12.2全等三角形的判定优秀教案1第1课时

合集下载

12.2三角形全等的判定(第1课时)-教学设计

12.2三角形全等的判定(第1课时)-教学设计

教学重点
教学难点
探索三角形全等的条件。
二、教学流程安排
序号 活动流程图 活动内容和目的 回顾全等三角形的一些概念,承上启下。通过创设问题 情境,吸引学生的注意力,唤起学生的好奇心,激发学生 兴趣和主动学习的欲望,营造一个让学生主动思考、探 索的氛围。 通过动手操作、自主探索、相互交流,从而获得新知, 增强了动手能力, 明确判定三角形全等需要的三个条件。
5.如图,已知∠AOB,求作: AO B ,使 AO B =∠AOB.
三、课堂训练 1.如图,已知 AC=FE、BC=DE,点 A、D、B、F 在一条直线上, AD=FB. 要用 “边边边” 证明△ABC≌△FDE, 除了已知中的 AC=FE, BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?
学生归纳本节课的收获。
通过归纳、 比较, 学 生系统的掌握所学 知识。
五、作业设计 1.教材习题 12.2 第 1 题; 教师设计作业,使学生巩固深 化本节知识 (1)如图所示,在△ABC 中,AB=AC,BE=CE,则由“SSS” 2.补充作业: 可以判定( ) A.△ABD≌△ACD C.△ABE≌△ACE B.△BDE≌△CDE D.以上都不对 巩固所学知识, 形成 一定的数学能力
A
教师引导学生说出证明过程, 同时板书.
体验数学在生活中 应用的广泛性. 检测学生对知识的 掌握情况及应用能 力, 初步体验成功的 喜悦. 规范证明题的书写 过程. 通过学习已知角的 画法, 拓展 “边边边” 公理 的应用。
B
D
C
学生讨论尺规作图,作一个角 等于已知角的依据是什么? 学生分组学习作图法。
(2)已知:如图,AC=BD,AD=BC,求证:∠D=∠C.

八年级数学上册第十二章全等三角形12.2三角形全等的判定课时1“边边边SSS”教案

八年级数学上册第十二章全等三角形12.2三角形全等的判定课时1“边边边SSS”教案

第十二章全等三角形12。

2全等三角形的判定课时1 “边边边(SSS)”【知识与技能】(1)明确判定两个三角形全等至少需要三个条件.(2)掌握“边边边(SSS)"条件的内容。

(3)能初步运用“边边边(SSS)”条件判定两个三角形全等.(4)会作一个角等于已知角.【过程与方法】使学生经历探索三角形全等的过程,体验用操作、归纳得出数学结论的过程.【情感态度与价值观】探究三角形全等条件的判定过程,以观察思考,动手画图,合作交流等多种形式让学生共同探讨,培养学生的合作精神。

三角形全等的“边边边(SSS)”判定方法.运用“边边边(SSS)”判定方法进行简单的证明。

多媒体课件.教师引入:如图12-2—1,教师在黑板上画两个三角形,请仔细观察,△ABC与△A′B′C′全等吗?你们是如何判断的?学生各抒己见,如动手用纸剪下一个三角形,将剪下的三角形叠到另一个三角形上,观察这两个三角形是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。

探究1:三角形全等的条件教师提出:(1)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?(2)如果给出两个条件呢?给出两个条件画三角形时,有几种可能的情况,每种情况下画出的三角形一定全等吗?学生讨论有几种可能的情况,然后按照下面的条件画一画:①三角形的一个内角是30°,一条边是3 cm;②三角形的两个内角分别是30°和50°;③三角形的两条边长分别是 4 cm和6 cm.学生分组讨论、画图、探索、归纳,最后以组为单位展示结果.结果展示:(1)只给定一条边时,如图12-2—2。

只给定一个角时,如图12-2-3.(2)给出的两个条件:一边一内角、两内角、两边,如图12-2—4。

可以发现按这些条件画出的三角形都不能保证一定全等。

教师提出:如果给出三个条件画三角形,你能说出有几种情况吗?(三条边,两条边和一个角,一条边和两个角,三个角)在刚才的探索过程中,我们已经发现,已知三个内角不能保证两个三角形全等.下面我们就来逐一探索其余的三种情况.(这节课只讨论第一种情况)探究2:“边边边(SSS)”教师让学生完成以下活动:1。

12.2 全等三角形的判定第1课时(课件)-八年级上册(人教版)

12.2 全等三角形的判定第1课时(课件)-八年级上册(人教版)

想一想:
已知△ABC ≌△ A′B′ C′,找出其中相等的边与角:
A
A′
B
AB =A′B′ ∠A =∠A′
C B′
BC =B′C′ ∠B =∠B′
C′
AC =A′C′
∠C =∠C′
思考:满足这六个条件可以保证△ABC≌△A′B′C′吗?
• 学习目标: 1.通过三角形的稳定性,体验三角形全等的 “边边边”条件. 2.会运用“边边边”定理判定两个三角形的 全等.
∴△AEB ≌ △ADC (SSS).
2.已知AC=FE,BC=DE,点A,D,B,F在一条直线上,
AD=FB(如图),要用“边边边”证明△ABC ≌△ FDE,
除了已知中的AC=FE,BC=DE以外,还应该有什么条件?
怎样才能得到这个条件? 【解析】要证明△ABC ≌△FDE,还 应该有AB=FD这个条件. ∵DB是AB与DF的公共部分,且 AD=FB, ∴AD+DB=BF+DB,即AB=FD.
判定两个三角形全等:
三边对应相等的两个三角形全等.简写为
“边边边”或“SSS”.
课后练习
A
1.如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC.
B ED C
【证明】在△∵BADEB=和CE△,A∴DBCD中-,ED=CE-ED,即BE=CD.
AB=AC,
AE=AD,
BE=CD,
解:作图如图所示:
作法:(1)以点O为圆心,任 意长为半径画弧,分别交OA, OB于点D,E; (2)以点C为圆心,OD长为半 径画弧,交OB于点F; (3)以点F为圆心,DE长为半 径画弧,与第2步中所画的弧相 交于点P ; (4)过C,P两点作直线,直线 CP即为要求作的直线.

12.2 三角形全等的判定(第一课时SSS)(解析版)

12.2 三角形全等的判定(第一课时SSS)(解析版)

八年级数学上分层优化堂堂清十二章 三角形12.2三角形全等的判定第一课时(解析版)学习目标:1.经历实验探究的过程,直观发现三边相等的两个三角形全等。

会用直规作图法作“一条线段等于已知线段,一个角等于已知角”,提高动手操作能力。

知道这样作图的理由。

2.能利用“SSS ”进行有关的计算或证明。

发展逻辑推理能力、计算能力和空间观念。

老师对你说:知识点1 全等三角形的判定1:边边边(SSS )文字:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等.图形: 符号:在ABC D 与'''A B C D 中,()'''''''''=ìï=\D @D íï=îAB A B AC A C ABC A B C SSS BC B C 证明的书写步骤:①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;④写出结论:写出全等结论.注意:(1)说明两三角形全等所需的条件应按对应边的顺序书写.(2)结论中所出现的边必须在所证明的两个三角形中.知识点2 用尺规作一个角等于已知角已知:∠AOB .求作: ∠A ′O ′B ′=∠AOB .作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C 、D;C'B'A'C BA(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D ′;(4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB .知识点3 运用边边边定理证明和计算运用“SSS ”证明两个三角形全等主要是找边相等,边相等除了题目中已知的边相等外,还有一些相等边隐含在题设或图形中。

八年级数学上册12.2三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版

八年级数学上册12.2三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版

八年级数学上册 12.2 三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.2节讲述了三角形全等的判定,这是初中的一个重要知识点。

在这一节中,学生将学习到用“SSS”(Side-Side-Side,即边-边-边)方法判定三角形全等。

通过这一节的学习,学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

二. 学情分析在进入这一节的学习之前,学生已经学习了三角形的基本概念,如三角形的边、角等,并掌握了用“ASA”(Angle-Side-Angle,即角-边-角)和“AAS”(Angle-Angle-Side,即角-角-边)方法判定三角形全等。

因此,学生在理解和掌握用“SSS”方法判定三角形全等时,已经有了相关的基础知识。

三. 说教学目标1.知识与技能:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

2.过程与方法:通过观察、操作、思考、交流等活动,学生能够自主探索用“SSS”方法判定三角形全等的过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,培养合作意识和团队精神,增强对数学学科的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

2.教学难点:学生能够灵活运用“SSS”方法判定三角形全等,解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂活动,培养学生的自主学习能力。

2.教学手段:利用多媒体课件、学具、黑板等,辅助学生直观地理解三角形全等的概念和“SSS”方法。

六. 说教学过程1.导入:通过复习三角形的基本概念和已学的判定方法(ASA和AAS),引导学生进入新的学习内容。

2.自主探究:学生分组合作,利用学具和多媒体课件,观察和操作三角形,自主探索用“SSS”方法判定三角形全等的过程。

12.2三角形全等的判定(第一课时)教学设计

12.2三角形全等的判定(第一课时)教学设计

知识的罗列,而应该是优化知 学生畅所欲言,从知
识结构,完善知识体系的一种 识内容和学习过程等多方
有效手段,为充分发挥学生的 面、多角度自主归纳整理、
主体作用从学习的知识,体 总结得失。
验,方法三个方面归纳,让学
习方法等多方面自主地进行总结,并鼓
生发挥自我评价,赋予学生
励学生积极发言。
“主角”意识。ቤተ መጻሕፍቲ ባይዱ
(九)布置作业,提高升华 以作业的巩固性和发展性为出发点,我 设计两项作业。 必做题:1.书P43 习题 12.2 第1题
∴△ABC≌△A′B′C′(SSS)
教学反思:本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维 能力为重点的教学思想。遵循启发式教学原则,用设问形式创设问题情景和一系列实践活动,引 导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念, 体会分析问题、解决问题的方法,积累数学活动经验,为以后的学习打下基础。
为了体现课堂小结归纳不仅仅是知识的罗列,更是优化知识结构,完善知识体系的一种有效 手段,我引导学生回顾本节课探索三角形全等的条件的过程,让学生从知识和学习方法等多方面 自主地进行总结,并鼓励学生畅所欲言,多方面、多角度自主归纳整理、总结得失,让学生发挥 自我评价,赋予学生“主角”意识。
追问 3:两个呢?师生共同归纳得出按
照三角形“边、角”元素进行分类:
1.一个条件可以是: 一边,一角;
2.两个条件:两边, 两角,一边一角;
各小组按以上分类动手画图、操作
学生根据所给条件分
验证。
工合作进行画图,同组同
此环节老师要关注学生画图的细节, 学互相比较,观察得出结
并指导和纠正其中错误的作图。给学生 论。活动后,小组代表把

12.2《全等三角形》判定 (胖瘦模型)教案 2022--2023学年人教版八年级数学上册

12.2《全等三角形》判定 (胖瘦模型)教案 2022--2023学年人教版八年级数学上册

12.2《全等三角形》判定(胖瘦模型)教案一、教学目标•知识与技能:掌握利用全等三角形的定义和性质判定两个三角形是否全等的方法,并能够应用于解决相关问题。

•过程与方法:通过引入胖瘦模型的概念,引导学生理解全等三角形的定义和性质,学会利用胖瘦模型进行全等三角形的判定。

•情感态度与价值观:培养学生观察、思考和动手实践的能力,培养学生合作、探究和创新的精神。

二、教学重难点•教学重点:掌握利用全等三角形的定义和性质判定两个三角形是否全等的方法。

•教学难点:能够应用所学方法解决实际问题,提高判断辨析的能力。

三、教学过程1. 导入新知通过给学生提出一个问题引入本节课的内容。

例如,将一张纸对折,然后剪出一个形状,然后再将原始纸展开,剪出的形状能否与原始纸相重合?2. 引入胖瘦模型解释胖瘦模型的概念,即数量和位置都完全相同的两个几何图形。

并通过与学生一起进行实物模型的制作,加深学生对胖瘦模型的理解。

3. 引出全等三角形的定义和性质通过展示两个完全相同的三角形,并引导学生总结出全等三角形的定义和性质。

•定义:在平面上,两个三角形的对应边长相等,对应角度相等,则称这两个三角形是全等三角形。

•性质:全等三角形的对应部分(边和角)完全相等。

4. 胖瘦模型法判定全等三角形•胖模型法:如果已知两个三角形的三边对应相等,那么可以判定这两个三角形是全等的。

•瘦模型法:如果已知两个三角形的两边及夹角对应相等,那么可以判定这两个三角形是全等的。

5. 综合应用通过一些实例,让学生运用胖瘦模型法判定两个三角形是否全等。

示例题:已知△ABC中,∠B=∠D,AC=DF,BC=EF,判定△ABC≌△DEF。

解题步骤: - 根据已知条件,用瘦模型法判定两个三角形的对应边和对应角是否相等。

- 验证两个三角形的对应部分是否完全相等。

- 根据全等三角形的定义和性质,得出结论。

6. 拓展探索让学生在实际生活中找寻更多的全等三角形,并通过比较发现和归纳全等三角形的其他判断方法。

2022年人教版八年级数学上册第十二章全等三角形教案 三角形全等的判定(第1课时)

2022年人教版八年级数学上册第十二章全等三角形教案   三角形全等的判定(第1课时)

第十二章全等三角形12.2 全等三角形的判定第1课时利用“边边边”判定三角形全等一、教学目标【知识与技能】1.掌握“边边边”的内容;2.能初步应用“边边边”条件判定两个三角形全等.3. 能用尺规作一个角等于已知角.【过程与方法】经历探索三角形全等条件的过程,体会用操作、归纳得出数量结论的过程.【情感态度与价值观】通过探索三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好品质以及发现问题的能力.二、课型新授课三、课时第1课时,共4课时。

四、教学重难点【教学重点】探索三角形全等的条件,会应用“边边边”判定两个三角形全等.【教学难点】探索三角形全等的条件,用尺规作一个角等于已知角.五、课前准备教师:课件、三角尺、圆规、直尺等。

学生:三角尺、圆规、直尺。

六、教学过程(一)导入新课为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?(二)探索新知1.师生互动,探究两个三角形全等的条件教师问1:什么叫全等三角形?学生回答:能够完全重合的两个三角形叫全等三角形.教师问2:全等三角形有什么性质?学生回答:全等三角形的对应边相等,对应角相等.(出示课件4)教师讲解:我们如何识别两个三角形是否全等呢?我们从“条件尽可能的少”出发,逐步增加条件分类进行操作验证,希望得到我们想要的结论.教师问3:满足一个条件对应相等时,识别两个三角形全等,共有几种情况呢?分别是哪些情况?学生讨论并回答:一共有两种情况,①只给一条边时;②只给一个角时.教师问4:请同学们每人画出一个边长为3cm的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.教师问5:请同学们每人画出一个45°的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.结论:只有一条边或一个角对应相等的两个三角形不一定全等.(出示课件6)教师问6:如果满足两个条件判断两个三角形全等,你能说出有哪几种可能的情况?学生分组讨论、探索、归纳,给出的两个条件可能是:一边一内角、两内角、两边.教师请同学们分别按下列条件做一做.①三角形两条边分别为3cm,4cm.三角形②三角形的一条边为4cm,一内角为30°,.③三角形两内角分别为30°和45°教师问7:同学根据①画出的两个三角形全等吗?学生作出图形并且组内识别后回答:两条边对应相等的两个三角形不一定全等.(出示课件8)教师问8:同学根据②画出的两个三角形全等吗?学生做出图形并且组内识别后回答:一条边一个角对应相等的两个三角形不一定全等.(出示课件9)教师问9:同学根据③画出的两个三角形全等吗?学生做出图形并且组内识别后回答:两个角对应相等的两个三角形不一定全等.(出示课件10)教师分析并归纳结论:只满足两个条件画出的三角形不一定全等.总结点拨:(出示课件11)一个条件①一角;②一边;两个条件①两角;②两边;③一边一角.结论:只给出一个或两个条件时,都不能保证所画的三角形一定全等.教师问10:给出三个条件画三角形,会有几种可能的情况?学生思考后师生归纳:有四种可能,即三角、三边、两边一角、两角一边分别相等.教师问11:已知两个三角形的三个内角分别为30°,60° ,90° 它们一定全等吗?学生作出图形并且组内识别后回答:有三个角对应相等的两个三角形不一定全等.(出示课件13)教师问12:已知两个三角形的三条边都分别为3cm、4cm、6cm .它们一定全等吗?(出示课件14)教师演示作法,学生按要求尺规作图,动手操作,通过比较得出结论.这两个三角形相等.教师问13:任意两个三角形的三条边都分别相等.它们一定全等吗?我们进行下边的操作:做一做:先任意画一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?教师演示作法:(1)画B′C′=BC;(2)分别以B',C'为圆心,线段AB,AC长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C'.(出示课件15)学生按要求尺规作图,动手操作,通过比较得出结论.三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).总结:(出示课件16)“边边边”判定方法文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)几何语言:在△ABC和△ DEF中,{AB=DE,BC=EF,CA=FD,∴△ABC ≌△ DEF(SSS).例1:如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:(1)△ABD ≌△ACD.(2)∠BAD = ∠CAD.(出示课件17)解题思路:①先找隐含条件:公共边AD ;②再找现有条件:AB=AC③最后找准备条件:D 是BC 的中点→BD=CD师生共同解答如下:(出示课件18)证明:(1)∵ D 是BC 中点,∴ BD =DC.在△ABD 与△ACD 中,{AB =AC (已知)BD =CD (已证)AD =AD (公共边) ∴ △ABD ≌ △ACD ( SSS ).(2)由(1)得△ABD≌△ACD ,∴ ∠BAD= ∠CAD.(全等三角形对应角相等)总结点拨:(出示课件19)证明的书写步骤:①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;:④写出结论:写出全等结论.例2:已知:如图,AB=AC,AD=AE,BD=CE.求证:∠BAC=∠DAE. (出示课件21)分析:要证∠BAC=∠DAE,而这两个角所在三角形显然不全等,我们可以利用等式的性质将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明△ABD≌△ACE,根据全等三角形的性质可得∠BAD=∠CAE.师生共同解答如下:(出示课件22)证明:在△ABD和△ ACE中,AB=AC,AD=AE,BD=CE,∴ △ ABD≌ △ ACE(SSS),∴∠BAD=∠CAE.∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.例3:用尺规作一个角等于已知角.已知:∠AOB.求作: ∠A′O′B′=∠AOB.(出示课件24)师生共同解答如下:(出示课件25)作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA,OB 于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC 长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD 长为半径画弧,与第(2)步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.(三)课堂练习(出示课件28-34)1. 如图,D,F是线段BC上的两点,AB=EC,AF=ED,要使△ABF≌△ECD ,还需要条件___________________(填一个条件即可).2.如图,AB=CD,AD=BC,则下列结论:①△ABC≌△CDB;②△ABC≌△CDA;③△ABD ≌△CDB;④ BA∥DC.正确的个数是( )A . 1个 B. 2个 C. 3个 D. 4个3. 已知:如图,AB=AE,AC=AD,BD=CE,求证:△ABC ≌△AED.4. 已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB,(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径作弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.5. 如图,AD=BC,AC=BD.求证:∠C=∠D .(提示: 连结AB)6. 如图,AB =AC ,BD =CD ,BH =CH ,图中有几组全 等的三角形?它们全等的条件是什么?参考答案:1. BF=CD2.C3. 证明:∵BD=CE ,∴BD -CD=CE -CD .∴BC=ED .在△ABC 和△ADE 中,AC=AD (已知),AB=AE (已知),BC=ED (已证),∴△ABC≌△AED(SSS ).4. 证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′, 在△OCD 和△O′C′D′中 D COAB∴△OCD≌△O′C′D′(SSS),∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.5. 证明:连接AB两点,在△ABD和△BAC中,AD=BC,BD=AC,AB=BA,∴△ABD≌△BAC(SSS)∴∠D=∠C.6.解:(四)课堂小结今天我们学了哪些内容:1.本节课学了判定两个三角形全等的条件数目和全等三角形的判定方法(边边边)2.利用尺规作图作一个角等于已知角(五)课前预习预习下节课(12.2)教材37页到39页的相关内容。

三角形全等的判定(第1课时)八年级数学教师集体备课教案

三角形全等的判定(第1课时)八年级数学教师集体备课教案

八年级数学教师集体备课教案定(1)1.会正确运用“边边边”“边角边”条件证明三角形全等.2.会根据“边边边”“边角边”作一个角等于已知角.3.经历探索三角形全等条件的过程,体验用操作、归纳得出结论的过程.一、情境导入,初步认识出示投影片,回忆前面研究过的全等三角形.如图1,已知△ABC≌△A′B′C′,找出其中相等的边与角.图1 图2图中相等的边是:AB=A′B′,BC=B′C′,AC=A′C′.相等的角是:∠A=∠A′,∠B=∠B′,∠C=∠C′.[来源:学科网ZXXK]探究新知活动一:只给一个条件有可能是什么条件?学生:一组对应边相等或一组对应角相等.一组对应边相等或一组对应角相等时画出的两个三角形一定全等吗?请同学们动手操作.学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:(1)只给定一条边时,如图2.(2)只给定一个角时,如图3.结论:活动二:给出两个条件画三角形时,有几种可能的情况?学生:给出的两个条件可能是一边一内角、两内角、两边.每种情况下作出的三角形一定全等吗?分别按下列条件画一画.(1)三角形的一个内角为30°,一条边长为3 cm.(2)三角形的两个内角分别为30°和50°.(3)三角形的两条边长分别为4 cm,6 cm.结果展示学生得出结论:只给出两个条件时,所画的三角形也不一定全等.活动三:给出三个条件画三角形,你能说出有几种可能的情况吗?学生:有四种可能,即三内角、三边、两边一内角、两内角一边.在刚才的探索过程中,我们已经发现三内角相等不能保证三角形全等(如图4中的(2)).接下来我们就逐一探索其余的三种情况.首先,探索三边对应相等的情况.已知一个三角形的三条边长分别为6 cm,8 cm,10 cm.你能画出这个三角形吗?把你画的三角形剪下来与同伴画的三角形进行比较,它们全等吗?(1)作图方法:先画一条线段AB,使得AB=6 cm,再分别以A,B为圆心,8 cm,10 cm长为半径画弧,两弧交点记作C,连接线段AC,BC,就可以得到△ABC,且它的边长分别为AB=6 cm,AC=8 cm,BC=10 cm.(2)以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.这说明这些三角形都是全等的.(3)特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个△A′B′C′,使AB=A′B′,AC=A′C′,BC=B′C′.将△A′B′C′剪下来,发现两三角形重合.结论:三边分别相等的两个三角形全等(可以简写为“边边边”或“SSS”).1.组织学生做游戏(找朋友),游戏规则:发放图4中的卡片若干张,利用全等三角形的概念找出与自己手中的三角形卡片全等的卡片所有者,即为朋友.图42.如图5①,已知△ABC,画△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A.画法:如图5②所示,(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.则△A′B′C′即为所求作的三角形.①②图5把画好的△A′B′C′剪下来放在△ABC上,观察这两个三角形是否全等.如何验证?学生:全等,放在一起完全重合.这两个三角形全等是因为满足哪三个条件?学生:两边一夹角.二.新知应用例1 如图5,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.图5 图6例2 已知:如图6,AD=BC,AC=BD.求证:∠A=∠B.三.课堂小结1.三角形全等的判定:三边分别相等的两个三角形全等(可以简写为“边边边”或“SSS”).2.证明线段(或角)相等转化成证明线段(或角)所在的两个三角形全等.3.证明两个三角形全等应注意:(1)书写格式;(2)注意图形中隐含的条件(如公共边、公共角、对顶角等);(3)有时需添加辅助线.。

12.2 三角形全等的判定(第1课时)教案

12.2 三角形全等的判定(第1课时)教案

12.2 三角形全等的判定(1)
所以△ABD≌△ACD(SSS).
让学生独立思考后口头表达理由,由教师板演推理
过程
尺规作图:
已知:∠BAC.
求作:∠B'A'C' ,使∠B'A'C'=∠BAC.
巩固练习
教科书第37页练习1,2.让学生巩固对三角形
全等的判定条件的认
识,同时也让学生尝
试书写推理过程.
小结与作业
反思小结
回顾反思本节课对知识的研究探索过程、小结方法
及结论,提炼数学思想,掌握数学规律.
再次渗透分类的数学
思想,体会分析问题
的方法,积累数学活
动的经验.
布置作业
1.必做题:
2.选做题:
培养学生良好的学习
习惯,巩固所学的知
识。

人教版八年级数学上册12.2三角形全等的判定第1课时教学设计

人教版八年级数学上册12.2三角形全等的判定第1课时教学设计
4.通过对全等三角形的学习,提高空间想象能力和逻辑推理能力。
(二)过程与方法
1.通过实际操作、观察、猜想、验证等教学活动,培养学生动手动脑、自主探究的学习习惯。
2.引导学生运用合作交流的学习方式,培养学生的团队协作能力和表达能力。
3.教学中采用问题驱动法,引导学生主动发现问题、解决问题,提高学生的问题解决能力。
6.拓展延伸,激发兴趣:
设想在教学结束后,引入一些拓展性的问题,如全等三角形的性质在生活中的应用、全等变换的探究等,激发学生的学习兴趣,培养学生的探究精神。
四、教学内容与过程
(一)导入新课
在本节课的开始,我将采用生活实例导入法,引发学生对全等三角形的学习兴趣。首先,我会展示一组图片,包括建筑物的对称设计、剪纸艺术中的全等图形等,让学生观察并思考这些图片中的共同特征。通过观察和讨论,学生能够发现这些图形都是全等的,从而引出全等三角形的概念。
6.课外阅读题:推荐一篇关于全等三角形历史发展的文章,要求学生课后阅读,了解全等三角形知识的发展过程,激发学生对数学学科的兴趣。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
2.作业完成后,进行自我检查,确保答案的正确性。
3.对于难题和疑问,鼓励学生与同学讨论、请教老师,及时解决问题。
4.家长要关注孩子的学习情况,协助督促孩子按时完成作业,培养良好的学习习惯。
4.实践应用,巩固知识:
设想通过实际操作、尺规作图、解决实际问题等多种形式,让学生在实践中巩固全等三角形的判定方法和性质,提高学生的应用能力。
5.反馈评价,促进发展:
设想在教学过程中,教师及时给予学生反馈,指导学生进行自我评价和同伴评价。通过评价,帮助学生了解自己的学习情况,调整学习策略,促进全面发展。

初中数学教学课例《12.2三角形全等的判定(第一课时)》教学设计及总结反思

初中数学教学课例《12.2三角形全等的判定(第一课时)》教学设计及总结反思
初中数学教学课例《12.2 三角形全等的判定(第一课时)》 教学设计及总结反思
学科
初中数学
教学课例名
《12.2 三角形全等的判定(第一课时)》

本课内容选自人教版《义务教育课程标准实验教科
书·数学》八年级上册“12.2 三角形全等的判定”(第
一课时).
全等三角形是研究图形的重要工具,只有掌握全等
三角形的有关内容,并且能灵活的加以运用,才能学好
根据本节课内容的特点,为了更直观、形象的突出 重点、突破难点,提高课堂效率,采用以观察发现为主, 多媒体演示为辅的教学组织方式,在教学过程中,通过 设置一系列例题变式,创设问题情境,启发学生思考, 教学策略选 利用计算机,结合操作测量,让学生亲身体验知识的产 择与设计 生、发展和形成的过程.
为加强本节课所学内容与实际生活的联系,在教学 设计中,加入了一个应用所学知识解决实际问题的环 节,使学生了解数学知识可以为生活和生产的需要服 务.
本节课是全等三角形判定的第一课时,主要探究利
用“边边边”方法判定三角形全等,以及简单应用.探
索三角形全等的条件,不仅是“全等三角形”知识体系
的重要组成部分,而且在探索过程中所体现的思想方
法,为学生主动获取知识、感悟三角形全等的数学本质、
积累数学活动经验、体验运用类比的方法研究问ห้องสมุดไป่ตู้等,
提供了很好的素材.通过本节课的学习,可以加深学生
思考我们知道如果两个三角形的对应边、对应角都 相等,那么这两个三角形全等。判定两个三角形全等, 教学过程 是否一定需要六个条件呢如果只满足这些条件中的一 部分那么能保证
△≌△吗? 师生活动:教师提出问题,学生独立思考.讨论: 否一定需要六个条件呢条件能否尽可能少吗教师适时 点拨,最后达成共识:按满足“一个条件”“两个条件” “三个条件”……的顺序探索三角形全等的条件. 追问 1 当满足一个条件时,△与△全等吗? 师生活动:学生独立思考,发现要分两种情况进行 说明,即一条边分别相等、一个角分别相等.在探究过 程中,可以通过画图加以说明,也可以利用三角尺等进 行说明. 追问 2 当满足两个条件时,△与△全等吗? 师生活动:学生独立思考,教师适时点拨,最后达 成共识:满足“两个条件”分两边、一边一角或两角分 别相等三种情况.学生分三组分别进行探究,通过画图、 展示交流,最后得出结论:只满足“两个条件”的两个 三角形不一定全等. 追问 3 当满足三个条件时,△与△全等吗?满足三 个条件时,又分为几种情况呢? 师生活动:学生回答问题,并相互补充,发现需要 分四种情况进行研究,即三边、三角、两边一角、两角 一边分别相等. 设计意图:先提出“全等判定”问题,构建出三角

12.2全等三角形的判定(SSS)

12.2全等三角形的判定(SSS)

课题12..2全等三角形的判定第1课时学习内容:通过独立思考和小组合作,能够利用“边边边”判定三角形全等 学习目标:1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.能够作一个三角形与原三角形全等.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.1、已知△ABC ≌△A ′B ′C ′,找出其中相等的边____________________________ 相等的角___________________________________.C 'B 'A 'C B A2、探究1(1).只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?①.只给定一条边时:只给定一个角时:可以发现按这些条件画出的三角形 一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即: .(2).给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.可以发现按这些条件画出的三角形一定全等.(3)给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:.3、探究2(1)按课本提供的作图方法画出另一个三角形(2)这两个三角形全等吗?(3)这两个三角形全等具备了哪些条件?(4)这一基本事实是简写成(5)在解题过程中的叙述∵在△和△中{∴△≌△4、学习例题15、学习尺规作图二、小组合作解决以上问题三、拓展延伸1.如图13—2—46所示,MP=MQ,PN=QN,MN交PQ于O点,则下列结论中不正确的是()A.△MPN≌△MQN B.OP=OQ C.MO=NO D.∠MPN=∠MQN2.如图13—2—47所示,在∠AOB的两边上截取AO=BO,CO=DO,连结AD、BC交于点P,则下列结论中正确的是()①△AOD≌△BOC ②△APC△BPD ③点P在∠AOB的平分线上A.①B.②C.①②D.①②③3.如图13—2—48所示,已知OA=OB,OC=OD,AD与BC相交于E,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对4.如图13—2—49所示,AB=CD,AD=BC。

12.2全等三角形的判定(教案)

12.2全等三角形的判定(教案)
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS、ASA、AAS、HL这五种全等三角形的判定方法。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、拼接等操作,演示全等三角形判定方法的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“全等三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
12.2全等三角形的判定(教案)
一、教学内容
《12.2全等三角形的判定》
(1)了解全等三角形的定义及性质;
(2)掌握SSS、SAS、ASA、AAS、HL五种全等三角形的判定方法;
(3)能够运用全等三角形的判定方法解决实际问题;
(4)通过实际操作,培养学生的观察能力和空间想象能力。
二、核心素养目标
《12.2全等三角形的判定》
举例:设计一些综合性的练习题,让学生在解决问题中运用全等三角形的判定方法。
2.教学难点
(1)判定方法的区分与应用:学生容易混淆五种判定方法,需要教师引导学生区分并学会选择合适的判定方法。
举例:对比分析SSS、SAS、ASA、AAS四种判定方法之间的区别和联系,通过典型例题强化学生区分与应用能力。
(2)实际问题的转化:将实际问题转化为全等三角形的判定问题,这是学生难以突破的难点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形全等的判定第1课时
教学目标:
1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.
2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.
3.培养有条理的思考和表达能力,形成良好的合作意识.
教学重点:
掌握“边边边”判定两个三角形全等的方法
教学难点:
理解证明的基本过程,学会综合分析法
教学过程:
一、设疑求解,操作感知
【教师活动】
问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.
【理论认知】
如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?
【作图验证】(用直尺和圆规)
先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)
【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)
画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:
1.画线段取B′C′=BC;
2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′; 3.连接线段A′B′、A′C′.
【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”
【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.
(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.
【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.
二、例题讲解
【例1】如图所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D 的支架,求证△ABD≌△ACD.(教师板书)
【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.
证明:∵D是BC的中点,
∴BD=CD
在△ABD和△ACD中
∴△ABD ≌△ACD (SSS ).
【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.
三、实践应用
问题思考】
已知AC=FE ,BC=DE ,点A 、D 、B 、F 在直线上,AD=FB (如图所示),要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?
【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.
【学生活动】先独立思考后,再发言:“还应该有AB=FD ,只要AD=FB 两边都加上DB 即可得到AB=FD .”
【教学形式】先独立思考,再合作交流,师生互动.
四、随堂练习
教材练习.
五、课堂总结
1.全等三角形性质是什么?
2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?
3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性) ,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=
⎩。

相关文档
最新文档