC边上的高AF.根据所学知识与相关活动经验可知:上述三条线中,能够通过折纸折出的有()A.①②③B.①②C.①③D.②③【答案】A【解答】解:①BC边上的中线AD:如图1,使点B、C重合,中点为点D,连接AD,此时AD即为BC边上的中线;②∠A的平分线AE:如图2,沿直线AE折叠,使AB与AC重叠,此时AE即为BC边上的角平分线;③BC边上的高AF:如图3,沿直线AF折叠,使BF与CF重合,此时AF即为BC边上的高.综上所述,所有能够通过折纸折出的有①②③.故选:A.7.(2020秋•十堰期末)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.8.(2020春•兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点B.B点C.C点D.D点【答案】D【解答】解:如图所示,经过6次反弹后动点回到出发点P,∵2020÷6=336…4,∴当点P第2020次碰到长方形的边时为第337个循环组的第4次反弹,∴第2020次碰到长方形的边时的点为图中的点D,故选:D.9.(2022秋•汤阴县期中)小红站在平面镜前,通过镜子看到电子钟的示数如图所示,这时的时刻应是.【答案】12:08:51.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是12:08:51.故答案为:12:08:51.11.如图,△ABC是轴对称图形,且直线AD是△ABC的对称轴,点E,F是线段AD上的任意两点,若△ABC的面积为18cm2,则图中阴影部分的面积是cm2.【答案】9.【解答】解:∵△ABC是轴对称图形,且直线AD是对称轴,=S△ACD=,S△CEF=S△BEF,∴S△ABD∴阴影部分的面积等于△ABC面积的一半,=×18=9(cm2).∴S阴影故答案为:9.11.(秋•西城区校级期中)如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.【答案】见试题解答内容【解答】解:(1)如图,运动路径:P→M→Q,点M即为所求.(2)如图,运动路径:P→E→F→Q,点E,点F即为所求.。
轴对称与轴对称图形的区别与联系
![轴对称与轴对称图形的区别与联系](https://img.taocdn.com/s3/m/5e8f8078a26925c52cc5bf30.png)
轴对称与轴对称图形的区别与联系说明”轴对称图形”和”轴对称”是两个不同的概念,它们的区别与联系如下:区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的.联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.下面是一些概念和定理,希望能帮到你。
【轴对称】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。
说明:(1)轴对称是指两个图形之间形状个位置的关系,包含两层意思:一是两个图形,能够完全重合,即形状大小都相同;二是对重合的方式有限制,也就是它们的位置关系必须满足一个条件,即把它们沿某一条直线对折后能够重合,因此,全等的图形不一定是轴对称的,而轴对称图形一定是全等的.(2)对称轴是指一条直线.【关于轴对称的定理】定理1 关于某条直线对称的两个图形是全等形.定理2 如果两个图形关于某直线对称.那么对称轴是对应点连线的垂直平分线.(逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.)定理3 两个图形关于某直线对称.如果它们的对应线段或延长线相交,那么交点在对称轴上. 说明(1)定理1实际上是轴对称定义的一部分.为了突出这一点,教材把它作为一个定理.(2)定理1,2,3都是轴对称的性质,而逆定理是轴对称的判定定理.由于定义是根据图形翻折后是否重合来判定两个图形是否对称,实际操作很困难,所以该逆定理就是判定轴对称的主要依据.(3)如果A,B两点的对称点是A‘,B‘,那么线段AB的对称图形必是线段A‘B‘,因此对于直线形,如线段,三角形,折线等等.要求它们的对称图形,只需把它们的顶点的对称点确定,然后只要将线段按相同关系连结即可,而不必去找图形上每个点的对称点.【轴对称图形】如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.如果两个图形关于某条直线成轴对称,那么对称轴是(对称点的中点的连线,即垂直平分线)轴对称图形的对称轴是(对折重合的折痕线)。
《轴对称再认识(一)》轴对称和平移
![《轴对称再认识(一)》轴对称和平移](https://img.taocdn.com/s3/m/cec0b0c8690203d8ce2f0066f5335a8102d26639.png)
对称变换在经济学中 的应用
在对称经济学中,对称原则被用来建 立经济模型,从而对经济现象进行分 析和研究。此外,在对称金融学中, 对称变换也被广泛应用于金融衍生品 定价和风险管理等领域。
对称变换的未来展望
随着科学技术的发展,对称变换将在 更多领域得到应用和发展。例如,在 人工智能领域,通过对称变换可以研 究深度学习和神经网络等算法的本质 和结构;在数据科学领域,通过对称 变换可以挖掘数据中的模式和规律; 在生物医学领域,通过对称变换可以 研究分子结构和生物大分子的性质等 。
对称变换在现代数学中的应用
01 02
对称变换在几何学中的应用
对称变换被广泛应用于几何学中,例如在平面几何、立体几何和解析 几何中,通过对称变换可以解决许多问题,如证明定理、求解方程等 。
对称变换在代数中的应用
对称变换也被广泛应用于代数中,例如在矩阵变换、群论和李代数中 ,通过对称变换可以研究问题的本质和结构。
平移和轴对称的关系
平移和轴对称都是图形的基本变换,它们之间存在密切 的关系。例如,可以通过平移将两个图形重合,也可以 通过轴对称将两个图形重合。
04
轴对称的实例
生活中的轴对称实例
建筑物
许多建筑物,如中国的故宫、 美国的自由女神像,都利用了 轴对称的设计,使建筑在视觉
上更具美感。
植物
自然界中许多植物也呈现出轴对 称的特点,如向日葵、睡莲等。
轴对称图形的特点
轴对称图形是左右或上下对称的,对称轴两侧的对应点到对称轴的距离相等 。
轴对称的判断,通过折叠或比较对应 部分来判断是否为轴对称图形。
常见的轴对称图形
正方形、长方形、等腰三角形、等边三角形、圆形、菱形等 。
轴对称的应用
轴对称中考题归类
![轴对称中考题归类](https://img.taocdn.com/s3/m/58f60d1dfad6195f312ba607.png)
(3)距离和最小的作图 1.某汽车探险队要从A城穿 越沙漠去B城,途中需要到河 流L边为汽车加水,汽车在短? 请你在图上画出这一点.河 边哪一点加水,才能使行驶 的总路程最短。 2.图2-170表示一张长方形 球台,设P,Q为两个球,若 击P球,使它碰CD边后,反弹 正好击中Q球.试问P应碰撞 CD边的哪一点?
2.甲、乙、丙、丁四人分别面对面坐在一张四方形桌 甲 子旁边。桌上一张纸上写着数字“ , 子旁边。桌上一张纸上写着数字“9”,甲说他看到的 是 “ 6”, 乙说他看到的是 “ ” , 丙说他看到的是 , 乙说他看到的是“ 丁说他看到的是“ , “ ”,丁说他看到的是“9”,则下列说法正确的是 ( ) A.甲在丁的对面,乙在甲的左边,丙在丁的右边 甲在丁的对面,乙在甲的左边, 甲在丁的对面 B.丙在乙的对面,丙的左边是甲,右边是丁 丙在乙的对面,丙的左边是甲, 丙在乙的对面 C.甲在乙的对面,甲的右边是丙,左边是丁 甲在乙的对面,甲的右边是丙, 甲在乙的对面 D.甲在丁的对面,乙在甲的右边,丙在丁的右边 甲在丁的对面,乙在甲的右边, 甲在丁的对面
4.三个重要定理: 三个重要定理:
角的平分线上的点到这个角的两边的距离相等。 (1)角的平分线上的点到这个角的两边的距离相等。 ( 2 ) 线段垂直平分线上的点到这条线段两个端点的距 离相等。 离相等。 ( 3 ) 等腰三角形顶角的平分线 、 底边的中线 、 底边上 等腰三角形顶角的平分线、 底边的中线、 的高互相重合。 的高互相重合。 这三个定理都可以用全等得出, 注:这三个定理都可以用全等得出,但直接使用这三个 定理更加简单。 定理更加简单。
7.剪纸中的数学: 剪纸中的数学:
将一圆形纸片对折后再对折, (1)将一圆形纸片对折后再对折, 得到图3 得到图3,然后沿着图中的虚线剪 得到两部分, 开 , 得到两部分 , 其中一部分展 开后的平面图形是( 开后的平面图形是( )
1.轴对称与轴对称图形
![1.轴对称与轴对称图形](https://img.taocdn.com/s3/m/db030629af45b307e8719771.png)
课题轴对称与轴对称图形上课时间09月3 日星期一课时第 1 课时教学目标知识与能力通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及轴对称,并能找出对称轴.过程与方法通过亲自实验、探索,研究、发现、应用轴对称,实现真正的“做数学”.情感态度与价值观欣赏现实生活中的轴对称,体会轴对称在现实生活中的广泛应用和它的丰富文化价值.教学重点认识轴对称与轴对称图形并会找对称轴教学难点轴对称图形和轴对称的区别与联系教学方法合作讨论法教具多媒体教学内容及教学过程一、创设情境走进生活(投影片)4幅图,观察下列四幅图形,面对生活中这些美丽的图片,你是否强烈地感受到美就在我们身边!这是一种怎样的美呢?请你谈谈你的感想?“对称是一种思想,通过它,人们毕生追求,并创造次序、美丽和完善……”让我们走进对称的世界!去感受对称的奇妙和美丽吧!二、互动探究转化建模观察下面的图形,你能发现它们有什么共同的特征吗?说出来与同学交流。
对于两个图形,如果沿一条直线对折后,它们会怎样?,每一组里,右边的图形沿直线对折后与左边的图形完全重合于是我们能够得出轴对称概念.把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.观察下图中的每组图案,你能找出成轴对称的图形吗?练习1.找出图形的对称点2.请在图中标出A、B、C三点的对称点。
AB C3.从镜子中看到一串数字 , 这串数字是4.从水中看到一个汽车牌号为 ,实际车牌号为 .欣赏一些轴对称图形的图片1.中外建筑2.脸谱艺术3.剪纸艺术4.车标设计5.国旗欣赏6.交通标志7.实物图案8.几何图案面对生活中这些美丽的图片,你是否强烈地感受到美就在我们身边!这还是一种怎样的美呢?观察轴对称图形图片找出共同特征,请你想一想:将上图中的每一个图形沿某条直线对折,直线两旁的部分能完全重合吗?能互相重合一模一样是对称的我们能不能给具有这样特征的一个图形起一个名称呢?如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴你能够举出生活中还有哪些轴对称图形吗?生活中有许多轴对称图形,观察下面的轴对称图形,请分别指出每个图形的对称轴.三、拓展延伸提高能力1.观察下列图形,每个图形是不是轴对称图形?如果是,说出它们的对称轴.C D2.你能找出下面图形:正方形,长方形,等腰三角形,等边三角形,椭圆,圆,五角星的对称轴吗? 许多图形不止一条对称轴,如3.下面的图形是轴对称图形吗?如果是,有几条对称轴?归纳: 常见的轴对称图形有:线段、角、等腰三角形、等边三角形、长方形、正方形、菱形、等腰梯形、圆……一般的三角形、梯形、平行四边形不是轴对称图形。
初中数学知识点——轴对称与中心对称
![初中数学知识点——轴对称与中心对称](https://img.taocdn.com/s3/m/aad06b37b90d6c85ec3ac6c2.png)
初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
小学数学轴对称知识点总结
![小学数学轴对称知识点总结](https://img.taocdn.com/s3/m/21d984ef376baf1ffc4fade8.png)
小学数学轴对称知识点总结(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(-x,y);点(x,y)关于y轴对称的点的坐标为(x,-y);点(x,y)关于原点对称的点的坐标为(-x,-y)。
关于谁谁不变,关于原点都相反(五)等腰三角形等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
轴对称与轴对称图形
![轴对称与轴对称图形](https://img.taocdn.com/s3/m/17e166425f0e7cd185253640.png)
定 义示例剖析轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.如图,等腰三角形ABC △是轴对称图形.注:在理解轴对称图形时.应注意以下几点:(1)一个图形被对称轴分成两部分,对折后能重合(即全等),这样的图形是轴对称图形.常见的有线段、角、等腰三角形、长方形、圆等.(2)轴对称图形的对称轴是一条直线..,不是射线也不是线段,在叙述时应注意.(3)轴对称图形的对称轴条数至少有一条.否则不是轴对称图形.有的轴对称图形的对称轴条数是有限的.还有的有无限多条对称轴.知识互联网知识导航模块一 轴对称图形的认识与应用轴对称初步两个图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.如图,ABC△与'''A B C△关于直线l对称,l叫做对称轴.A和'A,B和'B,C和'C是对称点.注:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.轴对称的性质:1.关于一条直线轴对称的图形全等;2.对称点连成的线段被对称轴垂直平分.【例1】⑴在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A B C D⑵在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.A BCA BCA BCCBA⑶正六边形是轴对称图形,它有条对称轴.⑷下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形D.线段⑸判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.⑹已知两条互不平行的线段AB和A′B′关于直线l对称,AB和A′B′所在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线l上;③若A、A′是对应点,则直线l垂直平分线段AA′;④若B、B′是对应点,则PB=PB′,其中正确的是()夯实基础A .①③④B .③④C .①②D .①②③④【例2】 ⑴ 图1的长方形ABCD 中,E 点在AD 上,且∠ABE =30°.分别以BE 、CE 为折线,将A 、D 向BC 的方向折过去,图2为对折后A 、B 、C 、D 、E 五点均在同一平面上的位置图.若图2中,∠AED =15°,则∠BCE 的度数为( )A .30°B .32.5°C .35°D .37.5°⑵如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( ) A .① B .② C .③ D .④⑶ 已知30AOB ∠=°,点P 在AOB ∠内部,1P 与P 关于OB 对称,2P 与P 关于OA 对称,则1P ,O ,2P 三点确定的三角形是( )A .直角三角形B .钝角三角形C .腰底不等的等腰三角形D .等边三角形定 义示例剖析线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也称之为中垂线.EDC BA 如图,若AC BC =,AB CD ⊥,则直线DE 是线段AB 的垂直平分线.模块二 线段的垂直平分线知识导航能力提升图2图1ABCD EED④②线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.EDC BA如图,已知直线DE 是线段AB 的垂直平分线,则DA DB =.线段的垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.EDC BA如图,若DA DB =,则点D 在线段AB 的垂直平分线上.【例3】 ⑴ 如何用圆规与直尺作线段AB 的垂直平分线?⑵ 证明:线段的垂直平分线上的点与这条线段两个端点的距离相等(线段垂直平分线的性质).⑶ 证明:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上(线段垂直平分线的判定).【例4】 ⑴ 如下图1,在△ABC 中,DE 是AC 的中垂线,AE =3cm ,△ABD 得周长为13cm ,则△ABC 的周长是 .⑵ 如下图2,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P 点到直线AB 的距离是 .夯实基础⑶ 如下图3,在ABC △中,90A ∠=︒,:2:3ABD DBE ∠∠=,DE BC ⊥,E 是BC 的中点,求C ∠的度数.图3图2图1ED CBAPE DCBAED CBA【例5】 ABC △的两边AB 和AC 的垂直平分线分别交BC 于点D 、E ,⑴若BC =8,求△ADE 的周长;⑵若150BAC DAE ∠+∠=︒,求BAC ∠.定 义示例剖析角平分线的性质定理:在角的内部平分线上的点到这个角的两边的距离相等.DFEO CBA如图,若射线OC 是∠AOB 的角平分线,则DE=DF .角平分线的判定定理:在角的内部到一个角两边距离相等的点在这个角的平分线上.DFEOCB A能力提升知识导航模块三 角平分线性质及常见辅助线模型(一)H FEDCB A如图,若DE=DF ,则OC 是∠AOB 的角平分线.角平分线的两种基本模型1. 点垂线,垂两边,对称全等要记全A BCDO12E已知:12∠=∠,CD OA ⊥,作CE OB ⊥于E ,则OCD OCE △≌△.2.角平分线+平行线,等腰三角形必呈现321OD CBA已知:12∠=∠,CD OB ∥交OA 于D ,则ODC △为等腰三角形(即OD CD =).【教师铺垫】证明:⑴ 角平分线上的点到这个角的两边的距离相等(角平分线的性质定理).⑵ 在角的内部到一个角两边距离相等的点在这个角的平分线上(角平分线的判定定理).⑶ 三角形的三条内角平分线交于一点.(此点称之为三角形的内心).⑷ 三角形的内心到三边的距离相等.(三角形内心性质).夯实基础CPB ANM O CPBANMO【例6】 ⑴ 如图,已知ABC △的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC △的面积.⑵ 如图所示,2AB AC =,1∠2=∠,DA DB =. 求证:DC AC ⊥.【例7】 如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E ,求证:⑴∠EAD =∠EDA ;⑵DF ∥AC ;⑶∠EAC =∠B .训练1. D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F ,EG AC ⊥于G .求证:BF CG =.思维拓展训练(选讲)能力提升21ADCBA B C DE F O G ODCBAFAGEDCB训练2.已知:如图,ABC∠及两点M、N.求作:在平面内找一点P,使得PM PN=,且P点到ABC∠两边所在的直线的距离相等.NMBCA训练3.如图,在ABC△中,BD、CD分别平分ABC∠和ACB∠.DE AB FD AC∥,∥.如果6BC=,求DEF△的周长.训练4.已知:如图,在POQ∠内部有两点M、N,MOP NOQ∠=∠.⑴画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;⑵直接写出AM AN+与BM BN+的大小关系.知识模块一轴对称图形的认识与应用课后演练【演练1】⑴下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.实战演练FEDCBAMNQO④③②①答:图形__________;理由是__________.⑵ 画出下图所示的轴对称图形的对称轴:⑶ 如图是奥运会会旗上的五环图标,它有( )条对称轴.A .1B .2C .3D .4⑷ 下列图形中,不是轴对称图形的是( ).A .角B .等边三角形C .线段D .不等边三角形⑸ 如图,它们都是对称的图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.【演练2】 如图,把ABC △纸片沿DE 折叠,当点A 落在四边形BCED 的外部时,则A ∠与1∠和2∠之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ). A .12A ∠=∠-∠B .212A ∠=∠-∠C .3212A ∠=∠-∠D .()3212A ∠=∠-∠知识模块二 线段的垂直平分线 课后演练【演练3】 如图,已知40AOB ∠=︒,CD 为OA 的垂直平分线,求ACB ∠的度数.21E ADCBO DC BA知识模块三角平分线性质及常见辅助线模型(一)课后演练【演练4】如图,BD CD=,90ABD ACD∠=∠=°,点E、F分别在AB、AC 上,若ED平分BEF∠.①求证:FD平分EFC∠;②求证:EF BE CF=+.【演练5】证明:三角形一个内角的平分线与另外两个外角的平分线交于一点.FEDC BA。
轴对称与轴对称图形--知识讲解(基础)
![轴对称与轴对称图形--知识讲解(基础)](https://img.taocdn.com/s3/m/5585188ffad6195f302ba602.png)
轴对称与轴对称图形--知识讲解(基础)【学习目标】1.通过具体实例了解两个图形成轴对称的概念,能找出对称轴和对称点.2.了解两个图形关于某直线成轴对称和轴对称图形的联系与区别,理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应用和文化价值.4. 理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线,能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.5.通过学习,体验数学的对称美,激发学习数学的兴趣.【要点梳理】要点一、轴对称与轴对称图形1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴. 折叠后重合的点是对应点,也叫做对称点.要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点二、轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等.要点三、线段的垂直平分线定义:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.【典型例题】类型一、判断轴对称图形1、(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【思路点拨】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.【答案】D;【解析】轴对称图形即能找到对称轴,使对称轴两边的图形重合.【总结升华】找对称轴要注意从不同的角度去观察,做到不重复、不遗漏.举一反三:【变式】下列图形中,对称轴最少的对称图形是 ( )【答案】A;提示:A一条对称轴,B四条对称轴,C五条对称轴,D三条对称轴.类型二、轴对称的应用2、将一个正方形纸片依次按图,a b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图中的()【答案】D;【解析】【总结升华】只需要根据对称轴补全图形就找能到答案.举一反三:【变式】将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()【答案】A;3、(2015春·启东市校级月考)如图,点P在∠AOB内,M、N分别是点P关于AO、BO 的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.【思路点拨】根据轴对称的性质可得ME=PE,NF=PF,然后求出MN=△PEF的周长.【答案与解析】解:∵M、N分别是点P关于AO、BO的对称点,∴ME=PE,NF=PF,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长等于20cm,∴MN=20cm.【总结升华】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.举一反三:【变式1】如图,△ABC中,AB=BC,△ABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BD A'的度数.【答案】100°;∵AB=BC,∴∠A=∠C=70°,∠B=40°又∵ΔABC沿DE折叠后,点A落在BC边上的A'处,点D为AB边的中点,∴BD=D A',∠B=∠D A'B=40°,∴∠BD A '=180°-40°-40°=100°.【变式2】将矩形ABCD 沿AE 折叠,得到如图所示图形. 若'CED ∠=56°,则∠AED 的大小是_______.【答案】62°; 类型三、轴对称的作图4、如图,△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称. (1)画出直线EF ;(2)直线MN 与EF 相交于点O ,试探究∠''BOB 与直线MN 、EF 所夹锐角α之间的数量关系.【答案与解析】(1)如图;(2)∠''BOB =2α;(2)∵△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称. ∴∠BOM =∠'B OM ,∠'B OE =∠''B OE , ∵∠'B OM +∠'B OE =α ∴∠''BOB =2α【总结升华】在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上. 举一反三:【变式】(2015· 聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.【答案】 解:(1)如图所示:△A 1B 1C 1,即为所求;点B 1坐标为:(﹣2,﹣1);(2)如图所示:△A 2B 2C 2,即为所求,点C 2的坐标为:(1,1).。
轴对称图形(一)知识点
![轴对称图形(一)知识点](https://img.taocdn.com/s3/m/4e1c2c79eff9aef8941e06af.png)
轴对称(chèn)图形
1、如果沿着一条直线对折,两边能够完全重合,这样的图形就是(),这条折痕所在的直线就是()。
2、轴对称图形两边大小(),形状(),方向()。
3、图形中的轴对称图形。
3、汉字与字母和数字中轴对称图形。
下面的汉字是不是轴对称图形?如果是,画出对称轴。
()()()()()()(
)
()()()
4、下面的图形是轴对称图形的一半,请你画出完整的轴对称图形。
5、创意拼摆:请你用8
根相同的小棒摆出轴对称图形,并画出来,比比谁摆的最多。
多想一想:
答案揭晓
6、如果沿着一条直线对折,两边能够完全重合,这样的图形就是(轴对称图形),这条折痕所在的直线就是(对称轴)。
7、轴对称图形两边大小(相同),形状(相同),方向(相反)。
3、图形中的轴对称图形。
8、汉字与字母和数字中轴对称图形。
下面的汉字是不是轴对称图形?如果是,画出对称轴。
(×)(×)(√)(×)(×)(×)(√
)
(×)(√)(×)
9
、下面的图形是轴对称图形的一半,请你画出完整的轴对称图形。
0000
10、创意拼摆:请你用8根相同的小棒摆出轴对称图形,并画出来,比比谁摆的最多。
不唯一
多想一想:。
《轴对称与轴对称图形》知识点总结
![《轴对称与轴对称图形》知识点总结](https://img.taocdn.com/s3/m/a0c129a5bb4cf7ec4bfed051.png)
轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。
(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
lA B⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。
()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。
沪科版八年级数学上册第15章教学课件:15.1 第1课时 轴对称图形与轴对称(共35张PPT)
![沪科版八年级数学上册第15章教学课件:15.1 第1课时 轴对称图形与轴对称(共35张PPT)](https://img.taocdn.com/s3/m/9deeb8c5b90d6c85ed3ac6f1.png)
•
它们有什么共同的特点?
讲授新课
一 轴对称和轴对称图形
轴对称 图形
a
m
对称轴
如果一个平面图形沿一条直线折叠,直线两旁的部分能够 互相重合,这个图形就叫做轴对称图形,这条直线就是它的对 称轴.
例4 在3×3的正方形格点图中,有格点△ABC和
△DEF,且△ABC和△DEF关于某直线成轴对称,请
在下面给出的图中画出4个这样的△DEF.
E
D
C(F)
CF
D C(F)
E
CF
A (D)
BA
B(E) A
B
A(D)
B(E)
方法归纳:作一个图形关于一条已知直线的对称图形,关键
是作出图形上一些点关于这条直线的对称点,然后再根据已
你能举出一些轴对称图形的例子吗?
全班总动员
ABCDEFGHIJKLM
N O P Q R S T U VW X Y Z 游戏规则: 每人轮流按顺序报一个字母.如果你认为 你所报的字母的形状是一个轴对称图形,你就迅速 站起来报出,并说出它有几条对称轴;如果你认为你 报的字母的形状不是轴对称图形,那么,你只需坐 在座位上报就可以了.其他同学认真听,如果报错了, 及时提醒.
ABCDE FG HI J KLMN OPQRST U VWXYZ
做一做:找出下列各图形中的对称轴,并说明哪一个 图形的对称轴最多.
想一想:
折叠后重合的点是对应点,叫做对称点.
下面的每对图形有什么共同特点如?图点A、A ′就是一对对称点.
《轴对称(一)》教学设计
![《轴对称(一)》教学设计](https://img.taocdn.com/s3/m/a4bd4e09443610661ed9ad51f01dc281e53a5697.png)
《轴对称(一)》教学设计教学目标:1. 联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象;认识轴对称图形的一些基本特征。
2. 使学生能根据自己对轴对称图形的初步认识,在一组实物图案或简单平面图形中识别出轴对称图形;能用一些方法“做“出一些简单的轴对称图形。
3. 使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
教学重点:感知对称的现象,认识轴对称图形的特征,并能判断一个图形是否是轴对称图形。
教学难点:在理解轴对称图形的基础上,灵活解决相关问题。
教学过程:一、从生活实际出发感受物体的对称与不对称1.在飞纸飞机的游戏中,初步感知生活中的对称现象。
提供两架纸飞机,一架机身两边是对称的,一架是不对称的。
请两名学生比赛玩纸飞机,其他学生观察飞机飞行的情况。
2.提问:仔细观察两架飞机,想想如果再比下去,你认为哪架飞机飞的远呢?为什么?指出:像这样左右两边形状一样、大小一样的物体,我们说他们是“对称”的。
(板书:对称)黄飞机因为是对称的,所以飞得又稳又远。
而蓝飞机不是对称的,所以飞行的不够平稳。
2.寻找生活中的对称物体提问:你知道生活中也有哪些物体也是对称的?谈话:生活中有许多物体都是对称的,让我们走进美妙的对称世界欣赏一下。
(播放课件)谈话:老师从中选了三个对称的物体,仔细观察,你能具体说说是哪边和哪边对称吗?(播放课件)【设计意图:通过飞纸飞机的活动,引发学生关注生活中的对称和不对称,初步感知物体对称的特征。
】二、在操作活动中主动探究轴对称图形的特征1.确定研究内容出示:蝴蝶、天坛和飞机实物图(播放课件)谈话:把这三个物体画在纸上,就得到了平面图形。
今天这节数学课,我们主要研究平面图形的对称。
2.由物体对称迁移到图形对称提问:仔细看看,这些图形还是对称的吗?要想验证一下这三幅图究竟是不是对称的,你有什么好办法?(折一折)3.探究轴对称图形的特征——对折后能完全重合请一名上学生黑板前演示折一折。
轴对称和轴对称图形教案
![轴对称和轴对称图形教案](https://img.taocdn.com/s3/m/3ab0fac2aff8941ea76e58fafab069dc502247a0.png)
轴对称和轴对称图形教案轴对称和轴对称图形教案篇1教学内容两个图形关于某条直线成对称的概念及画图。
教学目的1、使同学把握两个图形关于一条直线对称的概念。
2、使同学把握关于一条直线对称的两个图形的性质和判定,并会画出一个点的对称点。
3、培育同学“因有用而学习,和学了之后是为了将来用”这一思想预备4、渗透对称美,对同学进行美育训练教学重点两个图形关于某条直线对称的概念为重点教学过程一、复习提问什么叫线段垂直平分线,它的性质定理和逆定理是什么?二、引入新课由线段垂直平分线的定义引入新课,如图1,EF⊥AB于C点,且AC=CB,若沿着直线EF 对折,由于EF⊥AC,则CB将与CA重合,且CB=CA,点B也落在点A上,又如图2和图3,把轴线一旁的图形沿轴折叠,它与轴线另一旁的图形也能重合、这样的图形是一种特别位置的图形,是我们今日要学习的新课、(一)新课:板书课题--轴对称和轴对称图形1、定义:把一个图形沿着某条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称、这条直线叫对称轴,两个图形关于直线对称也称轴对称、再由同学举一些他们熟识的例子,如人体的两耳、两眼、两手等等、但要留意必需有一条直线为轴,才能说它们关于这条直线对称、2、性质:由定义引出性质、定理1:关于某条直线对称的两个图形是全等形、如图4,⊥ABC和⊥ABC关于MN对称,则⊥ABC⊥⊥ABC、此时A和A,B和BC和C分别是对应点,称为对称点、沿直线MN折叠后,A与A,B与B,C与C分别重合、连AA、BB、CC 则必有MN⊥AA且平分AA,同样MN⊥BB,平分BB,MN⊥CC平分CC,得到第2共性质、定理2:两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线、老师提问:能不能说两个全等三角形就是关于一条直线成轴对称呢?——不能、由此引出必需有一个判定定理、老师再问,定理2的逆命题怎么说、逆命题:假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称、如图4,线段AA,BB,CC均被直线MN垂直平分,则⊥ABC和⊥ABC关于直线MN对称、此逆命题成立,做为判定定理、(二)应用举例:例1 :如图5,直线l及直线l外一点P、求作:点P',使它与点P关于直线l对称由同学依据判定定理的'要求想出作法,并写出作法、再问,若点P在直线l上怎么办?—由同学答出此时P点关于直线l的对称点就是P点本身、例2:已知:如图6,MN垂直平分线段AB、CD,垂足分别是E、F、求证:AC=BD,⊥ACD=⊥BDC、老师启发同学用对称关系来证、已知MN垂直平分AB和CD,可得AC和BD关于MN对称,所以AC=BD,若沿MN翻折B点与A点重合,D点与C点重合,BD与AC重合,DF与FC重合,所以⊥ACD=⊥BDC (三)小结:今日学习了两个图形关于一条直线对称的定义、性质和判定,要把握好它的概念、三、作业1、思索下列问题(1)什么样的两个图形叫做关于某条直线对称?什么叫做对称点、对称轴?(2)成轴对称的两个图形有什么性质?(3)除定义外,有什么方法可以判定两个图形成轴对称?2、举出一些成轴对称的图形的实例、3、已知:如图,两点A、B、求作:直线l,使A、B关于l对称、此题要求写出作法、4、已知⊥ABC⊥⊥A'B'C',那么⊥ABC与⊥A'B'C'肯定关于某直线对称吗?假如⊥ABC与⊥A'B'C'关于直线l对称,那么它们全等吗?为什么?轴对称和轴对称图形教案篇2一、教材分析本节内容是苏科版数学八班级上册第一章第一节第1课时,本节立足于同学已有的生活阅历和初步的数学活动经受,从观看生活中的轴对称现象开头,从整体的角度熟悉轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不行分割的联系,通过对这一节课的学习,既可以让同学感受图形的三种基本运动中“翻折”在几何学问中的作用,又为同学后继学习对称变换、中心对称和中心对称图形及平行四边形的相关学问等做好充分预备;同时这一节也是联系数学与生活的桥梁。
轴对称、轴对称图形与轴对称的性质
![轴对称、轴对称图形与轴对称的性质](https://img.taocdn.com/s3/m/a65047dd680203d8cf2f2409.png)
Day1:轴对称与轴对称图形、轴对称的性质【知识梳理】知识点1:轴对称与轴对称图形如图所示,左边的三角形如果沿着中间的直线翻折,它将可以和右边的三角形完全重合.也就是说将一个图形沿着某条直线翻折,它能和另一个图形完全重合,那么这两个图形就关于这条直线成轴对称,这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点;重合的角是对应角;重合的线段是对应线段.轴对称描述了两个图形之间的关系.如图所示,这些都是目前世界上著名品牌的商标.通过观察我们不难发现,第一行和第二行的第四个商标与前三个不一样,前三个似乎都有着一种奇特的样貌.如果一个图形沿着某条直线翻折,直线两旁的部分能完全重合,我们把这样的图形称为轴对称图形,这条直线叫做对称轴.如果把轴对称图形沿对称轴分成两个图形来看,那么这两个图形关于这条直线成轴对称.如果把成轴对称的两个图形看作一个整体,那么这个整体就是一个轴对称图形.知识点2:轴对称的性质1、成轴对称的两个图形全等.2、成轴对称的两个图形,如果对应线段所在直线有交点,交点必在对称轴上.3、成轴对称的两个图形,对称点连线被对称轴垂直且平分.【典型例题】1.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1B.2C.3D.42.已知线段AB和''A B轴对称,求画出对称轴l.3.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°4.如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹).5.点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CGE=.参考答案1、【答案】C【解析】第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3.2、【答案】见解析【解析】连接'AA,画出'AA的垂直平分线即为对称轴l.3、【答案】A【解析】本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.故选A.4、【答案】如图所示,直线AK即为所求的一条对称轴(解答不唯一).5、【答案】80°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称和轴对称图形(一)
导读:本文轴对称和轴对称图形(一),仅供参考,如果觉得很不错,欢迎点评和分享。
轴对称和轴对称图形(一)
教学内容
两个图形关于某条直线成对称的概念及画图.
教学目的
1.使学生掌握两个图形关于一条直线对称的概念.
2.使学生掌握关于一条直线对称的两个图形的性质和判定,并会画出一个点的对称点.
3.培养学生“因有用而学习,和学了之后是为了将来用”这一思想准备
4.渗透对称美,对学生进行美育教育
教学重点
两个图形关于某条直线对称的概念为重点
教学过程
一、复习提问
什么叫线段垂直平分线,它的性质定理和逆定理是什么?
二、引入新课
由线段垂直平分线的定义引入新课,如图1,EF⊥AB于C点,
且AC=CB,若沿着直线EF对折,因为EF⊥AC,则CB将与CA重合,且CB=CA,点B也落在点A上,又如图2和图3,把轴线一旁的图形沿轴折叠,它与轴线另一旁的图形也能重合.这样的图形是一种特殊位置的图形,是我们今天要学习的新课.
(一)新课:板书课题--轴对称和轴对称图形
1.定义:把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.
这条直线叫对称轴,两个图形关于直线对称也称轴对称.
再由学生举一些他们熟悉的例子,如人体的两耳、两眼、两手等等.但要注意必须有一条直线为轴,才能说它们关于这条直线对称.2.性质:由定义引出性质.
定理1 关于某条直线对称的两个图形是全等形.
如图4,△ABC和△A'B'C'关于MN对称,则△ABC≌△A'B'C'.此时A和A',B和B'C和C'分别是对应点,称为对称点.沿直线MN 折叠后,A与A',B与B',C与C'分别重合.连AA'、BB'、CC'则必有MN⊥AA'且平分AA',同样MN⊥BB',平分BB',MN⊥CC'平分CC',得到第2个性质.
定理2 两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线.
教师提问:能不能说两个全等三角形就是关于一条直线成轴对称呢?——不能.
由此引出必须有一个判定定理.教师再问,定理2的逆命题怎么说.
逆命题:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.
如图4,线段AA',BB',CC'均被直线MN垂直平分,则△ABC 和△A'B'C'
关于直线MN对称.此逆命题成立,做为判定定理.
(二)应用举例:
例1 :如图5,直线l及直线l外一点P.
求作:点P',使它与点P关于直线l对称
由学生根据判定定理的要求想出作法,并写出作法.再问,若点P在直线l上怎么办?—由学生答出此时P点关于直线l的对称点就是P点本身.
例2 已知:如图6,MN垂直平分线段AB、CD,垂足分别是E、F.求证:AC=BD,∠ACD=∠BDC.
教师启发学生用对称关系来证.
已知MN垂直平分AB和CD,可得AC和BD关于MN对称,所以AC=BD,若沿MN翻折B点与A点重合,D点与C点重合,BD与AC重合,DF与FC重合,所以∠ACD=∠BDC
(三)小结:今天学习了两个图形关于一条直线对称的定义、性质和判定,要掌握好它的概念.
三、作业
1.思考下列问题
(1)什么样的两个图形叫做关于某条直线对称?什么叫做对称点、对称轴?
(2)成轴对称的两个图形有什么性质?
(3)除定义外,有什么方法可以判定两个图形成轴对称?
2.举出一些成轴对称的图形的实例.
3.已知:如图,两点A、B.求作:直线l,使A、B关于l对称.此题要求写出作法.
4.已知△ABC≌△A'B'C',那么△ABC与△A'B'C'一定关于某直线对称吗?如果△ABC与△A'B'C'关于直线l对称,那么它们全等吗?为什么?
感谢阅读,希望能帮助您!。